Webpage-MTH111-Course Portfolio-Fall 2020

Ayman Badawi

Table of contents

Table of contents${ }^{1}$ Section : Course Syllabus3
2 Academic Integrity Measures 7
${ }^{3}$ Section : Instructor Teaching Material-Handouts 9
3.1 Questions with Solutions on Ellipse from previoussemesters10
32. Questions with Solutions on parabola from previoussemesters21
${ }_{3.3}$ Questions with Solutions on hyperbola from previ- ous semesters 33
${ }^{3.4}$ Questions with Solutions on Vector-Projections-Lines-in-3D from previous semesters42
3.5 Questions with Solutions on Planes in 3 D from pre- vious semesters
3.6 Questions with Solutions on Intersection of Planesin 3 D from previous semesters65
3.7 Notes on Trig. Functions, area and volume 75
3.8 Notes on Integration by Substitution 84
3.9 Open Questions-Solutions Last lecture 89
3.10 Exam1-Review from previous semesters 93
3.11 Exam2-Review from previous semesters 105
3.12 Questions with solutions on Derivative, Integration,Volume, and reviews for the final exam from previ-ous semesters120
${ }_{4}$ Worked out Solutions for all Assessment Tools 4.1 Solution for Quiz I 142
4.2 Solution for Quiz II 144
4.3 Solution for Quiz III 148
4.4 Solution for Quiz IV 152
4.5 Solution for Quiz 158
4.6 Solution for Quiz VI 162
4. Solution for EXAMI 166
48 Solution for EXAMII 169
4.9 Solution for Final Exam 175
5.3 Quiz III 192
5.4 Quiz IV 194
5.5 Quiz V 196
5.6 Quiz VI 198
6 Section: Assessment Tools-EXAMS (unanswered) 200
6. Exam 201
6.2 Exam Il 206
6.3 Final Exam 208

1 Section : Course Syllabus

Warning: During this difficult time, "trust" relationship between students and instructor will definitely facilitate our work, to ensure that this "trust" is not violated, suspicious Respondus reports (after exams) will be sent to the Associate Dean.

A	Course Title \& Number
B	Pre/Co-requisite(s)

MTH 111, Mathematics for Architects
Prerequisites: MTH 001 or MTH 003 or Architecture Math Placement Test or Engineering Math Placement Test or SAT II Math Level 1 test with score 600 and above
C Number of credits
3-0-3
D Faculty Name

Ayman Badawi
E Term/ Year
F Sections

H Course Description from Catalog
I Course Learning

Upon completion of the course, students will be able to:

1. Solve problems involving comic sections (Parabola, Ellipse, and Hyperbola). Exam One, Final
2. Find the derivative of a function and apply it to solve a variety of problems involving optimization and curve sketching. Exam 2, Final
3. Apply the Fundamental Theorem of Calculus to find the area under a curve and compute volumes of revolution. Exam 2, Final
4. Apply the analytic geometry of conic sections to solve word problems. Exam one
5. Express geometric quantities using vectors and their standard operations in 2 and 3 dimensions. Exam one, Final
6. Solve geometric problems involving lines and planes in 2 and 3 dimensions. Exam one, Final

Class notes (very crucial) , Materials posted on I-Learn , and my personal webpage (for old quizzes, exams, finals) : http://www.ayman-badawi.com/MTH\ \ 111.html

K	Teaching and Learning Methodologies	This is a traditional lecture based course. Students are tested and given feedback throughout the semester via regular quizzes and exams.				
L	Grading Scale, Grading Distribution, and Due Dates	Grading Distribution:				
		Assessment		Weight		Due Date
		Quizzes		15\%		TBA
		Exam I		25\%	Tuesday (@18:00)	October 13
		Exam II		25\%	Tuesday (@18:00)	November 24
		Final Exam		35\%		TBA
		Total		100\%		
		Grading Scale				
		Letter	GPA	Percc...uno		
		A	4.0	92-100		
		A-	3.7	88-91.99		
		B+	3.3	84-87.99		
		B	3.0	80-83.99		
		B-	2.7	77-79.99		
		C+	2.3	74-76.99		
		C	2.0	67-73.99		
		C-	1.7	60-66.99		
		D	1.0	41-59.99		
		F	0	0-40.99		
M	Explanation of Assessments	- Quiz - Midt this Final exam	e will s: The Final given	ass quizzes. two midterm exam on will be compreh labus.	s. The dates of the nsive. The date and	ams are given in ime of the final
N	Student Academic Integrity Code	All students articulated in	ected S Und	by the Student A ate Catalog.	ademic Integrity	de as

