
99.99 AED AWARD. Let m be a positive integer. We want to contruct a right triangle ACB , where $|\mathrm{AB}|=4 \mathrm{~m}+1,|\mathrm{CB}|=4 \mathrm{~m}$, and $|\mathrm{AC}|=$ some positive integer (i.e., all three sides are positive integers). Let S be the set of all possible values of m . Prove that S is a union of k disjoints sets, say S_1, S_2, ..., S_k, where S_1 = \{a_1x^2 + b_1x + c_1|x in $\left.\mathrm{N}^{\wedge *}\right\}$ for some fixed positive integers a_1, b_1, c_1, and for each $2<=\mathrm{i}<=\mathrm{k}$ we have S_i $=\left\{a _i x \wedge 2+b _i x+c _i \mid x\right.$ in $\left.N\right\}$ for some fixed positive integers a_i, b_i, c_i.

Remark: $\mathrm{N}=\{0,1,2,3, \ldots$.$\} and \mathrm{N} \wedge *=\{1,2,3, \ldots\}$
So you need to tell me the exact value of k, and for each $1<=\mathrm{i}<=\mathrm{k}$ you need
 to tell me the exact values of $\mathrm{a}_{-} \mathrm{i}, \mathrm{b} _\mathrm{i}, \mathrm{c}$ _i.
Students in Discrete Math. or Abstract Algebra should know (I guess) how to attack this question. Only very basic elementary number theory is needed here.

As usual: Calculators, Try and Error, and Computer programs are NOT ACCEPTED. You need to give me a correct mathematical argument that clarify your solution

