On Weakly δ-Semiprimary Ideals of Commutative Rings

Ayman Badawi
Department of Mathematics & Statistics, The American University of Sharjah
P.O. Box 26666, Sharjah, United Arab Emirates
E-mail: abadawi@aus.edu

Deniz Sonmez Gursel Yesilot
Department of Mathematics, Yildiz Technical University
Davutpaşa-Istanbul, Turkey
E-mail: dnzguel@hotmail.com gyesilot@yildiz.edu.tr

Received 4 July 2017
Revised 3 September 2017
Communicated by Nanqing Ding

Abstract. Let R be a commutative ring with $1 \neq 0$. A proper ideal I of R is a semiprimary ideal of R if whenever $a, b \in R$ and $ab \in I$, we have $a \in \sqrt{I}$ or $b \in \sqrt{I}$; and I is a weakly semiprimary ideal of R if whenever $a, b \in R$ and $0 \neq ab \in I$, we have $a \in \sqrt{I}$ or $b \in \sqrt{I}$. In this paper, we introduce a new class of ideals that is closely related to the class of (weakly) semiprimary ideals. Let $I(R)$ be the set of all ideals of R and let $\delta : I(R) \to I(R)$ be a function. Then δ is called an expansion function of ideals of R if whenever L, I, J are ideals of R with $J \subseteq I$, we have $L \subseteq \delta(J)$ and $\delta(J) \subseteq \delta(I)$. Let δ be an expansion function of ideals of R. Then a proper ideal I of R is called a δ-semiprimary (weakly δ-semiprimary) ideal of R if $ab \in I$ ($0 \neq ab \in I$) implies $a \in \delta(I)$ or $b \in \delta(I)$. A number of results concerning weakly δ-semiprimary ideals and examples of weakly δ-semiprimary ideals are given.

2010 Mathematics Subject Classification: 13A05, 13F05

Keywords: semiprimary ideal, weakly semiprimary ideal, weakly prime ideal, weakly primary ideal, δ-primary ideal, δ-2-absorbing ideal

1 Introduction

We assume throughout this paper that all rings are commutative with $1 \neq 0$. Let R be a commutative ring. An ideal I of R is said to be proper if $I \neq R$. When I is a proper ideal of R, then we use \sqrt{I} to denote the radical ideal of I (that is, $\sqrt{I} = \{x \in R \mid x^n \in I$ for some positive integer $n \geq 1\}$). Note that $\sqrt{\{0\}}$ is the set (ideal) of all nilpotent elements of R.

Let I be a proper ideal of R. We recall from [1] and [6] that I is said to be weakly semiprime if $0 \neq x^2 \in I$ implies $x \in I$; recall from [1] (also, [4]) that a proper ideal
I of R is said to be weakly prime (weakly primary) if $0 \neq ab \in I$ implies $a \in I$ or $b \in I$ ($a \in I$ or $b \in \sqrt{I}$). Over the past several years, there has been considerable attention in the literature to prime ideals and their generalizations (for example, see [1]–[11], and [14]).

Recall that a proper ideal I of a ring R is called semiprimary if whenever $x, y \in R$ and $xy \in I$, we have $x \in \sqrt{I}$ or $y \in \sqrt{I}$. Gilmour [12] studied rings in which semiprimary ideals are primary. In this paper, we define a proper ideal I of R to be weakly semiprimary if whenever $x, y \in R$ and $0 \neq xy \in I$, we have $x \in \sqrt{I}$ or $y \in \sqrt{I}$. In fact, we will study a more general concept. Let $I(R)$ be the set of all ideals of R. Zhao [14] introduced the concept of expansion of ideals of R. We recall from [14] that a function $\delta : I(R) \to I(R)$ is called an expansion function of ideals of R if whenever L, I, J are ideals of R with $J \subseteq I$, we have $L \subseteq \delta(L)$ and $\delta(J) \subseteq \delta(I)$. In addition, recall from [14] that a proper ideal I of R is said to be a δ-primary ideal of R if whenever $a, b \in R$ with $ab \in I$, we have $a \in I$ or $b \in \delta(I)$, where δ is an expansion function of ideals of R. Let δ be an expansion function of ideals of R. In this paper, a proper ideal I of R is called a δ-semiprimary (weakly δ-semiprimary) ideal of R if $ab \in I$ ($0 \neq ab \in I$) implies $a \in \delta(I)$ or $b \in \delta(I)$.

Let δ be an expansion function of ideals of a ring R. Among many results in this paper, it is shown that if I is a weakly δ-semiprimary ideal of R that is not δ-semiprimary, then $I^2 = \{0\}$ and hence $I \subseteq \sqrt{\{0\}}$ (Theorem 2.10). If I is a proper ideal of R and $I^2 = \{0\}$, then I need not be a weakly δ-semiprimary ideal of R (Example 2.14). It is shown in Example 2.23 that if I, J are weakly δ-semiprimary ideals of R such that $\delta(I) = \delta(J)$ and $I + J \neq R$, then $I + J$ need not be a weakly δ-semiprimary ideal of R. We show that if R is a Boolean ring, then every weakly semiprimary ideal of R is weakly prime (Theorem 2.16); if S is a multiplicatively closed subset of R such that $S \cap Z(R) = \emptyset$ (where $Z(R)$ is the set of all zero divisor elements of R) and I is a weakly semiprimary ideal of R such that $S \cap \sqrt{I} = \emptyset$, then I_S is a weakly semiprimary ideal of R_S (Theorem 3.1). We also show that if I is a weakly δ-primary ideal of R and $\{0\} \neq AB \subseteq I$ for some ideals A, B of R, then $A \subseteq \delta(I)$ or $B \subseteq \delta(I)$ (Theorem 5.4).