K	Teaching and Learning Methodologies	This is a traditional lecture based course. Students are tested and given feedback throughout the semester via regular quizzes and exams.				
L	Grading Scale, Grading Distribution, and Due Dates	Grading Distribution:				
		Assessment		Weight		Due Date
		Quizzes		15\%		TBA
		Exam I		25\%	Tuesday (@18:00)	October 13
		Exam II		25\%	Tuesday (@18:00)	November 24
		Final Exam		35\%		TBA
		Total		100\%		
		Grading Scale				
		Letter	GPA	Percc...uno		
		A	4.0	92-100		
		A-	3.7	88-91.99		
		B+	3.3	84-87.99		
		B	3.0	80-83.99		
		B-	2.7	77-79.99		
		C+	2.3	74-76.99		
		C	2.0	67-73.99		
		C-	1.7	60-66.99		
		D	1.0	41-59.99		
		F	0	0-40.99		
M	Explanation of Assessments	- Quiz - Midt this Final exam	e will s: The Final given	ass quizzes. two midterm exam on will be compreh labus.	s. The dates of the nsive. The date and	ams are given in ime of the final
N	Student Academic Integrity Code	All students articulated in	ected S Und	by the Student A ate Catalog.	ademic Integrity	de as

This is a traditional lecture based course. Students are tested and given feedback throughout the semester via regular quizzes and exams.

Grading Distribution:

Grading Scale

- Quizzes: There will be in-class quizzes.
- Midterm Tests: There will be two midterm exams. The dates of the exams are given in this syllabus.
- Final Exam: Final examination will be comprehensive. The date and time of the final exam is also given in this syllabus.

All students are expected to abide by the Student Academic Integrity Code as articulated in the AUS Undergraduate Catalog.

N Student Academic Integrity Code

Remarks and Rules:

- Quizzes will be pre-announced at least one lecture in advance.
- No make-up quizzes will be given. However the lowest quiz will not be counted toward your final grade.

SCHEDULE

CHAPTER	Week
Conic sections, ellipse, parabola, and hyperbola	One
Continue: Conic sections, ellipse, parabola, and hyperbola	Two
Lines in 2D, Vectors in 2 D , and projection	Three
Dot Product, Cross Product and applications	- Four
Line and planes in 3 dimensional space, and Parametric Equations	- Five
Continue: Line and planes in 3 dimensional space, and Parametric Equations	Six
Definition of derivatives and apply derivative to polynomials, exponential function, and logarithms	- Seven
Tangent lines and normal lines, product formula, quotient formula, and chain rule	Eight
Applications of Derivatives: Maximaze and Minimize	Nine
Integration (anti-derivative), techniques and properties	- Ten
Integration by substitution and by simple fractions	Eleven
Calculating areas by definite integrals	Twelve
More techniques on Integration (Integral of a polynomial times exponential function)	Thirteen
Volume by definite integrals	Fourteen
Voume /Area and Reviews Final Exam	xit

2 Academic Integrity Measures

Academic Integrity Measures in Online Exams
List the measures taken to ensure the academic integrity of the exam.

Quizzes 1-6, all students were in the lecture room (blackboard Ultra room). All students had 20-25 minutes. All questions are essay. Students submitted their solution in a folder that I created on I-learn.

Students used lockdown browser for exams one, two and final exam. All questions are essay. Students submitted their solution in a folder that I created on I-learn. The outcome (scores) was not significantly different from a normal in-class exams (see the scores of the students in the excel-sheet)

I am completely satisfied with the outcome of MTH111.

