MTH111-Course Portfolio-Fall-2021

Ayman Badawi

Table of contents

Table of contents

${ }^{1}$ Section 1: Course Syllabus

2.1.1 The Course's Questions and Solutions.........
2.1.2 Exam I Review from previous semesters 70
2.1.3 Exam II Review from previous semesters 93

214 Final Exam Review10 110
2.2 Worked out Solutions for all Assessment Tools 2.2.1 Solution for Quiz I 12 2.2.2 Solution for Quiz II 129 2.2.3 Solution for Quiz III . 131 2.2.4 Solution for Quiz IV . 134
2.2.5 Solution for Quiz V. 137
2.2.6 Solution for Quiz VI 140
2.2.7 Solution for Quiz VII 144

228 Solution for EXAMI . 147
229 Solution for EXAM II . 153
2220 Solution for Final Exam 158
2.3 QUIZZES . 164
2.3.1 Quiz I . 165
2.3.2 Quiz II . 167
2.3.3 Quiz III . 169
2.3.4 Quiz IV . 171
2.3.5 Quiz V. 173
2.3.6 Quiz VI 175
2.3.7 Quiz VII 177
2.4 Exams 179
24.1 Exam

242 Exam II .. 182
2.43 Final Exam .. 184

البـــامعــة الأمــــركـــــة في الـشــارقـة
American University of Sharjah

Explanation of Assessments

There will be two exams, final, and quizzes. The lowest quiz-score will be dropped.

- No make-up exam will be given. With a valid written excuse and making immediate arrangements with the instructor, a missed exam might be replaced with the grade of the final exam and/or the average grade of all tests (including final)

N Student Academic Integrity Code Statement

0 Attendance Policy

All students are expected to abide by the Student Academic Integrity Code as articulated in the AUS undergraduate catalog

Students in this course are required to follow the AUS Attendance Policy as outlined in the AUS Undergraduate Catalog 20-21 (p.27).

During the face to face component of the course, wearing mask is a must and not optional. Students are required to attend according to their designated group (A or B). Students will not be allowed to change their designated group or switch between F2F and online.

SCHEDULE

CHAPTER	Week
Conic sections, ellipse, parabola, and hyperbola	One
Continue: Conic sections, ellipse, parabola, and hyperbola	- TWO
Lines in 2D, Vectors in 2 D , and projection	- Three
Dot Product, Cross Product and applications	- Four
Line and planes in 3 dimensional space , and Parametric Equations	- Five
Continue: Line and planes in 3 dimensional space, and Parametric Equations	- Six
Definition of derivatives and apply derivative to polynomials, exponential function, and logarithms	- Seven
Tangent lines and normal lines, product formula, quotient formula, and chain rule	Eight
Applications of Derivatives: Maximize and Minimize	Nine

Integration (anti-derivative), techniques and properties	• Ten	
Integration by substitution		
Calculating areas by definite integrals	Eleven	
	Twelve	
Volume by definite integrals		Thirteen
Voume /Area and Reviews		Fourteen
Final Exam		

${ }_{2}$ Section 3: Instructor Teaching Material

2. HANDOUTS

2.1.1 The Course's Questions and Solutions

Q1

$$
\begin{aligned}
& x^{2}-4 x-4 y^{2}-8 y=2 \\
& x^{2}-4 x-\left[4\left(y^{2}+2 y\right)\right]=2 \\
& (x-2)^{2}-4-\left[4\left[(y+1)^{2}-1\right]\right]=2 \\
& (x-2)^{2}-4-4(y+1)^{2}+4=2 \\
& (x-2)^{2}-4(y+1)^{2}=2 \\
& \frac{(x-2)^{2}}{2}-\frac{4(y+1)^{2}}{2}=1 \\
& \frac{(x-2)^{2}}{2}-\frac{(y+1)^{2}}{1 / 2}=1
\end{aligned}
$$

- Hyperbola

HEIDY TAREK @g00093162

Q2

$$
\begin{aligned}
& 4 x^{2}+y^{2}+16 x=20 \\
& 4 x^{2}+16 x+y^{2}=20 \\
& 4\left[x^{2}+4\right]+y^{2}=20 \\
& 4\left((x+2)^{2}-4\right]+y^{2}=20 \\
& 4(x+2)^{2}-16+y^{2}=20 \\
& 4(x+2)^{2}+y^{2}=36 \\
& \frac{(x+2)^{2}}{9}+\frac{y^{2}}{36}=1
\end{aligned}
$$

- Ellipse

$$
\begin{aligned}
& \left(\frac{k}{2}\right)^{2}=36 \\
& \frac{k}{2}=6 \\
& k=121 \\
& V_{1}, F_{1}, C_{1} F_{2}, V_{2} \rightarrow \text { same } x \\
& \\
& V_{1}(-2,6) \\
& V_{2}(-2,-6) \\
& \left(F_{1}=\sqrt{36-9}\right. \\
& =\sqrt{27} \\
& F_{1}(-2, \sqrt{27}) \\
& F_{2}(-2,-\sqrt{27})
\end{aligned}
$$

HEIDY TAREK @g00093162

Q3

$$
\begin{aligned}
& 2 y^{2}-6 x^{2}+8 y=30 \\
& 2 y^{2}+8 y-6 x^{2}=30 \\
& 2\left[y^{2}+4 y\right]-6 x^{2}=30 \\
& 2\left[(y+2)^{2}-4\right]-6 x^{2}=30 \\
& 2(y+2)^{2}-8-6 x^{2}=30 \\
& 2(y+2)^{2}-6 x^{2}=38 \\
& \frac{(y+2)^{2}}{19}-\frac{6 x^{2}}{38}=1 \\
& \frac{(y+2)^{2}}{19}-\frac{x^{2}}{19 / 3}=1
\end{aligned}
$$

- Hyperbola

$$
\begin{aligned}
& C(0,-2) \\
& \left(\frac{K}{2}\right)^{2}=19 \\
& K=2 \sqrt{19} \\
& V_{1}(0,-2+\sqrt{19}) \\
& V_{2}(0,-2-\sqrt{19}) \\
& C F_{1}=\sqrt{a^{2}+b^{2}} \\
& =\sqrt{19+19 / 3}=\frac{2 \sqrt{57}}{3} \\
& F_{1}\left(0,-2+\frac{2 \sqrt{57}}{3}\right) \quad F_{2}\left(0,-2-\frac{2 \sqrt{57}}{3}\right)
\end{aligned}
$$

KrstinRaed gooot8656

Quiz II MTH 111, Spring 2019
Ayman Badawi

QUESTION 1. Consider the parabola $y=3 x^{2}-6 x+2$
3 (i) Write the equation above in the standard form.
$y=3 x^{2}-6 x+2$
$y=\left(3\left(x^{2}-2 x\right)\right)+2$

$$
3\left((x-1)^{2}-1^{2}\right)+2
$$

$y=3(x-1)^{2}-3+2$
2 (ii) Sketch the graph (roughly)

$$
y=\text { so up or down }
$$

$4 d=\frac{1}{3} \quad d=\frac{1}{12} \quad$ so up
1 (iii) Find the vertex.

I (iv) Find the FOCUS.

$$
\stackrel{\text { LIe Focus. }}{\mp}=\left(1,-\left\lvert\,+\frac{1}{12}\right.\right)
$$

I (v) Find the equation of the directrix line

$$
y=\frac{-13}{12}
$$

1
QUESTION 2. Consider the parabola $-12(x+4)=(y-2)^{2}$.
A (i) Sketch (rough graph).
$4 d=-12 \quad$ (x so its right or left)
$d=-3$

1 (ii) Find the focus

$$
(-4-(3), 2) \quad(-7,2)
$$

I (iii) Find the vertex

(iv) Find the equation of the directrix line.

Faculty information

Ayman Badawi, Department of Mathematics \& Statistics, American University of Shariah, P.O. Box 26666, Shariah, United Arab Emirates, Email: abadawi@aus.edu, wงw.ayman-badawi.com

QUESTION 3. Given $y=-4$ is the directrix of a parabola that has the point $F=(2.8)$ as its focus point. a) (2 points) Roughly, sketch such parabola.

b) (4 points) Find the equation of the parabola

$$
\begin{aligned}
& 4 d(y-2)=(x-2)^{2} \\
& \begin{array}{l}
4(6)(y-2)=(x-2)^{2} \\
24(y-2)=(x-2)^{2}
\end{array} \\
& \begin{array}{c}
4(6)(y-2)=(x-2)^{2} \\
24(y-2)=(x-2)^{2}
\end{array} \\
& \begin{array}{c}
d=6 \\
\prod_{(2,-4)^{(2,8)}}^{(2,2)}
\end{array} \\
& \text { c) (} 2 \text { points) Find the verexe of the parabola, say } V \text {. } \\
& v=(2,2)
\end{aligned}
$$

$d=6$ \& its up

QUESTION 4. Given $y=4 x^{2}+24 x-3$ is an equation of a parabola. a)(3 points) Write the equation in the standard form.

$$
\begin{gathered}
y=4 x^{2}+24 x-3 \\
y=4\left(x^{2}+6 x\right)-3 \\
y=4\left((x+3)^{2}-9\right)-3 \\
y=4(x+3)^{2}-36-3 \\
y=4(x+3)^{2}-39 \\
\frac{1(y+39)=\frac{4(x+3)^{2}}{4}}{4} \quad \frac{1}{4}(y+39)=(x+3)^{2}
\end{gathered}
$$

$$
4 d=\frac{1}{4}
$$

$$
\begin{aligned}
& d=\frac{1}{4 \times 4} \\
& \frac{d=\frac{1}{16}}{50+}
\end{aligned}
$$

b) (2 points) Find the equation of the directrix line.

$$
y=-\frac{625}{16}
$$

c)(2 points) Find the focus, say F

$$
F=\left(-3,-39+\frac{1}{16}\right)=\left(-3,-\frac{623}{16}\right)
$$

d)(2 points) Roughly, sketch the graph of such parabola.

QUESTION 3. (4 points) Stare at the following graph.

Given $F=(4,6)$, the directrix line, L is $x=-8$, and $|Q F|=10$.
(i) Find $|Q L|=|Q F|=10$
(ii) Find $v=(-2,6)$
(iii) Find the equation of the parabola

$$
24(x+2)=(y-6)^{2}
$$

Quiz I: MTH 111, Spring 2018
Ayman Badawi

QUESTION 2. Consider the parabola $y=3 x^{2}+18 x+5$
(i) Sketch, roughly. Standavel form

(ii) Find the focus.

Wovile answers here!
(iii) Find the directrix line. $=$

$y=\frac{-265}{1-12}$

QUESTION 3. Consider the parabola $-12(x+2)=(y-4)^{2}$
(i) Sketch, roughly.
(ii) Find the focus.

$$
\begin{aligned}
& 4 d=-12 \\
& d=-3
\end{aligned}
$$

$5)(-514)$
(iii) Find the directrix line.

Faculty information

Ayman Badawi, Department of Mathematics \& Statistics, American University of Sharjah, P.O. Box 26666, Sharjah, United Arab Emirates. Email: abadawi@aus.edu, tru.ayman-badavi.com

$x=1$

$$
\begin{aligned}
& (1,4) \\
& (-5,4)
\end{aligned}
$$

\square
QUESTION 3. Given $x=-4$ is the directrix of of a parabola that has the point $(-6,5)$ as its vertex point. a) (2 points) Roughly, sketch such parabola.

$|d|=2$
b)(4 points) Find the equation of the parabola

$$
\begin{aligned}
4 d\left(x-x_{0}\right) & =\left(y-y_{0}\right)^{2} \\
-4(2)(x+6) & =(y-5)^{2} \\
-8(x+6) & =(y-5)^{2}
\end{aligned}
$$

c) (2 points) Find the focus of the parabola, say F.

$$
F(-8,5)
$$

d) (2 points) Given $Q=(-10, b)$ is a point on the curve of the parabola. Find $|Q F|$ (HINT: You should know how to do this QUICKLY!, you do not need the value of b)

$$
|Q L|=|Q B|=|Q F|=6
$$

(vii) (5 points)Find the equation of a parabola that has $x=4$ as its directrix line and $(-2,6)$ as its vertex. What is the
focus of such parabola? $\frac{\text { focus of such parabola? }}{F(-8,6)}$

$$
\begin{cases}x=4 & d=|-2-4|=6 \\ & -4 d\left(x-x_{0}\right)=\left(y-y_{0}\right)^{2} \\ & F\left(-24(x+2)=(y-6)^{2}\right.\end{cases}
$$

Quiz I: Math, for the Architects MTH 111 Cnenina 2017

QUESTION 2. Given (-3.5) is the focus of a parabola youth directrix line it $=0$.

(ii) Find the equation of the Parabola.
(3)
eq: $4 d\left(x-x_{1}\right)=\left(y-y_{1}\right)^{2}$
vert ix.
midpt of $|F P|$ is the vert
$x_{V}=\frac{x_{F}+X_{B}}{2}=-\frac{3+9}{2}=3$.
$|F V|^{2}=|V B|=\left.\right|^{2} d|=|\Delta x|=|-3-3|=|-6|=6$.

Ayman Bradawl, Department of Mathematics \& Statistics, American University of Shariah, PO. Box 26666, Shariah, United Arab Emirates
Email: abadavieaus.edu, ww, ayman-badawi.com
iii) find the distance between fertix and directrix.

$$
|v B|=\sqrt{\Delta x^{2}}=|\Delta x|=|9-3|=6 .
$$

QUESTION 1. (6 points) Given $y=11$ is the directrix of of a parabola that has the point $(6 ; 5)$ as its vertex point. a) Find the equation of the parabola
$-4 d\left(y-y_{1}\right)=\left(x-x_{1}\right)^{2}$ $d=6$
$-4(6)(y-5)=(x-6)^{2}$
$-24(y-5)=(x-6)^{2}$
b) Find the focus of the parabola.

$$
F(6,-1)
$$

QUESTION 2. (3 points) Given that $x=-4$ is the directrix of a parabola that has focus F. If the point $Q=(6,7)$ lies on the curve of the parabola, find $|Q F|$ (ie., find the distance between F and Q).

$$
\begin{aligned}
& |Q L|=|Q F| \\
& |Q B|=|Q F| \\
& |Q F|=10 \text { units }
\end{aligned}
$$

Exam I MTH 111, Fall 2016
Ayman Badawi

QUESTION 1. Given $12(x-2)=(y-4)^{2}$.
(i) Roughly, Sketch the graph of the given parabola.

$$
\begin{gathered}
V=(2,4) \\
4 d=12 \rightarrow d=3 \\
M=(-1,4)
\end{gathered}
$$

(ii) What is the directrix line?

(iii) What is the focus?

$$
F=(5,4)
$$

QUESTION 2. Given $y=x^{2}-6 x+4$
(i) Roughly, Sketch the graph of the given parabola.

$$
\begin{aligned}
& \begin{array}{l}
y=4=(x-3)^{2}-9 \rightarrow(y+5)=(x-3)^{2} \\
4 d= \\
\begin{array}{l}
\text { (i) Roughly, Sketch the graph of the given parabola. } \\
\text { (ii) What is the directrix line? }
\end{array} \\
M=\left(3,-5-\frac{1}{4}\right) \\
\text { directrix } y=-5-\frac{1}{4}=-5.25
\end{array} \\
& \text { (iii) What is the focus! }
\end{aligned}
$$

QUESTION 8. (6 points) Given $x=-4$ is the directrix of of a parabola that has the point $(6,5)$ as its vertex point.
a) Find the equation of the parabola

$$
\begin{aligned}
& 4(10)(x-6)=(y-5)^{2} \\
= & 40(x-6)=(y-5)^{2}
\end{aligned}
$$

QUESTION 9. (6 points) Consider the parabola $x=-0.25(y+3)^{2}+4$ [hint: first write it in the standard form].

$$
x=-0.25(y+3)^{2}+4 \quad \text { yd }=-4
$$

$$
(x-4)=-0.25(y+3)^{2}
$$

$$
d=-1
$$

c) Draw the parabola
(i) Roughly, Sketch the graph of the given parabola.

$$
\begin{aligned}
& y=(x+4)^{2}-16+20 \Rightarrow y=(x+4)^{2}+4 \\
& (y-4)=(x+4)^{2} \\
& \operatorname{tad}\left(y-y_{0}\right)=\left(x-x_{0}\right)^{2}
\end{aligned}
$$

(ii) What is the directrix line?

$$
4 d=1 \Rightarrow d=\frac{1}{4}\left(\Rightarrow \text { directrix } 0, M\left(-4,4-\frac{1}{4}\right)\right.
$$

$$
C=(-4,4)
$$

(iii) What is the focus?

$$
F=\left(-4,4+\frac{1}{4}\right)
$$

Quiz I MTH 111, Spring 2019
Ayman Badawi

$$
\begin{array}{r}
C F^{2}=\left(\frac{k}{2}\right)^{2}-b^{2} \\
C F^{2}=25-9 \\
=16 \\
\quad C F=4
\end{array}
$$

QUESTION 1. Consider the ellipse $\frac{(x+2)^{2}}{(25)}+\frac{(y-1)^{2}}{\left(\frac{k}{2}\right)^{2}}=1$
2 (i) Sketch (rough graph).

$$
c=(-2,1)
$$

2 (ii) Find the ellipse-constant, k

$$
\left(\frac{1}{2}\right)^{2}=25
$$

$$
\frac{k}{2}=\sqrt{25} \rightarrow k=5 \times 2 \rightarrow k=10
$$

\angle (iii) Find all 4 vertices

$$
v_{0}(-2,4) \quad b^{2}=9
$$

$$
\left.\begin{array}{l|l}
& v_{3}(-2,4) \\
v_{2}(-2-5,5,1) & (-7,1)
\end{array} \right\rvert\, \begin{array}{ll}
& v_{4}(-2,-2)
\end{array}
$$

$$
b=3
$$

2 (iv) Find the Foci

$$
\begin{aligned}
& F_{2}(-2+4,1) \\
& (2,1) \\
& (-2-4,1) \\
& (-6,1)
\end{aligned}
$$

2 (i) Sketch (rough graph).

(ii) Find the heperbola-constant, k

$$
\left(\frac{k}{2}\right)^{2}=g
$$

$$
c=(3,-2)
$$

$$
\frac{k}{2}=\sqrt{9} \quad k=3 \times 2=6
$$

2 (iii) Find all vertices

$$
\begin{gathered}
(3-3,-2) \\
(0,-2)
\end{gathered}
$$

$$
\begin{gathered}
V_{2}(3+3,-2) \\
(6,-2)
\end{gathered}
$$

2 (iv) Find the Foci

$$
\begin{array}{ll}
C F^{2}=\left(\frac{k}{2}\right)^{2}+b^{2} & C F^{2}=25 \\
C F^{2}=9+16 & C F=5
\end{array}
$$

Faculty information
Ayman Badawi, Department of Mathematics \& Statistics, American University of Shariah, P.O. Box 26666, Sharjah, United Arab Emirates.
Email: abadawicaus.edu, wนr.ayman-badawi.com

QUESTION 5. An ellipse is centered ar $(4,3), F_{1}=(4,0)$ is one of the foci, and $(8,3)$ is one of the vertices.
(i) (2 points) Roughly, sketch such ellipse.

(ii) (3 points) Find the ellipse-constant K. x does not change

$$
C F^{2}=\left(\frac{k}{2}\right)^{2}-b^{2}
$$

$$
C F=3
$$

$$
\begin{gathered}
C F^{2}=\left(\frac{k}{2}\right)^{2}=b^{2} \\
3^{2}=\left(\frac{k}{2}\right)^{2}-4^{2} \\
k=10
\end{gathered}
$$

$$
b=4
$$

$$
75=\left(\frac{5}{3}\right)^{2}
$$

(iii) (2 points) Find the second foci of the ellipse.

$$
\begin{align*}
t_{2}= & (4,3+3) \\
& (4,6)
\end{align*}
$$

(iv) (3 points) Find the remaining three vertices of the ellipse

$$
\begin{array}{ll}
v_{1}\left(4,3+\frac{10}{2}\right) & (4,8)
\end{array}
$$

(v) (3 points) Find the equation of the ellipse.

$$
\begin{aligned}
& \frac{(y-3)^{2}}{\left(\frac{10}{2}\right)^{2}}+\frac{(x-4)^{2}}{4^{2}}=1 \\
& \frac{(y-3)^{2}}{25}+\frac{(x-4)^{2}}{16}=1
\end{aligned}
$$

QUESTION 11. (4 points) Given that $x=6$ is the directrix line of a parabola that has F as its focus point. If the point $Q=(-2,12)$ lies on the parabola. Find $|Q F|$ (ie., the distance between Q and F).

$|O F|=|Q L|=8$

QUESTION 12. (6 points) Consider the ellipse $\frac{(y-1)^{2}}{(9)}+\frac{(x+2)^{2}}{(25)}=1$.
(i) Sketch (roughly)
big \# so its
$\left(\frac{k}{2}\right)^{2}$ so the shape

(ii) Find the foci of the ellipse

$$
\begin{aligned}
C F^{2} & =\left(\frac{k}{2}\right)^{2}-b^{2} \\
& =25-9
\end{aligned}
$$

$$
\begin{aligned}
C F^{2} & =16 \\
5 O & \underline{C F}=4
\end{aligned}
$$

$$
\begin{array}{r}
F_{1}(-2+4,1) \\
(2,1)
\end{array}
$$

(iii) Find all four vertices of the ellipse.

$$
v_{1}=(-2+5,1)
$$

$$
(-7,1)
$$

$$
\begin{gathered}
F_{2}(-2-4,1) \\
(-6,1) \\
v_{3}=(-2,1+3)(-2,4) \\
v_{4}=(-2,1-3)
\end{gathered}
$$

QUESTION 13. (4 points) Given $Q=(1,6,4)$ is not on the line $L: x=t+1, y=\underline{2} t+4, z=-\underline{5} t+3(t \in R)$. Find $|Q L|$.

$$
|O L|=\frac{|D \times I \subseteq|}{|D|}=\frac{\sqrt{12^{2}+1^{2}+2^{2}}}{\sqrt{1^{2}+2^{2}+5^{2}}}
$$

Faculty information

$D=\langle 1,2,-5\rangle$

Ayman Badawi, Department of Mathematics \& Statistics, American University of Sharjah, P.O. Box 26666, Shariah, United Arab Emirates.
E-mail: abadawi Caus. edt, wsw. ауman-badawi.com

$$
=-12 i+1 j-2 k
$$

Final Exam, MTH 111, Spring 2019

$$
\text { Score }=\frac{75}{78}
$$

Ayman Badawi

QUESTION 1. (7 points) Stare at the following graph.

Given $F 1=(-10,6), F 2=(4,6)$ and the ellipse-constant is 20 .
(ii) Find the center $c=$
\square
(iii) Find the vertices $A=(-3,-1.14), D=(-3,13.14), H=(-13,6)$, and $B=(7,6)$
(iv) Find the equation of the ellipse.

$$
\frac{(x+3)^{2}}{100}+\frac{(y-6)^{2}}{51}=1
$$

QUESTION 2. (6 points) Stare at the following graph.

Given $c=(-4,6),|c v 2|=3$, and $F 2=(2,6)$.

Quiz I: MTH 111, Spring 2018
Ayman Badawi

QUESTION 1. Consider the ellipse given by $\frac{y^{2}}{10}+(x-4)^{2}=1$

$$
c=(4,0)
$$

(i) Sketch, roughly,
$b^{2}=1 b=1$

(ii) Find the ellipse-constant $K \cdot \sqrt{\left(\frac{k}{2}\right)^{2}}=\sqrt{10}$

(iii) Find the foci. $\left|C F_{1}\right|=\sqrt{(k /)^{2}-b^{2}}=\sqrt{10-1}=3$

(iv) Find all vertices, $\quad V_{1}=(4,0+\sqrt{10})$

$$
\begin{aligned}
& V_{2}=C 4,0-\sqrt{10} \\
& =\text { parabola } u=3 x^{2}+18 x+5
\end{aligned}
$$

$$
\begin{aligned}
& v_{3}=(4+1,0) \infty \\
& v_{4}=(4-1,0)
\end{aligned}
$$

QUESTION 2. Consider the parabola $y=3 x^{2}+18 x+5$
(i) Sketch, roughly. Standavel form

$y=3\left[x^{2}+6 x\right]+5 \quad y=3(x+3)^{2}-22$
$y=3\left[(x+3)^{2}-9\right]+5$
$y=3(x+3)^{2}-27+5$
(ii) Find the focus.

Write answers here!
(iii) Find the directrix line. $=$
 $y=\frac{-265}{1-12}$
QUESTION 3. Consider the parabola $-12(x+2)=(y-4)^{2}$
(i) Sketch, roughly.
$4 d=-12$
$d=-3$
5 (iii) Find (-514)
(iii) Find the directrix line.

Faculty information

Ayman Badawi, Department of Mathematics \& Statistics, American University of Shariah, P.O. Box 26666, Shariah, United Arab Emirates. Email abadawidaus.edu, wuw.ayman-badavi.com

$x=1$

QUESTION 4. Given $y=x^{2}-6 x-1$ is an equation of a parabola.
a)(3 points) Write the equation in the standard form.

d)(2 points) Roughly, sketch the graph of such parabola.
(dee picture)

QUESTION 5. An ellipse is centered at $(-4,0), F_{1}=(-1,0)$ is one of the foci, and $(-4,4)$ is one of the vertices.
(i) (2 points) Roughly, sketch such ellipse.

(ii) (3 points) Find the ellipse-constant K.

(iii) (2 points) Find the second foci of the ellipse.

$$
F_{2}(-7,0)
$$

(iv) (3 points) Find the remaining three vertices of the ellipse

(v) (3 points) Find the equation of the ellipse.

$$
\frac{(x+4)^{2}}{25}+\frac{y^{2}}{16}=1
$$

(x) Consider the ellipse $(x+1)^{2}+\frac{(y-2)^{2}}{10}=1$
a. (2 points) Roughly, draw such ellipse

1

$c(-1,2)$
$\frac{k}{2}=\sqrt{10}$
$V_{1} F_{1}(-1,2+3)$
$\left|C F_{1}\right|=\sqrt{10-1}=3$
b. (2 points) Find the foci
$F_{1}(-1,5)$
$F_{2}(-1,-1)$

c. (2 points) Find the ellipse constant
$k=2 \sqrt{10}$

d. (2 points) Find all four vertices

$$
\begin{array}{ll}
v_{4}(-1,2+\sqrt{10}) \\
v_{2}(-1,2-\sqrt{10}) & v_{3}(0,2) \\
v_{4}(-2,2)
\end{array}
$$

(xi) (6 points) Let $H=(5,11)$ and $F=(10,-3)$. Find a point Q on the vertical line $x=4$ such that $|H Q|+|Q F|$ is minimum.

$$
\begin{gathered}
m=\frac{-3-11}{10-3}=-2 \\
11=-2(3)+b \\
b=17 \\
y=-2 x+17 \\
y=-2(4)+17=9 \\
Q(4,9)
\end{gathered}
$$

Quiz I: Math. for the Architects, MTH 111, Spring 2017
Ayman Badawi
QUESTION 1. Consider the Ellipse $\frac{(x+2)^{2}}{25}+\frac{(y-4)^{2}}{169}=1$
(i) Sketch (rough sketch)
2
(ii) Find the Foci

3

$$
\begin{aligned}
& F_{1}(-2 ; 16) \\
& F_{2}(-2 ;-8)
\end{aligned}
$$

$$
\mathrm{V}^{2} p^{2}=s^{2} d e^{2}+s^{2} d e^{2}
$$

(iii) Find the ellipse-contant k

$$
169=25+\left|F_{1} c\right|^{2}
$$

(iv) Find all 4 vertices.

$$
k=26
$$

$$
v_{3}(-7 ; 4) w_{1}(3 ; 4) \quad v_{1}(-2 ; 7) v_{2}(-2 ;-9)
$$

QUESTION 2. Given (-3.5) is the focus of a parabola with directrix line $2=2$.
(i) Sketch (rough sketch)
(ii) Find the equation of the Parabola.
eq: $4 d\left(x-x_{1}\right)=\left(y-y_{1}\right)^{2}$.
(3) midget of $|F P|$ is is the

$$
\begin{aligned}
& x_{V}=\frac{x_{F}+X_{B}}{2}=-\frac{3+9}{2}=3 \\
& |F V|=|V B|=|d|=|\Delta x|=|-3-3|=|-6|=6
\end{aligned}
$$

$|Q F|=|Q L| Q L$ we draw
2L we draw
In to L.
since on the left side

$$
\begin{aligned}
& d<0 \\
& d=-6
\end{aligned}
$$

intersect point E
E($9, ?$)

Faculty information
Ayman Badawi, Department of Mathematics \& Statistics, American University of Shariah, P.O. Box 26666, Shariah, United Arab Emirates.
Email: abadawieaus.edu, why ayman-badaui
iii) find the distance between yertix and directrix.

$$
|v B|=\sqrt{\Delta x^{2}}=|\Delta x|=|9-3|=6 .
$$

QUESTION 1. (6 points) Given $y=11$ is the directrix of of a parabola that has the point $(6,5)$ as its vertex point. a) Find the equation of the parabola
$-4 d\left(y-y_{1}\right)=\left(x-x_{1}\right)^{2}$
$-4(6)(y-5)=(x-6)^{2}$
$-24(y-5)=(x-6)^{2}$
b) Find the focus of the parabola.

$$
F(6,-1)
$$

QUESTION 2. (3 points) Given that $x=-4$ is the directrix of a parabola that has focus F. If the point $Q=(6,7)$ lies on the curve of the parabola, find $|Q F|$ (ie., find the distance between F and Q).

```
/QL/ = |QFI
\(|Q B|=\left|Q_{F}\right|\)
\(|Q F|=10\) units
```


QUESTION 3. (8 points) Given $(-4,2),(6,2)$ are the vertices of the major axis of an ellipse (recall major axis is the longer axis) and $(4,2)$ is one of the foci.
(i) Find the vertices of the minor axis (shorter axis). (you may want to draw such ellipse (roughly)).
(fit) Find the ellipse-constant K.

$$
\frac{k}{2}=5 \quad \Rightarrow k=10
$$

(li) Find the second foci of the ellipse.

$$
F_{1} \quad(-2,2)
$$

(iv) Find the equation of the ellipse.
horizontal ellipse
$\therefore k=10 ;(b=3) b=4$

$$
\frac{(x-1)^{2}}{25}+\frac{(y-2)^{2}}{16}=1
$$

Final Exam: MTH 111, Fall 2017

$$
\begin{gathered}
\text { Ayman Badawi } \\
\text { Points }=\frac{81}{82} \quad \begin{array}{l}
\text { Katia } \\
\hline
\end{array} \text { }
\end{gathered}
$$

QUESTION 1. (6 points) Given $x=-6$ is the directrix of of a parabola that has the point $(6,5)$ as its vertex point. a) Find the equation of the parabola

$$
\begin{aligned}
& |V L|=|-6-6|=|-12|=12 \\
& 4(12)(x-6)=(y-5)^{2} \Rightarrow 48(x-6)=(y-5)^{2}
\end{aligned}
$$

b) Find the focus of the parabola.

$$
|V F|=12 \rightarrow F(18,5)
$$

QUESTION 2. (8 points) Given $(2,-4),(2,6)$ are the vertices of the major axis of an ellipse (recall major axis is the longer axis) and $(2,4)$ is one of the foci.
(i) Find the vertices of the minor axis (shorter axis). (you may want to draw such ellipse (roughly)).

$$
\begin{aligned}
& \left|V_{1} v_{2}\right|=K=|6+4|=10 \rightarrow \frac{k}{2}=5=\left|v_{1} C\right| \\
& C=(2,1) \rightarrow\left|F_{1} C\right|=|4-1|=3 \rightarrow b^{2}=\left(\frac{k}{2}\right)^{2}-\left|F_{1} C\right|^{2} \\
& b^{2}=5^{2}-3^{2}=16 \rightarrow V_{3}(18,1), v_{4}(-14,1) \\
& \text { (ii) Find the ellipse-constant } k .
\end{aligned}
$$

$$
K=10
$$

(iii) Find the second foci of the ellipse.

$$
F_{2}(2,-2)
$$

(iv) Find the equation of the ellipse.

$$
\frac{(x-2)^{2}}{16}+\frac{(y-1)^{2}}{25}=1
$$

QUESTION 3. (5 points) Given $y=3 x^{2}+12 x+9$ is an equation of a parabola. Write the equation of the parabola in the standard form and find the equation of its directrix.