2 Weakly δ-Semiprimary Ideals

Definition 2.1. [14] Let $I(R)$ be the set of all ideals of R. Then a function $\delta : I(R) \to I(R)$ is called an expansion function of ideals of R if whenever L, I, J are ideals of R with $J \subseteq I$, we have $L \subseteq \delta(L)$ and $\delta(J) \subseteq \delta(I)$.

In the following example, we give some expansion functions of ideals of a ring R.

Example 2.2. [8] Let $\delta : I(R) \to I(R)$ be a function. Then

(1) If $\delta(I) = I$ for every ideal I of R, then δ is an expansion function of ideals
of R.

(2) If $\delta(I) = \sqrt{T}$ (note that $\sqrt{R} = R$) for every ideal I of R, then δ is an expansion function of ideals of R.

(3) Suppose that R is a quasi-local ring (i.e., R has exactly one maximal ideal) with maximal ideal M. If $\delta(I) = M$ for every proper ideal I of R, then δ is an expansion function of ideals of R.

(4) Let I be a proper ideal of R. Recall from [13] that an element $r \in R$ is called integral over I if there is an integer $n \geq 1$ and $a_i \in I^i$, $i = 1, \ldots, n$, such that $r^n + a_1r^{n-1} + a_2r^{n-2} + \cdots + a_n = 0$. Let $\mathcal{T} = \{ r \in R \mid r \text{ is integral over } I \}$.

Let $I \in \mathcal{I}(R)$. It is known that \mathcal{T} is an ideal of R and $I \subseteq \mathcal{T} \subseteq \sqrt{\mathcal{T}}$, and if $J \subseteq I$, then $\mathcal{T} = \mathcal{T}$ (see [13]). If $\delta(I) = \mathcal{T}$ for every ideal I of R, then δ is an expansion function of ideals of R.

(5) Let J be a proper ideal of R. If $\delta(I) = I + J$ for every ideal I of R, then δ is an expansion function of ideals of R.

(6) Assume that δ_1 and δ_2 are expansion functions of ideals of R. We give $\delta : \mathcal{I}(R) \to \mathcal{I}(R)$ such that $\delta(I) = \delta_1(I) + \delta_2(I)$. Then δ is an expansion function of ideals of R.

(7) Assume that δ_1 and δ_2 are expansion functions of ideals of R. We give $\delta : \mathcal{I}(R) \to \mathcal{I}(R)$ such that $\delta(I) = \delta_1(I) \cap \delta_2(I)$. Then δ is an expansion function of ideals of R.

(8) Assume that δ_1 and δ_2 are expansion functions of ideals of R. We give $\delta : \mathcal{I}(R) \to \mathcal{I}(R)$ such that $\delta(I) = (\delta_1 \circ \delta_2)(I) = \delta_1(\delta_2(I))$. Then δ is an expansion function of ideals of R.

We recall the following definitions.

Definition 2.3. Let δ be an expansion function of ideals of a ring R.

(1) A proper ideal I of R is called a δ-semiprimary (weakly δ-semiprimary) ideal of R if whenever $a, b \in R$ and $ab \in I$ ($0 \neq ab \in I$), we have $a \in \delta(I)$ or $b \in \delta(I)$.

(2) If $\delta : \mathcal{I}(R) \to \mathcal{I}(R)$ such that $\delta(I) = \sqrt{T}$ for every proper ideal I of R, then δ is an expansion function of ideals of R. In this case, a proper ideal I of R is called a semiprimary (weakly semiprimary) ideal of R if whenever $a, b \in R$ and $ab \in I$ ($0 \neq ab \in I$), we have $a \in \sqrt{T}$ or $b \in \sqrt{T}$.

(3) A proper ideal I of R is called a δ-primary (weakly δ-primary) ideal of R if whenever $a, b \in R$ and $ab \in I$ ($0 \neq ab \in I$), we have $a \in I$ or $b \in \delta(I)$.

(4) A proper ideal I of R is called a weakly prime ideal of R if whenever $a, b \in R$ and $0 \neq ab \in I$, we have $a \in I$ or $b \in I$.

(5) A proper ideal I of R is called a weakly primary ideal of R if whenever $a, b \in R$ and $0 \neq ab \in I$, we have $a \in I$ or $b \in \sqrt{T}$.

We have the following trivial result, whose proof we omit.

Theorem 2.4. Let I be a proper ideal of R and let δ be an expansion function of ideals of R.

(1) If I is a δ-primary ideal of R, then I is a weakly δ-semiprimary ideal of R. In particular, if I is a primary ideal of R, then I is a weakly semiprimary ideal of R.
(2) If I is a weakly δ-primary ideal of R, then I is a weakly δ-semiprimary ideal of R. In particular, if I is a weakly primary ideal of R, then I is a weakly semiprimary ideal of R.

(3) If I is a δ-semiprimary ideal of R, then I is a weakly δ-semiprimary ideal of R.

(4) $\sqrt{(0)}$ is a weakly prime ideal of R if and only if $\sqrt{(0)}$ is a weakly semiprimary ideal of R.