3 Section : Instructor Teaching Material-Handouts
3.1 Questions with Solutions on Ellipse from previous semesters

Quiz I MTH 111, Spring 2019
Ayman Badawi

$$
\begin{aligned}
& C F^{2}=\left(\frac{k}{2}\right)^{2}-b^{2} \\
& C F^{2}=25-9 \\
&=16
\end{aligned}
$$

QUESTION 1. Consider the ellipse $\frac{(x+2)^{2}}{(25)}+\frac{(y-1)^{2}}{\left(\frac{k}{2}\right)^{2}}=1$
2 (i) Sketch (rough graph).

$$
c=(-2,1) \quad C F=4
$$

2 (ii) Find the ellipse-constant, k

$$
\begin{aligned}
& \begin{array}{l}
\text { 2(ii) Find tine ellipse.conslant. } k \\
\left(\frac{k}{2}\right)^{2}=25
\end{array} \quad \frac{k}{2}=\sqrt{25} \rightarrow k=5 \times 2 \rightarrow \\
& \begin{array}{l}
2 \text { (iii) Find all } 4 \text { vertices } \\
v_{1}(-2-5,-1) \\
(-7,1)
\end{array} \\
& v_{2}(-2+5,1) \\
& v_{2}(3,1)
\end{aligned}
$$

2 (iv) Find the Foci

$$
\left.F_{2}(-2,1), 1\right)
$$

$C F^{2}=\left(\frac{k}{2}\right)^{2}-b^{2}$

2(ii) F

$$
\begin{aligned}
& \text { Find the Foci } \\
& \left.F_{2}(-2+4,1) \quad F_{1}(-2-4,1)\right) \\
& (-6
\end{aligned}
$$

QUESTION 2. Consider the hyperbola $\frac{(x-3)^{2}}{(9)}-\frac{(y+2)^{2}}{16}=1$.
2 (i) Sketch (rough graph).

$$
c=(3,-2)
$$

(ii) Find the heperbola-constant, k

$$
\left(\frac{k}{2}\right)^{2}=g
$$

$$
\frac{k}{2}=\sqrt{g}
$$

$$
k=3 \times 2=6
$$

2 (iii) Find all vertices

$$
\begin{gathered}
v_{1} \quad(3-3,-2) \\
(0,-2)
\end{gathered}
$$

$$
\begin{array}{r}
\quad(3+3,-2) \\
(6,-2)
\end{array}
$$

2 (iv) Find the Foci

$$
\begin{array}{lll|}
\hline F^{2}=\left(\frac{k}{2}\right)^{2}+b^{2} & C F^{2}=25 & F_{1}(3-5,-2) \\
C F^{2}=9+16 & C F=5 & F_{2}(3+5,-2) \\
\text { Faculty information } & & (-2,-2)
\end{array}
$$

Ayman Badawi, Department of Mathematics \& Statistics, American University of Shariah, P.O. Box 26666, Sharjah, United Arab Emirates.
E-mail: abadawi@aus.edu, พพษ.ayman-badawi.com

QUESTION 5. An ellipse is centered at $(4,3), F_{1}=(4,0)$ is one of the foci, and $(8,3)$ is one of the vertices.
(i) (2 points) Roughly, sketch such ellipse.

x does not el-onge

$$
C F^{2}=\left(\frac{k}{2}\right)^{2}-b^{2}
$$

$$
C F=3
$$

(ii) (3 points) Find the ellipse-constant k.

$$
\begin{gathered}
C F^{2}=\left(\frac{k}{2}\right)^{2}=b^{2} \\
3^{2}=\left(\frac{k}{2}\right)^{2}-4^{2} \\
k=10
\end{gathered}
$$

$$
b=4
$$

(iii) (2 points) Find the second foci of the ellipse.

$$
\begin{aligned}
t_{2}= & (4,3+3 \\
& (4,6)
\end{aligned}
$$

0
QUESTION 11. (4 points) Given that $z=6$ is the directrix line of a parabola that has F as its focus point. If the point $Q=(-2,12)$ lies on the parabola. Find $|Q F|$ (i.e., the distance between Q and F).

$$
10 \% 1=10 L 1=8
$$

QUESTION 12. (6 points) Consider the ellipse $\frac{(y-1)^{2}}{(9)}+\frac{(x+2)^{2}}{(25)}=1$.
(i) Sketch (roughly)
 is