Quiz 6 MTH 111, Spring 2019
Ayman Badawi

QUESTION 1. Find $f^{\prime}(x)$ and DO NOT SIMPLIFY
KAMVA KANARA

$q^{\text {a) }} f(x)=10\left(3 x^{4}+12 x^{3}-10 x+5\right)^{11}$

$$
\begin{aligned}
& =10\left(3 x^{4}+12 x^{3}-10 x+5\right)^{10} \\
& =10 \cdot 11\left(3 x^{4}+12 x^{3}-10 x+5\right)^{10} \cdot\left(12 x^{3}+36 x^{2}-10\right)
\end{aligned}
$$

$3^{\text {b) } f(x)}=\sqrt[3]{x^{2}}+\frac{12}{x^{0}}+7 x-3$

$$
=x^{2 / 5}+12 x^{-10}+7 x-3
$$

$$
=\frac{2}{5} x^{-3 / 5}-120 x^{-11}+7
$$

$\}^{\text {in }}$) Given $k(x)=f\left(2 x^{2}+x-16\right)$. Find $k^{\prime}(3)$ if $f^{\prime}(5)=-7$.

$$
\begin{aligned}
R^{\prime}(x) & =f^{\prime}\left(2 x^{2}+x-16\right) \cdot(4 x+1) \\
k^{\prime}(3) & =f^{\prime}(2 \times 9+3-16) \cdot(12+1) \\
& =f^{\prime}(5) \cdot 13 \\
& =-7 \cdot 13=-91
\end{aligned}
$$

$\frac{13}{27}$ Q1 QUESTION 2. Let $f(x)=x^{3}-6 x^{2}-15 x+1$.
3 a) Find the sign of $f^{\prime}(x)$.

$$
\begin{aligned}
& p=-5 \\
& s=-4
\end{aligned}
$$

$$
f^{\prime}(x)=3 x^{2}-12 x-15 \text {; For critical value: } f^{\prime}(x)=0
$$

$$
-5 \times 1
$$

$$
\Rightarrow 0=3 x^{2}-12 x-15
$$

$$
\begin{aligned}
& x^{2}+x-5 x \cdot 5 \\
& x^{2} \times x-5
\end{aligned}
$$

$$
\begin{aligned}
& =3 x^{2}-12 x-15 \\
& =3\left(x^{2}-4 x-5\right) ; \quad \Rightarrow 0=x^{2}-4 x-5 \Rightarrow 0=(x-5)(x+1)
\end{aligned}
$$

$$
\text { as } 3 \neq 0 \quad \Rightarrow x-5=0 \text { OR } x+1=0 \Rightarrow x=5 \text { OR } x=-1
$$

$$
\text { At } x=-2 ; f^{\prime}(-2)=12+24-15=21>0
$$

$$
\text { At } x=0 ; f^{\prime}(0)=-15<0
$$

$$
\text { At } x=6 ; f^{\prime}(6)=3 \times 36-72-15=21>0
$$

1 b) By staring at (a) find the critical values.

$$
x=5 \text { or } x=-1
$$

2c) By staring at (a), for what values of x does $f(x)$ increase (decrease)?
$\therefore f(x)$ increases: $(-\infty,-1) \cup(5, \infty)$
$f(x)$ decreased: $(-1,5)$
By staring at (a), sketch $f(x)$ (roughly).
|d) By staring at (a), sketch $f(x)$ (roughly).

Faculty information

Ayman Badawi, Department of Mathematics \& Statistics, American University of Shariah, P.O. Box 26666, Shariah, United Arab Emirates, Email: abadawi@aus.edu, www.ayman-badawi.com

Quiz 7 MTH 111, Spring 2019

Ayman Badawi

QUESTION 1. Given $H=(4,19), F=(0,27)$. Find a point on the line $y=15$, say Q, such $|F Q|+|Q H|$ is minimum.

QUESTION 2. Consider the following picture. We need to construct a rectangle B, C, D, E with maximum area between $y=27$ and $y=x^{2}$ (see picture: B, C lie on the line $\mathrm{y}=27$ and D, E lie are the curve $y=x^{2}$. Also note that $m E=m D$).

$$
\begin{aligned}
A & =2(3) \cdot\left(27-3^{2}\right) \\
& =108 \text { units }^{2} \\
|B C| & =2 \text { m } \\
& =6 \text { omits } \\
|C D| & =27-3^{2} \\
& =18 \text { units }
\end{aligned}
$$

$$
A=|C D||E D|
$$

$$
\begin{aligned}
& A=2 m \cdot\left(27-m^{2}\right) \\
& A=54 m-2 m^{3}
\end{aligned}
$$

$$
\begin{array}{ll}
A^{\prime}=54-6 m^{2} \\
0=54-6 m 2 \\
m^{2}=-54 / 6 & n^{\prime \prime}=-12 m \\
-12(3)=-=\text { max }
\end{array}
$$

$$
\begin{gathered}
=9 \\
m= \pm 3
\end{gathered}
$$

$7 / 7$

Faculty information

Ayman Badawi, Department of Mathematics \& Statistics, American University of Sharjah, P.O. Box 26666, Sharjah, United Arab Emirates. Email: abadawicaus.edu, uru ayman-badawi.com

QUESTION 5. (7 points) Given H and F. Find a point Q on the line $x=12$ such that $|H Q|+|F Q|$ is minimum.

the line $y=-27$

$$
A=\left(-3^{2}+27\right)(6)
$$

$$
=108 \text { units }^{2}
$$

$$
|A B|=2 a
$$

$$
=6 \text { units }
$$

$$
|B D|=\left(-a^{2}+27\right)
$$

$$
=18 \text { units }
$$

Faculty information

$$
A^{\prime \prime}=-12 a
$$

Ayman Badawi, Department of Mathematics \& Statistics, American University of Shariah, P.O. Box 26666 , Shariah, United Arab Emirates, E-mail: abadari@aus.edu, wrr.ayman-badari.com

2 Maya
QUESTION 3. (4 points) Stare at the following graph.

Given $F=(4,6)$, the directrix line, L is $x=-8$, and $|Q F|=10$.
(i) Find $|Q L|=|Q F|=10$
(ii) Find $v=(-2,6)$
(iii) Find the equation of the parabola

$$
24(x+2)=(y-6)^{2}
$$

QUESTION 4. (6 points). Find y^{\prime} and do not simplify

(i) $y=\ln \left[(4 x+3)^{10}(-5 x+30)^{3}\right]$

$$
\begin{aligned}
& y=\ln (4 x+3)^{10}+\ln (-5 x+30)^{3} \\
& y=\operatorname{loln}(4 x+3)+3 \ln (-5 x+30) \\
& y^{\prime}=10 \cdot 4+3 \cdot-5
\end{aligned} \quad y^{\prime}=\frac{40}{(4 x+3)}+\frac{-15}{(-5 x+30)}
$$

(ii) $y=e^{\left(6 x^{3}+x^{2}-1\right)}+10 x^{2}-x+23$
$y=\left[\left[e^{\left(6 x^{3}-x^{2}-1\right)} \cdot\left(18 x^{2}+2 x\right)\right]+20 x-1\right]$
$1]$
(iii) $y=\left(21+5 x-6 x^{3}\right)^{7}$

$$
y^{\prime}=7\left(21+5 x-6 x^{3}\right)^{6} \cdot\left(5-18 x^{2}\right)
$$

QUESTION 5. (6 points).

(i) Find $\int \begin{array}{ll}x / e^{\left(x^{2}+1\right)} d x \\ u=x^{2}+1 & \frac{1}{2}\left(e^{\left(x^{2}+1\right)}\right)+C \\ u^{\prime}=2 x\end{array}$ \qquad
(ii) Find $\int \frac{e^{2 z}+1}{\left(e^{2 x}+2 x-5\right)} d x$

$$
\begin{array}{ll}
\int\left(e^{2 x}+1\right)\left(e^{2 x}+2 x-5\right)^{-3} d x & \\
u=e^{2 x}+2 x-5 & \frac{1}{2} \cdot \frac{1}{-2}\left(e^{2 x}+2 x-5\right)^{-2}+C \\
u^{\prime}=2 e^{2 x}+2 &
\end{array}
$$

(iii) Find $\mathcal{M}(6 x+3)\left(x^{2}+x-5\right)^{11} d x$

$$
\begin{aligned}
& u=x^{2}+x-5 \\
& u^{\prime}=2 x+1 \\
& 3=\frac{1}{12}\left(x^{2}+x-5\right)^{12}+C
\end{aligned}
$$

$$
\imath
$$

Quiz 6 MTH 111, Spring 2019
Ayman Badawi

QUESTION 1. Find $f^{\prime}(x)$ and DO NOT SIMPLIFY
KAMVA KANARA

$q^{\text {a) }} f(x)=10\left(3 x^{4}+12 x^{3}-10 x+5\right)^{11}$

$$
\begin{aligned}
& =10\left(3 x^{4}+12 x^{3}-10 x+5\right)^{10} \\
& =10 \cdot 11\left(3 x^{4}+12 x^{3}-10 x+5\right)^{10} \cdot\left(12 x^{3}+36 x^{2}-10\right)
\end{aligned}
$$

$3^{\text {b) } f(x)}=\sqrt[3]{x^{2}}+\frac{12}{x^{0}}+7 x-3$

$$
=x^{2 / 5}+12 x^{-10}+7 x-3
$$

$$
=\frac{2}{5} x^{-3 / 5}-120 x^{-11}+7
$$

$\}^{\text {in }}$) Given $k(x)=f\left(2 x^{2}+x-16\right)$. Find $k^{\prime}(3)$ if $f^{\prime}(5)=-7$.

$$
\begin{aligned}
R^{\prime}(x) & =f^{\prime}\left(2 x^{2}+x-16\right) \cdot(4 x+1) \\
k^{\prime}(3) & =f^{\prime}(2 \times 9+3-16) \cdot(12+1) \\
& =f^{\prime}(5) \cdot 13 \\
& =-7 \cdot 13=-91
\end{aligned}
$$

$\frac{13}{27}$ Q1 QUESTION 2. Let $f(x)=x^{3}-6 x^{2}-15 x+1$.
3 a) Find the sign of $f^{\prime}(x)$.

$$
\begin{aligned}
& p=-5 \\
& s=-4
\end{aligned}
$$

$$
f^{\prime}(x)=3 x^{2}-12 x-15 \text {; For critical value: } f^{\prime}(x)=0
$$

$$
-5 \times 1
$$

$$
\Rightarrow 0=3 x^{2}-12 x-15
$$

$$
\begin{aligned}
& x^{2}+x-5 x \cdot 5 \\
& x^{2} \times x-5
\end{aligned}
$$

$$
\begin{aligned}
& =3 x^{2}-12 x-15 \\
& =3\left(x^{2}-4 x-5\right) ; \quad \Rightarrow 0=x^{2}-4 x-5 \Rightarrow 0=(x-5)(x+1)
\end{aligned}
$$

$$
\text { as } 3 \neq 0 \quad \Rightarrow x-5=0 \text { OR } x+1=0 \Rightarrow x=5 \text { OR } x=-1
$$

$$
\text { At } x=-2 ; f^{\prime}(-2)=12+24-15=21>0
$$

$$
\text { At } x=0 ; f^{\prime}(0)=-15<0
$$

$$
\text { At } x=6 ; f^{\prime}(6)=3 \times 36-72-15=21>0
$$

1 b) By staring at (a) find the critical values.

$$
x=5 \text { or } x=-1
$$

2c) By staring at (a), for what values of x does $f(x)$ increase (decrease)?
$\therefore f(x)$ increases: $(-\infty,-1) \cup(5, \infty)$
$f(x)$ decreased: $(-1,5)$
By staring at (a), sketch $f(x)$ (roughly).
|d) By staring at (a), sketch $f(x)$ (roughly).

Faculty information

Ayman Badawi, Department of Mathematics \& Statistics, American University of Shariah, P.O. Box 26666, Shariah, United Arab Emirates, Email: abadawi@aus.edu, www.ayman-badawi.com

QUESTION 12. (4.5 points) Stare at the following picture.

Draw the projection of V over W .
QUESTION 13. (7.5 points) Stare at the following graph of $y=f^{\prime}(x)$.

(i) At what value(s) of x does $f(x)$ have local max.?

$$
\text { critical values }=0,2,4,6
$$

$$
\text { at } x=0 \text { and } x=4
$$

(ii) At what value(s) of x does $f(x)$ have local min.?

$$
\text { at } x=2 \text { and } x=6
$$

(iii) For what values of x does $f(x)$ increase?

$$
(-\infty, 0) \cup(2,4) \cup(6 ;+\infty)
$$

(iv) For what values of x does $f(x)$ decrease?
$(0,2) \cup(4,6)$
(v) For what values of x will the normal lines have positive slope.

Normal lint will have $a+$ slope whe phe tengen line has - slope
\therefore when the function x is decreasing $\therefore(0,2) \cup(4,6)$
QUESTION 14. (5 points) Given $L_{1}: x=2 t, y=t+1, z=3 t$ is perpendicular to $L_{2}: x=4 w+6, y=-2 w, z=$ $a w+1$ and they intersect at a point Q. Find the value of a and find the point Q.
 $7=(-\infty, 0),(2,4),(6,+\infty)$ $y=(0,2),(4,6)$

Quiz I MTH 111, Spring 2019
Ayman Badawi

$$
C F^{2}=\left(\frac{k}{2}\right)^{2}-b^{2}
$$

$$
(x+2)^{2},(y-1)^{2}-1 \quad C F^{2}=25-9
$$

QUESTION 2. Consider the hyperbola $\frac{(x-3)^{2}}{(9)}-\frac{(y+2)^{2}}{16}=1$.
2 (i) Sketch (rough graph).

$$
c=(3,-2)
$$

(ii) Find the heperbola-constant, k

$$
\left(\frac{k}{2}\right)^{2}=9
$$

$$
\frac{k}{2}=\sqrt{9}
$$

$$
k=3 \times 2=6
$$

2 (iii) Find all vertices

$$
\begin{aligned}
v_{1} & (3-3,-2) \\
& (0,-2)
\end{aligned}
$$

$$
\begin{array}{cc}
V_{2} & (3+3,-2) \\
& (6,-2)
\end{array}
$$

2 (iv) Find the Foci

$$
\begin{array}{ll}
C F^{2}=\left(\frac{k}{2}\right)^{2}+b^{2} & C F^{2}=25 \\
C F^{2}=9+16 & C F=5
\end{array}
$$

Faculty information
Ayman Badawi, Department of Mathematics \& Statistics, American University of Shariah, P.O. Box 26666, Shariah, United Arab Emirates.
Email: abadawicaus.edu, wuss. ayman-badawi.com

QUESTION 6. Consider the hyperbola $\frac{(x-2)^{2}}{(9)}-\frac{(y-3)^{2}}{16}=1$.
a) (2 points) Draw the hyperbola, roughs $\stackrel{9}{4}_{\left(\frac{k}{2}\right)^{2}}^{\left(b^{2}\right.}$

b) (2 points) Find the hyperbola-constant K^{*}.

$$
\left(\frac{k}{2}\right)^{2}=9 \quad k=3 \times 2
$$

$$
\frac{k}{2}=\sqrt{9}
$$

c)(3 points) Find the two vertices of the hyperbola.

$$
\begin{array}{rlrl}
v_{2}= & (2+3,3) & v_{1}= & (2-3,3) \\
(5,3) & & (-1,3)
\end{array}
$$

\square

$$
\begin{aligned}
& \text { d) (} \mathbf{3} \text { points) Find the loci of the hyperbola. } \\
& F_{1}=(2-5,3) \quad(-3,3) \\
& C F^{2}=\left(\frac{k}{2}\right)^{2}+b^{2} \\
& C F^{2}=9+16 \\
& =25 \\
& F_{2}=(2+5,3)(7,3) \\
& C F=5
\end{aligned}
$$

Final Exam, MTH 111, Spring 2019

$$
\text { Score }=\frac{75}{78}
$$

Ayman Badawi

\qquad

QUESTION 2. (6 points) Stare at the following graph.

Given $c=(-4,6),|c v 2|=3$, and $F 2=(2,6)$.
(i) Find $v \mathrm{l}=(-1,6) \quad F 1=(-10,6) \cdot v 2=(-7,6) \quad$, and the hyperbola-constant $k=6$
$\left|C F_{2}\right|=\sqrt{v_{1}^{2}+b^{2}}=6$
(ii) Find the equation of the hyperbola

$$
\sqrt{9+b^{2}}=6
$$

$$
\frac{(x+4)^{2}}{9}-\frac{(y-6)^{2}}{27}=1
$$

$$
a+b^{2}=36
$$

$$
b^{2}=36-9
$$

$$
b^{2}=27
$$

Quiz II: MTH 111, Spring 2018
 $$
\frac{\left(y-y_{0}\right)^{2}}{\left(\frac{k}{2}\right)^{2}}-\frac{\left(x-x_{0}\right)^{2}}{b^{2}}=1
$$

QUESTION 1. Consider the hyperbola given by $\frac{(y-2)^{2}}{9}-\frac{(x+1)^{2}}{16}=1$
(i) Sketch, roughly.

$$
c(-1,2)
$$

$$
\begin{aligned}
\left.\frac{k}{2}\right)^{2}=9 & \Rightarrow \frac{k}{2}=3 \\
& \Rightarrow k=6 \\
\mid\left(F_{1}\right) & =\sqrt{16+9} \\
& =5
\end{aligned}
$$

(ii) Find the ellipse-constant K.
$k=6$

$$
\begin{aligned}
& \text { (iii) Find the foci. } \\
& F_{1}(-1,2+5) \Rightarrow F_{1}(-1,7) \quad F_{2}(-1,2-5) \Rightarrow F_{2}(-1,3)
\end{aligned}
$$

$$
\begin{aligned}
& \text { (iv) Find all vertices. } \\
& V_{1}(-1,2+3) \Rightarrow V_{1}(-1,5) \\
& V_{2}(-1,2-3) \Rightarrow V_{2}(-1,-1)
\end{aligned}
$$

QUESTION 2. Given a parabola centered at $(-2,3)$ such that one of the vertices is $(0,3)$ and one of the foci is $(-6,3)$
(i) Sketch, roughly.

$$
\begin{aligned}
& \qquad \frac{\left(x-x_{0}\right)^{2}}{\left(\frac{k}{2}\right)^{2}}-\frac{\left(y-y_{0}\right)^{2}}{b^{2}}=1 \\
& \left\lvert\,\left(\left.F_{1}\left|=\sqrt{\left(\frac{k}{2}\right)^{2}+b^{2}}\right| C F_{1} \right\rvert\,=4\right.\right. \\
& b^{2}=\left\lvert\,\left(\left.F_{1}\right|^{2}-\left(\frac{k}{2}\right)^{2}\right.\right. \\
& b^{2}=4^{2}-4 \Rightarrow b^{2}=12
\end{aligned}
$$

(ii) Find the constant K.

$$
\frac{k}{2}=\left|C_{1} V_{2}\right|=2 \Rightarrow k=4
$$

(iii) Find the second focus and the second vertex.

(iv) Write down the equation of the hyperbola.

$$
\frac{(x+2)^{2}}{4}-\frac{(y-3)^{2}}{12}=1
$$

Faculty information

Ayman Badawi, Department of Mathematics \& Statistics, American University of Shariah, P.O. Box 26666, Sharjah, United Arab Emirates E-mail: abadavi@aus.edu, ยww.ayman-badaui.com

QUESTION 6. Consider the hyperbola $(y+1)^{2}-\frac{(x-2)^{2}}{8}=1$.
a) (2 points) Draw the hyperbola, roughly

$|C F|=\sqrt{1+8}=3$
b) (2 points) Find the hyperbola-constant K.

$$
\begin{aligned}
& \left(\frac{k}{2}\right)^{2}=1 \\
& \frac{k}{2}=1 \Rightarrow k=2
\end{aligned}
$$

c)(3 points) Find the two vertices of the hyperbola.

$$
\begin{aligned}
& \left.V_{1}(2,0)\right) \\
& V_{2}(2,-2)
\end{aligned}
$$

d) (3 points) Find the foci of the hyperbola.

$$
\begin{aligned}
& F_{1}(2,2) \\
& F_{2}(2,-4)
\end{aligned}
$$

\square

QUESTION 4. (8 points)
Draw roughly the hyperbola $\frac{(y-2)^{2}}{9}-\frac{(x-3)^{2}}{16}=1$. Then find positive $y \Rightarrow 0$
a) The hyperbola -constant k.

$$
\begin{array}{r}
\left(\frac{k}{2}\right)^{2}=9 \rightarrow \frac{k}{2}=3 \\
k=6
\end{array}
$$

c) The foci of the hyperbola. $\left|C F_{1}\right|=\sqrt{9+16}=5$

$$
\begin{aligned}
& F_{1}(3,7) \\
& F_{2}(3,-3)
\end{aligned}
$$

QUESTION 7. (8 points) First draw the hyperbola $\frac{y^{2}}{4}-\frac{(x-1)^{2}}{12}=1$. Then find
a) The hyperbola-constant K.

$$
\left(\frac{k}{2}\right)^{2}=4 \quad \frac{k}{2}=2 \quad k=4
$$

b) The two vertices of the hyperbola.

$$
\begin{aligned}
& v_{1}(1,2) \\
& v_{2}(1,-2)_{0}
\end{aligned} \quad \begin{aligned}
& b^{2}=12 \\
& b=\sqrt{12} \\
& \\
& =2 \sqrt{3}
\end{aligned}
$$

c) The foci of the hyperbola.

$$
\begin{aligned}
& F_{1} c= \sqrt{b_{+}^{2}(4 / 2)^{2}}=\sqrt{1 b+1 a+4}=\sqrt{\cot 4} \sqrt{12+4} \\
&=4
\end{aligned}
$$

QUESTION 3. Given the hyperbola $\frac{y^{2}}{4}-\frac{(x-7)^{2}}{5}=1$
(i) Roughly, Sketch the graph of the given hyperbola.
(ii) Find the two vertices, V_{1} and V_{2}

- $\left(\frac{K}{2}\right)^{2}=4 \rightarrow \frac{K}{2}=2 \rightarrow \bar{K}=4 \rightarrow\left|v_{1} v_{2}\right| \rightarrow\left|v_{1}\right|=\left(c v_{2} \mid=2\right.$

$$
r_{1}=(7,2) \quad r_{2}=(7,-2)
$$

(iii) Find the two Foci: F_{1}, F_{2},

$$
\begin{aligned}
& \left|C F_{1}\right|=\left|C_{2}\right|=\sqrt{\left(\frac{k}{2}\right)^{2}+b^{2}}=\sqrt{95+4}=\sqrt{9}=3 \\
& F_{1}=(7,3) / F_{2}=(7,-3)
\end{aligned}
$$

QUESTION 4, Given $F_{1}=(4,1), F_{2}=(-6,1)$ are the foci of a hyperbola and $V_{1}=(1,1)$ is one of the vertices.
(i) Find the hyperbola-constant K.

$$
\begin{aligned}
& C=\left(\frac{-6+4}{2}, 1\right)=(-1,1) \\
& \frac{k}{2}=2 \rightarrow K=4
\end{aligned}
$$

(ii) Find the second vertex of the hyperbola.

$$
e_{2} \left\lvert\,=\frac{k}{2} \rightarrow r_{2}=(-3,1)\right.
$$

(iii) Find the equation of the hyperbola.

$$
\text { equation: } \frac{(x+1)^{2}}{4}-\frac{(y-1)^{2}}{21}=1
$$

Solve - Ellipse and hyperbola Step-by-Step Math Problem Solver
each of the conic sections are summarized below.

EQUATIONS OF CONIC SECTIONS

Conic Section	Characteristic	ExamI
	Either $\quad A=0$	$y=$
Parabola	or $C=0$, but not both.	$x=$
Circle	$A=C \neq 0$	$x^{2}+$
Ellipse	$A \neq C, A C>0$	$\frac{x^{2}}{16}$
Hyperbola	$A C<0$	$x^{1}-$

The following chart summarizes our work with conic sections.

In order lo recognize the type of graph that a given conic section has, it is sometimes necessary to transform the equation into a more familiar form, as shown in the next examples.

Example 1

DETERMINING THE TYPE OF A CONIC SECTION FROM ITS EQUATION

Decide on the type of conic section represented by each of the following equations, and sketch each graph.
(a) $25 y^{2}-4 x^{2}=100$.

Divide each side by 100 to get

Solve - Ellipse and hyperbola Step-by-Step Math Problem Solver

$$
\frac{y^{2}}{4}-\frac{x^{2}}{25}=1 .
$$

This is a hyperbola centered at the origin, with foci on the y-axis, and y intercepts 2 and -2 The points $(5,2)(5,-2),(-52)(-5,-2)$ determine the fundamental rectangle. The diagonals of the rectangle are the asymptotes, and their equations are

$$
y=\frac{ \pm 2}{5} x
$$

The graph is shown in Figure 3.44

Figure 3.44
(b) $x^{2}=25+5 y^{2}$

Rewriting the equation as
$x^{2}-5 y^{2}=25$
or $\quad \frac{x^{2}}{25}-\frac{y^{2}}{5}=1$
shows that the equation represents a hyperbola centered at the origin, with asymptotes

$$
\begin{aligned}
& y=\frac{ \pm b}{a} x \\
& \text { or } \quad y=\frac{ \pm \sqrt{5}}{5} x
\end{aligned}
$$

The x-intercepts are ± 5; the graph is shown in Figure 3.45.

Figure 3.45
(c) $4 x^{2}-16 x+9 y^{2}+54 y=-61$

Since the coefficients of the x^{2} and y^{2} terms are unequal and both positive, this equation might represent an ellipse. (It might also represent a single point or no points at all.) To find out, complete the square on x and y.
$4\left(x^{2}-4 x\right)+9\left(y^{2}+6 y\right)=-61$ Factor out a 4; Factor out a 9.
$4\left(x^{2}-4 x+4-4\right)+9\left(y^{2}+6 y+9-9\right)$
Add and subtract the same quantity.
$4\left(x^{2}-4 x+4\right)-16+9\left(y^{2}+6 y+9\right)-\varepsilon$

Regroup and distribute.
$4(x-2)^{2}+9(y+3)^{2}=36$
Add 97 and factor.

$$
\frac{(x-2)^{2}}{9}+\frac{(y+3)^{2}}{4}=1 \quad \text { Divide }
$$ by 36 .

This equation represents an ellipse having center at $(2,-3)$ and graph as shown in Figure 3.46.

Figure 3.46
(d) $x^{2}-8 x+y^{2}+10 y=-41$

Complete the square on both x and y, as follows
$\left(x^{2}-8 x+16\right)+\left(y^{2}+10 y+25\right)=-4$

$$
(x-4)^{2}+(y+5)^{2}=0
$$

This result shows that the equation is that of a circle of radius 0 ; that is, the point $(4,-5)$. Had a negative number been obtained on the right
(instead of 0), the equation would have represented no points at all, and there would be no graph.
(e) $x^{2}-6 x+8 y-7=0$

Since only one variable is squared (x, and not y), the equation represents a parabola. Rearrange the terms to get the term with y (the variable that is not squared) alone on one side. Then complete the square on the other side of the equation.

$$
\begin{aligned}
& 8 y=-x^{2}+6 x+7 \\
& 8 y=-\left(x^{2}-6 x\right)+7 \quad \text { Regroup }
\end{aligned}
$$ and factor out -1 .

$$
8 y=-\left(x^{2}-6 x+9\right)+7+9
$$

Add 0 in the form $-9+9$.

$$
\begin{array}{ll}
8 y=-(x-3)^{2}+16 & \text { Factor. } \\
y=\frac{-1}{8}(x-3)^{2}+2 & \text { Multiply }
\end{array}
$$ both sides by $\frac{1}{8}$.