(5) If I is a weakly prime ideal of R, then I is a weakly semiprimary ideal of R.

The following is an example of a proper ideal of a ring R that is a weakly semiprimary ideal of R, but neither weakly primary nor weakly prime.

Example 2.5. Let $A = \mathbb{Z}_2[X, Y]$, where X and Y are indeterminates. Then

$$I = (Y^2, XY)A \quad \text{and} \quad J = (Y^2, X^2Y^2)A$$

are ideals of A. Set $R = A/J$. Hence, $L = I/J$ is an ideal of R and $\sqrt{L} = (Y, XY)A/J$. Since $0 \neq XY + J \in L$ and neither $X + J \in \sqrt{L}$ nor $Y + J \in L$, we conclude that L is not a weakly primary ideal of R. Since $0 + J \neq XY + J \in L$ but neither $X + J \in L$ nor $Y + J \in L$, we know that L is not a weakly prime ideal of R. It is easy to check that L is a weakly semiprimary ideal of R.

The next example is an ideal that is weakly semiprimary but not semiprimary.

Example 2.6. Let $R = Z_{36}$. Then $I = \{0\}$ is a weakly semiprimary ideal of R by definition. Note that $\sqrt{I} = 6R$. Since $0 = 4 \cdot 9 \in I$ but neither $4 \in \sqrt{I}$ nor $9 \in \sqrt{I}$, we conclude that I is not a semiprimary ideal of R.

Definition 2.7. Let δ be an expansion function of ideals of a ring R. Suppose that I is a weakly δ-semiprimary ideal of R and $x \in R$. Then x is called a dual-zero element of I if $xy = 0$ for some $y \in R$ and neither $x \in \delta(I)$ nor $y \in \delta(I)$. (Note that y is also a dual-zero element of I.)

Remark 2.8. Let δ be an expansion function of ideals of a ring R. If I is a weakly δ-semiprimary ideal of R which is not δ-primary, then I must have a dual-zero element of R.

Theorem 2.9. Let δ be an expansion function of ideals of a ring R and I be a weakly δ-semiprimary ideal of R. If $x \in R$ is a dual-zero element of I, then $xI = \{0\}$.

Proof. Assume that $x \in R$ is a dual-zero element of I. Then $xy = 0$ for some $y \in R$ such that neither $x \in \delta(I)$ nor $y \in \delta(I)$. Let $i \in I$. Thus, $x(y + i) = 0 + xi = xi \in I$. Suppose that $xi \neq 0$. Since $0 \neq x(y + i) = xi \in I$ and I is a weakly δ-semiprimary ideal of R, we conclude that $x \in \delta(I)$ or $(y + i) \in \delta(I)$, and hence $x \in \delta(I)$ or $y \in \delta(I)$, a contradiction. Thus, $xi = 0$.

Theorem 2.10. Let δ be an expansion function of ideals of a ring R and I be a weakly δ-semiprimary ideal of R that is not δ-primary. Then $I^2 = \{0\}$, and hence $I \subseteq \sqrt{(0)}$.

A. Badawi, D. Sonmez, G. Yesilot

390
Proof. Since I is a weakly δ-semi-primary ideal of R that is not δ-semi-primary, we conclude that I has a dual-zero element $x \in R$. Since $xy = 0$ and neither $x \in \delta(I)$ nor $y \in \delta(I)$, we conclude that y is a dual-zero element of I. Let $i, j \in I$. Then by Theorem 2.9, we have $(x + i)(y + j) = ij \in I$. Suppose that $ij \neq 0$. Since $0 \neq (x + i)(y + j) = ij \in I$ and I is a weakly δ-semi-primary ideal of R, we conclude that $x + i \in \delta(I)$ or $y + j \in \delta(I)$, and hence $x \in \delta(I)$ or $y \in \delta(I)$, a contradiction. Therefore $ij = 0$, and hence $I^2 = \{0\}$. □

In view of Theorem 2.10, we have the following result.

Corollary 2.11. Let I be a weakly semi-primary ideal of R that is not semi-primary. Then $I^2 = \{0\}$, and hence $I \subseteq \sqrt{\{0\}}$.

The following example shows that a proper ideal I of R with the property $I^2 = \{0\}$ need not be a weakly semi-primary ideal of R.

Example 2.12. Let $R = \mathbb{Z}_{12}$. Then $I = \{0, 6\}$ is an ideal of R and $I^2 = \{0\}$. Note that $\sqrt{I} = I$. Since $0 \neq 2 \cdot 3 \in I$ and neither $2 \in \sqrt{I}$ nor $3 \in \sqrt{I}$, we conclude that I is not a weakly semi-primary ideal of R.

Theorem 2.13. Let δ be an expansion function of ideals of a ring R and I be a proper ideal of R. If $\delta(I)$ is a weakly prime of R, then I is a weakly δ-semi-primary ideal of R. In particular, if \sqrt{I} is a weakly prime of R, then I is a weakly semi-primary ideal of R.

Proof. Suppose that $0 \neq xy \in I$ for some $x, y \in R$. Hence, $0 \neq xy \in \delta(I)$. Since $\delta(I)$ is weakly prime, we conclude that $x \in \delta(I)$ or $y \in \delta(I)$. Thus, I is a weakly δ-semi-primary ideal of R. □

Note that if I is a weakly semi-primary ideal of a ring R that is not semi-primary, then \sqrt{I} need not be a weakly prime ideal of R. We have the following example.

