

99.99 AED AWARD. Let m be a positive integer. We want to contruct a right triangle ACB, where |AB| = 4m + 1, |CB| = 4m, and |AC| = some positive integer (i.e., all three sides are positive integers). Let S be the set of all possible values of m. Prove that S is a union of k disjoints sets, say S_1, S_2, ..., S_k, where S_1 = {a_1x^2 + b_1x + c_1 | x in N^*} for some fixed positive integers a_1, b_1, c_1, and for each 2 <= i <= k we have S_i = {a_ix^2 + b_ix + c_i | x in N} for some fixed positive integers a_i, b_i, c_i.

Remark: N = {0, 1, 2, 3,} and N^* = {1, 2, 3, ...}

So you need to tell me the exact value of k, and for each $1 \le i \le k$ you need to tell me the exact values of a_i, b_i, c_i.

Students in Discrete Math. or Abstract Algebra should know (I guess) how to attack this question. Only very basic elementary number theory is needed here.

As usual: Calculators, Try and Error, and Computer programs are NOT ACCEPTED. You need to give me a correct mathematical argument that clarify your solution

$[e + w \in IN^{*}, [A B] = U m H, [CB] = 4 m$ As expected:)) Yousuf Abo Rahama
$\Rightarrow Ac ^{2} = (4m + 1)^{2} - (4m)^{2} = 8m + 1$ MTH 320
since mEIN* and [Ac12= 8mal, [Ac12 is add => [Ac1 is odd.
Any odd number can be unigly expressed either as 4x41
or UX+3 for some integer X. Since we are interested in
finding all possible values for m, we will consider
both cases: (M would be positive (X >0) since Act > 1 (positive
Case 1: $ Ae = ux+1$ where $ Ae = ux+1$
$=$ $ Ac ^2 = 6X^2 + 8X + = 0 m + = m = 2 n + 1$
Cusez: IACI = 4X+3 wher X 20
=> $ Ac ^2 = 6x^2 + 2ux+9 = 8m+1 => m = 2x^2 + 3x+1$
Woth? there is no odd unber that can take the both
representations (4x+1), (4x+3) to gether which
make the generated Values in casel and casel
form two disjoint sets, and since 1ACK-1 = m and
IACT is positive different IACLE correspond to
different m. Thus,
$S_1 = \{ 2x^2 + x \mid x \in IN^* \}, S_2 = \{ 2x^2 + 3x + 1 \mid x \in IN \}$
ave disjoint and since all possible cases are considered
S=SIUS2 consist of all the possible values form.

Thus S is a union of K disjoints sets with the Structure given in the question.

1