The parabola has vertex at $(3,2)$, and opens downward, as shown in Figure 3.47.

Figure 3.47

CAUTION The next example is

 designed to serve as a warning about a very common error.
Example 2

DETERMINING THE TYPE OF A CONIC SECTION FROM ITS EQUATION

Graph
$4 y^{2}-16 y-9 x^{2}+18 x=-43$.
Complete the square on x and on y

$$
4\left(y^{2}-4 y\right)-9\left(x^{2}-2 x\right)=-43
$$

$4\left(y^{2}-4 y+4\right)-9\left(x^{2}-2 x+1\right)=-43$
$4(y-2)^{2}-9(x-1)^{2}=-36$
Because of the -36 , it is very tempting to say that this equation does not have a graph. However, the minus sign in the middle on the left shows that the graph is that of a hyperbola. Dividing through by --36 and rearranging terms gives

$$
\frac{(-x)^{2}}{4}-\frac{(y-2)^{2}}{9}=1
$$

a hyperbola centered at (1,2), with graph as shown in Figure 3.48.

Quiz III: MTH 111, Spring 2018
Ayman Badawi
QUESTION 1. Stare at the following vectors,
(1)

Then

1. Draw Proju

2. Draw Prof

QUESTION 2. Given $(1,2,4)$ and $(7,-4,3)$ lie on a line L.

$$
\begin{aligned}
& \text { a) Find a parametric equations of } L \text {. } \\
& \qquad \begin{array}{l}
D=(7-1,-4-2,3-4)=(6,-6,-1) \\
(1,2,4) \text { and }(6,-6,-1) \\
(1+6 L, 2-6 L, 4-L) \\
X=1+6 L, \quad y=2-6 L \quad \geq=4-L
\end{array}
\end{aligned}
$$

b) Find a symmetric equations of L.

$$
G L=2-Y
$$

上雨

$$
L: \frac{x-1}{6}=\frac{2-x}{6}=\frac{4-2}{1}
$$

c) Does the point $(1,4,8)$ lie on the line L.

- $\frac{x-1}{6}=\frac{1-1}{6}=0$
- $4-8=-4$
" It doesnt lie on the line L
- $\frac{4-8}{6}=\frac{-2}{6}=-\frac{1}{3}$ because the values vases inter sucbituted.

QUESTION 3. Let $V=<1,1,2>$ and $W=<-2,2,-1>$. Find Proj ${ }_{V}^{W}$. Will it be in the direction of V ?

$$
\operatorname{Proj}_{v}=\frac{U . W}{|v|^{2}} \times v
$$

$$
|y|=\sqrt{1^{2}+1^{2}+2^{2}}=\sqrt{1+1+4}=\sqrt{6}
$$

$$
|v|^{2}=6
$$

$$
\begin{array}{rlrl}
|v|^{2} & |v|^{2}=6 \\
& =1(-2)+\mid(2)+2(-1) n & \operatorname{Prg} w=\frac{-2}{6} \times(1,1,2) & =\left(\frac{-2}{6}, \frac{-2}{6} / \frac{-4}{6}\right)
\end{array}
$$

Faculty information $+2-2=-2$
Les. it will be in the direction of V
Ayman Badawi, Department of Mathematics \& Statistics,
Email abadawi@aus .educ, urus ayman-badawi. com

Exam I: MTH 111, Spring 2019

$$
F=v \times w
$$

Ayman Badawi

$$
\begin{gathered}
\text { Ayman Badawi } \\
\text { Points }=\frac{87}{87}
\end{gathered}
$$

QUESTION 1. b) (4 points) Given $A=(6,10), B=(-7,3)$, and $C=(-4,-2)$ are the vertices of a triangle. Find the area of the triangle $A B C$.

$$
\begin{aligned}
& \begin{array}{l}
A B=\langle-13,-7\rangle \\
\left.\begin{array}{l}
B-A \\
A C=\langle-10,-12\rangle \\
C-A
\end{array}\right)
\end{array} \quad \begin{aligned}
A B \times A C=\left|\begin{array}{ccc}
1 & j & k \\
-13 & -7 & 0 \\
-10 & -12 & 0
\end{array}\right|=0 i-0 j+86 k=86 \\
\text { Area of } \triangle A B C=\frac{1}{2} 86=43 \text { units }
\end{aligned}
\end{aligned}
$$

c) (3 points) Find a vector F that is perpendicular to both vectors $V=\langle 2,6,-3\rangle$ and $W=<5,-4,1\rangle$ such that

$$
\left.\begin{aligned}
& |F|=111 .\left|\begin{array}{ccc}
i & j & k \\
2 & 6 & -3 \\
5 & -4 & 1
\end{array}\right|=-6 i-17 j-38 k
\end{aligned} \right\rvert\, \begin{aligned}
& |F|=111=\frac{11 \mid}{|F|} F \\
& =\frac{111}{42}\langle-6,-17,-38\rangle
\end{aligned}
$$

QUESTION 2. a) (4 points) The line $L_{1}: x=-2 t-3, y=-3 t+3, z=4 t-2(t \in R)$ intersects the line $L_{2}: x=2 w-13, y=4 w-15, z=4 w-6(w \in R)$ in a point Q. Find Q.

$$
\begin{array}{rlr}
L_{1}: x=-2 t-3 & L_{2}: x=2 w-13 \\
y & =-3 t+3 & y=4 \omega-15 \\
z & =4 t-2 & z=4 w-6
\end{array}
$$

use substation method
find pt of intersection: $\quad-2 t-3=2 w-13$

$$
-3(-w+5)+3=4 w-15
$$

- now sub in each

line to get intersection

$$
3 w-15+3=4 w-1!
$$ pt

$$
4 \omega-3 \omega=-15+15 t i
$$

$$
-2(2)-3=2(3)-13
$$

$1-7=-7$

$$
t=\frac{-3+5}{1 t-2}
$$

$$
1 \omega=3
$$

$$
-3(2)+3=4(3)-15
$$

$$
-3=-3
$$

$$
4(2)-2=4(3)-6
$$

$$
6=6
$$

b)(2 points) Are the lines in (a) perpendicular? Explain

$$
\begin{aligned}
& D_{1}=\langle-2,-3,4\rangle \\
& D_{2}=\langle 2,4,4\rangle
\end{aligned}
$$

$$
D_{1} \cdot D_{2}=(-2 \times 2)+(-3 \times 4)+(4 \times 4)
$$

$$
=0
$$

So they are perpendicule because their dot product is zero \& they intersect

QUESTION 6. Consider the hyperbola $\frac{(x-2)^{2}}{(9)}-\frac{(y-3)^{2}}{(16)}=1$.
a) (2 points) Draw the hyperbola, rough ls $y^{2}\left(\frac{k}{2}\right)^{2}$

b) (2 points) Find the hyperbola-constant F^{*}.

$$
\left(\frac{k}{2}\right)^{2}=9 \quad \begin{align*}
& k=3 \times 2 \\
& k=6
\end{align*}
$$

$$
\frac{k}{2}=\sqrt{9}
$$

c)(3 points) Find the two vertices of the hyperbola.

$$
\begin{aligned}
v_{2}=(2+3,3) & v_{1}= & (2-3,3) \\
(5,3) & & (-1,3)
\end{aligned}
$$

$$
\begin{array}{ccc}
F_{1}=(2-5,3) & (-3,3) & C F^{2}=\left(\frac{k}{2}\right)^{2}+b^{2} \\
F_{2}=(2+5,3)(7,3) & C F^{2}=9+16 \\
=25) \\
& =25
\end{array}
$$

QUESTION 7. (4 points) Given two lines $L_{1}: x=t+1, y=2 t+4, z=-5 t+3(t \in R)$ and $L_{2}: x=2 w-1, y=$ $4 w+1_{1} z=-10 w+13(w \in R)$. Is L_{1} parallel to L_{2} ? Explain (show the work)

- 2 lines are /l If they hare cst \& they donor intersect
$L_{1}: \quad x=t+1$

$$
y=2 t+4
$$

$$
z=-5 t+3
$$

$$
\begin{aligned}
& \quad D_{1}\langle 1,2,-5\rangle \\
& 1=c 2 \\
& 2=c 4 \\
& -5=c(-10) \\
& =\frac{c=\frac{1}{2}}{2} \\
& c=\frac{1}{2}
\end{aligned}
$$

$$
\begin{aligned}
& \qquad \begin{aligned}
& L_{2}: x=2 \omega-1 \\
& y=4 \omega+1 \\
& z=-10 \omega+13 \\
& D_{2}\langle 2,4,-10\rangle
\end{aligned} \\
& \text { they have } \\
& \text { cst }
\end{aligned}
$$

$$
\begin{gathered}
\text { take } t=0 \\
1=2 w-1 \\
4=4 w+1
\end{gathered}
$$

$$
\beta=-10 w+13
$$

$$
2 \omega=2
$$

$$
w=1
$$

$$
4-1=4 w
$$

$$
3=4 \omega
$$

$$
u=\frac{3}{4}
$$

$$
3-13=-10 w
$$

$$
-10=-10 \omega
$$

QUESTION 8. (6 points)

Stare at the below. Then find Projection of V over U

QUESTION 9. (4 points) Find the equation of the plane that contains the points $Q_{1}=(4,4,0) . Q_{2}=(0,2,6)$ and $Q_{3}=(4,0,8)$.

$$
\begin{aligned}
& N=O_{1 O} \times O_{2} 0_{3} \\
& \langle-4,-2,6\rangle \times\langle 0,-4,8\rangle
\end{aligned}
$$

$$
\left|\begin{array}{ccc}
i & j & k \\
-4 & -2 & 6 \\
0 & -4 & 8
\end{array}\right|=8 i+32 j+16 k
$$

QUESTION 10. (6 points) Consider the parabola $-16(x+2)=(y-5)^{2}$.
(i) Sketch the parabola

$$
4 d=-16
$$

\& before x so its left

$$
d=-94
$$

$$
V
$$

(ii) Find the equation of the directrix line

$$
\begin{gathered}
x=-2+4 \\
x=2
\end{gathered}
$$

(iii) Find the focus point.

$$
\begin{aligned}
\text { Focus }= & (-2-4,5) \\
& (-6,5)
\end{aligned}
$$

$2 \quad$ NADIN $\quad-12434$

QUESTION 2. a) (4 points) Does the line $L_{1}: x=5 t-20, y=-t+3, z=3 t-27(t \in R)$ intersect the line $L_{2}: x=-2 w+20, y=-4 w-5_{1} z=2 w-3(w \in R)$? If yes find the intersection point Q.

$$
\begin{aligned}
& L_{1}:\left\{\begin{array}{l}
x=5 t-20 \\
y=-t+3 \\
z=3 t-27
\end{array} \quad L_{2}:\left\{\begin{array}{l}
x=-2 w+20 \\
y=-4 w-5 \\
z=2 w-3
\end{array}\right.\right. \\
& 5 t-20=-2 w+20 \Rightarrow 5 t+2 w=40 \\
& -t+3=-4 w-5 \Rightarrow-t+4 w=-8 \\
& \text { check for } z \text { : } \\
& \left.\begin{array}{r}
z=3 t-27=3(8)-21)=-3 \\
z=2 w-3=2(0)-3=-3
\end{array}\right\} \begin{array}{l}
\text { they are } \\
\text { equal } \Rightarrow \\
\\
\begin{array}{l}
\text { Li and } L_{2} \\
\text { intersect }
\end{array}
\end{array}
\end{aligned}
$$

The point of intersection
$x=2 w+20=2(0)+20=20$
$y=-4 w-5=-4(0)-5=-5$
$y=-4 w-5=-4(0)-5=-5$
$z=2 w-3=2(0)-3=-3$

$$
\begin{gathered}
\text { point } 2 \text { intersection is } \\
(20,-5,-3)
\end{gathered}
$$

b)(2 points) Are the lines in (a) perpendicular? Explain Yes.

$$
\begin{aligned}
& D_{1}=\langle 5,-1,3\rangle \quad D_{2}=\langle-2,-4,2\rangle \\
& D_{1} \cdot D_{2}=5(-2)-1(-4)+3(2)=0 \\
& \text { dot product }=0 \Rightarrow \text { They are perpendicular. }
\end{aligned}
$$

QUESTION 3. Given $x=-4$ is the directrix of of a parabola that has the point $(-6,5)$ as its vertex point. a) (2 points) Roughly, sketch such parabola.

$$
\underbrace{\text { such parabola. }}_{(6,5)}
$$

b)(4 points) Find the equation of the parabola

$$
\begin{aligned}
4 d\left(x-x_{0}\right) & =\left(y-y_{0}\right)^{2} \\
-4(2)(x+6) & =(y-5)^{2} \\
-8(x+6) & =(y-5)^{2}
\end{aligned}
$$

c) (2 points) Find the focus of the parabola, say F.

$$
F(-8,5)
$$

d) (2 points) Given $Q=(-10, b)$ is a point on the curve of the parabola. Find $|Q F|$ (HINT: You should know how to do this QUICKLY!, you do not need the value of b)

$$
|Q L|=|Q B|=|Q F|=\mid=6]
$$

4 NADIN 72434 Ayman Budawi
QUESTION 6. Consider the hyperbola $(y+1)^{2}-\frac{(x-2)^{2}}{8}=1$.
a) (2 points) Draw the hyperbola, roughly
-12,

$$
\left|C F_{1}\right|=\sqrt{1+8}=3
$$

$C(2,-1)$
$-x_{2} \rightarrow(2,-2)$
$-(2,-4)$
b) (2 points) Find the hyperbola-constant K.

$$
\begin{aligned}
& \left(\frac{k}{2}\right)^{2}=1 \\
& \frac{k}{2}=1 \Rightarrow k=2
\end{aligned}
$$

c)(3 points) Find the two vertices of the hyperbola.

$$
\begin{aligned}
& V_{1}(2,0) \\
& V_{2}(2,-2)
\end{aligned}
$$

d) (3 points) Find the foci of the hyperbola.

$$
\begin{aligned}
& F_{1}(2,2) \\
& F_{2}(2,-4)
\end{aligned}
$$

QUESTION 7. Given two lines $L_{1}: x=t+1, y=2 t+4, z=-5 t+3$ and $L_{2}: x=2 w+7, y=4 w+16, z=-10 w-27$.
(i) (3 points) Find the symmetric equation of L_{1}.
$x-1=\frac{y-4}{2}=\frac{-2+3}{5}$
(ii) (3 points) Is D_{1} parallel to D_{2} ? (note that D_{1} is the directional vector of L_{1} and D_{2} is the directional vector of L_{2}) Show the work
$\begin{array}{ll}D_{1}\langle 1,2,-5\rangle & D_{1}=C D_{2} \\ \left.D_{2}<2,4,-10\right\rangle & \langle 1,2,-5\rangle=C\langle 2,4,-10\rangle \\ C=\frac{1}{2}\end{array}$
(iii) (2 points) Is L_{1} parallel to L_{2} ? Explain (show the work)

Take $t=0 \rightarrow(1,4,3)$
check if $(1,4,3) \in L_{2}$

MT 111 Math for Architects Spring 2019. 1-1 Jasaman /Khmaker Shall:- TIDy

Quiz V MTH 111, Spring 2019

Ayman Badawi
$7 / 7$ Question 1. Let $Q_{1}=(1,1,2), Q_{2}=(0,1,3), Q_{3}=(2,1,5)$. Find the equation of the plane that passes through $Q_{1}, Q_{2}, Q 3$.

$\overrightarrow{Q_{1} Q_{2}}=\langle 0.1,1.1,3.2\rangle \quad \overrightarrow{Q Q}_{1}=\langle 2.1,1.1,5.2\rangle$

$$
=\langle-1,0,1\rangle / 1 \quad-\langle 1,0,3\rangle
$$

$\overrightarrow{Q_{1} Q_{2}} \times \overrightarrow{Q_{1} Q_{3}}=\left|\begin{array}{ccc}i & j & k \\ -1 & 0 & 1 \\ 1 & 0 & 3\end{array}\right|=(0) i-(-3-1) j+(0) k$
$=4 j=\langle 0,4,0\rangle$
choose $Q_{1} \&$ a random point $\mid A_{\cdot} \cdot \overrightarrow{Q_{1} w}=\langle 0,4,0\rangle \cdot\langle x-1, y-1, z-2\rangle=0$
$\omega=(\alpha, y, z)$
$Q_{i}=(1,1,2)$
$\overrightarrow{Q_{i} \omega}=(x-1, y-1, z-2)$

$$
\begin{aligned}
& 0(x-1)+4(y-1)+0(z-2)=0 \\
& 4(y-1)=0 / 2
\end{aligned}
$$

NTH 111 Math.for the Architects Spring 2018, $1-\mathrm{L}$

Ayman Badawi
QUESTION 1. a) Find the equation of the plane that contains the points $Q_{1}=(0,1,1), Q_{2}=(0,2,3), Q_{3}=(1,3,2)$.
$\vec{Q}_{1} Q_{2}:(0,2,3)-(0,1,1) \rightarrow\langle 0,1,2\rangle$
${\vec{Q} \mathbf{Q}_{3}}(1,3,2)-(0,1,1) \rightarrow\langle 1,2,1\rangle$
$\vec{Q}_{1} \vec{Q}_{2} \cdot \overrightarrow{Q_{1} Q_{3}}=\langle N\rangle=i[(|x|)-(2.2)]-j[(0.1)-(2.1)]+k[(0.2)-(1.1)]$
$i j k \quad-3 i+2 j-k$

$\langle N\rangle\langle-3,2,-1\rangle$
equation: $\quad-3 x+2(y-2)-1(z-1)=0$
c) Given a plane P : $5 x-7 y+z=21$ Can we draw the vector $V=\langle-4,-3,-1>$ inside the plane P ? explain

$$
\begin{array}{ll}
N<5,-7,1\rangle & N \cdot V=0=A \rightarrow \text { so inside plare } \\
V\langle-4,-3,-1\rangle & (5 \cdot-4)+(-7 \cdot-3)+(1 \cdot-1)=-20+21-1
\end{array}
$$

Exam II: MTH 111, Spring 2018

Ayman Badawi
Points $=$

QUESTION 2. (i) (3 points) What can you say about the line $L: x=2 t+1, y=t-1, z=-2 t+3$ and the plane
$x+2 y+z=16$? (i.e., Doe L lie inside the plane? Does L intersect the plane exactly in one point? or neither?
L: $x=2 t+1$
$P: x+2 y+z=16$
$y=t-1$
$(2 t+1)+2(t-1)-2 t+3=1$
$2 t+1+2 t-2(-2 t+3=16$
$x: 2(7)+1=15$
$z=-2 t+3$

$$
\begin{aligned}
& 2 t+1+2 t-2-2 t+3=16 \\
& 2 t=14 \Rightarrow t=1412+t=7
\end{aligned}
$$

7: $7-1=6$ Find the equation of the plane P.

$$
\begin{aligned}
& \text { Find the equation of the plane } P \text {. } \\
& N=\langle-2,3,2\rangle \perp P \text { at } Q(-1,4,2) \quad \text { Find eqn } \text { Directhonal vector } \\
& P:-2(x+1)+3(y-4)+2(z-2)=0 \\
& P:-2 x-2+3 y-12+2 z-4=0 \\
& P:-2 x+3 y+2 z=18
\end{aligned}
$$

(iii) (6 points) Find the equation of the plane that contains the points $Q_{1}=(4,4,0), Q_{2}=(0,2,6)$ and $Q_{3}=(4,0,8)$.

Egn of plame \rightarrow directional vector and polnt φ_{1}

Exam II: MTH 111, Fall 2017

QUESTION ${ }^{2}{ }^{x}{ }^{z}$ (i) (3 points) Can we draw the vector $v=\langle 3,-5, \overline{2}\rangle$ inside the plane $x-4 y-11 z=7$? explai.

$$
\begin{array}{lll}
V=\langle 3,-5,2\rangle & N \cdot V=3(1)-5(-4)+2(-11) & \text { The two vectors are } \\
N=\langle 1,-4,-11\rangle & \text { N.V }=3+20-22=1 \neq 0 \text { not perpengicular }
\end{array}
$$

(ii) (4 points) Given $N=\langle 4,6,2>$ is perpendicular to the plane P and the point ($4,1,1$) lies inside the plane P. Find ins side the the equation of the plane $P . \quad a\left(x-x_{0}\right)+b\left(y-y_{0}\right)+\left(\left(z-z_{0}\right)=0\right.$
$N=\begin{aligned} & \langle 4,6,2\rangle \\ & \langle a, b, c\rangle\end{aligned}$
$4(x-4)+6(y-1)+2(z-1)=0$
$Q(4,1,1)$
$4 x-16+6 y-6+2 z-2=0$
$4 x+6 y+2 z=24$
(iii) (6 points)Find the equation of the plane that contains the points $Q_{1}=(1,1,4), Q_{2}=(2,3,6)$ and $Q_{3}=(1,1,8)$.

$$
\begin{aligned}
& \begin{array}{l|l}
Q_{1}(1,1,4) \\
Q_{2}(2,3,6) \\
Q_{3}(1,1,8)
\end{array} \left\lvert\, \begin{aligned}
Q_{1} Q_{2} & =\langle 1,2,2\rangle \\
\overrightarrow{Q_{1} Q_{3}}= & \langle 0,0,4\rangle \\
\vec{N} & =\overrightarrow{Q_{1} Q_{2}} \times \overrightarrow{Q_{1} Q_{3}}=\left|\begin{array}{lll}
\hat{i} & \hat{j} & \hat{k} \\
1 & 2 & 2 \\
0 & 0 & 4
\end{array}\right|
\end{aligned}\right. \\
& \begin{array}{l}
\vec{N}=8 \hat{i}=4 \hat{j}+0 \hat{k} \\
\vec{N}=\langle 8,-4,0\rangle
\end{array} \\
& (8(x-1)-4(y+4)+0(z) \\
& 8(x-1)-4(y-1)+0(z-4)=0 \\
& 8 x-8-4 y+4=0 \\
& 8 x-4 y=4 \\
& 2 x-y=1
\end{aligned}
$$

FUSTION 3. (i) (4 points) The line $L: x=2 w, y=-w+1_{1} z=3$ intersects the plane $4 x+7 y+z=12$ in a point
Q. Find Q. $\quad\left\{\begin{array}{l}x=2 w \\ y=-w+1 ; w \in \mathbb{R} \\ z=3\end{array}\right.$

Pi $4 x+7 y+z=12$
$4(2 w)+7(-w+1)+3=12$
$8 w-7 w+7+3=12$
$w+10=12$ and the line $w=2 \rightarrow$ The plane"intersect when
$\omega=2$

MPH 111 Math for Architects Spring 2017. I-3

Exam I: MTH 111, Spring 2017

> Ayman Badawi
> Points $=\frac{}{58}$

QUESTION 1. (4 points) Given that the line $L=2+t, y=-3 t_{z} z=1+2 t$ is perpendicular to a plane, say P. If the point $(1,2,-5)$ lies in the plane P, find the equation of the plane P.

The parametric eq cant be written as $L: t\langle 1,-3,2\rangle+(2,0,1)$ since $L \perp$ to plane \& $\operatorname{Pt}(1,2,-5)$ lies on the plane $1(x-1)+-3(y-2)+2(z+5)=0$ $x-1-3 y+6+2 z+10=0$
$x-3 y+2 z+15=0$
（iij）Let $Q_{1}=(1,1,0), Q_{2}=\left(0_{1}-1,2\right)$ and $Q_{3}=(2,2,2)$ ．
a．（5 points）Find the equation of the plane that contains Q_{1}, Q_{2}, Q_{3}
$\overrightarrow{Q_{1} Q_{2}}\langle-1,-2,2\rangle \quad \overrightarrow{Q_{1} Q_{3}}\langle 1,1,2\rangle$

$$
N=\left|Q_{1} Q_{2} \times Q_{1} Q_{2}\right|=\left|\begin{array}{ccc}
1 & k \\
-1 & -2 & 2 \\
1 & 1 & 2
\end{array}\right|=\langle-6,4,1\rangle
$$

$$
p:-6(x-2)+4(y-2)+1(z-2)=0
$$

b．（2 points）Find the area of the triangle that has Q_{1}, Q_{2}, Q_{3} as vertices．
$A=\frac{1}{2}\left|\vec{Q}_{1} Q_{2} \times \overrightarrow{Q Q}_{3}\right|=\frac{\sqrt{6^{2}+4^{2}+1^{2}}}{2}=\frac{\sqrt{53}}{2}{\text { units }^{2}}^{2}$ \qquad
（iv）（4 points）Given $L: x=t+1, y=8, z=4 t+1$ lies entirely inside the plane $P: a x+2 y+z=b$ Find the values
of $a, b . \quad D\langle 1,0,4\rangle \quad N\langle a, 2,1\rangle$

NTH 111 Math For Architects Spring 2017. I-3

Exam I: MTH 111, Spring 2017

Ayman Badawi
 Points $=\frac{56}{58}$

QUESTION 1. (4 points) Given that the line $L=2+t, y=-3 t_{i} z=1+2 t$ is perpendicular to a plane, say P. If the point $(1,2,-5)$ lies in the plane P, find the equation of the plane P.