Example 2.14. The ideal $I = \{0\}$ is a weakly semi-primary ideal of \mathbb{Z}_{12}. However, $\sqrt{I} = \{0, 6\}$ is not a weakly prime ideal of \mathbb{Z}_{12} since $0 \neq 2 \cdot 3 \in \sqrt{I}$, but neither $2 \in \sqrt{I}$ nor $3 \in \sqrt{I}$.

Remark 2.15. Note that a weakly prime ideal of a ring R is weakly semi-primary, but the converse is not true. Let $R = \mathbb{Z}[(X)]$. Then $\frac{(X^2)}{(X^2)}$ is an ideal of R. Since $0 \neq (X + (X^3)) \cdot (X + (X^3)) = X^2 + (X^3) \in I$ but $X + (X^3) \notin I$, we conclude that I is not a weakly prime ideal of R. Since $\sqrt{I} = \frac{(2, X)}{(X^2)}$ is a prime ideal of R, I is a (weakly) semi-primary ideal of R.

Let R be a Boolean ring (i.e., $x^2 = x$ for every $x \in R$). Since $\sqrt{I} = I$ for every proper ideal I of R, we have the following result.

Theorem 2.16. Let R be a Boolean ring and I be a proper ideal of R. Then the following statements are equivalent:

1. I is a weakly semi-primary ideal of R.
2. I is a weakly prime ideal of R.
Theorem 2.17. Let δ be an expansion function of ideals of a ring R and I be a weakly δ-semiprimary ideal of R. Suppose that $\delta(I) = \delta(\{0\})$. Then the following statements are equivalent:

1. I is not δ-semiprimary.
2. $\{0\}$ has a dual-zero element of R.

Proof. (1)⇒(2) As I is a weakly δ-semiprimary ideal of R that is not δ-semiprimary, there are $x, y \in R$ such that $xy = 0$ and neither $x \in \delta(I)$ nor $y \in \delta(I)$. Since $\delta(I) = \delta(\{0\})$, we conclude that x is a dual-zero element of $\{0\}$.

(2)⇒(1) Suppose that x is a dual-zero element of $\{0\}$. Since $\delta(I) = \delta(\{0\})$, it is clear that x is a dual-zero element of I. \qed

In view of Theorem 2.17, we have the following result.

Corollary 2.18. Let $I \subseteq \sqrt{\{0\}}$ be a proper ideal of R such that I is a weakly semiprimary ideal of R. Then the following statements are equivalent:

1. I is not semiprimary.
2. $\{0\}$ has a dual-zero element of R.

Proof. Since $\delta : I(R) \to I(R)$ such that $\delta(I) = \sqrt{I}$ for every proper ideal I of R is an expansion function of ideals of R, we have $\delta(I) = \delta(\{0\})$. Thus, the claim is clear by Theorem 2.17. \qed

The hypothesis “$\delta(I) = \delta(\{0\})$” in Theorem 2.17 is crucial. To show this, we give an ideal I of a ring R in the following example, such that $I \subseteq \sqrt{\{0\}}$ and $\{0\}$ has a dual-zero element of R but I is a δ-semiprimary ideal of R for some expansion function δ of ideals of R.

Example 2.19. Let $R = \mathbb{Z}_8$, $\delta : I(R) \to I(R)$ such that $\delta(I) = \sqrt{I}$ for every nonzero proper ideal I of R, and $\delta(\{0\}) = \{0\}$. Let $I = 4R$. Then $\delta(I) = \sqrt{I} = 2R$. It is clear that I is a δ-semiprimary ideal of R and 2 is a dual-zero element of $\{0\}$.

Theorem 2.20. Let δ be an expansion function of ideals of a ring R and I be a weakly δ-semiprimary ideal of R. If $J \subseteq I$ and $\delta(J) = \delta(I)$, then J is a weakly δ-semiprimary ideal of R.

Proof. Suppose that $0 \neq xy \in J$ for some $x, y \in R$. Since $J \subseteq I$, we have $0 \neq xy \in I$. Since I is a weakly δ-semiprimary ideal of R, we see that $x \in \delta(I)$ or $y \in \delta(I)$. Noticing $\delta(I) = \delta(J)$, we conclude that $x \in \delta(J)$ or $y \in \delta(J)$. Thus, J is a weakly δ-semiprimary ideal of R. \qed

In view of Theorem 2.20, we have the following result.

Corollary 2.21. Let I be a weakly semiprimary ideal of R such that $I \subseteq \sqrt{\{0\}}$. If $J \subseteq I$, then J is a weakly semiprimary ideal of R. In particular, if L is an ideal of R, then LI and $L \cap I$ are weakly semiprimary ideals of R. Furthermore, if $n \geq 1$ is a positive integer, then I^n is a weakly semiprimary ideal of R.

Theorem 2.22. Let $\{I_i\}_{i \in J}$ be a collection of weakly semiprimary ideals of a ring R that are not semiprimary. Then $I = \bigcap_{i \in J} I_i$ is a weakly semiprimary ideal of R.