(ii) Find the foci of the ellipse

$$
\begin{aligned}
C F^{2} & =\left(\frac{k}{2}\right)^{2}-b^{2} \\
& =25-9 \\
& =16
\end{aligned}
$$

$$
C F^{2}=16
$$

$$
50 \quad \overline{C F}=4
$$

$$
\text { so } \begin{gathered}
F_{1}(-2+4,1) \\
(2,1)
\end{gathered}
$$

$$
F_{2}(-2-4,1)
$$

QUESTION 13. (4 points) Given $Q=(1,6,4)$ is not on the line $L: x=t+1, y=2 t+4, z=-5 t+3(t \in R)$. Find $|Q L|$.

$$
\begin{aligned}
& \begin{array}{l}
|Q L|=\frac{|D \times I Q|}{|D|}=\frac{\sqrt{12^{2}+1^{2}+2^{2}}}{\sqrt{1^{2}+2^{2}+5^{2}}} \\
\text { Faculty information }
\end{array} \\
& =\frac{\sqrt{149}}{\sqrt{30}}
\end{aligned}
$$

$$
\begin{aligned}
& D=\langle 1,2,-5\rangle \\
& I=\langle 1,4,3\rangle \\
& \quad I Q=\langle 0,2,1\rangle \\
& I Q \times D=\left|\begin{array}{lll}
i & j & k \\
0 & 2 & 1 \\
1 & 2 & -5
\end{array}\right|
\end{aligned}
$$

Ayman Badawi, Department of Mathematics \& Statistics, American University of Shariah, P.O. Box 26666, Shariah, United Arab Emirates. Email: abadawiCaus.edu, ww. ayman-badawi. com

$$
=-12 i+1 j-2 k
$$

$$
\begin{aligned}
& \text { (iii) Find all four vertices of the ellipse. } \\
& \left(\frac{k}{2}\right)^{2}=25 \quad \pm \frac{k}{2} \\
& \frac{k}{2}=5 \quad \frac{5}{5} \\
& (-6,1) \\
& v_{1}=\left(\begin{array}{c}
-2+5,1) \\
(3,1)
\end{array}\right. \\
& V_{2}=(-2-5,1) \\
& v_{4}=(-2,1-3)^{2}(-2,-2) \\
& b^{2}=9 \quad b=3 \quad(-7,1)
\end{aligned}
$$

Name Hays sian, in -30087558
NTH 111 Math for Architects Spring 2019, 1-5

Final Exam, MTH 111, Spring 2019

Ayman Badawi

$$
\text { Score }=\frac{75}{78}
$$

QUESTION 1. (7 points) Stare at the following graph.

Given $F 1=(-10,6), F 2=(4,6)$ and the ellipse-constant is 20.
(ii) Find the center $c=$

$$
\therefore \quad \therefore=1-7 \quad \therefore=(-3,6)
$$

(iii) Find the vertices $A=(-3,-1.14), D=(-3,13.14), H=(-13,6)$, and $B=(7,6)$
(iv) Find the equation of the ellipse.

$$
\frac{(x+3)^{2}}{100}+\frac{(y-6)^{2}}{51}=1
$$

QUESTION 2. (6 points) Stare at the following graph.

Given $c=(-4,6),|c v 2|=3$, and $F 2=(2,6)$.
(i) Find $v \mathrm{l}=(-1,6) \quad F 1=(-10,6), v 2=(-7,6)$, and the hyperbola-constant $k=6$
$|C F|=,\sqrt{\left.\frac{\pi}{2}\right)^{2}+b^{2}}=6$
(ii) Find the equation of the hyperbola

$$
\frac{(x+4)^{2}}{9}-\frac{(y-6)^{2}}{27}=1
$$

$$
\begin{aligned}
& \sqrt{9+b^{2}}=6 \\
& 9+b^{2}=36 \\
& b^{2}=36-9 \\
& b^{2}=27
\end{aligned}
$$

Quiz I: MTH 111, Spring 2018
Ayman Badawj

QUESTION 1. Consider the ellipse given by $\frac{y^{2}}{10}+(x-4)^{2}=1$

$$
c=(4,0)
$$

$$
b^{2}=1 \quad b=1
$$

(ii) Find the ellipse-constant $K, \sqrt{\left(\frac{k}{2}\right)}=\sqrt{10}$

$$
k=2 \sqrt{10}
$$

(iii) Find the foci. $\left|C F_{1}\right|=$

(i) Sketch, roughly,

(iv) Find all vertices,

$$
\begin{aligned}
& v_{1}=(4,0+\sqrt{10}) \\
& v_{2}=(4,0-\sqrt{10})
\end{aligned}
$$

$$
v_{3}=(4+1 ; 0) \ngtr
$$

QUESTION 2. Consider the parabola $y=3 x^{2}+18 x+5$

$$
v_{4}=(4-1,0)
$$

(i) Sketch, roughly. Standovel form

$$
\int \begin{aligned}
& y=3\left[x^{2}+6 x\right]+5 \\
& y=3\left[(x+3)^{2}-9\right]+5 \\
& y=3(x+3)^{2}-27+5
\end{aligned}
$$