The parametric eq conte written as $L: t\langle 1,-3,2\rangle+(2,0,1)$, since $L \perp$ to plane \& $\operatorname{Pt}(1,2,-5)$ lies on the place $1(x-1)+-3(y-2)+2(z+5)=0$ $x-1-3 y+6+2 z+10=0$
$x-3 y+2 z+15=0$
QUESTION 2. (5 points) The two planes $P_{1}: 2 x-y+z=6$ and $P_{2}:-x+y+4 z=4$ intersect in a line L. Find a parametric equations of L.

$$
\begin{aligned}
& \langle 2-1,1\rangle \rightarrow \overrightarrow{N_{1}} \\
& P_{1}: 2 x-y+z=6 \\
& P_{2}:-x+y+4 z=4\langle-1,1,4\rangle \rightarrow \overrightarrow{N_{2}}
\end{aligned}
$$

$$
\begin{aligned}
\vec{N}_{1} \times \vec{N}_{2}=\left|\begin{array}{ccc}
\hat{i} & \hat{j} & k \\
2 & -1 & 1 \\
-1 & 1 & 4
\end{array}\right| & =\hat{i}(-4-1)-\hat{j}(8+1)+\hat{k}(2-1) \\
& =-5 \hat{i}-9 \hat{i}+\hat{k} \rightarrow\langle-5,
\end{aligned}
$$

$$
\text { Assume } z=0
$$

$$
\operatorname{pt}(10,14,0) \geq
$$

$$
2 x-y=6
$$

$$
\begin{gathered}
2 x-y=6 \\
-x+y=4 \\
\hline
\end{gathered}
$$

$L: t\langle-5,-9,1\rangle+(10,14,0\rangle$
$y=14 \quad:\langle-5 t,-9 t, t\rangle+(10,14,0)$

$$
x=10
$$

$x=-5 t+10 ; y=-9 t+14 ; B=t$

Quiz 5: MTH 111, Spring 2018
Ayman Badavi
QUESTION 1 : a) The Plane $P: 2 x+y==16$ intersects the line $L: x=3 t \cdot y=-2 t+4==-1-2$ at a point Q find Q.

$$
\begin{aligned}
& 2(3 t)-2 t+4+t+2=16 \\
& 6 t-2 t+4+t+2=16 \\
& t=2 / \mathrm{N} \\
& x=3(2)=6 \\
& y=-2(2)+4=0 \\
& z=-2-2=-4
\end{aligned}
$$

c) The two planes $P_{1}: I x+y-z=6$ and $P_{2}: 4 x-y+==12$ intersect in a line L. Find a parametric equations of

$$
\begin{aligned}
& L . \\
& \begin{array}{l}
N_{1}:\langle 2,1,-1\rangle \\
D=N_{1} \times N_{2}=\left|\begin{array}{ccc}
j & j & k \\
2 & 1 & -1 \\
4 & -1 & 1
\end{array}\right|=\langle 0,-6,-6\rangle \\
\imath / \imath
\end{array} \quad L:\left\{\begin{array}{l}
x=3 \\
y=-6 t \\
z=-6 t
\end{array} \quad: t \in \mathbb{R} .\right.
\end{aligned}
$$

take $z=0$.

$$
\begin{array}{r}
2 x+y=6 \\
\frac{4 x-y=12}{x=3} y=0
\end{array} \quad \Rightarrow Q(3,0,0)
$$

QUESTION 2. Find $f^{\prime}(x)$ and do not simplify

$$
\begin{aligned}
& \text { a) } f(x)=3 x^{2}(x+2)^{2}+2018.5-2017 \\
& f^{\prime}(x)=6 x(x+2)^{2}+6 x^{2}(x+2)+2018 \quad \text { 2/2 } \\
& \text { Product formula } \\
& \text { or } f(x)=3 x^{2}\left(x^{2}+4 x+4\right)+2018 x-2 d x \\
& =3 x^{4}+12 x^{3}+12 x^{2}+2018 x-247 \\
& \text { b) } f(x)=8 \sqrt{x}+\frac{4}{x^{1}}+2 x^{2} \\
& f^{\prime}(x)=\frac{4}{\sqrt{x}}-\frac{18}{x^{4}}+4 x \\
& \text { so } f^{\prime}(x)=12 x^{3}+36 x^{2}+24 x+2 d 8 x \\
& \text { c) ff } f(x)=18 \sqrt{x}+7 x+1 \text {. find } f^{\prime}(9) \\
& f^{\prime}(x)=\frac{9}{\sqrt{x}}+\left.7\right|_{x=9}=10
\end{aligned}
$$

Faculty information

Ayman Badswi, Department of Mathematics \&: Statistics. American University of Shajah, PO, Box 26666, Shariah, United Arab Emirates E-muil: abadavianus.adu, sus.ayann-badavi.com

Exam I: MTH 111, Spring 2018

$$
\begin{aligned}
& \text { Ayman Badawi } \text { Nadin El Shirbini } \\
& \text { Points }=\frac{80}{80}
\end{aligned}
$$

QUESTION 1. a) (3 points) Are the points $q_{1}=(1,2,-2), q_{2}=(3,3,1)$, and $q_{3}=(5,4,4)$ collinear? Show the work $\overrightarrow{Q_{1} \vec{Q}_{2}}=\langle 2,1,3\rangle$ $Q_{1} Q_{3}=\langle 4,2,6\rangle$
b) (3 points) Given $A=(10,4), B=(4,2)$, and $C=(-6,0)$ are the vertices of a triangle. Roughly, sketch the triangle $A B C$. Find the area of the triangle $A B C$.

$$
\begin{array}{ll}
\overrightarrow{A B}=\langle-6,-2\rangle & \overrightarrow{A B} \times \overrightarrow{A C}=\left|\begin{array}{ccc}
i & j & k \\
-6 & -2 & 0 \\
-16 & -4 & 0
\end{array}\right|=\langle 0,0,-8\rangle \\
\overrightarrow{A C}=\langle-16,-4\rangle & \\
A_{\triangle A B C}=\frac{1}{2}|\overrightarrow{A B} \times \overrightarrow{A C}|=\frac{1}{2} \sqrt{(-8)^{2}}=4 \text { units }^{2}
\end{array}
$$

c) (3 points) Find a vector F that is perpendicular to both vectors $V=\langle 2,-1,4\rangle$ and $W=\langle 0,4,2\rangle$
$\vec{F}=\vec{V} \times \vec{W}=\left|\begin{array}{ccc}1 & j & k \\ 2 & -1 & 4 \\ 0 & 4 & 2\end{array}\right|=\langle-18,-4,8\rangle$
d) (2 points) Let V, W as in (c). Find a vector F that is perpendicular to both V and W such that $|F|=2$.(hint: Just
ink a little) think a little)

$$
|F|=\sqrt{18^{2}+4^{2}+8^{2}}=2 \sqrt{101} \quad\left(2 y-\frac{1}{1 F 1}\right) \cdot F=\frac{2}{2 \sqrt{101}} \cdot F=\frac{1}{\sqrt{101}} \cdot F=\frac{1}{\sqrt{101}}<-18,-4,81
$$

$$
\left.\left|F<-\frac{18}{\sqrt{10}}, \frac{-4}{\sqrt{10}}, \frac{2}{\sqrt{101}}\right\rangle \right\rvert\,
$$

$$
\left(\begin{array}{l}
\text { check if }|F|=2 \\
\\
\left(\frac{-18}{\sqrt{101}}\right)^{2}+\left(\frac{-4}{\sqrt{12}}\right)^{2} \\
\end{array}\right.
$$

$$
\begin{aligned}
& \left.\overrightarrow{Q_{1}} \times \overrightarrow{Q_{2}} \vec{Q}_{3}=\left|\begin{array}{lll}
i & 1 & k \\
2 & 1 & 3 \\
4 & 2 & 6
\end{array}\right|=<\left|\begin{array}{ll}
j & k \\
1 & 3 \\
2 & 6
\end{array}\right|,\left|\begin{array}{ll}
i & k \\
2 & 3 \\
4 & 6
\end{array}\right|,\left|\begin{array}{ll}
1 & j \\
2 & i \\
4 & 2
\end{array}\right|>\ll 0,0,0\right\rangle \\
& \text { cos: product is zero } \Rightarrow \text { they are collinear }
\end{aligned}
$$

2. NADIN - 12434 Ayman Badawi

QUESTION 2. a) (4 points) Does the line $L_{1}: x=5 t-20, y=-t+3, z=3 t-27(t \in R$) intersect the line $L_{2}: x=-2 w+20, y=-4 w-5, z=2 w-3(w \in R)$? If yes find the intersection point Q.

$$
\begin{aligned}
& L_{1}:\left\{\begin{array}{l}
x=5 t-20 \\
y=-t+3 \\
z=3 t-27
\end{array} \quad L_{2}:\left\{\begin{array}{l}
x=-2 w+20 \\
y=-4 w-5 \\
z=2 w-3
\end{array}\right.\right. \\
& \begin{array}{ll}
5 t-20=-2 w+20 \\
-t+3=-4 w-5 & \Rightarrow 5 t+2 w=40 \\
t=8 \quad w=0
\end{array}
\end{aligned}
$$

check for z :

The point of intersection

$$
\begin{aligned}
& x=2 w+20=2(0)+20=20 \\
& y=-4 w-5=-4(0)-5=-5 \\
& z=2 w-3=2(0)-3=-3
\end{aligned}
$$

b) (2 points) Are the lines in (a) perpendicular? Explain

$$
\begin{aligned}
& D_{1}=\langle 5,-1,3\rangle \quad D_{2}=\langle-2,-4,2\rangle \\
& D_{1} \cdot D_{2}=5(-2)-1(-4)+3(2)=0
\end{aligned}
$$

$$
\text { dot product }=0 \Rightarrow \text { They are perpendicular }
$$

QUESTION 3. Given $x=-4$ is the directrix of of a parabola that has the point $(-6,5)$ as its vertex point.
a) (2 points) Roughly, sketch such parabola.

$$
|d|=2
$$

b)(4 points) Find the equation of the parabola

$$
\begin{aligned}
4 d\left(x-x_{0}\right) & =\left(y-y_{0}\right)^{2} \\
-4(2)(x+6) & =(y-5)^{2} \\
-8(x+6) & =(y-5)^{2}
\end{aligned}
$$

c) (2 points) Find the focus of the parabola, say F.

$$
F(-8,5)
$$

d) (2 points) Given $Q=(-10, b)$ is a point on the curve of the parabola. Find $|Q F|$ (HINT: You should know how to do this QUICKLY!, you do not need the value of b)

$$
|Q L|=|Q B|=|Q F|=|6|
$$

QUESTION 4. Given $y=x^{2}-6 x-1$ is an equation of a parabola. a)(3 points) Write the equation in the standard form.

b) (2 points) Find the equation of the directrix line.

c) (2 points) Find the focus, say F

$$
F\left(3,-10+\frac{1}{4}\right) \rightarrow F\left(3,-\frac{39}{4}\right)
$$

d)(2 points) Roughly, sketch the graph of such parabola.
(dee picture)

QUESTION 5. An ellipse is centered at $(-4,0), F_{1}=(-1,0)$ is one of the foci, and $(-4,4)$ is one of the vertices.
(i) (2 points) Roughly, sketch such ellipse.

(ii) (3 points) Find the ellipse-constant K.
$V_{3}(-4,-4)$

$$
\left|V_{3} F_{1}\right|=\frac{k}{2}=5 \Rightarrow K=10
$$

(iii) (2 points) Find the second foci of the ellipse,

(iv) (3 points) Find the remaining three vertices of the ellipse

(v) (3 points) Find the equation of the ellipse.

$$
\frac{(x+4)^{2}}{25}+\frac{y^{2}}{16}=1
$$

QUESTION 6. Consider the hyperbola $(y+1)^{2}-\frac{(x-2)^{2}}{8}=1$.
a) (2 points) Draw the hyperbola, roughly

$\left|C F_{1}\right|=\sqrt{1+8}=3$
b) (2 points) Find the hyperbola-constant K.

$$
\begin{aligned}
& \left(\frac{k}{2}\right)^{2}=1 \\
& \frac{k}{2}=1 \Rightarrow k=2
\end{aligned}
$$

c)(3 points) Find the two vertices of the hyperbola.

d) (3 points) Find the foci of the hyperbola.

$$
\begin{aligned}
& F_{1}(2,2) \\
& F_{2}(2,-4)
\end{aligned}
$$

QUESTION 7. Given two lines $L_{1}: x=t+1, y=2 t+4, z=-5 t+3$ and $L_{2}: x=2 w+7, y=4 w+16, z=-10 w-27$.
(i) (3 points) Find the symmetric equation of L_{1}.
$x-1=\frac{y-4}{2}=\frac{-2+3}{5}$
(ii) (3 points) Is D_{1} parallel to D_{2} ? (note that D_{1} is the directional vector of L_{1} and D_{2} is the directional vector of L_{2}) Show the work

(iii) (2 points) Is L_{1} parallel to L_{2} ? Explain (show the work)

Take $t=0 \rightarrow(1,4,3)$
check if $(1,4,3) \in L_{2}$

$$
\begin{aligned}
& 1=2 w+7 \Rightarrow w=-3 \\
& 4=4 w+16=w=-3 \\
& 3=-10 w-27 \Rightarrow w=-3
\end{aligned} \begin{aligned}
& \text { it } c \text { to } L_{2} .
\end{aligned} \quad \begin{aligned}
& L_{1} \text { and } L_{2} \text { intersect and they are NOT } \\
& \quad \begin{array}{l}
\text { parallel. They are collinear (some line) } \\
\text { on top of each other) }
\end{array}
\end{aligned}
$$

QUESTION 8. Let $(0,0)$ be the initial point of the two vectors $V=\langle 4,-\mathbf{2}\rangle$, and $w=\langle 0,6\rangle$.
a) (2 points) Draw V and W in the $x y$-plane.
b)

prop $_{W}^{V}=\dot{1 B}$

$$
\text { pros }_{v}^{w}=\overrightarrow{1 B}
$$

b) (2 points) Use the picture that you draw in (a) in order to draw $\operatorname{Proj} j_{w}^{V}$ c)(2 points) Use the picture that you draw in (a) in order to draw Projw d) (4 points) Find Projew and find its length.

$$
\begin{aligned}
& \operatorname{proj}_{w}^{v}=\frac{v \cdot w}{|w|^{2}} \cdot w=\frac{-12}{36} \cdot w=-\frac{1}{3}\langle 0,6\rangle=\langle 0,-2\rangle \\
& \left|\operatorname{proj}_{w}\right|=\sqrt{2^{2}}=2
\end{aligned}
$$

c)(3 points) Find the angle between V and W

$$
\begin{aligned}
& \cos \theta=\frac{v \cdot w}{|v||w|}=\frac{-12}{(6)(2 \sqrt{5})}=\frac{-\frac{\sqrt{5}}{5}}{} \\
& \theta=\cos ^{-1}\left(-\frac{\sqrt{5}}{5}\right)=\frac{116.565^{\circ}}{}
\end{aligned}
$$

Faculty information

Ayman Badawi, Department of Mathematics \& Statistics, American University of Shariah, P.O. Box 26666, Shariah, United Arab Emirates. E-thail: abadarioaus.edu, wry.ayman-badavi.com

Exam I: MTH 111, Spring 2019

$$
F=v \times w
$$

Ayman Badawi

$$
\text { Points }=\frac{87}{87}
$$

QUESTION 1. b) (4 points) Given $A=(6,10), B=(-7,3)$, and $C=(-4,-2)$ are the vertices of a triangle. Find the area of the triangle $A B C$.
Area of the triangle $A B C=\frac{1}{2}|A B \times A C|$

$$
\begin{aligned}
& \left.\begin{array}{l}
A B=\langle-13,-7\rangle \\
B-A \\
A C \\
C-A
\end{array}\right\rangle\langle-10,-12\rangle
\end{aligned} \begin{array}{r}
A B \times A C=\left|\begin{array}{ccc}
i & j & k \\
-13 & -7 & 0 \\
-10 & -12 & 0
\end{array}\right|=0 i-0 j+86 k=86 \\
\text { Area of } \triangle A B C=\frac{1}{2} 86=43 \text { units }^{2}
\end{array}
$$

c) ($\mathbf{3}$ points) Find a vector F that is perpendicular to both vectors $V=\langle 2,6,-3\rangle$ and $W=\langle 5,-4,1\rangle$ such that

$$
\left.F=v \times \omega=\left|\begin{array}{ccc}
1 & j & k \\
2 & 6 & -3 \\
5 & -4 & 1
\end{array}\right|=-6 i-17 j-38 k \right\rvert\, \begin{aligned}
& |F|=111=\frac{11 \mid}{|F|} F \\
& =\frac{111}{42}\langle-6,-17,-38\rangle
\end{aligned}
$$

QUESTION 2. a) (4 points) The line $L_{1}: x=-2 t-3, y=-3 t+3, z=4 t-2(t \in R)$ intersects the line

$$
\begin{array}{rlr}
L_{2}: x=2 w-13, y=4 w-15, z=4 w-6(w \in R) \text { in a point } Q \text {. Find } Q . \\
L_{1}: x=-2 t-3 & L_{2}: & x=2 w-13 \\
y=-3 t+3 & y=4 w-15 \\
z=4 t-2 & z=4 w-6
\end{array}
$$

use substation method
find pt of intersection: $\quad-2 t-3=2 w-13$

- now sub in each
line to get intersection $\frac{-2 t}{-2}=\frac{2 \omega-13+3}{-2}>_{\mathrm{sec}}^{\text {second }}$

$$
\begin{gathered}
-3(-w+5)+3=4 \omega-15 \\
3 \omega-15+3=4 \omega-15 \\
4 \omega-3 \omega=-15+15+ \\
1 \omega=3
\end{gathered}
$$

$$
\begin{aligned}
-2(2)-3 & =2(3)-13 \\
1-7 & =-7 \\
-3(2)+3 & =4(3)-15 \\
-3 & =-3 \\
4(2)-2 & =4(3)-6
\end{aligned}
$$

$$
\begin{array}{r}
t=-w \\
t=-3+5 \\
t=2
\end{array}
$$

eq u

$$
\text { Intersection pt }=0=(-7,-3,6)
$$

$$
6=6
$$

$$
\begin{aligned}
& D_{1}=\langle-2,-3,4\rangle \\
& D_{2}=\langle 2,4,4\rangle
\end{aligned}
$$

$$
\begin{aligned}
D_{1} \cdot D_{2} & =(-2 \times 2)+(-3 \times 4)+(4 \times 4) \\
& =0
\end{aligned}
$$

So they are perpendicule because their dot product is zero \& they intersect

QUESTION 3. Given $y=-4$ is the directrix of a parabola that has the point $\underline{F}=(2,8)$ as its focus point.
a) (2 points) Roughly, sketch such parabola.

b)(4 points) Find the equation of the parabola

$d=6$ \& its up

$$
4 d(y-2)=(x-2)^{2}
$$

$$
4(6)(y-2)=(x-2)^{2}
$$

$$
24(y-2)=(x-2)^{2}
$$

c) (2 points) Find the vertex of the parabola, say V.

$$
v=(2,2)
$$

QUESTION 4. Given $y=4 x^{2}+24 x-3$ is an equation of a parabola.
a)(3 points) Write the equation in the standard form.

$$
\begin{aligned}
& y=4 x^{2}+24 x-3 \\
& y=4\left(x^{2}+6 x\right)-3 \\
& y=4\left((x+3)^{2}-9\right)-3 \\
& y=4(x+3)^{2}-36-3 \\
& y=4(x+3)^{2}-39 \\
& \frac{1(y+39)}{4}=\frac{4(x+3)^{2}}{4} \\
& \quad \frac{1}{4}(y+39)=(x+3)^{2}
\end{aligned}
$$

b) (2 points) Find the equation of the directrix line.

$$
y=-\frac{625}{16}
$$

c)(2 points) Find the focus, say F

$$
\begin{aligned}
& F=\left(-3,-39+\frac{1}{16}\right)=\left(-3,-\frac{623}{16}\right) \\
& \qquad\left(-3,-3,-\frac{39}{}+\frac{1}{16}\right) \\
& \left(-3,-\frac{1}{16}\right)
\end{aligned}
$$

QUESTION 5. An ellipse is centered at $(4,3), F_{1}=(4,0)$ is one of the foci, and $(8,3)$ is one of the vertices.
(i) (2 points) Roughly, sketch such ellipse.

(ii) (3 points) Find the ellipse-constant K.

$$
\begin{gathered}
C F^{2}=\left(\frac{k}{2}\right)^{2}=b^{2} \\
3^{2}=\left(\frac{k}{2}\right)^{2}-4^{2} \\
k=10
\end{gathered}
$$

(iii) (2 points) Find the second foci of the ellipse.

$$
\begin{aligned}
t_{2}= & (4,3+3 \\
& (4,6)
\end{aligned}
$$

x does not change

$$
C F^{2}=\left(\frac{k}{2}\right)^{2}-b^{2}
$$

$$
C F=3
$$

$$
b=4
$$

QUESTION 6. Consider the hyperbola $\frac{(x-2)^{2}}{(9)}-\frac{(y-3)^{2}}{16}=1$.
a) (2 points) Draw the hyperbola, roughly
der x so right le ft

b) (2 points) Find the hyperbola-constant F^{*}.

$$
\left(\frac{k}{2}\right)^{2}=g
$$

$$
\frac{k}{2}=\sqrt{9}
$$

c)(3 points) Find the two vertices of the hyperbola.

$$
\begin{array}{lr}
v_{2}=(2+3,3) & (2,-3,3) \\
(5,3) & (-1,3) \\
F_{1}=(2-5,3) \\
F_{2}=(2+5,3)(-3,3) & C F_{1}=(7,3) \\
\hline
\end{array}
$$

QUESTION 7. (4 points) Given two lines $L_{1}: x=t+1, y=2 t+4,==-5 t+3(t \in R)$ and $L_{2}: x=2 w-1, y=$ $4 w+1, z=-10 w+13(w \in R)$. Is L_{1} parallel to L_{2} ? Explain (show the work)

- 2 lines are /l If they hare cst \& they donor intersect
$L_{1}: x=t+1$

$$
\begin{aligned}
& y=2 t+4 \\
& z=-5 t+3
\end{aligned}
$$

$$
D_{1}\langle 1,2,-5\rangle
$$

$$
I=c 2 \quad c=\frac{1}{2}
$$

$$
2=c 4 \quad c=\frac{1^{2}}{2}
$$

$$
-5=c(-10) \quad{ }_{c}^{2}=\frac{1}{2}
$$

$L_{2}: x=2 \omega-1$

$$
D_{2}\langle 2,4,-10\rangle
$$

they have a
cst

$$
\begin{aligned}
& y=4 \omega+1 \\
& z=-10 \omega+13
\end{aligned}
$$

cst

take $t=0$
$1=2 w-1$
$2 \omega=2$
$4=4 \omega+1$

$$
4 w=4-1
$$

$\beta=-10 w+13$

$$
w=\frac{3}{4}
$$

$$
10_{\omega}=13-3
$$

$$
\begin{gathered}
10 L 10 \\
U=1
\end{gathered}
$$

$$
\begin{aligned}
2 \omega & =2 \\
1 \omega & =1 \\
4-1 & =4 \omega \\
3 & =4 \omega \\
14 & =\frac{3}{4} \\
3-13 & =-10 \omega \\
-10 & =-10 w
\end{aligned}
$$

they do
not
intersect

QUESTION 8. (6 points)
proju
Stare at the below. Then find Projection of V over U

QUESTION 9. (4 points) Find the equation of the plane that contains the points $Q_{1}=(4,4,0) \cdot Q_{2}=(0,2,6)$ and $Q_{3}=(4,0,8)$.
$N={\vec{Q} \Theta_{2}}_{2} \times Q_{1} Q_{3}$
$\langle-4,-2,6\rangle \times\langle 0 ;-4,8\rangle$
$\left|\begin{array}{ccc}i & j & k \\ -4 & -2 & 6 \\ 0 & -4 & 8\end{array}\right|=8 j+32 j+16 k$
$8(x-4)+32(y-4)+16 z=0$

QUESTION 10. (6 points) Consider the parabola $-16(x+2)=(y-5)^{2}$.
(i) Sketch the parabola

$$
4 d=-16
$$

\& before \times so its left

$$
d=\Theta 4
$$

$$
V
$$

(ii) Find the equation of the directrix line

$$
x=-2+4
$$

(iii) Find the focus point.

$$
\begin{array}{r}
\text { Focus }=(-2-4,5) \\
(-6,5)
\end{array}
$$

0
QUESTION 11. (4 points) Given that $x=6$ is the directrix line of a parabola that has F as its focus point. If the point $Q=(-2,12)$ lies on the parabola. Find $|Q F|$ (i.e., the distance between Q and F).

$$
10 \% 1=10 L 1=8
$$

QUESTION 12. (6 points) Consider the ellipse $\frac{(y-1)^{2}}{(9)}+\frac{(x+2)^{2}}{(25)}=1$.
(i) Sketch (roughly)
 is

(ii) Find the foci of the ellipse

$$
\begin{aligned}
C F^{2} & =\left(\frac{k}{2}\right)^{2}-b^{2} \\
& =25-9 \\
& =16
\end{aligned}
$$

$$
C F^{2}=16
$$

$$
\text { so } F_{1}(-2+4,1)
$$

$$
50 \quad \overline{C F}=4
$$

$$
F_{2}(-2-4,1)
$$

QUESTION 13. (4 points) Given $Q=(1,6,4)$ is not on the line $L: x=t+1, y=2 t+4, z=-5 t+3(t \in R)$. Find $|Q L|$.

$$
\begin{aligned}
& \begin{array}{l}
|Q L|=\frac{|D \times I Q|}{|D|}=\frac{\sqrt{12^{2}+1^{2}+2^{2}}}{\sqrt{1^{2}+2^{2}+5^{2}}} \\
\text { Faculty information }
\end{array} \\
& =\frac{\sqrt{149}}{\sqrt{30}}
\end{aligned}
$$

$$
\begin{aligned}
& D=\langle 1,2,-5\rangle \\
& I=\langle 1,4,3\rangle \\
& \quad I Q=\langle 0,2,1\rangle \\
& I Q \times D=\left|\begin{array}{ccc}
1 & j & k \\
0 & 2 & 1 \\
1 & 2 & -5
\end{array}\right|
\end{aligned}
$$

Ayman Badawi, Department of Mathematics \& Statistics, American University of Shariah, P.O. Box 26666, Shariah, United Arab Emirates. Email: abadawicaus.edu, uru. ayman-badawi.com

$$
=-12 i+1 j-2 k
$$

$$
\begin{aligned}
& \text { (iii) Find all four vertices of the ellipse. } \\
& \left(\frac{k}{2}\right)^{2}=25 \quad \pm \frac{k}{2} \\
& \frac{k}{2}=5 \quad 5 \\
& (-6,1) \\
& v_{1}=\binom{-2+5}{(3,1)} \\
& V_{2}=(-2-5,1) \quad V_{4}=(-2,1-3)^{2}(-2,-2) \\
& b^{2}=9 \quad b=3 \quad(-7,1)
\end{aligned}
$$

3.5 Questions with Solutions on Planes in 3 D from previous semesters

 Quiz V MTH 111, Spring 2019
 Ayman Badawi

$7 / 7$ QUESTION 1. Let $Q_{1}=(1,1,2), Q_{2}=(0,1,3), Q_{3}=(2,1,5)$. Find the equation of the plane that passes through $Q_{1}, Q_{2}, Q 3$.

$$
N=\overrightarrow{Q_{1} Q_{2}} \times \overrightarrow{Q_{1} Q_{3}}
$$

${\overrightarrow{Q_{1} Q}}_{2}=\langle 0.1,1.1,3.2\rangle \quad \vec{Q}_{1}=\langle 2.1,1.1,5.2\rangle$
$=\langle-1,0,1\rangle / 1 \quad-\langle 1,0,3\rangle{ }_{1}$
$\begin{aligned} \overrightarrow{Q Q}_{1} \times \vec{Q}_{1} Q_{3}=\left|\begin{array}{ccc}i & j & k \\ -1 & 0 & 1 \\ 1 & 0 & 3\end{array}\right| & =(0) i-(-3-1) j+(0) k\end{aligned}$
choose $Q_{1} \&$ a random point $\mid N \cdot \overrightarrow{Q_{1} w}=\langle 0,4,0\rangle \cdot\langle x-1, y-1,2-2\rangle=0$
$\omega=(\alpha, y, z)$
$p_{i}=(1,1,2)$
$\overrightarrow{Q_{i} \omega}=(x-1, y-1,2-2)$

$$
\begin{aligned}
& 0(x-1)+4(y-1)+0(z-2)=0 \\
& 4(y-1)=0
\end{aligned}
$$

(ii) (4 points) Given $N=<-2,3,2>$ is perpendicular to the plane P and the point $(-1,4,2)$ lies inside the plane P. Find the equation of the plane P.

$$
\begin{aligned}
& N_{x}\left(x-P_{x}\right)+N_{y}\left(y-P_{y}\right)+N_{z}\left(z-P_{z}\right)=0 \\
& -2(x+1)+3(y-4)+2(z-2)=0 \Leftrightarrow \text { plane }
\end{aligned}
$$

QUESTION 9. (5 points). Can we draw the entire line $L^{5}: x=2 t, y=-3 t+1, z=11 t+4$ inside the plane $2 x-6 y-2 z=20$? EXPLAIN

NTH 111 Matlıfor the Architects Spring 2018, 1-1 (0) copyright Ayman Badawi 2018 Quiz: MTH 111, Spring 2018

Ayman Badawi

QUESTION 1. a) Find the equation of the plane that contains the points $Q_{1}=(0,1,1), Q_{2}=(0,2,3), Q_{3}=(1,3,2)$.
$\vec{Q}_{1}: \quad(0,2,3)-(0,1,1) \rightarrow\langle 0,1,2\rangle$
$\overrightarrow{Q_{1}} \mathbb{Q}_{3}$.
$(1,3,2)-(0,1,1) \rightarrow\langle 1,2,1\rangle$
$\vec{Q}_{1} \cdot \overrightarrow{Q_{1} Q_{3}}=\langle N\rangle=i[(|x|)-(2.2)]-j[(0.1)-(2.1)]+k[(0.2)-(1.1)]$

c) Given a plane $P: 5 x-7 y+z=21$ Can we draw the vector $V=<-4,-3,-1>$ inside the plane P ? explain

$$
\begin{array}{ll}
N\langle 5,-7,1\rangle & N \cdot V=0=A \rightarrow \text { so inside plane } \\
V\langle-4,-3,-1\rangle & (5 \cdot-4)+(-7 \cdot-3)+(1 \cdot-1)=-20+21-1
\end{array}
$$

Exam II: MTH 111, Spring 2018
Ayman Badawi
Points $=$

QUESTION 2. (i) (3 points) What can you say about the line $L: x=2 t+1, y=t-1, z=-2 t+3$ and the plane
$x+2 y+z=16$? (ie., Doe L lie inside the plane? Does L intersect the plane exactly in one point? or neither?
L: $x=2 t+1$
$y=t-1$
$z=-2 t+3$
$P: x+2 y+z=16$
$(2 t+1)+2(t-1)-2 t+3=16 \quad y: 7-1=6$
$(2 t+1)+2(t-1)-2 t+3=1$
$2 t)+1+2 t-2-2 t+3=16$
$2 t=14 \Rightarrow t=1412 \Rightarrow t=7$

(ii) (4 points) Given $N=<-2,3,2>$ is perpendicular to the plane P and the point $(-1,4,2)$ lies inside the plane P Find the equation of the plane P.
$N=\langle-2,3,2\rangle \perp P$ at $Q(-1,4,2)$

$p: \quad-2(x+1)+3(y-4)+2(z-2)=0$
$p:-2 x-2+3 y-12+2 z-4=0$
$P:-2 x+3 y+2 z=18$
(iii) (6 points) Find the equation of the plane that contains the points $Q_{1}=(4,4,0), Q_{2}=(0,2,6)$ and $Q_{3}=(4,0,8)$.