A. Badawi, D. Sonmez, G. Yesilot
Proof. Note that \(\sqrt{I} = \bigcap I_1 = \sqrt{I_1} = \sqrt{\{0\}} \) by Theorem 2.10. Hence, the result follows. \(\Box \)

If \(I, J \) are weakly semiprimary ideals of a ring \(R \) such that \(\sqrt{I} = \sqrt{J} \) and \(I + J \neq R \), then \(I + J \) need not be a weakly semiprimary ideal of \(R \).

Example 2.23. Let \(A = \mathbb{Z}_2[T, U, X, Y] \),

\[H = (T^2, U^2, XY + T + U, TU, TX, TY, UX, UY)A \]

be an ideal of \(A \), and \(R = A/H \). Then by the construction of \(R \), \(I = (TA + H)/H = \{0, T + H\} \) and \(J = (UA + H)/H = \{0, U + H\} \) are weakly semiprimary ideals of \(R \) such that \(|I| = |J| = 2 \) and \(\sqrt{I} = \sqrt{J} = \sqrt{\{0\}} \) (in \(R \)) = \((T, U, XY)A/H \). Let \(L = I + J = (H + (T, U)A)/H \). Thus, \(\sqrt{L} = \sqrt{\{0\}} \) (in \(R \)) and \(L \) is not a weakly semiprimary ideal of \(R \) since \(0 \neq X + H \cdot Y + H = XY + H, X + H \notin L \), and \(Y + H \notin \sqrt{L} \).

Theorem 2.24. Let \(\delta \) be an expansion function of ideals of \(R \) such that \(\delta(\{0\}) \) is a weakly semiprimary ideal of \(R \) and \(\delta(\delta(\{0\})) = \delta(\{0\}) \). Then the following statements hold:

1. \(\delta(\{0\}) \) is a prime ideal of \(R \).
2. Suppose that \(I \) is a weakly \(\delta \)-semiprimary ideal of \(R \). Then \(I \) is a \(\delta \)-semiprimary ideal of \(R \).

Proof. (1) Let \(ab \in \delta(\{0\}) \) for some \(a, b \in R \). Suppose that \(a \notin \delta(\{0\}) = \delta(\{0\}) \). Since \(\delta(\{0\}) \) is a \(\delta \)-semiprimary ideal of \(R \) and \(a \notin \delta(\delta(\{0\})) \), it follows that \(b \in \delta(\{0\}) = \delta(\{0\}) \). Thus, \(\delta(\{0\}) \) is a prime ideal of \(R \).

(2) Suppose that \(I \) is not \(\delta \)-semiprimary. Clearly, \(\delta(\{0\}) \subseteq \delta(I) \). Since \(I^2 = \{0\} \) by Theorem 2.10 and \(\delta(\{0\}) \) is a prime ideal of \(R \), we have \(I \subseteq \delta(\{0\}) \). Noticing \(\delta(\delta(\{0\})) = \delta(\{0\}) \), we have \(\delta(I) \subseteq \delta(\delta(\{0\})) = \delta(\{0\}) \). Since \(\delta(\{0\}) \subseteq \delta(I) \) and \(\delta(I) \subseteq \delta(\delta(\{0\})) = \delta(\{0\}) \), it follows that \(\delta(I) = \delta(\{0\}) \) is a prime ideal of \(R \). As \(\delta(I) \) is prime, \(I \) is a \(\delta \)-semiprimary ideal of \(R \), which is a contradiction. \(\Box \)

Theorem 2.25. Let \(\delta \) be an expansion function of ideals of \(R \) such that \(\delta(\{0\}) \) is a weakly \(\delta \)-semiprimary ideal of \(R \), \(\sqrt{\{0\}} \subseteq \delta(\{0\}) \), and \(\delta(\delta(\{0\})) = \delta(\{0\}) \). Then the following statements hold:

1. \(\delta(\{0\}) \) is a weakly prime ideal of \(R \).
2. Suppose that \(I \) is a weakly \(\delta \)-semiprimary ideal of \(R \) that is not \(\delta \)-semiprimary. Then \(\delta(I) = \delta(\{0\}) = \delta(\sqrt{\{0\}}) \) is a weakly prime ideal of \(R \) that is not prime. Furthermore, if \(J \subseteq \sqrt{\{0\}} \), then \(J \) is a weakly \(\delta \)-semiprimary ideal of \(R \) that is not \(\delta \)-semiprimary and \(\delta(J) = \delta(\{0\}) \).

Proof. (1) Let \(0 \neq ab \in \delta(\{0\}) \) for some \(a, b \in R \). Now we can suppose that \(a \notin \delta(\delta(\{0\})) = \delta(\{0\}) \). Since \(\delta(\{0\}) \) is a weakly \(\delta \)-semiprimary ideal of \(R \) and \(a \notin \delta(\delta(\{0\})) \), we have \(b \in \delta(\delta(\{0\})) = \delta(\{0\}) \). Thus, \(\delta(\{0\}) \) is a weakly prime ideal of \(R \).

