ABC is a right triangle. Length of $\mathrm{CB}=60$.
Let Z be the length of $A C$ and Y be the length of $A B$.
Find all possible PAIRS (Z, Y). where Z, Y are POSITIVE INTEGERS.
To get the 100AED AWARD you need to give me a correct Mathematical Argument showing how one can obtain all possible pairs (Z, Y).

Try and error, Calculator, Computer Program ARE NOT ACCEPTED..
For Example if $(5,2)$ is a solution, you need to clarify how did you get such solution (using Mathematical Argument)

Solution one by Mueez Khan (Discrete Math, MTH 213, Fall 2017)

$$
\begin{array}{ll}
2 \times 1800 \\
6 \times 600 \\
8 \times 450 \\
10 \times 360 \\
12 \times 300 & \\
18 \times 200 & c^{2}=a^{2}+b^{2} \\
20 \times 180 & (c-a) \\
24 \times 150 & (c-a)(c+a)=b^{2} \\
30 \times 120 & (c+a)=3600 \\
36 \times 100 & (c) \\
40 \times 90 & \\
50 \times 72 \\
60 \times 60 &
\end{array}
$$

Pairs of even factors of 3600 m and n moist be pairs of even factors of 3600 .
Suppose since both brockets ore $c^{2}-a^{2}=b^{2} \Rightarrow m^{2}-n^{2}=b^{2}$ prem, then must be divisible $m^{2}-n^{2}=3600$

$$
(m-n)(m+n)=3600
$$

even. m and n Let $c=\left(\frac{m+n}{2}\right) \quad a=\left(\frac{m-n}{2}\right)$
1)

$$
\begin{aligned}
& 1800, \times 2 \\
& c=\frac{m+n}{2}=901 \quad a=\frac{m-n}{2}=899
\end{aligned}
$$

$$
P_{\text {air }}=(899,9.01)
$$

$$
\begin{aligned}
& \text { 2) } 600 \times 6 \\
& a=\frac{600-6}{2} \quad c=\frac{600+6}{2} \\
& a=291 \quad c=303
\end{aligned}
$$

Pairs are not in order, bigger number is Z , smaller number is Y. But OK you are consistent... No big deal!
3) 8×450

$$
\begin{aligned}
& a=\frac{450-8}{2} \quad c=\frac{450+8}{2} \\
&=221 \quad=229 \\
&(221,229)
\end{aligned}
$$

4)

$$
\begin{array}{rl}
10 \times 360 & \frac{360-10}{2} \\
a & c=\frac{360+10}{2} \\
& =175 \\
& =185 \\
(175,185) &
\end{array}
$$

5)

$$
\begin{aligned}
& 12 \times 300 \\
a= & \frac{300-12}{2} \quad c
\end{aligned}=\frac{300+12}{2}, \quad 156
$$

$$
\text { b) } 18 \times 200
$$

$$
=144=156=91
$$

7) 20×180

$$
a=\frac{180-20}{2} \quad c=\frac{180+20}{2}
$$

$$
=80 \quad=100
$$

$$
\text { 2) } \begin{aligned}
150 \times 24 & \\
\begin{aligned}
a & =\frac{150-24}{2} \\
& =63
\end{aligned} & =\frac{150}{2}
\end{aligned}
$$

$(80,100)$
(63.87)

$$
\begin{aligned}
& \text { a) } 30 \times 120 \\
& a=\frac{120-30}{2} \quad c=\frac{120+30}{2} \\
&= 45 \quad=75 \\
&(45,75)
\end{aligned}
$$

$$
\text { 10) } 36 \times 100
$$

$$
\begin{aligned}
a & =\frac{100-36}{2} & c=\frac{100+36}{2} \\
& =32 & =68
\end{aligned}
$$

$$
\begin{array}{r}
=32 \\
(32,68) \\
\hline
\end{array}
$$

11)

$$
\begin{aligned}
& \text { 1) } 40 \times 90 \\
& \begin{aligned}
& a= \frac{90-40}{2} \quad c=\frac{90+40}{2} \\
&= 25 \\
&(25,65)
\end{aligned}
\end{aligned}
$$

$$
\text { 12) } 50 \times 72
$$

$$
a=\frac{72-50}{2} \quad c=\frac{72+50}{2}
$$

$$
=11
$$

61 $(11,61)$

$$
\text { 13) } \begin{array}{rlr}
4 \times 900 & \begin{aligned}
& a=\frac{900-4}{2} \\
&=448 \\
& \frac{900-4}{2} \\
&
\end{aligned} \quad 452 \quad(448,452)
\end{array}
$$

Taking into consideration the degenerate case $Z=60, Y=0$ the problem can be reformulated as finding the solution set of

$$
-y^{2}+z^{2}=60^{2}, \quad z, y \in \mathbb{N}
$$

simplifying the Left Hand side we get
$(z-y)(z+y)=60^{2} \Rightarrow z-y, z+y$ are two factors of 60^{2} such that their product is 60^{2}.
Now, let $k_{1}=z-y$ (i) $k_{2}=z+y . i^{2} \Rightarrow k_{2}=\frac{60^{2}}{k_{1}}, k_{1} 160^{2}$
and k_{1}, k_{2} are both even since they are the addition and the difference of the same two numbers and their product is even.
Now from (1) and (2) we get $z=k_{1}+y \Rightarrow k_{2}=k_{1}+2 y$ Thus, $\frac{60^{2}}{k_{1}}=k_{1}+2 y \Rightarrow y=\frac{60^{2}-k_{1}{ }^{2}}{2 k_{1}} \Rightarrow z=\frac{60^{2}+k_{1}{ }^{2}}{2 k_{1}}$

Since k_{1} is even we will write it as $k_{1}=2 n$ where $h \left\lvert\, \frac{60^{2}}{2}\right.$ and to have the pairs non negative we set $h \leq 30$ and hence the solution set is

$$
\begin{gathered}
S=\left\{\left.\left(\frac{900+n^{2}}{n}, \frac{900-n^{2}}{n}\right) \right\rvert\, 0<n \leqslant 30, \text { and n|900\}} \text { Note } 1<=n<30\right. \\
\begin{array}{c}
\text { so } n=1,2,3,4,5,6,9,10,12,15,18,20,25 . \text {. To be more precise, we have exactly } 13 \text { pairs } \\
(901,899),(452,448),(303,297),(229,221),(185,175),(156,144),(109,91),(100,80),(87,63),(75,45),(68,32),(65,25),(61,11)
\end{array}
\end{gathered}
$$