Eqn of plane \rightarrow directional vector and point φ_{1}

$$
\begin{aligned}
& \phi_{1}:(4,4,0) \\
& \phi_{2}:(0,2,6) \\
& Q_{3}:(4,0,8) \\
& \begin{array}{l}
Q_{1} \quad \begin{array}{l}
V=Q_{1} Q_{2}=\langle 4,2,-6\rangle \\
W=Q_{3} Q_{2}=\langle 4,-2,2\rangle
\end{array} \\
Q_{3}
\end{array} \\
& \begin{aligned}
V \times W=\left|\begin{array}{ccc}
1 & 1 & k \\
4 & 2 & -6 \\
4 & -2 & 2
\end{array}\right| & =\left|\begin{array}{cc}
2 & -6 \\
-2 & 2
\end{array}\right|,-\left|\begin{array}{cc}
4 & -6 \\
4 & 2
\end{array}\right|,\left|\begin{array}{cc}
4 & 2 \\
4 & -2
\end{array}\right| \\
& =\langle 4-12,-(8+24),-8-8\rangle
\end{aligned} \\
& =\langle-8,-32,-16\rangle \\
& \text { P: }-8(x-4)-32(y-4)-16(z+0)=0 \\
& P:-8 x+32-32 y+128-16 z=0 \\
& p:-8 x-32 y-16 z=-160
\end{aligned}
$$

Exam II: MTH 111, Fall 2017

| Ayman Badawi 77 |
| :--- | :--- |
| Points $=\frac{47}{47} \quad$ Maya Alshamsi |

QUESTION 2 . $x^{x=}$ (i) (3 points) Can we draw the vector $v=\langle 3,-5,2\rangle$ inside the plane $x-4 y-11 z=7$? explain

$$
\begin{aligned}
& V=\langle 3,-5,2\rangle \\
& N=\langle 1,-4,-11\rangle
\end{aligned}
$$

$$
N \cdot V=3(1)-5(-4)+2(-11)
$$

The two vectors are
$N \cdot V=3+20-22=1 \neq 0$ not perpendicular,
menu v cant be drawn
(ii) (4 points) Given $N=<4,6,2>$ is perpendicular to the plane P and the point $(4,1,1)$ lies inside the plane P. Find inside the the equation of the plane P.

$$
\begin{gathered}
a\left(x-x_{0}\right)+b\left(y-y_{0}\right)+\left(\left(z-z_{0}\right)=0\right. \\
4(x-4)+6(y-1)+2(z-1)=0 \\
4 x-16+6 y-6+2 z-2=0 \\
4 x+6 y+2 z=24
\end{gathered}
$$

$N=\begin{aligned} & \langle 4,6,2\rangle \\ & \langle a, b, c\rangle\end{aligned}$

$$
\langle a, b, c\rangle
$$

$Q(4,1,1)$
$Q\left(x_{0}, y_{0}, z_{0}\right)$
(iii) (6 points) Find the equation of the plane that contains the points $Q_{1}=(1,1,4), Q_{2}=(2,3,6)$ and $Q_{3}=(1,1,8)$.

$$
\begin{gathered}
Q_{1}(1,1,4)\left|\begin{array}{rl}
Q_{1} Q_{2} & =\langle 1,2,2\rangle \\
Q_{2}(2,3,6) \\
Q_{1}(1,1,8)
\end{array}\right| \begin{aligned}
& Q_{1}=\langle 0,0,4\rangle \\
& \vec{N}=\overrightarrow{Q_{1} Q_{2}} \times \overrightarrow{Q_{1} Q_{3}}=\left|\begin{array}{lll}
\hat{i} & \hat{j} & \hat{k} \\
1 & 2 & 2 \\
0 & 0 & 4
\end{array}\right| \\
& \vec{N}=8 \hat{i}-4 \hat{j}+0 \hat{k} \\
& \vec{N}=\langle 8,-4,0\rangle
\end{aligned} \\
(8(x-1)-4(y+4)+\theta(z) \\
8(x-1)-4(y-1)+0(z-4)=0 \\
8 x-8-4 y+4=0 \\
8 x-4 y=4 \\
2 x-y=1
\end{gathered}
$$

FUSTION 3. (i) (4 points) The line $L: x=2 w, y=-w+1, z=3$ intersects the plane $4 x+7 y+z=12$ in a point Q. Find Q.

$$
L:\left\{\begin{array}{l}
x=2 w \\
y=-w+1 ; w \in \mathbb{R} \\
z=3
\end{array}\right.
$$ Pi $4 x+7 y+z=12$

$$
4(2 w)+7(-w+1)+3=12
$$

$$
8 w-7 w+7+3=12
$$

$$
w+10=12
$$

and the line
\Rightarrow
$Q(4,-1,3)$
$w=2 \rightarrow$ The plane"intersect when $w=2$
\square

Exam I: MTH 111, Spring 2017

QUESTION 1. (4 points) Given that the line $L=2+t, y=-3 t, z=1+2 t$ is perpendicular to a plane, say P. If the point $(1,2,-5)$ lies in the plane P, find the equation of the plane P.

The parametric eq cantbe written as $L: t\langle 1,-3,2\rangle+(2,0,1)_{L}$
since $L \perp$ to plane \& $\operatorname{pt}(1,2,-5)$ lies on the plane $\vec{N} \hat{\imath}$ $1(x-1)+-3(y-2)+2(z+5)=0$
$x-1-3 y+6+2 z+10=0$
$x-3 y+2 z+15=$

(iii) Let $Q_{1}=(1,1,0), Q_{2}=(0,-1,2)$ and $Q_{3}=(2,2,2)$.
a. (5 points) Find the equation of the plane that contains Q_{1}, Q_{2}, Q_{3}.
$\vec{Q}_{1} Q_{2}\langle-1,-2,2\rangle \quad \vec{Q}_{1} \vec{Q}_{3}\langle 1,1,2\rangle$
$N=\left|Q_{1} Q_{2} \times Q_{1} Q_{2}\right|=\left|\begin{array}{ccc}1 & J_{2} \\ -1 & -2 & 2 \\ 1 & 1 & 2\end{array}\right|=\langle-6,4,1\rangle$
P: $-6(x-2)+4(y-2)+1(z-2)=0$
b. (2 points) Find the area of the triangle that has Q_{1}, Q_{2}, Q_{3} as vertices.
$A=\frac{1}{2}\left|\vec{Q}_{1} \vec{Q}_{2} \times \vec{Q}_{1} Q_{3}\right|=\frac{\sqrt{6^{2}+4^{2}+1^{2}}}{2}=\frac{\sqrt{53}}{2}$
units 2 \square
(iv) (4 points) Given $L: x=t+1, y=8, z=4 t+1$ lies entirely inside the plane $P: a x+2 y+z=b$ Find the values
of $a, b . \quad D\langle 1,0,4\rangle \quad N<a, 2,1\rangle$
$\begin{array}{ll}N \cdot D=0 & -4(t+1)+2(8)+4 t+1=b \\ a+4=0 & -4 t-4+16+4 t+1=b \\ a=-4 & b=13\end{array}$

2.1.3 Exam II Review from previous semesters

QUESTION 11. (9 points).

Figure 2. Question: You are looking at the curve of $f^{\prime}(x)$.
(i) Find all x values where $f(x)$ is maximum.

```
x: -4,4
```

(ii) Find all x values where $f(x)$ is minimum.

$$
n:-6,2
$$

(iii) For what values of x does $f(x)$ increase?
$x \in:(-6,4) \cup(2,4)$
(iv) For what values of x does $f(x)$ decrease?

$$
n \in(-\infty,-6) \cup(-4,2) \cup(4,+\infty)
$$

(v) For what values of x do the slopes of tangent lines are positive'?

$$
x \in(-6,4) \cup(2,4)
$$

(vi) For what values of x do the slopes of normal lines are negative?

Faculty information

Ayman Badawi, Department of Mathematics \& Statistics, American University of Sharjah, P.O. Box 26666, Sharjah, United Arab Emirates,

[^0]2
(iii) For what values of x does $f(x)$ have a local minimum value?

$$
f(x) \text { has a local minimum value for } x=4 \text {; }
$$

(iv) For what values of x does $f(x)$ have a local maximum value?

QUESTION 5. (5 points) There is a fire-station located at the point $F=(2,8)$. A house is on fire and it is located at
$H=(-4,10)$. There is a river that is located at $x=6$. The firemen want to find a point Q on the river in order to get water and then travel to the House such that $|F Q|+|Q H|$ is minimum. Find Q.

$$
\begin{aligned}
& y=m x+h ; m=\frac{\Delta y}{\Delta x}=\frac{10+4}{8-12}=-7 \\
& 10=-7(-4)+b, b=-18 \\
& y=-7 x-18 \text { NOW WE NEED TO FIND } Q: \text { INTERSECTION PH. } \\
& \text { BETWEEN [HF'] and } x=6 \text {, THUS QR C }(6 ; 36)
\end{aligned}
$$

PLEASE

QUESTION 6. (4 points) Find the equation of the tangent line to the curve of $f(x)=12 \sqrt{x}-5 x+1$ at the point $(4,5)$.

$$
\begin{aligned}
& f(x)=12 \times x^{1 / 2}-5 x+1 \\
& f^{\prime}(x)=12 \times \frac{1}{2} x^{-1 / 2}-5=6 x^{-\frac{1}{2}}-5 \\
& x=4 ; \quad f^{\prime}(4)=6(4)^{-1 / 2}-5=-2
\end{aligned}
$$

$$
\text { THus: in } y=m x+b, m=-2 \text {. }
$$

$$
5=-2(4)+b ; \quad b=13
$$

$$
\text { EQUATION OF TANGENT LINE AT }(4 ; 5)
$$

$$
\text { is } 45 \text { Follows: } y=-2 x+13
$$

QUESTION 7. (5 points) Imagine that you want to construct a box that has a square base, say of length x (and hence it has width x), and with height $12-x$ so that the volume is maximum. What is the value of x ? (note that Volume $=$ length
X width X Height)

$$
V=x^{2}(12-x)
$$

$$
\lambda=x \times x \times(12-x)=x^{2}(12-x)
$$

$$
=24 x-2 x^{2}-x^{2}
$$

$$
=24 x-3 x^{2}
$$

$$
v^{\prime}=0 ; \quad 24 x-3 x^{2}=0 \quad x=0 \quad \operatorname{cancece\Delta }(x \neq 0)
$$

$$
x(24-2 x)=0 \quad \text { or } \quad x=24
$$

$v^{\prime \prime}=24-2 x$
$V^{\prime \prime}=24-2 x$
$V^{\prime \prime}(24)=-24<0$ so $\quad V$ is MAXiMAL at $\frac{x=24 .}{}$

$$
\begin{aligned}
& H(-4 ; 10) \\
& F^{\prime}(10 ; 8) \\
& y=m x+b \\
& m=\frac{\Delta y}{\Delta x}=\frac{10-8}{-4-10}=\frac{2}{-14}=-\frac{1}{7} \\
& 10=-\frac{1}{4}(-4)+b \\
& 10=\frac{4}{7}+b \quad b=\frac{66}{7} \\
& y=-\frac{1}{7} x+\frac{66}{7} \\
& \text { COORDINATES of } a: \quad y=-\frac{1}{7} \times 6+\frac{66}{7} \\
& Q=\left(6: \frac{60}{7}\right) \\
& =\frac{60}{7}
\end{aligned}
$$

FOR $|F Q|+|Q H|$ TO $B E$ MINIMAL.

QUESTION 8. (6 points) Let $f(x)=-e^{x}+e^{10} x+4$
(i) For what values of x does $f(x)$ increase? $f(x)$ inCREASES if $f^{\prime}(x)>0$.

$$
f^{\prime}(x)=-e^{x} \times(1) \times(1)+\left[\left(e^{10} \times 0 \times 1\right)(x)+(1)\left(e^{10}\right)\right]+0
$$

$$
\begin{aligned}
& {\left[a\left(b^{E(a)}\right)\right]^{\prime}} \\
& =a\left(b^{E(\alpha)}\right) y E^{\prime} x \times h_{1}
\end{aligned}
$$

$$
\begin{aligned}
& f(x)=-e^{x}+e^{10} x+4 \\
& f^{\prime}(x)=-e^{x} x(1) \times(1)+\left[\left(e^{10} \times 0 \times 1\right.\right. \\
&=-e^{x}+e^{10} \\
& f^{\prime}(x)=0 ;-e^{x}+e^{10}=0 \\
&-e^{x}=-e^{10} \\
& \ln e^{x}=\ln e^{10}
\end{aligned}
$$

(ii) For what values of x does $f(x)$ decrease?

$f(x)$ increases for $x \in(-\infty ; 10)$.
for $x \in(10 ;+\infty)$,
$f(x)$ decreases
(iii) For what values of x does $f(x)$ have a maximum value? looking at the sketch, $f(x)$ clearly has a mascimum at $x=10$;

QUESTION 9. (6 points) Find y^{\prime} and do not simplify

$$
\begin{aligned}
\text { (i) } y=\ln \left[\frac{(x+2)^{3}}{3 x+7}\right]=3 \ln (x+2) & -\ln (3 x+7) \\
y^{\prime} & =\frac{3}{\ln (2)} \times \frac{1}{x+2}-\frac{1}{7} \times \frac{3}{3 x+7} \\
y^{\prime} & =\frac{3}{x+2}-\frac{3}{3 x+7}
\end{aligned}
$$

$$
0 \left\lvert\, \begin{aligned}
& {\left[a \log _{b}(k(x))\right]^{\prime}} \\
& =\frac{a}{\ln (b)} \times \frac{k^{\prime}(x)}{k(x)}
\end{aligned}\right.
$$

(ii) $y=\underbrace{(7 x+3)}_{1} \underbrace{e^{\left(2 x^{2}-5 x\right)}}_{2}+10 x$
(1) $7 x+3$
(1) 7
(2) $e^{\left(2 x^{2}-5 x\right)}$
(2) $e^{\left(2 x^{2}-5 x\right)} \times(4 x-5)$

$$
\begin{aligned}
y^{\prime}= & 7 e^{\left(2 x^{2}-5 x\right)}+(7 x+3)\left(e^{\left(2 x^{2}-5 x\right)} \cdot(4 x-5)\right) \\
& +10
\end{aligned}
$$

(iii) $y=\ln \left((6 x+2)^{3}(-7 x+4)^{7}\right)=3 \ln (6 x+2)+7 \ln (-7 x+4)$

$$
y^{\prime}=\frac{3}{1} \times \frac{6}{6 x+2}+\frac{7}{1} \times \frac{-7}{-7 x+4}=\frac{18}{(6 x+2)}+\frac{19}{(-7 x+4)}
$$

Faculty information
Ayman Badawi, Department of Mathematics \& Statistics, American University of Shariah, P.O. Box 26666, Shariah, United Arab Emirates.
E-mail: abadaui
Email: abadarioaus.edu, wrw.ayman-badawi.com

Exam II: MTH 111, Spring 2018

Ayman Badawi

$$
\text { Points }=\frac{}{47}
$$

QUESTION 1. (8 points) Find y^{\prime} and DO NOT SIMPLIFY
(i) $y=6 e^{\left(3 x^{2}+6 x+1\right)-} \quad y^{\prime}=6 e^{\left(3 x^{2}+6 x+1\right)} \cdot(6 x+6)$

(ii) $\begin{aligned} y & =(2 x+3) \sqrt{7 x+2} \\ y & =(2 x+3)(7 x+2)^{\frac{1}{2}}\end{aligned}$
$\begin{aligned} & y=(2 x+3)(7 x+2)^{\frac{1}{2}} \\ & y^{\prime}=(1)^{\prime}(2)+(2)^{\prime}(1) \\ & y=\ln \left[\left(\frac{3 x+2)^{\prime}(2 x+7)^{2}}{}\right]\right.\end{aligned} \quad y^{\prime}=1(7 x+2)^{\frac{1}{2}}+\frac{1}{2}(7 x+2)^{-\frac{1}{2}}(2 x+3)$
(iii) $y=\ln \left[\frac{(3 x+2)^{1}(2 x+7)^{2}}{(7 x+12)^{2}}\right]$

$y=3 \ln (3 x+2)+2 \ln (2 x+7)-4 \ln (7 x+12)$

$$
y^{\prime}=\frac{3(3)}{3 x+2}+\frac{2(2)}{2 x+7}-\frac{4(7)}{7 x+12}
$$

$$
y_{y=2\left(3 x^{2}+5 x\right)^{12}}+\frac{9}{2 x+7}-\frac{28}{7 x+12}
$$

(iv) $y=2\left(3 x^{2}+5 x\right)^{12}$

$$
y=24\left(3 x^{2}+5 x\right)^{11} \cdot\left(6 x^{1}+5\right)
$$

QUESTION 2. (i) (3 points) What can you say about the line $L: x=2 t+1, y=t-1, z=-2 t+3$ and the plane $x+2 y+z=16$? (ie., Doc L lie inside the plane? Does L intersect the plane exactly in one point? or neither?
$L: X=2 t+1$
$P: x+2 y+z=16$
$(2 t+1)+2(t-1)-2 t+3=$
$2 t)+1+2 t-2-2 t+3=16$
$2 t=14 \Rightarrow t=1412-t=7$

$$
z=-2 t+3
$$

(ii) (4 points) Given $N=\langle-2,3,2\rangle$ is perpendicular to the plane P and the point $(-1,4,2)$ lies inside the plane P Find the equation of the plane P.
$N=\langle-2,3,2\rangle \perp P$ at $Q(-1,4,2)$

$$
\begin{aligned}
& p:-2(x+1)+3(y-4)+2(z-2)=0 \\
& p:-2 x-2+3 y-12+2 z-4=0 \\
& p:-2 x+3 y+2 z=18
\end{aligned}
$$

(iii) (6 points) Find the equation of the plane that contains the points $Q_{1}=(4,4,0), Q_{2}=(0,2,6)$ and $Q_{3}=(4,0,8)$.

Egn of plane \rightarrow directional vector and point φ_{1}

QUESTION 4. (7 points) Let $f(x)=-x^{3}+6 x^{2}+15 x+1$.
(i) For what values of x does $f(x)$ increase?
$f^{\prime}(x)=-3 x^{2}+12 x^{1}+15$
$x=5$
$x=-1$

$$
f(x) \text { increases } \rightarrow(-1,5)
$$

(ii) For what values of x does $f(x)$ decrease?

$$
f(X) \text { decreases } \rightarrow(-\infty,-1) \cup(5,+\infty)
$$

(iii) Find all minimum, maximum points of $f(x)$.

$$
\begin{aligned}
& \min a+x=-1 \rightarrow \\
& \max \text { at } x=5 \rightarrow
\end{aligned}
$$

$(-1,57)$

$-(5)^{3}+6(25)+15(5)+1=$
(iv) Roughly, sketch the graph of $f(x)$

$-\infty$

QUESTION 5. (4 points) Let $f(x)=(2 x) e^{2 x-1)}+\ln (2 x-1)+4$. Find the equation of the tangent line to the curve of $f(x)$ at $x=1$.

$$
\begin{aligned}
& Q:(1, f(1))=(1,6) \\
& f(1)=2(1) e^{(1-1)}+\ln (2(1)-1)+4=6 \\
& f^{\prime}(x)=(1)^{\prime}(2)+(2)^{\prime}(1)+\frac{\log (2 x-1)}{\lg (1)}+\ln (2 x-1)+4 \\
& f^{\prime}(x)=2 e^{(x-1)}+e^{(x-1)}(1)(2 x)+\log (2 x-1) \cdot 1 / \log 10 \\
& f^{\prime}(x)=2 e^{(x-1)}+2 x e^{(x-1)}+\frac{2}{\log (10)} \Rightarrow f^{\prime}(1)=6
\end{aligned}
$$

$$
\begin{aligned}
& y=m x+b \\
& 6=6(1)+b \\
& G=6+b \\
& G-6=b \\
& b=0 \\
& y=6 x
\end{aligned}
$$

QUESTION 6. (7 points) Consider $f(x)=4-\sqrt{x}, k(x)=-2$. Find the length and the width of the largest rectangle that you can draw between $f(x)$ and $k(x)$, see picture.

Faculty information
Ayman Badawi, Department of Mathematics \& Statistics, American University of Shariah, P.O. Box 26666. Shariah, United Arab Emirates. Email: abadawi@aus du, www. ayman-badawi.com

$$
\begin{array}{rl}
\rightarrow A & =l \cdot w \\
A & =m(0-\sqrt{m}) \\
A & =m\left(6-m^{1 / 2}\right) \\
A & =6 m-m^{3 / 2} \\
\rightarrow A^{\prime} & =6-\frac{3}{2} m^{1 / 2} \\
\rightarrow 0 & =6-\frac{3}{2} m^{1 / 2} \\
6 & =\frac{3}{2} m^{1 / 2} \\
\frac{6}{3 / 2} & =\frac{312}{3 / 2} m^{1 / 2} \\
0.5 & 4 \\
4 & =0.1 / 2 \\
M & =16
\end{array}
$$

$$
L=m=16
$$

$$
w=b-\sqrt{m}=6-\sqrt{16}=2
$$

$$
\rightarrow A^{\prime \prime}=-\frac{3}{4} m^{-1 / 2}
$$

$$
A^{\prime \prime}(16)=-\frac{3}{4}(16)^{-1 / 2}<0 \quad \square \rightarrow \max
$$

Exam II: MTH 111, Spring 2018

QUESTION 1. (12 points) Find y^{\prime} and DO NOT SIMPLIFY
$\begin{aligned} \text { (i) } y & =4 e^{\left(2 x^{2}-4 x\right)}+2 x-5 \\ y^{\prime} & =4 e^{\left(2 x^{2}-4 x\right)} \cdot(4 x-4)+2\end{aligned}$
(ii) $y=\left(5 x^{2}+3 x\right) \sqrt{5 x+10}$

$$
y=\left(5 x^{2}+3\right)(5 x+10)^{1 / 2}
$$

$$
y^{\prime}=\left[\left(5 x^{2}+3\right) \cdot \frac{1}{2}(5 x+10)^{-1 / 2} \cdot 5\right]+\left[(5 x+10)^{1 / 2} \cdot(10 x)\right]
$$

(iii) $y=\ln \left[\left(2 x^{5}+4 x^{3}-3 x\right)(2 x+7)^{5}\right]$

$$
\begin{aligned}
& y=\ln \left(2 x^{5}+4 x^{3}-3 x\right)+\ln (2 x+7)^{5} \\
& y^{\prime}=\frac{10 x^{4}+12 x^{2}-3}{2 x^{5}+4 x^{3}-3 x}+\frac{10}{2 x+7}
\end{aligned}
$$

(iv) $y=3\left(e^{(3 x+2)}+7 x^{4}+5 x+2\right)^{4}$

$$
y^{\prime}=12\left(e^{(3 x+2)}+7 x^{4}+5 x+2\right)^{3} \cdot\left(3 e^{(3 x+2)}+28 x^{3}+5\right)
$$

(ii) For what values of x does $f(x)$ decrease?

$$
f(x) \text { is decreasing from }(-\infty,-1)
$$

(iii) Find all local minimum, maximum points of $f(x)$ (just find the x-values where local min. and local max exist).
[No local or absolute maximum]
$\left[\begin{array}{l}\text { local and absolute minimum at } x=-1 \\ \text { point }(-1,4)\end{array}\right.$

$f(-1)=4$
(iv) Roughly, sketch the graph of $f(x)$.

QUESTION 5. (7 points) Given H and F. Find a point Q on the line $x=12$ such that $|H Q|+|F Q|$ is minimum.

the line $y=-27$

$$
A=\left(-3^{2}+27\right)(6)
$$

$$
=108 \text { units }^{2}
$$

$$
|A B|=2 a
$$

$$
=6 \text { units }
$$

$$
|B D|=\left(-a^{2}+27\right)
$$

$$
=18 \text { units }
$$

Faculty information

$$
A^{\prime \prime}=-12 a
$$

Ayman Badawi, Department of Mathematics \& Statistics, American University of Shariah, P.O. Box 26666 , Shariah, United Arab Emirates, E-mail: abadari@aus.edu, wrr.ayman-badari.com

Final Exam, MTH 111, Fall 2016
Ayman Badawi
QUESTION 1. (8 points)

$$
\begin{aligned}
& \text { QUESTION 1. (8 points) } \\
& \begin{array}{l}
\text { (i) } \int\left(x^{2}+4\right)^{2} d x= \\
\int\left(x^{2}+4\right)\left(x^{2}+4\right) d x \\
\int x^{4}+4 x^{2}+4 x^{2}+16 \\
\text { (ii) } \int(x+1)\left(x^{2}+2 x+1\right)^{10} d x
\end{array}
\end{aligned}
$$

$$
=\frac{\int x^{4}+8 x^{2}+16 d x}{}
$$

Power formula an $\epsilon^{\prime}(x)(\epsilon(x))^{n-1}$

$$
\begin{gathered}
n-1=10 \\
n=11
\end{gathered}
$$

$$
\begin{aligned}
& \text { an } \epsilon^{\prime}(x)=x+1 \\
& \epsilon^{\prime}(x)=2 x+2
\end{aligned}
$$

$$
11 a(2 x+2)=x+1
$$

(iii) $\int(x+1) e^{\left(2 x^{2}+4 x\right)} d x=$ $22 a$

$$
\begin{aligned}
& \text { (iii) } \left.\int e^{(t x)} \rightarrow a \epsilon^{(x+1)}(x) e^{(-x} \text { tan } e x+1 x x\right)
\end{aligned}
$$

$$
\begin{aligned}
22 a & =1 / 2 \\
a & =1 / 22 .
\end{aligned}
$$

$$
\begin{aligned}
\epsilon^{\prime}(x) & =(2 \times 2) x+4 \\
& =4 x+4 .
\end{aligned}
$$

(iv) $\int \frac{6 x+6}{3 x^{2}+6 x-7} d x=$

$$
\frac{a}{\ln B} \times \frac{\epsilon^{\prime}(x)}{\epsilon(x)}=\frac{a \epsilon^{\prime}(x)}{\epsilon(x)}
$$

$E^{\prime}(x) \rightarrow(3 \times 2) x+$
IION 2. (8 points). Find y^{\prime} and
$=\frac{1+x^{2}+x^{\prime}}{x^{\prime}}$
$\left(1+x^{2}+x^{3}\right)\left(x^{-12}\right)$

$$
\begin{aligned}
& \begin{array}{l}
\text { (i) } y=\frac{1+x^{2}+x^{\prime}}{} \\
y=\left(1+x^{2}+x^{3}\right)\left(x^{-12}\right) \\
y^{\prime}=\left(2 x+3 x^{2}\right)\left(x^{-12}\right)+\left(1+x^{2}+x^{3}\right)\left(-12 x^{-13}\right) \rightarrow y^{\prime}=-12 x^{-13}-10 x^{-11}-9 x^{-16} \\
y^{\prime}=e^{(i i)} y=e^{\left(6 x^{2}+7 x+7\right)}+7 x+1 \times\left(10 x^{2}-x+23\right. \\
\left.y^{\prime}=(12 x+7) e^{6 x^{2}+7 x+1}\right)+(10 \times 2) x-1 \\
\text { (iii) } y=(21+3 x-4 x)^{10}+20 x-1
\end{array} \\
& y^{\prime}=10\left(21+3 x-4 x^{3}\right)^{9}\left(3-(4 \times 3) x^{2}\right) \rightarrow \quad y^{\prime}=10\left(21+3 x-4 x^{3}\right)^{9}\left(3-12 x^{2}\right)
\end{aligned}
$$

QUESTION 2. (8 points). Find y^{\prime} and do not simplify

$$
\begin{aligned}
& \text { (iv) } y=\ln \left[(4 x+3)^{6}(-5 x+30)^{8}\right] \\
& y=\ln (4 x+3)^{6}+\ln (-5 x+30)^{8} \\
& y=6 \ln (4 x+3)+8 \ln (-5 x+30) \\
& y^{\prime}=\frac{6 x 4}{4 x+3}+\frac{8 x-5}{-5 x+30} \\
& y^{\prime}=\frac{24}{4 x+3}+\frac{-40}{-5 x+30}
\end{aligned}
$$

QUESTION 3. (4 points). Let $Q=(2,4), A=(4,6)$. Find a point B on the line $y=-2$ such that $|Q B|+|A B|$ is

QUESTION 4. (4 points). For what values of x does the tangent line to the curve $y=4 e^{(3 x)}-26 x+2$ have slope equal
10? $y^{\prime}=10$
$y^{\prime}=\left(4 e^{3 x} \times 3\right)-26$
$=12 e^{3 x}-26$
$10=12 e^{3 x}-26$
$\frac{10+26}{12}=e^{3}$
12
$3=e^{3 x} \rightarrow \log ^{3} 3=3 x \rightarrow$ $\begin{aligned} & \ln 3=3 x . \\ & \ln 3=x=\end{aligned}$
$\frac{\ln 3}{3}=x=0.366$
QUESTION 5. (6 points). The plane $P_{1}: 2 x+2 y-z=2$ intersects the plane $P_{2}:-x+y+2 z=7$ in a line L. Find a parametric equations of L.

$$
\begin{aligned}
& \mu_{1}=\langle 2, \overline{2},-1\rangle \\
& N_{2}=\langle-1,1,2\rangle \\
& \mu_{1} \times N_{2}
\end{aligned}
$$

$$
\begin{aligned}
\left|\begin{array}{ccc}
2 & 2 & -1 \\
-1 & 1 & 2
\end{array}\right| & \rightarrow\left|\begin{array}{cc}
2 & -1 \\
1 & 2
\end{array}\right| i-\left|\begin{array}{cc}
2 & -1 \\
-1 & 2
\end{array}\right| j+\left|\begin{array}{cc}
2 & 2 \\
-1 & 1
\end{array}\right| k \\
& {[(2 \times 2)-(-1 \times 1)] i-[(2 \times 2)-(-1 \times-1)] j+[(2 \times 1)-(2 \times-1)] K }
\end{aligned}
$$

$$
\text { (1) } \quad 5 i-3 j+4 k \rightarrow\langle 5,-3,4\rangle
$$

(2) Take $z=0$.

$$
y=\frac{16}{4}
$$

$$
=4
$$

$$
\begin{aligned}
& \begin{array}{ll|l|l}
2 x+2 y=2 & (-x+y=7)= \\
-2 x+2 y=14 & 2 x+2(4)=2 & (3) \text { Parametric equation is } \\
2 x+8=2 \\
2 x=2-8 & (-3,4,0)+t\langle 5,-3,4\rangle \\
& x=-3+5 t
\end{array} \\
& \begin{aligned}
2 x+2 y & =2 \\
-2 x+2 y & =14
\end{aligned} \\
& 4 y=16 \\
& \begin{array}{l|l}
2 x+2(4)=2 & \text { (3) Parametric equation is } \\
2 x+8=2 & (-3,4,0)+t\langle 5,-3,4\rangle \\
2 x=2-8 & x=-3+5 t \\
x=\frac{-6}{2} & y=4-3 t \\
x=-3 & z=4 t \\
(-3,4,0) &
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
& \left.\begin{array}{l}
(4,6)(2,-8) \\
\frac{y-y_{1}}{y_{2}-y_{1}}=\frac{x-x_{1}}{x_{2}-x_{1}} \\
\frac{y+8}{6+8}=\frac{x-2}{4-2}
\end{array} \right\rvert\, \begin{array}{l}
\frac{y+8}{14} \times \frac{x-2}{2} \\
2(y+8)=(x-2) 14 \\
2(-2+8)=(x-2) 14 \\
\frac{12}{14}+2=x \\
x=20 / 7
\end{array}
\end{aligned}
$$

QUESTION 9. (3 points).

Figure 1. Question: The area of the region that is determined by the curve of $f(x)$ between $x=-6$ and $x=2$ is 10 , and the area of the region determined by the curve of $f(x)$ between $x=2$ and $x=4$ is 7 . Find $\int_{-6}^{44} f(\overline{x)} d x$

QUESTION 10. (6 points).