(2) Suppose that \(I \) is not \(\delta \)-semiprimary. Then \(I^2 = \{0\} \) by Theorem 2.10, and hence \(I \subseteq \sqrt{\{0\}} \). Let \(J \) be an ideal of \(R \) such that \(J \subseteq \sqrt{\{0\}} \). Since \(\sqrt{\{0\}} \subseteq \delta(\{0\}) \),
we have $J \subseteq \delta\{0\}$. Therefore, we obtain $\delta(J) \subseteq \delta(\delta\{0\}) = \delta\{0\}$. Since $\delta\{0\} \subseteq \delta(J)$ and $\delta(J) \subseteq \delta\{0\}$, we conclude that $\delta(J) = \delta\{0\}$. In particular, $\delta(I) = \delta\{0\} = \delta(\sqrt{I})$ is a weakly prime ideal of R. Noticing that $\delta\{0\}$ is a weakly δ-semiprimary of R and $\delta(J) = \delta\{0\}$, we conclude that J is a weakly δ-semiprimary ideal of R. As I is not δ-semiprimary, it follows that $\delta(I) = \delta\{0\}$ is not a prime ideal of R. In addition, $\delta(J) = \delta\{0\}$ is a weakly prime ideal of R that is not prime, so we conclude that J is a weakly δ-semiprimary ideal of R that is not δ-semiprimary.

\[\Box \]

3 Weakly δ-Semiprimary Ideals Under Localization and Ring-homomorphism

For a ring R, let $Z(R)$ be the set of all zerodivisors of R.

Theorem 3.1. Assume that S is a multiplicatively closed subset of R such that $S \cap Z(R) = \emptyset$. If I is a weakly semiprimary ideal of R and $S \cap \sqrt{I} = \emptyset$, then I_S is a weakly semiprimary ideal of R_S.

Proof. Since $S \cap \sqrt{I} = \emptyset$, we conclude that $\sqrt{I_S} = (\sqrt{I})_S$. Let $a, b \in R$ and $s, t \in S$ such that $0 \neq \frac{a}{t} \in I_S$. Then there exists $u \in S$ such that $0 \neq uab \in I$. Since $u \in S$ and $S \cap \sqrt{I} = \emptyset$, we conclude that $0 \neq ab \in \sqrt{I}$. Since I is a weakly semiprimary ideal of R, we see that $a \in \sqrt{I}$ or $b \in \sqrt{I}$. Thus, $\frac{a}{t} \in \sqrt{I_S}$ or $\frac{a}{t} \in I$. Consequently, I_S is a weakly semiprimary ideal of R_S.

Theorem 3.2. Let γ be an expansion function of ideals of R and let I, J be proper ideals of R with $I \subseteq J$. Let $\delta : I\left(\frac{R}{I}\right) \to I\left(\frac{R}{J}\right)$ be an expansion function of ideals of $S = \frac{R}{J}$ such that $\delta\left(\frac{L+I}{J}\right) = \frac{\gamma(L) + I}{\gamma(J)}$ for every $L \in I(R)$. Then the following statements hold:

1. If J is a weakly γ-semiprimary ideal of R, then $\frac{J}{J}$ is a weakly δ-semiprimary ideal of S.
2. If I is a weakly γ-semiprimary ideal of R and $\frac{J}{J}$ is a weakly δ-semiprimary ideal of S, then J is a weakly γ-semiprimary ideal of R.

Proof. First observe that since $I \subseteq J$, we have $I \subseteq J \subseteq \gamma(J)$ and $\delta\left(\frac{J}{J}\right) = \frac{\gamma(J)}{J}$. (1) Assume that $ab \in J/I$ for some $a, b \in R$. Then $0 \neq ab \in J$. Hence, $a \in \gamma(J)$ or $b \in \gamma(J)$. Thus, $a + I \in \frac{2(J)}{J}$ or $b + I \in \frac{\gamma(J)}{J}$. It follows that $\frac{J}{J}$ is a weakly δ-semiprimary ideal of $S = \frac{R}{J}$.

(2) Since $I \subseteq J$, we have $\gamma(I) \subseteq \gamma(J)$. Assume that $0 \neq ab \in J$ for some $a, b \in R$. Let $ab \in I$. Since I is a weakly γ-semiprimary ideal of R, we have $a \in \gamma(I) \subseteq \gamma(J)$ or $b \in \gamma(I) \subseteq \gamma(J)$. Assume that $ab \in J \setminus I$. Thus, $I \neq ab + I \in \frac{J}{J}$. Since $\frac{J}{J}$ is a weakly δ-semiprimary ideal of S, we have $a + I \in \frac{\gamma(J)}{J}$ or $b + I \in \frac{\gamma(J)}{J}$. Hence, $a \in \gamma(J)$ or $b \in \gamma(J)$. Consequently, J is a weakly γ-semiprimary ideal of R.

In view of Theorem 3.2, we have the following result.

Corollary 3.3. Let I and J be proper ideals of R with $I \subseteq J$. Then the following statements hold:
(1) If J is a weakly semiprimary ideal of R, then $\frac{J}{I}$ is a weakly semiprimary ideal of R

(2) If I is a weakly semiprimary ideal of R and $\frac{J}{I}$ is a weakly semiprimary ideal of R

Theorem 3.4. Let R and S be rings and $f : R \to S$ be a surjective ring-homomorphism. Then the following statements hold:

(1) If I is a weakly semiprimary ideal of R and $\ker(f) \subseteq I$, then $f(I)$ is a weakly semiprimary ideal of S.

(2) If J is a weakly semiprimary ideal of S and $\ker(f)$ is a weakly semiprimary ideal of R, then $f^{-1}(J)$ is a weakly semiprimary ideal of R.

Proof. (1) Since I is a weakly semiprimary ideal of R and $\ker(f) \subseteq I$, we conclude that $\frac{I}{\ker(f)}$ is a weakly semiprimary ideal of S by Corollary 3.3(1). Since S is ring-isomorphic to S, the result follows.

