Problem: Prove :

$$
\forall a, b \in \mathbb{Z}^{+}, \quad 49\left|\left(a^{2}+b^{2}\right) \Rightarrow 7\right| a \wedge 7 \mid b
$$

Proof: I will prove an equivalent statement which is the contrapositive:

$$
\forall a, b \in \mathbb{Z}^{+}, \quad 7 \not \backslash a \vee 7 \nmid b \Rightarrow 49 \not \backslash\left(a^{2}+b^{2}\right)
$$

I will discuss the cases: $7 \nmid a \vee 7 \nmid b \equiv[\underbrace{(7 \mid a \wedge 7 \nmid b) \oplus(7 \nmid a \wedge 7 \mid b)}_{\text {case } 1,2} \oplus \underbrace{(7 \nmid a \wedge 7 \chi b)}_{\text {case } 3}]^{1}$
Case 1,2: Suppose without loss of generality that $7 \mid a \wedge 7 \nmid b$, then $49 \chi\left(a^{2}+b^{2}\right)$ holds always. Because if not, then we must have $7 \mid b$ and this contradicts with $7 \times b$ 。

Case 3: This the core of the proof. Suppose $7 \not\langle a \wedge 7 \nmid b$, then we can write

$$
a=7 n_{1}+r_{1}, b=7 n_{2}+r_{2} \quad: \quad 1 \leqslant r_{1}, r_{2} \leqslant 6
$$

Then:

$$
a^{2}+b^{2}=\underbrace{49\left(n_{1}^{2}+n_{2}^{2}\right)+14\left(n_{1} r_{1}+n_{2} r_{2}\right)}_{\text {divisable by } 7}+\left(r_{1}^{2}+r_{2}^{2}\right)
$$

Therefore, $7 \mid a^{2}+b^{2}$ iff $\exists r_{1}, r_{2}$ such that $7 \mid r_{1}^{2}+r_{2}^{2}$ and $1 \leqslant r_{1}, r_{2} \leqslant 6$.
Since r_{1}, r_{2} have finite set of possible values, then all this values can be tried.
By trying them all (tedious to list), we find that no such r_{1}, r_{2} exists. Therefore, $7 X\left(a^{2}+b^{2}\right)$ which implies $49 \times\left(a^{2}+b^{2}\right)$. QED

[^0]
[^0]: ${ }^{1} \oplus$ denotes exclusive OR