Figure 2. Question: We want to construct a rectangle with maximum area inside the semicircle $y=\sqrt{16-x^{2}}$ (see
picture). Find the area of such rectangle

$$
A=2 a \times\left(\sqrt{16-a^{2}}-0\right)
$$

$A=2 a\left(\sqrt{16-a^{2}}\right)_{1 / 2}$
$A=(2 a)\left(16-a^{2}\right)^{1 / 2}$
Product formula.
$A^{\prime}=2\left(16-a^{2}\right)^{1 / 2}+2 a \times 1 / 2\left(16-a^{2}\right)^{-1 / 2}(-2 a)$
$0=2\left(16-a^{2}\right)^{1 / 2}-2 a^{2}\left(16-a^{2}\right)$
$2\left(16-a^{2}\right)^{1 / 2}=4 a^{2}\left(16-a^{2}\right)^{-1 / 2}$
$\left(16-a^{2}\right)^{1 / 2}=a^{2}\left(16-a^{2}\right)^{-1 / 2}$
$\left(16-a^{2}\right)^{1 / 2}=\frac{a^{2}}{\left(16-a^{2}\right)^{1 / 2}} \quad A=(2 \sqrt{2})^{2} \times \sqrt{16-(2 \sqrt{2})^{2}}$

QUESTION 11. Let $y=-x^{3}+12 x+2$
(i) Find all x values where $f(x)$ is maximum.

$$
\begin{array}{ll}
N=2 & x=2 \\
x \text { values where } f(x) \text { is minimum. }
\end{array} \quad-12=-3 x^{2}+12
$$

(ii) Find all x values where $f(x)$ is minimum.

$$
x=-2
$$

$$
\begin{aligned}
& y^{\prime}=-3 x^{2}+12 \\
& 0=-3 x^{2}+12 \\
& -12=-3 x^{2}
\end{aligned}
$$

(iii) For what values of x does $f(x)$ increase?

$$
(-2,2)
$$

$\begin{aligned} 5-\sqrt{4} & =x \\ \pm 2 & =x .\end{aligned}$
(iv) For what values of x does $f(x)$ decrease?

$$
(-\infty,-2) \cup(2, \infty)
$$

(v) For what values of x do the slopes of tangent lines are positive?

$$
(-2,2)
$$

(vi) What is the equation of the normal line to the curve of $f(x)$ at the point $(1,13)$?

$$
\begin{array}{lrr}
\qquad \begin{array}{rrr}
y^{\prime} & =-3 x^{2}+12 & \text { negative ceciprocal }=\frac{-1}{9} \\
& =-3(1)^{2}+12 & y
\end{array} \quad \begin{array}{l}
y=m x+c
\end{array} \\
& =9 & 13=\frac{-1}{9}(1)+c \\
& 13+\frac{1}{9}=c & c=\frac{118}{9}
\end{array}
$$

Faculty information

Email: abadawi ${ }^{(1) u s . e d u, ~ t r y . a y m a n-b a d a r i . c o m ~}$

$$
\begin{aligned}
& y=-x^{2}+4 x \\
& D(a, 0) \rightarrow A=\left(a,-a^{2}+4 a\right) \\
& L=-a^{2}+4 a \\
& |O D|=|C F|=a \\
& |C D|=W=4-2 a
\end{aligned}
$$

QUESTION 9. (8 points)
We want to construct a rectangle ABCD (see picture) of maximum area between the x-axis and the curve $y=$ $-x^{2}+4 x$. Find the length and the width of such rectangle. (Hint: Note that the curve intersects x-axis at $x=0$ and at $x=4$. Let O be the origin $(0,0)$ and F be $(4,0)$, Then $|O D|=|C F|)$

$$
\begin{aligned}
& L=-a^{2}+4 a, W=4-2 a \rightarrow 2=(4-2 a)\left(-a^{2}+4 a\right) \\
& A=-4 a^{2}+16 a+2 a^{3}-8 a^{2}=2 a^{3}-12 a^{2}+16 a \\
& A^{\prime}=6 a^{2}-24 a+16=0 \rightarrow 2\left(3 a^{2}-12 a+8\right)=0 \\
& \Rightarrow 3 a^{2}-12 a+8=0 \Rightarrow a=\frac{12 \pm \sqrt{48}}{2(3)} \\
& A^{\prime \prime}=12 a-24 \rightarrow A^{\prime \prime} \rightarrow \frac{12+\sqrt{48}}{6} \rightarrow A^{\prime \prime}>0 \\
& L=\frac{8}{3} \rightarrow A=\frac{12-\sqrt{48}}{6} \rightarrow A^{\prime \prime}<0 \rightarrow \text { Area max. } \\
& \text { when } a=\frac{12-\sqrt{48}}{6} \\
& A=\frac{32 \sqrt{3}}{9} \text { unit 5 }
\end{aligned}
$$

Faculty information
Ayman Badawi, Department of Mathematics \& Statistics, American University of Shariah, P.O. Box 26666, Shariah, United Arab Emirates, Email: abadarianaus.edu, truss, ayman-badaui.com

QUESTION 5. (7 points) Given H and F. Find a point Q on the line $x=12$ such that $|H Q|+|F Q|$ is minimum.

QUESTION 6. (7 points) Consider the following picture. Find $|A B|$ and so that the area is MAXIMUM.

Ayman Badawi, Department of Mathematics \& Statistics, American University of Shariah, P.O. Box 26666, Sharjah, United Arab Emirates.
E-mail: abadari Caus . du, wry. ayman-badazi .com

Final Exam: MTH 111, Fall 2017

> Ayman Badawi
> Points $=\frac{81}{82}$

QUESTION 1. (6 points) Given $x=-6$ is the directrix of of a parabola that has the point $(6,5)$ as its vertex point. a) Find the equation of the parabola

$$
\begin{aligned}
& |v L|=|-6-6|=|-12|=12 \\
& 4(12)(x-6)=(y-5)^{2} \Rightarrow 48(x-6)=(y-5)^{2}
\end{aligned}
$$

b) Find the focus of the parabola.

$$
|V F|=12 \rightarrow F(18,5)
$$

QUESTION 2. (8 points) Given $(2,-4),(2,6)$ are the vertices of the major axis of an ellipse (recall major axis is the longer axis) and $(2,4)$ is one of the foci.
(i) Find the vertices of the minor axis (shorter axis). (you may want to draw such ellipse (roughly)).
$\left|V_{1} v_{2}\right|=K=|6+4|=10 \rightarrow \frac{k}{2}=5=\left|v_{1} c\right|$
$C=(2,1) \rightarrow\left|F_{1} C\right|=|4-1|=3 \rightarrow b^{2}=\left(\frac{k}{2}\right)^{2}-\left|F_{1} C\right|^{2}$
$b^{2}=5^{2}-3^{2}=16 \rightarrow V_{3}(18,1), V_{4}(-14,1)$

$K=10$
(iii) Find the second foci of the ellipse.

$$
F_{2}(2,-2)
$$

(iv) Find the equation of the ellipse.

$$
\frac{(x-2)^{2}}{16}+\frac{(y-1)^{2}}{25}=1
$$

QUESTION 3. (5 points) Given $y=3 x^{2}+12 x+9$ is an equation of a parabola. Write the equation of the parabola in the standard form and find the equation of its directrix.

$$
y=3 x^{2}-12 x+9 \rightarrow y=3\left(x^{2}+4 x+3\right) \rightarrow y=3\left[(x+2)^{2}-4+3\right]
$$

$$
y=3(x+2)^{2}-1(3) \rightarrow \frac{1}{3}(y+3)=(x+2)^{2}
$$

Ld $=\frac{1}{3} \rightarrow d=\frac{1}{12}$
$v=(-2,-3) \rightarrow$

$$
\text { directrix } x \rightarrow x=-2-\frac{1}{12}
$$

 $4 w+15, z=2 w+7$. Is L_{1} parallel to L_{2} ? EXPLAIN clearly.

$$
\left.\begin{array}{rl}
4: x & =2 t \\
y & =-2 t+3 \\
z & =-t+1
\end{array}\right\} t \in R
$$

$$
D_{1}=\langle 2,-2,-1\rangle, D_{2}=\langle-4,4,2\rangle
$$

$$
v^{2}
$$

$$
\left.\begin{array}{rl}
L_{2}: x & =-4 w-12 \\
y & =4 w+15 \\
z & =2 w+7
\end{array}\right\} w \in \mathbb{R}
$$

intersection: $L_{1} \rightarrow t=0 \rightarrow Q(0,3,1)$

$$
\begin{aligned}
L_{2} \rightarrow x: 0 & =-4 w-12 \rightarrow w=-3 \\
y: 3 & =4 w+15 \rightarrow w=-3
\end{aligned}
$$

$y: 3=4 w+15 \rightarrow w=-3 \quad \rightarrow L_{1}$ not $/ L L_{2}$
b)(4 points) Let L be the line L_{1} as in (a). Given that the point $Q=(2,3,4)$ does not lis on L . Find $|Q L|$ (distance between Q and L).

$$
\begin{aligned}
& |Q L|=\frac{\left|\overrightarrow{I Q} \times D_{1}\right|}{\left|D_{1}\right|}, \overrightarrow{I Q} \times D=\left|\begin{array}{ccc}
i & j & k \\
2 & 0 & 3 \\
2 & -2 & -1
\end{array}\right|=\langle 6,8,-4\rangle \\
& , 4|Q|=\frac{\sqrt{6^{2}+8^{2}+(-4)^{2}}}{\sqrt{2^{2}+(-2)^{2}+(-1)^{2}}}=\frac{2 \sqrt{29}}{3}
\end{aligned}
$$

c) (6 points) Convince me that q_{1}
f the triangle with vertices q_{1}, q_{2}, q_{3}.

$$
\left.-1 \begin{array}{l}
x=-3 t-1 \\
L_{1}: \begin{array}{l}
x \\
y \\
z=3 t
\end{array}
\end{array}\right\} t \in R
$$

QUESTION 5 . (6 points) $\operatorname{Let}^{2} A=(2,8), \hat{B} \in(0,10)$. Find a point Q on the line $y=4$ such that $|B Q|+|Q A|$ is minimum.

$$
\begin{aligned}
& |A L|=|8-4|=4 \\
& \quad \rightarrow m=\frac{y_{1}-y_{2}}{x_{1}-x_{2}}=\frac{10-0}{0-2}=\frac{10}{-2}=-5
\end{aligned}
$$

$$
y=-5 x+b \rightarrow 10=-5(0)+b \rightarrow b=10
$$

$$
y=-5 x+10 \rightarrow 4=-5 x+10 \rightarrow 4-10=-5 x \rightarrow x=\frac{+6}{+5}
$$

$$
\begin{aligned}
& \begin{array}{l}
\overrightarrow{Q_{1} \overrightarrow{Q_{2}}}=\langle 1,-3,-3\rangle \\
\overrightarrow{Q_{1} Q_{3}}=\langle 2,1,0\rangle
\end{array} \rightarrow \overrightarrow{Q_{Q}}, \overrightarrow{Q_{2}} \times \overrightarrow{Q_{1}}=\left|\begin{array}{ccc}
\text { of the triangle with vertices } q_{1}, q_{2}, q_{3} \\
1 & -3 & -3 \\
2 & 1 & 0
\end{array}\right|=\langle 3,-6,7 \\
& \text { equations of } L . \quad N_{1}=\langle 2,1,2\rangle, N_{2}=\langle-1,1,-1\rangle \\
& D=N_{1} \times N_{2}=\left|\begin{array}{ccc}
1 & j & k \\
2 & 1 & 2 \\
-1 & 1 & -1
\end{array}\right|=\langle-3,0,3\rangle \\
& \rightarrow \text { Let } z=0 \rightarrow 2 x+y=2 \rightarrow 2 x+y=2 \\
& -1 x[-x+y=5] \quad x-y=-5 \\
& Q=(-1,4,0) \quad 3 x=-3 \rightarrow x=-1+2(-1)+y+2(6)=2 \\
& y=4
\end{aligned}
$$

QUESTION 6. (9 points)
(i) Given $f^{\prime}(1)=2$ and $y=f\left(x^{2}+2 x-7\right)$. Then $y^{\prime}(2)=$

$$
\begin{gathered}
y^{\prime}=\left[f^{\prime}\left(x^{2}+2 x-7\right)\right][2 x+2]=\left[f^{\prime}\left(2^{2}+2(2)-7\right)\right][2(2)+2]= \\
{\left[f^{\prime}(1)\right][6]=6(2)=12}
\end{gathered}
$$

(ii) Let $f(x)=-6 e^{\left(x^{3}+6 x-7\right)}$. Then $f^{\prime}(x)=$

$$
\begin{aligned}
& f(x)=-6 e^{\left(x^{3}+6 x \rightarrow\right)} \rightarrow f^{\prime}(x)=-6\left(3 x^{2}+6\right)\left(e^{x^{3}+6 x-7}\right) \\
& \geq f(x)=\ln (5 x-9)^{3}+\ln (2 x-3)^{7}=3 \ln (5 x-9)+7 \ln (2 x-3) \\
& f^{\prime}(x)=\frac{3(5)}{5 x-9}+\frac{7(2)}{2 x-3} \\
& \text { (iii) Let } f(x)=\ln \left((5 x-9)^{3}(2 x-3)^{7}\right) \text {. Then } f^{\prime}(x)=\left\{\begin{array}{l}
\text { QUESTION .(10 points) } \\
x^{2}+2 x+1 \\
\ln \mid\left(x^{2}+2 x+1\right)+C
\end{array}\right.
\end{aligned}
$$

(ii) $\int \frac{e^{x}+3}{\left(e^{x}+3 x+1\right)^{2}} d x=\int\left(e^{x}+3\right)\left(e^{x}+3 x+1\right)^{-2} d x=\frac{\left(e^{x}+3 x+1\right)^{-1}}{-1}+C$

$$
\text { (iii) } \int x^{5}(x+1)^{2} d x=\int x^{5}\left(x^{2}+2 x+1\right) d x=\int x^{7}+2 x^{6}+x^{5} d x=
$$

$$
\begin{equation*}
\int x^{7} d x+2 \int x^{6} d x+\int x^{5} d x=\frac{x^{8}}{8}+\frac{2 x^{7}}{7}+\frac{x^{6}}{6}+C \tag{10}
\end{equation*}
$$

$$
\text { (iv) } \int 10(2 x+7)^{11} d x=5 \int 2(2 x+7)^{11} d x \Rightarrow \frac{5(2 x+7)^{12}}{12}+c
$$

$$
\begin{gathered}
y=\sqrt{x+4}-2 \\
2=\sqrt{x+4} \\
4=x+4 \\
x=0
\end{gathered}
$$

Stare at $f(x)=\sqrt{x+4}-2$ where $-4 \leq x \leq 4$. Then
a) (6 points) Find the area of the region bounded by the curve of $f(x), x$-axis, and $-4 \leq x \leq 4$.

$$
\begin{aligned}
& -\int_{-4}^{0} \sqrt{x+4}-2 d x+\int_{0}^{4} \sqrt{x+4}-2 d x=-\left(\frac{2}{3}(x+4)^{3 / 2}-\left.2 x\right|_{-4} ^{0}\right)+ \\
& \left(\frac{2}{3}(x+4)^{3 / 2}-\left.2 x\right|_{0} ^{4}\right)=-\left(\frac{16}{3}-8\right)+\left[\left(\frac{2}{3}(8)^{3 / 2}-8\right)-\frac{16}{3}\right]
\end{aligned}
$$

Area ≈ 4.42 unit 2
b) (4 points) Imagine that the region between $\mathrm{x}=0$ and $\mathrm{x}=4$ is rotated about x-axis 360 degrees. What is the volume of the object?

$$
\begin{aligned}
& \pi \int_{0}^{4}(\sqrt{x+4}-2)^{2} d x \rightarrow \pi \int_{0}^{4}(x+4)-4 \sqrt{x+4}+4 d x \\
\Rightarrow & \pi\left[\int_{0}^{4} x+8 d x-4 \int_{0}^{4} \sqrt{x+4} d x\right] \Rightarrow \pi\left[\left(\frac{x^{2}}{2}+\left.8 x\right|_{0} ^{4}\right)-4\left(\left.\frac{2(x+4)^{3 / 2}}{3}\right|_{0} ^{4}\right)\right. \\
\Rightarrow & \pi\left[(40-0)-4\left(\frac{2(8)^{3 / 2}}{3}-\frac{2(4)^{3 / 2}}{3}\right)\right]
\end{aligned}
$$

Volume $\approx 0.99 \pi$ units 3

QUESTION 9. (8 points)

$$
\begin{aligned}
& y=-x^{2}+4 x \\
& D(a, 0) \rightarrow A=\left(a,-a^{2}+4 a\right) \\
& L=-a^{2}+4 a \\
& |O D|=|C F|=a \\
& |C D|=W=4-2 a
\end{aligned}
$$

We want to construct a rectangle ABCD (see picture) of maximum area between the x-axis and the curve $y=$ $-x^{2}+4 x$. Find the length and the width of such rectangle. (Hint: Note that the curve intersects x-axis at $x=0$ and at

$$
\begin{aligned}
& x=4 \text {. Let } O \text { be the origin }(0,0) \text { and } F \text { be }(4,0) \text {. Then }|O D|=|C F|) \\
& L=-a^{2}+4 a, W=4-2 a, \quad A=(4-2 a)\left(-a^{2}+4 a\right) \\
& A=-4 a^{2}+16 a+2 a^{3}-8 a^{2}=2 a^{3}-12 a^{2}+16 a \\
& A^{\prime}=6 a^{2}-24 a+16=0 \rightarrow 2\left(3 a^{2}-12 a+8\right)=0 \\
& \Rightarrow 3 a^{2}-12 a+8=0 \quad \Rightarrow \quad a=\frac{12 \pm \sqrt{48}}{2(3)} \\
& A^{\prime \prime}=12 a-24 \rightarrow a=\frac{12+\sqrt{48}}{6} \rightarrow A^{\prime \prime}>0 \\
& a=\frac{12-\sqrt{48}}{6} \rightarrow A^{\prime \prime}<0 \rightarrow \text { Area max. } \\
& \text { when } a=\frac{12-\sqrt{48}}{6} \\
& L=\frac{8}{3}, W=\frac{4 \sqrt{3}}{3} \rightarrow A=\frac{32 \sqrt{3}}{9} \text { units }^{2}
\end{aligned}
$$

Faculty information
Ayman Badawi, Department of Mathematics \& Statistics, American University of Shariah, P.O. Box 26666, Shariah, United Arab Emirates.
Email: abadariตaus.edu, ww. ayman-badawi.com

2 Maya

Ayman Badawi
QUESTION 3. (4 points) Stare at the following graph.

Given $F=(4,6)$, the directrix line, L is $x=-8$, and $|Q F|=10$.
(i) Find $\mid Q L\}=|Q F|=10$
(ii) Find $v=(-2,6)$
(iii) Find the equation of the parabola

$$
24(x+2)=(y-6)^{2}
$$

QUESTION 4. (6 points). Find y^{\prime} and do not simplify

(i) $y=\ln \left[(4 x+3)^{10}(-5 x+30)^{3}\right]$

(ii) $y=e^{\left(6 x^{3}+x^{2}-1\right)}+10 x^{2}-x+23$

$$
y=\left[\left[e^{\left(6 x^{3}-x^{2}-1\right)} \cdot\left(18 x^{2}+2 x\right)\right]+20 x-1\right]
$$

(iii) $y=\left(21+5 x-6 x^{3}\right)^{7}$

$$
y^{\prime}=7\left(21+5 x-6 x^{3}\right)^{6} \cdot\left(5-18 x^{2}\right)
$$

\square

QUESTION 5. (6 points).

(i) Find $\iint x e^{\left(x^{2}+1\right)} d x$
$\begin{array}{ll}4=x^{2}+1 & \quad \frac{1}{2}\left(e^{\left(x^{2}+1\right)}\right)+C \\ u^{3}=2 x\end{array}$
(ii) Find $\int \frac{2^{2 x}+1}{\left(c^{2 x}+2 x-5\right)^{2}} d x$
$\int\left(e^{2 x}+1\right)\left(e^{2 x}+2 x-5\right)^{-3} d x$
$u=e^{2 x}+2 x-5$
$u^{\prime}=2 e^{2 x}+2$
$\frac{1}{2} \int 2\left(e^{2} x+1\right)\left(e^{x+7}+7 x-5\right)^{-3} d x$
$\frac{1}{2} \cdot \frac{1}{-2}\left(e^{2 x}+2 x-5\right)^{-2}+C$

(iii) Find $\int(6 x+3)\left(x^{2}+x-5\right)^{11} d x$

$$
\begin{aligned}
& u=x^{2}+x-5 \\
& u^{\prime}=2 x+1 \\
& -3=\frac{1}{12}\left(x^{2}+x-5\right)^{12}+C
\end{aligned}
$$

\int Hance

QUESTION 6. (5 points). Let $H=(4,6), F=(6,34)$. Find a point Q on the line $x=-2$ such that $|H Q|+|F Q|$ is minimum.
$y=m x+b$
$m=\frac{6-34}{4+10}=-2$
$6=-2(4)+b$
$b=14$
$y=-2 x+14$

$$
Q=(-2,18)
$$

$y=-2(-2)+14$
$=18$

QUESTION 7. (4 points). For what values of x does the tangent line to the curve $y=\ln (4 x+1)+7 x+2$ have slope
equal 8 ?

$$
\begin{aligned}
& y^{\prime}=8 \\
& y^{\prime}=\frac{4}{4 x+1}+7=8 \\
& \frac{4}{4 x+1}=1 \\
& 4=4 x+1 \\
& 4 x=4-1 \\
& x=3 / 4
\end{aligned}
$$

$$
\begin{array}{r}
\frac{4}{4\left(\frac{3}{4}\right)+1}+7= \\
1+7=8
\end{array}
$$

$$
\text { the Tine has slope } 8 \text { at } x=\frac{3}{4}
$$

QUESTION 8. (6 points). The plane $P_{1}: x+2 y-3 z=2$ intersects the plane $P_{2}:-x+5 y+z=19$ in a line L. Find a parametric equations of L.

$$
\begin{gathered}
N_{1} \times N_{2}=D \\
N_{1}=\langle 1,2,-3\rangle \\
N_{1}=\langle-1,5,1\rangle \\
D=(2+15)_{i}-(1-3) j+(5+2) k \\
=\langle 1\rangle, 2,\rangle\rangle
\end{gathered}
$$

$$
\text { (3) } \rightarrow(-4,3,0)
$$

$$
D=\langle 17,2,7\rangle
$$

$$
L: \quad x=17 t-4
$$

$$
\left.\begin{array}{l}
y=2 t+3 \\
z=7 t
\end{array}\right\} t \in \mathbb{R}
$$

(2) $\rightarrow \quad 2=0$
$x+2 y=2$
$-x+5 y=19$

QUESTION 9. (5 points). Can we draw the entire line $L^{3}: x=2 t, y=-3 t+1, z=11 t+4$ inside the plane $2 x-6 y-2 z=20$? EXPLAIN

$$
\text { Nplare }- \text { Dine must }=0
$$

$$
N=\langle 2,-6,-2\rangle
$$

 nth plat
on not

the lime can be entirely drawn on the plane because the dol product normal and diectiunat vector is ∂

4

 LeaQUESTION 10, (8 points) Stare at the following picture.
$(0,4)$

$y=4$
We want to construct a rectangle $A B C D$ of largest area as in the picture above. Note that A and D lie on the y-axis, D and C lie on the line $y=4$ (note that $y=4$ intersects the y-axis at D), and B lies on the line $y=12-x$. Find IDCl and i BCl .

$$
\begin{aligned}
& |B C|=(12-e)-4 \\
& |D C|=e
\end{aligned}
$$

$$
A=\mid B C 1 \cdot \| D C 1
$$

$$
=[(12-e)-4] \cdot e
$$

$$
=(-e+8) e
$$

$$
=-e^{2}+8 e
$$

A) $A^{\prime}=-2 e+8$
(2) $\rightarrow|B C|=(12-4)-4$
$=8-4$
$=4$ unis
$D C 1=e$
$=4$ units

Area $=4 \times 4$
$=16$ units ${ }^{2}$
(1) \rightarrow

$$
-2 e+z=0
$$

$$
e=4
$$

QUESTION 11. (4 points) Stare at the following picture.

Find the area of the shaded region. Note that $y=f(x)=x^{3}$ and x is between -3 and 2 .

$$
\begin{aligned}
A & =\left[\int_{-3}^{0} x^{3} d x\right]+\int_{0}^{2} x^{3} d x \\
& =\left[\int_{-3}^{0} \frac{1}{4} x^{4}\right]+\int_{0}^{2} \frac{1}{4} x^{4} \\
& =\left[\left[\frac{1}{4} 0^{4}\right]-\left[\frac{1}{4}(-3)^{4}\right]\right]+\left[\left[\frac{1}{4}(2)^{4}\right]-\left[\frac{1}{4}(0)^{4}\right]\right] \\
& =[0+20.25]+[4-0]
\end{aligned}
$$

QUESTION 12. (4.5 points) Stare at the following picture.

Draw the projection of V over W .
QUESTION 13. (7.5 points) Stare at the following graph of $y=\int^{\prime}(x)$.

$$
\text { critical values }=0,2,4,6
$$

$$
\lambda=(-\infty, 0),(2,4),(6,+\infty)
$$

$$
y=(0,2),(4,6)
$$

(i) At what values) of x does $f(x)$ have local max.? at $x=0$ and $x=4$

(ii) At what values) of x does $f(x)$ have local min.?
at $x=2$ and $x=6$
(iii) For what values of x does $f(x)$ increase?
$(-\infty, 0) \cup(2,4) \cup(6 ;+\infty)$
(iv) For what values of x does $f(x)$ decrease?
$(0,2) \cup(4,6)$
(v) For what values of x will the normal lines have positive slope.

Normal linn will have $a+$ slope the the tengent line has - slope

$$
\therefore \text { when the function } x \text { is decreasing }:(0,2) \cup(4,6)
$$

QUESTION 14. (5 points) Given $L_{1}: x=2 t, y=t+1, z=3 t$ is perpendicular to $L_{2}: x=4 w+6, y=-2 w, z=$ $a w+1$ and they intersect at a point Q. Find the value of a and find the point Q.

Ayman Badawi, Department of Mathematics \& Statistics, American University of Shariah, P.O. Box 26666. Sharjah, United Arab Emirates. Email: abadawigaus.edu, uv. ayman-badawi.com

$$
\begin{aligned}
& 4 \text { : }
\end{aligned}
$$

$$
\begin{aligned}
& x=x \quad y=y \quad E+1=-2 m \\
& \begin{array}{l}
2 t=4 w+6 \quad t+1 w=-1 \\
2 t-4 w=6
\end{array}
\end{aligned}
$$

Final Exam: MTH 111, Spring 2018

Amman Badawi

$$
\text { Points }=\frac{}{100}
$$

QUESTION 1. (9 points) Find y^{\prime} and DO NOT SIMPLIFY
(i) $y=(x+1) e^{(3 x+2)}$
$y^{\prime}=e^{3 x+2}+(3 x+3) e^{3 x+2}=e^{3 x+2}(3 x+4)$
(fin) $y=\ln \left[(3 x-2)^{4}(2 x+1)^{7}\right]$
$y^{\prime}=\frac{12}{3 x-2}+\frac{14}{2 x+1}$
(iii) $y=(7 x+2)^{9}$
$y^{\prime}=63(7 x+2)^{8}$
QUESTION 2. (i)' (6 points) Docs the line line $L_{1}: x=t+1, y=t-1, z=7$ intersect the line $L_{2}: x=-w+4, y=$
$w-2, z=2 w+3$? If yes, then find the intersection point. Is L_{1} perpendicular to L_{2} ?

$$
\begin{aligned}
& D_{1}\langle 1,1,0\rangle \quad D_{2}\langle-1,1,2\rangle \\
& P_{1} \neq c P_{2} \Rightarrow L \text {, and } L_{2} \text { intersect } \\
& t+1=-w+4 \rightarrow t+w=3 \\
& t-1=w-2 \rightarrow \frac{t-w=-1}{t=1 \quad w=2}
\end{aligned}
$$

$$
\begin{aligned}
& \operatorname{sing} t=11 \\
& x=1+1=2 \\
& y=1-1=0 \\
& z=7
\end{aligned}
$$

$$
\text { or } \quad \frac{\operatorname{lsing} \quad w=2:}{x=-2+4=2}
$$

$$
\begin{aligned}
& x=-2+4=2 \\
& y=2-2=0 \\
& z=2(2)+3=7
\end{aligned}
$$

point of intersection

$$
(2,0,7)
$$

(iii) (4 points) Convince me that $L_{1}: x=t, y=10, z=-t+4$ is parallel to $L_{2}: x=4 w+1, y=7, z=-4 w+2$

$$
\begin{aligned}
& D_{1}=\langle 1,0,-1\rangle \quad D_{2}=\langle 4,0,-4\rangle \\
& D_{2}=4 D_{1} \\
& t=0 \rightarrow(0,10,4)
\end{aligned}
$$

$\left.\begin{array}{l}x: 0=4 w+1 \rightarrow w=-\frac{1}{4} \\ z: 4=-4 w+2 \rightarrow w=-\frac{1}{4} \\ y: w=0\end{array}\right\}$ diff. $w \Rightarrow L_{1}$ and L_{2} are parallel.
(iii) Let $Q_{1}=(1,1,0), Q_{2}=(0,-1,2)$ and $Q_{3}=(2,2,2)$.
a. (5 points) Find the equation of the plane that contains Q_{1}, Q_{2}, Q_{3}.

$$
\begin{aligned}
& \overrightarrow{Q_{1} Q_{2}}\langle-1,-2,2\rangle \\
& N=\left|Q_{1} Q_{2} \times Q_{1} Q_{2}\right|=\left|\begin{array}{cc}
Q_{1} Q_{2} & \langle 1,1,2\rangle \\
1 & -2 \\
1 & 1
\end{array}\right|=\langle-6,4,1> \\
& P:-6(x-2)+4(y-2)+1(z-2)=0
\end{aligned}
$$

b. (2 points) Find the area of the triangle that has Q_{1}, Q_{2}, Q_{3} as vertices.
$A=\frac{1}{2}\left|\overrightarrow{Q_{1} Q_{2}} \times \overrightarrow{Q_{1} Q_{3}}\right|=\frac{\sqrt{6^{2}+4^{2}+1^{2}}}{2}=\frac{\sqrt{53}}{2}$ units 2
(iv) (4 points) Given $L: x=t+1, y=8, z=4 t+1$ lies entirely inside the plane $P: a x+2 y+z=b$ Find the values of $a, b . D\langle 1,0,4\rangle \quad N<a, 2,1\rangle$

(v) (4 points) item Find the distance between the point $(1,-1,1)$ and the line $L: x=t+1, y=2 t+3, z=-2 t+10$
$Q(1,-1,1) \quad I(1,3,10)$
$V=\vec{Q}=\langle 0,-4,-9\rangle \quad D<1,2,-2\rangle$
$V \times D=\left|\begin{array}{rrr}i & j & k \\ 0 & -4 & -9 \\ 1 & 2 & -2\end{array}\right|=\langle 26,-9,4\rangle$
$d=\frac{|V \times D|}{|D|}=\frac{\sqrt{26^{2}+9^{2}+4^{2}}}{\sqrt{1^{2}+2^{2}+2^{2}}}=\frac{\sqrt{773}}{3}$ units
(yi) (3 points) For what values of x will the tangent line to the curve $f(x)=e^{x}-4 x+2$ be horizontal? (Hint: Note that horizontal lines have slope 0)
$f^{\prime}(x)=e^{x}-4$

$$
x=\ln 4
$$

$0=e^{x}-4$
$e^{x}=4$

$\ln e^{x}=\ln 4$
$x \ln e=\ln 4$
(vii) (5 points) Find the equation of a parabola that has $x=4$ as its directrix line and $(-2,6)$ as its vertex. What is the

(viii) (6 points)

Use the pictures above

1. Draw the projection vector of $B C$ over $B A$

2. Draw the projection vector of EF over ED
3. Draw the projection vector of GH over GI
\qquad
(ix) Let $f(x)=\left(x^{2}-6 x+5\right)^{4}$.
a. $\left(3\right.$ points) Find $f^{\prime}(x)$. Then find the sign of $f^{\prime}(x)$.

$$
\begin{gathered}
f^{\prime}(x)=4(2 x-6)\left(x^{2}-6 x+5\right)^{3} \\
0=4(2 x-6)\left(x^{2}-6 x+5\right)^{3} \\
2 x-6=0 \quad x^{2}-6 x+5=0 \\
x=3 \quad x=5 \quad x=1
\end{gathered}
$$

$$
\begin{aligned}
& f^{\prime}(x) \text { negative for }(-\infty, 1) \cup(3,5) \\
& f^{\prime}(x) \text { positive for }(1,3) \cup(5,+\infty) \text {. }
\end{aligned}
$$

b. (2 points) For what values of x does $f(x)$ increase?

$$
(1,3) \cup(5,+\infty)
$$

c. (2 points) For what values of x does $f(x)$ decrease?

$$
(-\infty, 1) \cup(3,5)
$$

d. (2 points) Find all local min (max) points of $f(x)$ if possible
\min at $x=1$ and $x=5$
MIN: $(1,0)$ and $(5,0)$
max at $x=3$
MAX: $(3,256)$
e. (2 points) Roughly, sketch $f(x)$.