(2) Let $L = f^{-1}(J)$. Then $\ker(f) \subseteq L$. Since $\frac{L}{\ker(f)}$ is ring-isomorphic to S, we conclude that $\frac{L}{\ker(f)}$ is a weakly semiprimary ideal of S by Theorem 2.10. Hence, L is a weakly semiprimary ideal of R by Theorem 3.3(2).

4 Weakly δ-Semiprimary Ideals in Product of Rings

Let R_1, \ldots, R_n, where $n \geq 2$, be commutative rings with $1 \neq 0$. Assume that $\delta_1, \ldots, \delta_n$ are expansion functions of ideals of R_1, \ldots, R_n, respectively. Now let $R = R_1 \times \cdots \times R_n$. Define a function $\delta_x : I(R) \to I(R)$ such that

$$\delta_x(I_1 \times \cdots \times I_n) = \delta_1(I_1) \times \cdots \times \delta_n(I_n)$$

for every $I_i \in I(R_i)$, where $1 \leq i \leq n$. Then it is clear that δ_x is an expansion function of ideals of R. Note that every ideal of R is of the form $I_1 \times \cdots \times I_n$, where each I_i is an ideal of R_i for $1 \leq i \leq n$.

Theorem 4.1. Let R_1 and R_2 be commutative rings with $1 \neq 0$, $R = R_1 \times R_2$, and δ_1, δ_2 be expansion functions of ideals of R_1, R_2, respectively. Let I be a proper ideal of R_1. Then the following statements are equivalent:

(1) $I \times R_2$ is a weakly δ_x-semiprimary ideal of R.

(2) $I \times R_2$ is a δ_x-semiprimary ideal of R.

(3) I is a δ_1-semiprimary ideal of R_1.

Proof. (1)\Rightarrow(2) Let $J = I \times R_2$. Then $J^2 \neq \{(0, 0)\}$. Hence, J is a δ_x-semiprimary ideal of R by Theorem 2.10.

(2)\Rightarrow(3) Suppose that I is not a δ_1-semiprimary ideal of R_1. Then there exist $a, b \in R_1$ such that $ab \in I$, but neither $a \in \delta_1(I)$ nor $b \in \delta_1(I)$. Since $(a, 1)(b, 1) = (ab, 1) \in I \times R_2$, we have $(a, 1) \in \delta_x(I \times R_2)$ or $(b, 1) \in \delta_x(I \times R_2)$. It follows that $a \in \delta_1(I)$ or $b \in \delta_1(I)$, a contradiction. Thus, I is a δ_1-semiprimary ideal of R_1.

(3)⇒(1) Let \(I \) be a \(\delta_1 \)-semiprimary ideal of \(R_1 \). Then it is clear that \(I \times R_2 \) is a (weakly) \(\delta_x \)-semiprimary ideal of \(R \). \hfill \(\square \)

Theorem 4.2. Let \(R_1 \) and \(R_2 \) be commutative rings with \(1 \neq 0 \), \(R = R_1 \times R_2 \), and \(\delta_1, \delta_2 \) be expansion functions of ideals of \(R_1, R_2 \), respectively, such that \(\delta_2(K) = R_2 \) for some ideal \(K \) of \(R_2 \) if and only if \(K = R_2 \). Let \(I = I_1 \times I_2 \) be a proper ideal of \(R \), where \(I_1 \) and \(I_2 \) are some ideals of \(R_1 \) and \(R_2 \), respectively. Suppose that \(\delta_1(I_1) \neq R_1 \). Then the following statements are equivalent:

1. \(I \) is a weakly \(\delta_x \)-semiprimary ideal of \(R \).
2. \(I = \{(0,0)\} \) or \(I = I_1 \times R_2 \) is a \(\delta_x \)-semiprimary ideal of \(R \) (and hence \(I_1 \) is a \(\delta_1 \)-semiprimary ideal of \(R_1 \)).

Proof. (1)⇒(2) Assume that \(\{(0,0)\} \neq I = I_1 \times I_2 \) is a weakly \(\delta_x \)-semiprimary ideal of \(R \). Then there exists \((0,0) \neq (x,y) \in I \) such that \(x \in I_1 \) and \(y \in I_2 \). Since \(I \) is a weakly \(\delta_x \)-semiprimary ideal of \(R \) and \((0,0) \neq (x,1)(1,y) = (x,y) \in I \), we conclude that \((x,1) \in \delta_x(I_1) \) or \((1,y) \in \delta_x(I) \). As \(\delta_1(I_1) \neq R_1 \), we get \((1,y) \notin \delta_x(I) \). Thus \((x,1) \in \delta_x(I_1) \), and hence \(1 \in \delta_2(I_2) \). Since \(1 \in \delta_2(I_2) \), we see that \(\delta_2(I_2) = R_2 \), and hence \(I_2 = R_2 \). Therefore, \(I = I_1 \times R_2 \) is a \(\delta_x \)-semiprimary ideal of \(R \) by Theorem 4.1.