(x) Consider the ellipse $(x+1)^{2}+\frac{(y-2)^{2}}{10}=1$
a. (2 points) Roughly, draw such ellipse

c.' (2 points) Find the ellipse constant

$$
k=2 \sqrt{10}
$$

d. (2 points) Find all four vertices

$$
\begin{aligned}
& V_{4}(-1,2+\sqrt{10}) \int \\
& v_{2}(-1,2-\sqrt{10}) \int \\
& V_{3}(0,2) \\
& V_{4}(-2,2)
\end{aligned}
$$

(xi) (6 points) Let $H=(5,11)$ and $F=(10,-3)$. Find a point Q on the vertical line $x=4$ such that $|H Q|+|Q F|$ is minimum.

$$
\begin{gathered}
m=\frac{-3-11}{10-3}=-2 \\
11=-2(3)+b \\
b=17 \\
y=-2 x+17 \\
y=-2(4)+17=9 \\
Q(4,9)
\end{gathered}
$$

(xii) (8 points)
$W=2 a=6$ units
$L=27-a^{2}=18$ units

$$
A^{\prime \prime}=-\left.12 a\right|_{a=3}<0 \Rightarrow \max _{a=3} \text { at }
$$

(xiii) (6 points)

$$
\begin{aligned}
& \begin{array}{l}
\text { Find the area of the shaded region that is bounded by } \\
y=2 \text { - sqit }\{x\} \text { and } x \text {-axis, where } x \text { is between } 0 \text { and } 9 . \\
\text { See picture }
\end{array} \\
& =\left[2 x-\left.\frac{2}{3} x^{\frac{3}{2}}\right|_{0} ^{4}\right]_{0}^{9}-\left[2 x-\left.\frac{2}{3} x^{\frac{3}{2}}\right|_{4} ^{9}\right] \\
& \\
&
\end{aligned}
$$

(xiv) (4 points)

$$
\begin{aligned}
& \begin{array}{l}
\text { Find the volume of the solid object that is obtained by rotating } \\
\text { the curve of } y=\text { squat } 4 \cdot x\} \text {, where } x \text { is between } 0 \text { and } 4,360 \\
\text { degrees about the } x \cdot x i x \mid
\end{array} \\
& V=\pi \int_{0}^{4}(\sqrt{4-x})^{2} d x=\pi \int_{0}^{4} 4-x d x \\
&=\pi\left(4 x-\left.\frac{x^{2}}{2}\right|_{0} ^{4}\right)=\pi(8-0) \\
&=8 \pi \text { units }^{3}
\end{aligned}
$$

(xv) (3 points)! $\iint_{5}^{2}\left(2 x^{3}+7\right)^{9} d x$

$$
\frac{\left(2 x^{3}+7\right)^{10}}{60}+C
$$

(xvi) (3 points) $\int \frac{2(x+1)}{x^{2}+2 x+3} d x$

$$
\frac{\ln \left|x^{2}+2 x+3\right|}{2}+C
$$

(xvii) (3 points): $\int(x+5) e^{\left(2 x^{2}+20 x+1\right)} d x$

$$
\frac{1}{4} e^{2 x^{2}+20 x+1}+C
$$

Faculty information

Ayman Badawi, Department of Mathematics \& Statistics, American University of Shariah, P.O. Box 26666, Shariah, United Arab Emirates. Email: abadaui ${ }^{\text {alaus.edu, иин.ayman-badawi.com }}$
2.2 Worked out Solutions for all Assessment Tools

${ }_{2.2 .1}$ Solution for Quiz I

Dana Abodahab 00091595
Question 1
$b>a \Rightarrow$ vertical

$$
V_{1}=(4,3)
$$

$b^{2}=\left(\frac{k}{2}\right)^{2} \quad|b|=|(-2-3)|$

$$
\left|C F^{2}\right|=\left|a^{2}-b^{2}\right|
$$

$$
(5)^{2}=\left(\frac{k}{2}\right)^{2} \quad b=5
$$

$$
C F^{2}=9-25
$$

ii) $\quad \therefore=10$

$$
C F^{2}=16
$$

$$
\therefore C F=4
$$

iii)

$$
\begin{aligned}
& F_{1}=(4,-2+4)=(4,2) \\
& F_{2}=(4,-2-4)=(4,-6)
\end{aligned}
$$

iv)

$$
\begin{aligned}
& \frac{\left(x-x_{0}\right)^{2}}{a^{2}}+\frac{\left(y-y_{0}\right)^{2}}{b^{2}}=1 \\
& \frac{(x-4)^{2}}{9}+\frac{(y+2)^{2}}{25}=1
\end{aligned}
$$

QUESTION 2

$$
\begin{aligned}
& C=(-3,2) \\
& C F^{2}=a^{2}-b^{2} \\
& C F^{2}=9-4 \\
& C F^{2}=5
\end{aligned}
$$

$$
\begin{gathered}
\frac{(x+3)^{2}}{9}+\frac{(y-2)^{2}}{(4)}=1 \\
a^{2}=\left(\frac{k}{2}\right)^{2}
\end{gathered}
$$

iii)

$$
\begin{aligned}
& F_{1}=(-3+\sqrt{5}, 2) \\
& F_{2}=(-3-\sqrt{5}, 2)
\end{aligned}
$$

iv) $b=\frac{1}{2}$ minor axis

$$
\therefore k=3 \times 2=6
$$

$$
\therefore C F=\sqrt{5}
$$

ii) $k=6$

$$
\begin{aligned}
& \therefore b=2 \\
& V_{3}=(-3,2+2)=(-3,4) \\
& V_{4}=(-3,2-2)=(-3,0)
\end{aligned}
$$

2.2 .2 Solution for Quiz II

Quiz 2.
Qi) $y=x^{2}-6 x+10$.
standard form
i. $y=x^{2}-6 x+10$

$$
\begin{aligned}
& y=x^{2}-2 \cdot x \cdot 3+3^{2}+1 \\
& y=(x-3)^{2}+1
\end{aligned}
$$

ii) Sketch

iii) Focus

$$
(3,1+1 / 4)=\left(3, \frac{5}{4}\right)
$$

iv) Vertex $(3,1)$
v) Directrix

$$
y=\frac{3}{4}
$$

$$
\left.Q_{2}\right)-8(x-2)=(y+3)^{2}
$$

i) SKetch

$$
\begin{aligned}
& 4 d=-8 \\
& d=-2
\end{aligned}
$$

ii) Focus

$$
(2-2,-3)
$$

$$
(0,-3)
$$

iii) Vertex

$$
(2,-3)
$$

iv) Directix.

$$
x=4 .
$$

${ }_{2.23}$ Solution for Quiz III

Jude AI Jundi 900091801

$$
\begin{aligned}
& 8 y^{2}-32 x-y^{2}+6 y=-15 \\
& \left(8 x^{2}-32 x\right)+\left(-y^{2}+6 y\right)=-15 \\
& 8\left(x^{2}-4 x\right)-\left(y^{2}-6 y\right)=-15 \\
& 8\left[(x+(2))^{2}-(-2)^{2}\right]-\left[(y+(-3))^{2}-(-3)^{2}\right]=-15 \\
& 8\left[(x-2)^{2}-4\right]-\left[(y-3)^{2}-9\right]=-15 \\
& \left.8(x-2)^{2}-32\right)-(y-3)^{2}+9=-15 \\
& 8(x-2)^{2}-23-(y-3)^{2}=-15 \\
& 8(x-2)^{2}-(y-3)^{2}=8 \\
& \frac{(x-2)^{2}}{1}-\frac{(y-3)^{2}}{8}=1 \\
& a^{2} \\
& \text { standard form }
\end{aligned}
$$

sketch:

$$
a^{2}=\left(\frac{k}{2}\right)^{2}
$$

$$
1=\frac{k}{2}
$$

$$
k=2
$$

$$
|V, C|=\frac{k}{2}=1
$$

$$
\begin{aligned}
& \rightarrow V_{1}=(2-1,3)=(1,3) \\
& \rightarrow V_{2}=(2+1,3)=(3,3) \\
& \left|F_{1} C\right|=\sqrt{a^{2}+b^{2}}=\sqrt{1+8}
\end{aligned}
$$

$$
\begin{aligned}
\left|F_{1} C\right| & =\sqrt{a^{2}+b^{2}}=\sqrt{1+8} \\
& =\sqrt{9}=3
\end{aligned}
$$

$$
\begin{aligned}
& \rightarrow F_{1}=(2-3,3)=(-1,3) \\
& \rightarrow F_{2}=(2+3,3)=(5,3)
\end{aligned}
$$

Question 2: $\quad \frac{(y-1)^{2}}{9}-\frac{(x+2)^{2}}{16}=1$
Skerch:

$$
\begin{array}{ll}
a^{2}=\left(\frac{k}{2}\right)^{2} & \mid V_{1}(1=3 \\
9=\left(\frac{k}{2}\right)^{2} & \rightarrow V_{1}=(-2,1+3)=(-2,4) \\
3=\frac{k}{2} & \rightarrow V_{2}=(-2,1-3)=(-2,-2) \\
\begin{aligned}
& k=6\left|F_{1} C\right| \\
& \begin{aligned}
\frac{k}{2}=3 & \\
& =\sqrt{a^{2}+b^{2}} \\
& \rightarrow f_{1}=(-2,1+5)=(-2,6) \\
& \rightarrow f_{2}
\end{aligned}=(-2,1-51)=(-2,-4)
\end{aligned}
\end{array}
$$

Quiz 4
Q_{1}
(1)

$$
\text { Projw } w=\overrightarrow{I x}
$$

(2)

Q2.

L2:
$L_{1}: x=-t+2$

$$
(10+t=10) \times 3)
$$

$y=3 t+4$

$$
z=2 t-3
$$

$$
\begin{aligned}
& x=10 w-8 \\
& y=2 w+2 \\
& z=2 w-5
\end{aligned}
$$

$$
\begin{gathered}
-t+2=10 t-8 \\
3 t+4=2 w+2 \\
z=2(D)-3=-3 \\
z=2(-1)-5=-3
\end{gathered}
$$

L_{1} and L_{2} intersects,
check if $L_{1}+L_{2}$
L_{1} is perpendicular to

$$
\begin{aligned}
2 w-3 t & =R \\
32 w & =32 \\
w & =1 \\
t & =0
\end{aligned}
$$

$$
\begin{aligned}
D_{1} \cdot D_{2}=C-1 & (10)+3(2)+2(2)) \\
-10+6+4 & =0
\end{aligned}
$$

Q 3.

$$
\begin{aligned}
&-4 t+2=8 w-6 \\
& t+4=-2 w+6 \\
& \hline
\end{aligned}
$$

$$
y=t+4
$$

$$
\leftrightarrow \frac{t+4=-2 w+6}{8 w+4 t=8}
$$

$$
2=5 t-3
$$

$$
2 \frac{D_{1}=[4,1,5\rangle}{\left.\left.D_{2},<8,-1,-10\right\rangle\right\rangle} D_{1} c=D_{2}
$$

$$
L_{1} \quad x=-4 t+2 \frac{\sqrt[D]{D}=\angle 8}{D_{1} c} D_{1}=D_{2}
$$

$$
\left.\begin{array}{rl}
-4 c & =8 \\
1 c & =-2 \\
5 & =-10
\end{array}\right\}
$$

$$
2 w+t=2 x 4
$$

$$
8 w+9 t=8
$$

$$
\begin{aligned}
& x=8 w-6 \\
& y=-2 w+6 \\
& z=-10 w+9
\end{aligned}\left|\begin{array}{l}
t=\frac{-x+2}{4} \\
t=\frac{y-4}{t}=\frac{2+3}{5}
\end{array}\right|
$$

sekect point L_{1}, assuming $t=0$ $Q(2,4,-3)$ check in $Q L_{2}$ $2=8 w-6 \rightarrow w=1, Q \cdot$ is not in L_{2} $\begin{array}{ll}4=-2 w+6 \rightarrow w=1 & L_{1} \text { is purallel to } 12 \\ -3=-10 w+9 \rightarrow 6=1210\end{array}$
$L 2$.

$$
8 w+45=8
$$

ii) Symmetric equation to L_{2}

$$
\begin{aligned}
& x=-4 t+2 \rightarrow \frac{-x+2}{4} \\
& y=t+c \quad \rightarrow y-4=t \\
& z=5 t+3 \rightarrow \frac{z+3}{5}=t \\
& \frac{-x+2}{4}=y-4=\frac{z+3}{5}
\end{aligned}
$$

${ }_{2.25}$ Solution for Quiz V

Quiz 4
Q_{1}
(1)

$$
\text { Projw } w=\overrightarrow{I x}
$$

(2)

Q2.

L2:
$L_{1}: x=-t+2$

$$
(10+t=10) \times 3)
$$

$y=3 t+4$

$$
z=2 t-3
$$

$$
\begin{aligned}
& x=10 w-8 \\
& y=2 w+2 \\
& z=2 w-5
\end{aligned}
$$

$$
\begin{gathered}
-t+2=10 t-8 \\
3 t+4=2 w+2 \\
z=2(D)-3=-3 \\
z=2(-1)-5=-3
\end{gathered}
$$

L_{1} and L_{2} intersects,
check if $L_{1}+L_{2}$
L_{1} is perpendicular to

$$
\begin{aligned}
2 w-3 t & =R \\
32 w & =32 \\
w & =1 \\
t & =0
\end{aligned}
$$

$$
\begin{aligned}
D_{1} \cdot D_{2}=C-1 & (10)+3(2)+2(2)) \\
-10+6+4 & =0
\end{aligned}
$$

Q 3.

$$
\begin{aligned}
&-4 t+2=8 w-6 \\
& t+4=-2 w+6 \\
& \hline
\end{aligned}
$$

$$
y=t+4
$$

$$
\leftrightarrow \frac{t+4=-2 w+6}{8 w+4 t=8}
$$

$$
2=5 t-3
$$

$$
2 \frac{D_{1}=[4,1,5\rangle}{\left.\left.D_{2},<8,-1,-10\right\rangle\right\rangle} D_{1} c=D_{2}
$$

$$
L_{1} \quad x=-4 t+2 \frac{\sqrt[D]{D}=\angle 8}{D_{1} c} D_{1}=D_{2}
$$

$$
\left.\begin{array}{rl}
-4 c & =8 \\
1 c & =-2 \\
5 & =-10
\end{array}\right\}
$$

$$
2 w+t=2 x 4
$$

$$
8 w+9 t=8
$$

$$
\begin{aligned}
& x=8 w-6 \\
& y=-2 w+6 \\
& z=-10 w+9
\end{aligned}\left|\begin{array}{l}
t=\frac{-x+2}{4} \\
t=\frac{y-4}{t}=\frac{2+3}{5}
\end{array}\right|
$$

sekect point L_{1}, assuming $t=0$ $Q(2,4,-3)$ check in $Q L_{2}$ $2=8 w-6 \rightarrow w=1, Q \cdot$ is not in L_{2} $\begin{array}{ll}4=-2 w+6 \rightarrow w=1 & L_{1} \text { is purallel to } 12 \\ -3=-10 w+9 \rightarrow 6=1210\end{array}$
$L 2$.

$$
8 w+45=8
$$

ii) Symmetric equation to L_{2}

$$
\begin{aligned}
& x=-4 t+2 \rightarrow \frac{-x+2}{4} \\
& y=t+c \quad \rightarrow y-4=t \\
& z=5 t+3 \rightarrow \frac{z+3}{5}=t \\
& \frac{-x+2}{4}=y-4=\frac{z+3}{5}
\end{aligned}
$$

Quiz 6
i) i

$$
\begin{aligned}
& \text { i- } y=7 x^{2}+10 \sqrt{x}+\sin (9 x) \\
& y=14 x+5 x^{-1 / 2}+9 \cos (9 x) \\
& \text { ii- } y=2\left(x^{3}+7 x+3\right)^{\prime \prime} \\
& y^{\prime}=22\left(x^{3}+7 x+3\right)^{10}\left(3 x^{2}+7\right) \\
& \text { ii. } y=\cos (7 x)(\sin (5 x)+2) \\
& y^{\prime}=-7 \sin 7 x(\sin (5 x+2)+5 \cos (5 x) \\
& \left(\cos (7 x)^{\prime}\right)
\end{aligned}
$$

2)

$$
\begin{aligned}
\text { 2) } \begin{array}{rl}
i-f(x)= & \left(x^{2}-6 x-7\right)^{3} \\
f^{\prime}(x)= & 3\left(x^{2}-6 x-7\right)^{2}(2 x-6) \\
0= & (6 x-18)\left(x^{2}-6 x-7\right)^{2} \\
& \left(x^{2}-6 x-7\right)^{2}=0 \\
& \left(x^{2}-6 x-7\right)=0 \\
6 x-18=0 & (x-7)(x+1)=0 \\
6 x=18 \\
6 \quad x=3 & x=7 \\
& x=-1
\end{array}
\end{aligned}
$$

个絔

Critical values	$f(x)=\left(x^{2}-6 x-7\right)^{3}$
7	$f(7)=\left(7^{2}-6(7)-7\right)^{3}$
-1	$f(-1)\left(\begin{array}{rl}(1)^{2}-6(-1) & -7)^{3} \\ 3 & =0\end{array}\right.$
	$f(3)=\left((3)^{2}\right.$
	$=-4096$

Local min is -4096 and occurs when $x=3$ No lacal max.

Quiz 7
Q_{1}
(i)

$$
\begin{aligned}
y & =\ln \left(\frac{x^{2}+3 x}{5-2 x}\right) \\
y^{\prime} & =\ln \left(x^{2}+3 x\right)-\ln (5-2 x) \\
& =\frac{2 x+3}{x^{2}+3 x}-\frac{-2}{5-2 x}
\end{aligned}
$$

(i)

$$
\begin{aligned}
& y=e^{\left(x^{3}+6 x+3\right)} \\
& y^{\prime}=e^{\left(x^{3}+6 x+3\right)} \cdot\left(3 x^{2}+6\right)
\end{aligned}
$$

(iii)

$$
\begin{aligned}
y & =\ln \left(7 x^{2}+5 x-3\right) e^{x} \\
y^{\prime} & =\frac{14 x+5}{7 x^{2}+5 x-3} \cdot e^{x}+\ln \left(7 x^{2}+5 x-3\right) \cdot e^{x}
\end{aligned}
$$

Q 2.

$$
\begin{aligned}
& f(x)=\ln (3 x-9+e)+e^{(x-3)} \\
& y=m x+c \\
& m=f^{\prime}(3)=\frac{3}{3 x-9+e}+e^{(x-3)}=\frac{3}{9-9+e}+e^{(3-3)}=2.1 \\
& y=2.1 x+c \\
& y=\ln (3(3)-9+e)+e^{(3-3)}=2 \\
& 2=2.1 x+c \quad \operatorname{Cot}(3,2)) \\
& 2=2.1(3)+c \\
& c=-4.3
\end{aligned}
$$

\therefore equation of tangent line $\Rightarrow y=2.1 x-4,3$

Qu $H=(3,2)$ and $F=(-1,4), \quad y=-3$
$|H Q|+|Q F|$ is minimum

$$
\begin{aligned}
& |F A|=4-(-3)=7 \\
& |F A|=|A B|=7 \\
& H=(3,2) \text { and } B=(-1,-10) \\
& y=m x+c \\
& m=\frac{\Delta y}{\Delta x}=\frac{-10-2}{-1-3}=\frac{-12}{-4}=3 \\
& y=3 x+c
\end{aligned}
$$

take $H=(3,2)$ to find c :

$$
\begin{aligned}
& 2=3(3)+c \\
& c=-7
\end{aligned}
$$

$$
\begin{gathered}
\therefore Q \Rightarrow-3=3 x-7 \\
\frac{-3+7}{3}=x \\
x=\frac{4}{3} \\
Q=\left(\frac{4}{3},-3\right)
\end{gathered}
$$

EXAM 1

Q
(i)

(ii)

$$
\begin{aligned}
& \left(\frac{k}{2}\right)^{2}=16 \\
& \frac{k}{2}=4 \quad \therefore k=8 \\
& x=\sqrt{4^{2}-3^{2}}=\sqrt{7}
\end{aligned}
$$

(iii)

$$
\begin{aligned}
& a=\sqrt{9}=3 \\
& b=\sqrt{16}=4
\end{aligned}
$$

$v_{1}=(5,-1)$
$v_{3}=(2,3)$

$$
\begin{aligned}
& v_{2}=(-1,-1) \quad v_{4}=(2,-5)
\end{aligned}
$$

(iv)

$$
\begin{aligned}
& \left(\frac{k}{2}\right)^{2}=16 \\
& \frac{k}{2}=4 \\
& k=8
\end{aligned}
$$

Q 2.
(i)

(ii)

$$
\begin{aligned}
& \left|C F_{1}\right|=\sqrt{a^{2}+b^{2}}=\sqrt{4+5}=3 \\
& \therefore F_{1}=(5,-1) \\
& F_{2}=(-1,-1)
\end{aligned}
$$

(iii)

$$
\begin{array}{ll}
4=\left(\frac{k}{2}\right)^{2} & \\
2 \times 2=k & \therefore V_{1}=(4,-1) \\
4=k & V_{2}=(0,-1)
\end{array}
$$

$|V C|=\frac{K}{2}=\frac{4}{2}=2$
(iv)

$$
\begin{aligned}
& 4=\left(\frac{k}{2}\right)^{2} \\
& k=4
\end{aligned}
$$

Q_{3}

$$
\begin{aligned}
v & =\left(\frac{-2+4}{2}, 1\right) \\
& =(1,1)
\end{aligned}
$$

$$
\text { Equation: } \begin{aligned}
& -4 d\left(x-x_{0}\right)=\left(y-y_{0}\right)^{2} \\
& -4(3)(x-1)=(y-1)^{2} \\
& -12(x-1)=(y-1)
\end{aligned}
$$

Q_{4}

$$
\begin{aligned}
& N_{1}=\langle 1,1,2\rangle \\
& N_{2}=\langle 1,1,-1\rangle
\end{aligned}
$$

$$
N_{1} \times N_{2}=\left|\begin{array}{ccc}
i & j & k \\
1 & 1 & 2 \\
1 & 1 & -1
\end{array}\right|=\langle | \begin{array}{cc}
1 & 2 \\
1 & -1
\end{array}\left|,-\left|\begin{array}{cc}
1 & 2 \\
1 & -1
\end{array}\right|,\left|\begin{array}{cc}
1 & 1 \\
1 & 1
\end{array}\right|\right\rangle
$$

$$
=\langle-1-2,-(-1-2), 1-1\rangle
$$

$$
=\langle-3,3,0\rangle
$$

\Rightarrow Choose point Q :
let $x=0$

$$
\begin{aligned}
(y+2 z & =3) \times(-1) \\
y-z & =6 \\
\Rightarrow-y-2 z & =-3 \\
y-z & =6 \\
\hline-3 z & =3 \\
z & =-1
\end{aligned}
$$

$$
\begin{aligned}
L: & D t+Q \\
& t\langle-3,3,0\rangle+(0,5,-1\rangle \\
& \langle-3 t, 3 t, 0\rangle+(0,5,-1\rangle \\
\Rightarrow & x=-3 t \\
& y=3 t+5 \\
& z=-1
\end{aligned}
$$

Q_{5}

$$
\begin{aligned}
& 4(t+2)+(-2 t+1)+(-t+3)=10 \\
& 4 t+8-2 t+1-t+3=10 \\
& t+12=10 \\
& t=-2
\end{aligned}
$$

$$
Q \Rightarrow x=(-2)+2=0
$$

$$
y=-2(-2)+1=5
$$

$$
z=-(-2)+3=5
$$

$Q=(0,5,5) \Rightarrow$ intersection point

$$
\begin{aligned}
Q_{6 .(1)} \vec{G}_{1} \vec{Q}_{2} & =\langle-3,2,-1\rangle \\
\vec{Q}_{1} Q_{3} & =\langle-5,4,5\rangle \\
\overrightarrow{Q_{1} G_{2}} \times \overrightarrow{Q_{1} Q_{3}} & =\left|\begin{array}{ccc}
1 & j & k \\
-3 & 2 & -1 \\
-5 & 4 & 5
\end{array}\right| \\
& \left.=\left\langle\begin{array}{cc}
2 & -1 \\
4 & 5
\end{array}\right|,-\left|\begin{array}{ll}
-3 & -1 \\
-5 & 5
\end{array}\right|,\left|\begin{array}{ll}
-3 & 2 \\
-5 & 4
\end{array}\right|\right\rangle \\
& =\langle 10-(-4),-(-15-5),-12-(-10)\rangle \\
& =\langle 14,20,-2\rangle
\end{aligned}
$$

$\Rightarrow\langle 14,20,-2\rangle \neq\langle 0,0,0\rangle \quad \therefore Q_{1}, Q_{2}$ and Q_{3} are not co linear.
(ii)

$$
\text { Area of } \begin{aligned}
\triangle Q_{1} Q_{2} Q_{3} & =\frac{\left|\overrightarrow{Q_{1} Q_{2}} \times \overrightarrow{Q_{1} Q_{3}}\right|}{2} \\
& =\frac{\sqrt{14^{2}+20^{2}+2^{2}}}{2} \\
& =\frac{\sqrt{196+400+4}}{2}=5 \sqrt{6} \text { units }^{2}
\end{aligned}
$$

(iii)

$$
\begin{aligned}
& N=\langle 14,20,-2\rangle \\
& Q_{1}=(1,2,3)
\end{aligned}
$$

eqn : $14(x-1)+20(y-2)-2(z-3)=0$

QT

$$
\begin{array}{rlrl}
L_{1}: x & =2 t+1 & L_{2}: x & =4 w-3 \\
y & =-t+3 & y & =-2 w+5 \\
z & =4 t+1 & z & =8 w-7
\end{array}
$$

$$
D_{1}=\langle 2,-1,4\rangle \quad, \quad D_{2}=\langle 4,-2,8\rangle
$$

$D_{1} \| D_{2}$?

$$
\left.\begin{array}{rl}
& D_{1} \| D_{2} ? \\
\Rightarrow & D_{1}=C D_{2} \\
\langle 2,-1,4\rangle & =\langle 4 C,-2 C, 8 C\rangle \\
\begin{array}{rl}
2=4 C & \Rightarrow \\
-1 & =-2 C
\end{array} \quad \Rightarrow \quad \frac{1}{2} \\
4 & =8 C=\frac{1}{2}
\end{array}\right\} c=\frac{1}{2} \quad \begin{aligned}
& c \\
& \text { same }
\end{aligned} \quad \therefore D_{1} \| D_{2}
$$

\Rightarrow Let Q be point on $L_{1}=(1,3,1)$

$$
\left.\begin{array}{l}
1=4 w-3 \Rightarrow w=1 \\
3=-2 w+5 \Rightarrow w=1 \\
1=8 w-7 \Rightarrow w=1
\end{array}\right\}
$$

w is same
$\therefore L_{1}$ is nor parallel to L_{2}, they overlap

MTHIII Exam 2
Mon -29-Nou-2021

Jude ABOUHAC AlJundi
900091801
Question 1) almost -3 and 3
i) $(-\infty,-3) \cup(0,3)$
ii) $(-3,0) \cup(3, \infty)$
iii) $f(x)$ has a local max when $x=-3$ and $x=3$,
$f(x)$ has a local min when $x=0$
Question 2)

$$
+|A B|=a
$$

$$
A=a\left(16-a^{2}-4\right)=16 a-4 a-a^{3}
$$

$$
=12 a-a^{3}
$$

Question 3)

$$
\begin{aligned}
& H=(2,21) \text { \& } F=(5,-9) \text { line } x=-1 \\
& \text { slope }=\frac{y_{1}-y_{2}}{x_{1}-x_{2}}=\frac{-9-21}{-13-2}=2 \\
& y=m x+b \\
& y=2 x+b \\
& 21=2(2)+b \\
& b=17 \\
& y=2 x+17 \quad Q=(-4, y) \\
& y=2(-4)+17=9 \\
& Q=(-4,9)
\end{aligned}
$$

Question 4)

$$
\begin{aligned}
& f(x)=\left(x^{2}+2 x-7\right) e^{x} \\
& f^{\prime}(x)=(2 x+2)\left(e^{x}\right)+e^{x}\left(x^{2}+2 x-7\right) \\
& f^{\prime}(x)=2 x e^{x}+2 e^{x}+e^{x} x^{2}+2 x e^{x}-1 e^{x}=0 \\
& f^{\prime}(x)=4 x e^{x}-5 e^{x}+e^{x} x^{2} e^{x}=0 \\
& =e^{x}\left(4 x-5+x^{2}\right)=0 \\
& =e^{x}\left(x^{2}+4 x-5\right)=0 \\
& =e^{x}(x-1)(x+5)=0 \\
& x=1^{k} \quad x=-\stackrel{k}{-5} \rightarrow \rightarrow \rightarrow \rightarrow
\end{aligned}
$$

critical Values: $x=1, x=-5$

$f(x)$ has a local min when $x=1$
$P(x)$ has a local max when $x=-5$
sketch:

Queshón 5)
i) $y=e^{(2 x+3)} \ln (3 x+5)$

$$
\left.y^{\prime}=e^{(2 x+3)}(2) \ln (3)+5\right)+\left(\frac{3}{3 x+5}\right)\left(e^{(2 x+3)}\right)
$$

$$
\begin{gathered}
\text { ii) } y=\sin (3 x)\left(2 x^{3}+6 x+1\right)^{4} \\
y^{\prime}=\cos (3 x) \cdot 3 \cdot\left(2 x^{3}+6 x+1\right)^{4}+4\left(2 x^{3}+6 x+1\right)^{3}\left(6 x^{2}+6\right)(\sin (3 x)) \\
\text { iii) } y=\ln \left(\left(\frac{\sin x+\cos x}{3 x+2}\right)^{6}\right) \\
y=6[\ln (\sin x+\cos x)-\ln (3 x+2)] \\
y^{\prime}=6\left[\frac{\cos x-\sin x}{\sin x+\cos x}-\frac{3}{3 x+2}\right]
\end{gathered}
$$

Final Exam, MTH 111 , Fall 2021

$$
\text { Score }=\frac{64}{64}
$$

Ayman Badawi

$$
(x-y)^{2}-(-4)^{2}+10
$$

QUESTION 1. (5 points) Consider the parabola
$2 y=$

$$
2 y=x^{2}-8 x+10
$$

(i) Write it in the standard form

$$
\begin{aligned}
& \partial y=x^{2}-8 x+10 \\
& \partial y=\left[(x-4)^{2}-(-4)^{2}+10\right] \\
& 2 y=(x-4)^{2}-16+10
\end{aligned}
$$

(ii) Find the vertex

$$
V=(4,-3)
$$

(iii) Find the equation of the directrix line

$$
\begin{equation*}
y=-\frac{7}{2} \tag{A}
\end{equation*}
$$

$$
\begin{aligned}
& 2 y=(x-4)^{2}-6 \\
& 2 y+6=(x-4)^{2} \\
& 2(y+3)=(x-4)^{2}
\end{aligned}
$$

$$
4-3
$$

$$
\text { e directrix line }\binom{f}{v=-\frac{7}{2}} \quad 2=4 d
$$

(iv) Find the focus

$$
f=\left(4,-\frac{5}{2}\right)
$$

QUESTION 2. (5 points) Given $x=-2$ is the directrix of a parabola that has $F=(-8,3)$ as its focus. Find the equation of the parabola and sketch (roughly). Show the work.

$$
\begin{aligned}
& 4 d\left(x-x_{0}\right)=\left(y-y_{0}\right)^{2} \\
& \begin{array}{ll}
4(-3)(x+5)=(y-3)^{2} \\
-12(x+5)=(y-3)^{2}
\end{array}
\end{aligned}
$$

QUESTION 3. (6 points)
(a) Stare at the below picture. Find the area of the region that is bounded by $y=3 \sqrt{x}+1, y=1, x=0$, and $x=4$

$$
x^{\frac{1}{2}}
$$

$$
\frac{2}{3} \frac{x^{\frac{3}{2}}}{}
$$

$$
\begin{aligned}
& A=\int_{0}^{4}\left(3 \sqrt{x}+11 d x-\int_{0}^{4} 1 d x\right. \\
& A=3 \int_{0}^{4} \sqrt{x} d x+\int_{0}^{4} 1 d x-\int_{0}^{4} 1 d x \\
& A=3\left(\left.\frac{2}{3} x^{\frac{3}{2}}\right|_{0} ^{4}\right)+\left.x\right|_{0} ^{4}-\left.x\right|_{0} ^{4} \\
& A=3\left[\frac{16}{3}-0\right]+(4-0)-(4-0) \\
& A=16
\end{aligned}
$$

(b) If the curve $y=3 \sqrt{x}+1$ is rotated 360 degrees about the line $y=1$ what will be the volume of the outcome

$$
\begin{aligned}
& \text { object? } \quad A=\pi r^{2} \\
& r=3 \sqrt{x}+1-1 \\
& r=3 \sqrt{x}
\end{aligned}
$$

$$
\begin{array}{ll}
V=\pi \pi(3 \sqrt{x})^{2} & V=\pi \int 9 x, \\
V=\pi \int(3 \sqrt{x})^{2} & V=9 \pi \frac{9}{2} \pi x^{2} \\
V
\end{array}
$$

QUESTION 4. (6 points) Stare at the below pictures. We want to construct the rectangle $A B C D$ that has maximum) area. Given A lies on the line $y=x+1, B$ lies on the line $x=7$, the point $c=(7,0)$, and D is a point on the x-axis. Find the length $(A D)$ and the width $(D C)$ of such rectangle. Show the work.

$$
\begin{aligned}
& A=|A D||D C| \\
& |A D|=(x+1)(\\
& |D C|=7-x \\
& A=(x+1)(7-x)=7 x-x^{2}+7-x=6 x-x^{2}+7 \\
& A)=-2 x+6=0 \\
& x=3
\end{aligned}
$$

length $|A D|=3+1=4$
width $|D C|=7-3=4$

$$
\text { Area }=4 \times 4=16
$$

QUESTION 5. (6 points) (SHOW THE WORK) Given the graph of the first derivative of $f(x)$ (i.e., $f^{\prime}(x)$). Stare at it.

(i) For what values of x does $f(x)$ increase?

$$
(-\infty,-4) \cup(-2, \infty)
$$

(ii) For what values of x does $f(x)$ decrease?

$$
(-4)-2)
$$

(iii) For what values of x does $f(x)$ have local min and local max?
local min at $x=-2$
Local max $x=-4$.

$$
\begin{aligned}
& \text { (ii) } f(\sin (x)-\cos (x))(\sin (x)+\cos (x)+4)^{8} d x \\
& u=\sin x+\cos x+4 \\
& \frac{d w}{d x}=\cos x-\sin x \\
& d u=\cos x-\sin x d x
\end{aligned}
$$

$$
\text { Local min at } x=-2
$$

QUESTION 6. (12 points) Evaluate the following integrals
(i) $\int \frac{(x+3)^{2}}{\left(x^{5}\right.} d x$

$$
\int\left(x^{-5}(x+3)^{2}\right) d x=\int\left[x^{-5}(x+6 x+9)\right] d x
$$

$$
\begin{aligned}
& =\int\left(x^{-3}+6 x^{-4}+9 x^{-5}\right) d x=\frac{x^{-2}}{-2}+\frac{6 x^{-3}}{-3}+9 \frac{x^{-4}}{-y}+C \\
& =\frac{1}{2 x^{2}}-\frac{2}{x^{3}}-\frac{9}{4 x^{4}}+C
\end{aligned}
$$

$$
\begin{aligned}
& (x+3)(x+3) \\
& x^{2}+3 x+3 x+9 \\
& x^{-5}\left(x^{2}+6 x+9\right)=x^{-3}+6 x^{-4}+9 x^{-5} \\
& \frac{x^{-3}}{3}+9 \frac{x^{-4}}{-y}+c
\end{aligned}
$$

$$
d u=\Theta(\sin x-\cos x) d x
$$

(iii) $\int \frac{x+3 e^{x}}{x^{2}+6 e^{x}+5} d x$

$$
U=x^{2}+6 e^{x}+5
$$

$$
\frac{d v}{d x}=2 x+6 e^{x}
$$

$$
\begin{aligned}
& \frac{1}{2} \int \frac{1}{u} d u \\
& \left.=\left|\frac{1}{2} \ln \right| x^{2}+6 e^{x}+5 \right\rvert\,+C
\end{aligned}
$$

$$
d w=2\left(x+3 e^{x}\right) d x
$$

$$
\begin{aligned}
& \text { (iv) } \int \frac{44(\sqrt{2}-\sqrt{2})}{\sqrt{x}} d x=4 \int\left(\frac{1}{\sqrt{x}} \cdot e^{\sqrt{x}+3}\right) d x \\
& u=\sqrt{x}+3=8 \int e^{u} d u \\
& \frac{d u}{d x}=\frac{1}{2 \sqrt{x}}=8 e^{u}+c=8 e^{\sqrt{x}+3}+C
\end{aligned}
$$

QUESTION 7. (6 points) Let $f(x)=-x^{3}+3 x^{2}+24 x+e^{\left(x^{3}-3 x^{2}-24 x+3\right)}$
(i) For what values of x does $f(x)$ have local min. and local max.?

$$
\begin{aligned}
& f^{\prime}(x)=-3 x^{2}+6 x+24 \not-e^{\left(x^{3}-3 x^{2}-24 x+3\right)}\left(3 x^{2}-6 x-24\right)=0 \\
& f^{\prime}(x)=(x-4)(x+2)+e^{\left(x^{3}-3 x^{2}-24 x+3\right.}(x-4)(x+2)=0
\end{aligned}
$$

$$
x=4, x=-2
$$

$t+t+t_{1}-v e-v e_{1}+v e+v e$ $-\infty-2$
(ii) Sketch, roughly, the graph of $f(x)$.
(ii) Sketch, roughly, the graph of $f(x)$.

$f(x)$ hos a local min when $x=4$ and a local \max when $x=-2$

$$
\begin{aligned}
& \text { QUESTION 8.(6 points) (a) Given }\left(x e^{3 y}+\left(2 e^{(2 x+1)}+y^{2}-4 x^{2}+1=0 \text {. Find } y^{\prime} \cdot d x\right.\right. \\
& \left(e^{3 y}+e^{3 y} \cdot 3 x \frac{d y}{d x}\right)+\left(\frac{d y}{d x} e^{(2 x+1)}+e^{(2 x+1)} \cdot 2 y\right)+2 y \frac{d y}{d x}-8 x=0 \\
& e^{3 y}+3 x e^{3 y} \frac{d y}{d x}+e^{(2 x+1)} \frac{d y}{d x}+2 y e^{(2 x+1)}+2 y \frac{d y}{d x}=8 x \\
& 3 x e^{3 y} \frac{d y}{d x}+e^{(2 x+1)} \frac{d y}{d x}+2 y \frac{d y}{d x}=8 x-2 y e^{(2 x+1)}-e^{3 y}
\end{aligned}
$$

(b) Find the equation of the tangent line to the curve $y=x+e^{(x-2)}+\ln (x-1)$ at the point $(2,3)$.

$$
\begin{array}{ll}
y=m x+b & y^{\prime}=1+e^{(x-2)}+\frac{1}{x-1} \\
y=3 x+b & y^{\prime}(2)=3 \\
3=3(2)+b \\
3=6+b \\
b=-3
\end{array} \quad \begin{aligned}
& \frac{d y}{d x}\left(3 x e^{3 y}+e^{(2 x+1)}+2 y\right)= \\
& \frac{d y}{d x}=\frac{8 x-2 y e^{(2 x+1)}-e^{3 y}}{3 x e^{3 y}+e^{(2 x+1)}+2 y} \\
& y^{\prime}=\frac{8 x-2 y e^{(2 x+1)}-e^{3 y}}{3 x e^{3 y}+e^{(2 x+1)}+2 y}
\end{aligned}
$$

QUESTION 9. (6 points) Given $P_{1}: 2 x+y-3 z=10$ intersects the plane $P_{2}:-x-y+5 z=-6$ in a line L. Find a parametric equations of L. Then find the symmetric equation of L.

$$
-y+50=-6
$$

$$
\frac{y-16}{-13}
$$

QUESTION 10. (6 points) Given $A=(1,1,0), B=(1,2,2)$, and $C=(2,1,2)$ are the vertices of a triangle.
(i) Find the area of the triangle $A B C$.

$$
\frac{\tau-z}{-1}
$$

$$
\left.\begin{array}{ll}
V_{1}=\langle 0,1,2\rangle & V_{2}=\langle 1,0,2\rangle \\
A=\frac{\left|V_{1} \times V_{2}\right|}{2} & V_{1} X V_{2}=\left\lvert\, \begin{array}{ll}
1 & j \\
0 \\
0 & 1
\end{array}\right. \\
1 & 2 \\
1 & 0 \\
2
\end{array}\left|=\langle | \begin{array}{ll}
1 & 2 \\
0 & 2
\end{array}\right|,-\left|\begin{array}{cc}
0 & 2 \\
1 & 2
\end{array}\right|,\left|\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right|\right\rangle \mid
$$

$$
A=\frac{\sqrt{2^{2}+2^{2}+\phi^{2}}}{2}=
$$

$$
2=2
$$

(ii) Find the equation of the plane that passes through A, B, and C.

$$
\begin{aligned}
& 2(x-1)+2(y-2)+0(2-2)=0 \\
& 2 x-2+2 y-4+0-0=0 \\
& 2 x+2 y-6=0 \\
& 2 x+2 y=6
\end{aligned}
$$

Faculty information
Ayman Badawi, Department of Mathematics \& Statistics, American University of Shariah, P.O. Box 26666, Shariah, United Arab Emirates.
E-mail: abadawi@aus.edu, www.ayman-badawi.com

$$
\begin{aligned}
& U_{1}=\langle 2,1,-3\rangle \quad U_{2}=\langle-1,-1, S\rangle \\
& V_{1} \times V_{2}=\left|\begin{array}{ccc}
i & j & k \\
2 & 1 & -3 \\
-1 & -1 & 5
\end{array}\right|=\langle | \begin{array}{cc}
1 & -3 \\
-1 & 5
\end{array}\left|,-\left|\begin{array}{cc}
2 & -3 \\
-1 & 5
\end{array}\right|\right| \begin{array}{cc}
2 & 1 \\
-1 & -1
\end{array}| \rangle \\
& =\langle 5-3,-(10-3),-2-(-1)\rangle \\
& =\langle 2,-7,-1\rangle \mathrm{V} \\
& \text { parametric equations: } \\
& L: x=2 t+0 \\
& y=-7 t+16 \\
& z=-1 t+2 \\
& \text { symmetric equation: } \\
& \frac{x}{2}=\frac{y-16}{-7}=\frac{z-2}{-1} \\
& t=\frac{x}{2} \\
& \text { (et } x=0 \quad y-3 z=10 \quad y-3(2)=10 \\
& \begin{aligned}
&\left.\begin{array}{rl}
y-3 z & =10 \\
-y+5 z & =-6
\end{array}\right\} \text { add } \begin{array}{r}
y=16 \\
2 z
\end{array}=4 \quad z=2 \quad(0,16,2) \text { point } \\
& y
\end{aligned}
\end{aligned}
$$

2.3.1 OUiTI

Quiz I, MTH 111 , Fall 2021

Ayman Badawi

QUESTION 1. An ellipse is centralized at $(4,-2)$ Given $(4,3)$ and $(1,-2)$ are two vertices of the ellipse.
(i) Draw such ellipse (roughly)
(ii) Find the ellipse constant
(iii) Find the foci of the ellipse.
(iv) Find the equation of the ellipse

QUESTION 2. Consider the ellipse $\frac{(x+3)^{2}}{9}+\frac{(y-2)^{2}}{4}=1$.
(i) Draw such ellipse (roughly)
(ii) Find the ellipse constant
(iii) Find the foci of the ellipse.
(iv) Find the vertices of the minor axis.

Faculty information

Ayman Badawi, Department of Mathematics \& Statistics, American University of Sharjah, P.O. Box 26666, Sharjah, United Arab Emirates.
E-mail: abadawi@aus.edu, www.ayman-badawi.com
\qquad

Quiz II, MTH 111 , Fall 2021

Ayman Badawi

QUESTION 1. Consider the parabola

$$
y=x^{2}-6 x+10
$$

(i) Write it in the standard form
(ii) Sketch, roughly
(iii) Find the focus
(iv) Find the vertex
(v) Find the equation of the directrix line

QUESTION 2. Consider the Parabola

$$
-8(x-2)=(y+3)^{2}
$$

(i) Sketch, roughly
(ii) Find the focus
(iii) Find the vertex
(iv) Find the equation of the directrix line

Faculty information

Ayman Badawi, Department of Mathematics \& Statistics, American University of Sharjah, P.O. Box 26666, Sharjah, United Arab Emirates.
E-mail: abadawi@aus.edu, www.ayman-badawi.com

Quiz III, MTH 111 , Fall 2021

Ayman Badawi

QUESTION 1. The following is a hyperbola. Write it in the standard form, sketch, find the vertices and the foci

$$
8 x^{2}-32 x-y^{2}+6 y=-15
$$

QUESTION 2. Consider the hyperbola

$$
\frac{(y-1)^{2}}{9}-\frac{(x+2)^{2}}{16}=1
$$

Sketch, find the vertices and the foci

Faculty information

Ayman Badawi, Department of Mathematics \& Statistics, American University of Sharjah, P.O. Box 26666, Sharjah, United Arab Emirates.

Quiz IV, MTH 111 , Fall 2021

Ayman Badawi

Picture (2)

Picture (1)

QUESTION 1.

(i) Stare at Picture (1). Draw $\operatorname{Proj}_{W}^{V}$ (i.e., Projection of V over W)
(ii) Stare at Picture (2). Draw $\operatorname{Proj}_{V}^{W}$ (i.e., Projection of W over V)

QUESTION 2. Given $L_{1}: x=-t+2, y=3 t+4, z=2 t-3,(t \in R)$ and $L_{2}: x=10 w-8, y=2 w+2, z=$ $2 w-5,(w \in R)$.
(i) If L_{1} intersects L_{2}, find the intersection point. Show the work
(ii) Is L_{1} perpendicular to L_{2} ? Show the work

QUESTION 3. $L_{1}: x=-4 t+2, y=t+4, z=5 t-3,(t \in R)$ and $L_{2}: x=8 w-6, y=-2 w+6, z=$ $-10 w+9,(w \in R)$.
(i) Is L_{1} parallel to L_{2} ? Show the work
(ii) Write down the symmetric equation of L_{1}.

Faculty information

Ayman Badawi, Department of Mathematics \& Statistics, American University of Sharjah, P.O. Box 26666, Sharjah, United Arab Emirates.
E-mail: abadawi@aus.edu, www.ayman-badawi.com

Quiz 5, MTH 111 , Fall 2021

Ayman Badawi

QUESTION 1. Let $P_{1}: 2 x-y+z=4$ and $P_{2}: x+y+4 z=11$
Then P_{1} intersects P_{2} in a line L. Find a parametric equations of the intersection-line.

QUESTION 2. Given $P: x+y-3 z=27$.
a) Let $L: x=t+4, y=2 t+6, z=t-4$. Can we draw L entirely inside the plane P ? Show the work
b) Let $V=<2,7,3>$. Can we draw V inside P ? Show the work
c) Is P perpendicular to the plane $-3 x+4 y-5 z=2$? Show the work

Faculty information

Ayman Badawi, Department of Mathematics \& Statistics, American University of Sharjah, P.O. Box 26666, Sharjah, United Arab Emirates.
E-mail: abadawi@aus.edu, www.ayman-badawi.com

${ }^{23.6}$ Quiz VI

Quiz VI, MTH 111 , Fall 2021

Ayman Badawi

QUESTION 1. Find y^{\prime} and do not simplify
(i) $y=7 x^{2}+10 \sqrt{x}+\sin (9 x)$
(ii) $y=2\left(x^{3}+7 x+3\right)^{11}$
(iii) $y=\cos (7 x)(\sin (5 x)+2)$

QUESTION 2. Given $f(x)=\left(x^{2}-6 x-7\right)^{3}$
(i) Find all critical values
(ii) Find all local min., local max of $f(x)$.
(iii) Roughly, sketch the graph of $f(x)$.

Faculty information

Ayman Badawi, Department of Mathematics \& Statistics, American University of Sharjah, P.O. Box 26666, Sharjah, United Arab Emirates.
E-mail: abadawi@aus.edu, www.ayman-badawi.com

${ }_{23.7}$ Quiz VII

Quiz VII, MTH 111 , Fall 2021

Ayman Badawi

QUESTION 1. Find y^{\prime} and do not simplify
(i) $\mathrm{y}=\ln \left(\frac{x^{2}+3 x}{5-2 x}\right)$
(ii) $y=e^{\left(x^{3}+6 x+3\right)}$
(iii) $\mathrm{y}=\ln \left(7 x^{2}+5 x-3\right) e^{x}$

QUESTION 2. Given $f(x)=\ln (3 x-9+e)+e^{(x-3)}$. Find the equation of the tangent line to the curve at the point $(3,2)$. (note $\ln (e)=1)$

QUESTION 3. Given $H=(3,2)$ and $F=(-1,4)$. Find a point, say Q, on the line $y=-3$ so that $|H Q|+|Q F|$ is minimum.

Faculty information

2.4 Exams

\qquad

Exam One, MTH 111 , Fall 2021

Ayman Badawi

QUESTION 1. (8 points) Consider the equation

$$
\frac{(x-2)^{2}}{9}+\frac{(y+1)^{2}}{16}=1
$$

(i) Sketch
(ii) Find the foci
(iii) Find the vertices
(iv) Find the ellipse-constant k.

QUESTION 2. (8 points)

$$
\frac{(x-2)^{2}}{4}-\frac{(y+1)^{2}}{5}=1
$$

(i) Sketch
(ii) Find the foci
(iii) Find the vertices
(iv) Find the ellipse-constant k.

QUESTION 3. (8 points) Given $x=4$ is the directrix line of a parabola that has $(-2,1)$ as its focus. Find the equation of the parabola and sketch.

QUESTION 4. (8 points) Given $x+y+2 z=3$ intersects $x+y-z=6$ in a line L. Find a parametric equations of L.

QUESTION 5. (8 points) Given $4 x+y+z=10$ intersects the line $L: x=t+2, y=-2 t+1, z=-t+3$ in a point Q. Find Q.
QUESTION 6. (8 points) Given $Q_{1}=(1,2,3), Q_{2}=(-2,4,2)$ and $Q_{3}=(-4,6,8)$.
(i) Convince me that Q_{1}, Q_{2}, and Q_{3} are not co-linear.
(ii) Find the area of the triangle $Q_{1} Q_{2} Q_{3}$.
(iii) Find the equation of the plane that contains Q_{1}, Q_{2} and Q_{3}.

QUESTION 7. (8 points) Is $L_{1}: x=2 t+1, y=-t+3, z=4 t+1(t \in R)$ parallel to $L_{2}: x=4 w-3, y=$ $-2 w+5, z=8 w-7(w \in R) ?$

Faculty information

Ayman Badawi, Department of Mathematics \& Statistics, American University of Sharjah, P.O. Box 26666, Sharjah, United Arab Emirates.
E-mail: abadawi@aus.edu, www.ayman-badawi.com

Exam Two, MTH 111 , Fall 2021

Ayman Badawi

$$
\text { Score }=\frac{}{30}
$$

QUESTION 1. (6 points) (SHOW THE WORK) Given the graph of the first derivative of $f(x)$ (i.e., $f^{\prime}(x)$). Stare at it.

(i) For what values of x does $f(x)$ increase?
(ii) For what values of x does $f(x)$ decrease?
(iii) For what values of x does $f(x)$ have local min and local max?

QUESTION 2. (6 points) (SHOW THE WORK) We want to construct a rectangle (see picture) ABCD, where A, B are on the line $y=16, C$ is on $y=x^{2}+4$, and D is on the y-axis. Find the length and the width of $A B C D$ so that the area of $A B C D$ is maximum.

QUESTION 3. (6 points) (SHOW THE WORK) Given $H=(2,21)$ and $F=(5,-9)$. Find a point, say Q, on the line $x=-4$ so that $|F Q|+|Q H|$ is minimum.

QUESTION 4. (6 points) (SHOW THE WORK) Let $f(x)=\left(x^{2}+2 x-7\right) e^{x}$. For what values of x do we have local min? For what values of x do we have local max? Sketch (roughly).

QUESTION 5. (6 points) (SHOW THE WORK) Find y^{\prime} and do not simplify
(i) $y=e^{(2 x+3)} \ln (3 x+5)$
(ii) $y=\sin (3 x)\left(2 x^{3}+6 x+1\right)^{4}$
(iii) $y=\ln \left(\left(\frac{\sin (x)+\cos (x)}{3 x+2}\right)^{6}\right)$

Faculty information

Ayman Badawi, Department of Mathematics \& Statistics, American University of Sharjah, P.O. Box 26666, Sharjah, United Arab Emirates.
E-mail: abadawi@aus.edu, www.ayman-badawi.com

Final Exam, MTH 111 , Fall 2021

Ayman Badawi

Score $=\frac{}{64}$

QUESTION 1. (5 points) Consider the parabola

$$
2 y=x^{2}-8 x+10
$$

(i) Write it in the standard form
(ii) Find the vertex
(iii) Find the equation of the directrix line
(iv) Find the focus

QUESTION 2. (5 points) Given $x=-2$ is the directrix of a parabola that has $F=(-8,3)$ as its focus. Find the equation of the parabola and sketch (roughly). Show the work.

QUESTION 3. (6 points)

(a) Stare at the below picture. Find the area of the region that is bounded by $y=3 \sqrt{x}+1, y=1, x=0$, and $x=4$

(b) If the curve $y=3 \sqrt{x}+1$ is rotated 360 degrees about the line $y=1$, what will be the volume of the outcome object?

QUESTION 4. (6 points) Stare at the below pictures. We want to construct the rectangle $A B C D$ that has maximum area. Given A lies on the line $y=x+1, B$ lies on the line $x=7$, the point $c=(7,0)$, and D is a point on the x-axis. Find the length $(A D)$ and the width $(D C)$ of such rectangle. Show the work.

QUESTION 5. (6 points) (SHOW THE WORK) Given the graph of the first derivative of $f(x)$ (i.e., $f^{\prime}(x)$). Stare at it.

(i) For what values of x does $f(x)$ increase?
(ii) For what values of x does $f(x)$ decrease?
(iii) For what values of x does $f(x)$ have local min and local max?

QUESTION 6. (12 points) Evaluate the following integrals
(i) $\int \frac{(x+3)^{2}}{x^{5}} d x$
(ii) $\int(\sin (x)-\cos (x))(\sin (x)+\cos (x)+4)^{8} d x$
(iii) $\int \frac{x+3 e^{x}}{x^{2}+6 e^{x}+5} d x$
(iv) $\int \frac{4 e^{(\sqrt{x}+3)}}{\sqrt{x}} d x$

QUESTION 7. (6 points) Let $f(x)=-x^{3}+3 x^{2}+24 x+e^{\left(x^{3}-3 x^{2}-24 x+3\right)}$
(i) For what values of x does $f(x)$ have local min. and local max.?
(ii) Sketch, roughly, the graph of $f(x)$.

QUESTION 8. (6 points) (a) Given $x e^{3 y}+y e^{(2 x+1)}+y^{2}-4 x^{2}+1=0$. Find y^{\prime}.
(b) Find the equation of the tangent line to the curve $y=x+e^{(x-2)}+\ln (x-1)$ at the point $(2,3)$.

QUESTION 9. (6 points) Given $P_{1}: 2 x+y-3 z=10$ intersects the plane $P_{2}:-x-y+5 z=-6$ in a line L. Find a parametric equations of L. Then find the symmetric equation of L.

QUESTION 10. (6 points) Given $A=(1,1,0), B=(1,2,2)$, and $C=(2,1,2)$ are the vertices of a triangle.
(i) Find the area of the triangle $A B C$.
(ii) Find the equation of the plane that passes through A, B, and C.

Faculty information

Ayman Badawi, Department of Mathematics \& Statistics, American University of Sharjah, P.O. Box 26666, Sharjah, United Arab Emirates.
E-mail: abadawi@aus.edu, www.ayman-badawi.com

Faculty information

Ayman Badawi, American University of Sharjah, UAE.
E-mail: abadawi@aus.edu

[^0]: E-mall abadawitaus.edu, wur.ayman-badawi.com