(2)⇒(1) Obvious. \hfill \(\square \)

Corollary 4.3. Let \(R_1 \) and \(R_2 \) be commutative rings with \(1 \neq 0 \) and \(R = R_1 \times R_2 \). Let \(I \) be a proper ideal of \(R \). Then the following statements are equivalent:

1. \(I \) is a weakly semiprimary ideal of \(R \).
2. \(I = \{(0,0)\} \text{ or } I \text{ is a semiprimary ideal of } R \).
3. \(I = \{(0,0)\} \text{ or } I = I_1 \times R_2 \text{ for some semiprimary ideal } I_1 \text{ of } R_1 \) or \(I = R_1 \times I_2 \)
 for some semiprimary ideal \(I_2 \) of \(R_2 \).

5 Strongly Weakly \(\delta \)-Semiprimary Ideals

Definition 5.1. Let \(\delta \) be an expansion function of ideals of a ring \(R \). A proper ideal \(I \) of \(R \) is called a strongly weakly \(\delta \)-semiprimary ideal of \(R \) if whenever \(\{0\} \neq AB \subseteq I \) for some ideals \(A, B \) of \(R \), we have \(A \subseteq \delta(I) \) or \(B \subseteq \delta(I) \). Hence, a proper ideal \(I \) of \(R \) is called a strongly weakly semiprimary ideal of \(R \) if whenever \(\{0\} \neq AB \subseteq I \) for some ideals \(A, B \) of \(R \), we have \(A \subseteq \sqrt{\{0\}} \) or \(B \subseteq \sqrt{\{0\}} \).

Remark 5.2. Let \(\delta \) be an expansion function of ideals of a ring \(R \). It is clear that a strongly weakly \(\delta \)-semiprimary ideal of \(R \) is a weakly \(\delta \)-semiprimary ideal of \(R \). In this section, we show that a proper ideal \(I \) of \(R \) is a strongly weakly \(\delta \)-semiprimary ideal of \(R \) if and only if \(I \) is a weakly \(\delta \)-semiprimary ideal of \(R \).

Theorem 5.3. Let \(\delta \) be an expansion function of ideals of a ring \(R \) and \(I \) be a weakly \(\delta \)-semiprimary ideal of \(R \). Suppose that \(AB \subseteq I \) for some ideals \(A, B \) of \(R \), and that \(ab = 0 \) for some \(a \in A \) and \(b \in B \) such that neither \(a \in \delta(I) \) nor \(b \in \delta(I) \). Then \(AB = \{0\} \).

Proof. First we will show \(aB = bA = \{0\} \). Suppose that \(aB \neq \{0\} \). Then \(0 \neq ac \in I \) for some \(c \in B \). Since \(I \) is a weakly \(\delta \)-semiprimary ideal of \(R \) and
We consider three cases:

Case I. Suppose that \(d \in \delta(I) \) and \(e \notin \delta(I) \). Since \(aB = \{0\} \), we can obtain \(0 \neq e(d + a) = ed \in I \), and thus we conclude that \(e \in \delta(I) \) or \(d + a \in \delta(I) \). Since \(d \in \delta(I) \), we have \(e \in \delta(I) \) or \(a \in \delta(I) \), a contradiction.

Case II. Suppose that \(d \notin \delta(I) \) and \(e \in \delta(I) \). Since \(bA = \{0\} \), we have \(0 \neq (e + b) = de \in I \), and hence we conclude that \(d \in \delta(I) \) or \(e + b \in \delta(I) \). As \(e \in \delta(I) \), we have \(d \in \delta(I) \) or \(e \in \delta(I) \), a contradiction.

Case III. Suppose that \(d, e \in \delta(I) \). Since \(AB = bA = \{0\} \), we can obtain \(0 \neq (b + e)(d + a) = ed \in I \), and hence \(b + e \in \delta(I) \) or \(d + a \in \delta(I) \). As \(d, e \in \delta(I) \), we have \(b \in \delta(I) \) or \(a \in \delta(I) \), a contradiction.

Thus, \(AB = \{0\} \).

Theorem 5.4. Let \(\delta \) be an expansion function of ideals of a ring \(R \) and \(I \) be a weakly \(\delta \)-semiprimary ideal of \(R \). Suppose that \(\{0\} \neq AB \subseteq I \) for some ideals \(A, B \) of \(R \). Then \(A \subseteq \delta(I) \) or \(B \subseteq \delta(I) \) (i.e., \(I \) is a strongly weakly \(\delta \)-semiprimary ideal of \(R \)).

Proof. Since \(AB \neq \{0\} \), by Theorem 5.3 we conclude that whenever \(ab \in I \) for some \(a \in A \) and \(b \in B \), we obtain \(a \in \delta(I) \) or \(b \in \delta(I) \). Assume that \(\{0\} \neq AB \subseteq I \) and \(A \nsubseteq \delta(I) \). Then there is an \(x \in A \setminus \delta(I) \). Let \(y \in B \). Since \(xy \in AB \subseteq I \), \(\{0\} \neq AB \) and \(x \notin \delta(I) \), we obtain \(y \in \delta(I) \) by Theorem 5.3. Hence, \(B \subseteq \delta(I) \).

In view of Theorem 5.4, we have the following result.

Corollary 5.5. Let \(I \) be a weakly semiprimary ideal of \(R \). We suppose that \(\{0\} \neq AB \subseteq I \) for some ideals \(A, B \) of \(R \). Then \(A \subseteq \sqrt{I} \) or \(B \subseteq \sqrt{I} \) (i.e., \(I \) is a strongly weakly semiprimary ideal of \(R \)).

Acknowledgement. The authors are grateful to the referee for the great effort in proof-reading the manuscript.

References