(ii) Find the focus. While answers here!
(iii) Find the directrix line. $=$

$$
\begin{aligned}
& y=3(x+3)^{2}-22 \\
& y+22=3(x+3)^{2} \\
& \frac{1}{3}(y+22)=(x+3)^{2}
\end{aligned}
$$

$$
y=\frac{265}{1.12}
$$

QUESTION 3. Consider the parabola $-12(x+2)=(y-4)^{2}$
(i) Sketch, roughly.
(ii) Find the focus.

$5 \quad(-514)$
(iii) Find the directrix line.

Faculty information

Ayman Badawi, Department of Mathematics \& Statistics, American University of Shariah, P.O. Box 26666, Shariah, United Arab Emirates.
Email: abadawi@aus .ecu, wry, ayman-badavi . com

$$
\begin{aligned}
& (1,4) \\
& (-5,4)
\end{aligned}
$$

QUESTION 4. Given $y=x^{2}-6 x-1$ is an equation of a parabola. a)(3 points) Write the equation in the standard form.

b) (2 points) Find the equation of the directrix line.

$$
y=-10-\frac{1}{4}=-\frac{41}{4}
$$

c) (2 points) Find the focus, say F

$$
F\left(3,-10+\frac{1}{4}\right) \rightarrow F\left(3,-\frac{39}{4}\right)
$$

d)(2 points) Roughly, sketch the graph of such parabola.
(dee picture)

QUESTION 5. An ellipse is centered at $(-4,0), F_{1}=(-1,0)$ is one of the foci, and $(-4,4)$ is one of the vertices.
(i) (2 points) Roughly, sketch such ellipse.

(ii) (3 points) Find the ellipse-constant K.
$V_{3}(-4,-4)$

$$
\left|V_{3} F_{1}\right|=\frac{k}{2}=5 \Rightarrow K=10
$$

(iii) (2 points) Find the second foci of the ellipse.

(iv) (3 points) Find the remaining three vertices of the ellipse

(v) (3 points) Find the equation of the ellipse.

$$
\frac{(x+4)^{2}}{25}+\frac{y^{2}}{16}=1
$$

(x) Consider the ellipse $(x+1)^{2}+\frac{(y-2)^{2}}{10}=1$
a. (2 points) Roughly, draw such ellipse

c.' (2 points) Find the ellipse constant

$$
k=2 \sqrt{10}
$$

d. (2 points) Find all four vertices

$$
\begin{aligned}
& V_{4}(-1,2+\sqrt{10}) \int \\
& v_{2}(-1,2-\sqrt{10}) \int \\
& V_{3}(0,2) \\
& V_{4}(-2,2)
\end{aligned}
$$

(xi) (6 points) Let $H=(5,11)$ and $F=(10,-3)$. Find a point Q on the vertical line $x=4$ such that $|H Q|+|Q F|$ is minimum.

$$
\begin{gathered}
m=\frac{-3-11}{10-3}=-2 \\
11=-2(3)+b \\
b=17 \\
y=-2 x+17 \\
y=-2(4)+17=9 \\
Q(4,9)
\end{gathered}
$$

Quiz I: Math. for the Architects, MTH 111, Spring 2017
Amman Badawi
QUESTION 1. Consider the Ellipse $\frac{(x+2)^{2}}{25}+\frac{(y-4)^{2}}{169 j}=1$
(ii) Find the Foci

$$
\begin{aligned}
& F_{1}(-2 ; 16) \\
& f_{2}(-2 ;-8)
\end{aligned}
$$

$$
1
$$

$$
\begin{array}{ll}
\frac{k}{2}=13 \\
c=26 & { }^{2} y p^{2}=s^{2} d c^{2}+s i d e^{2} \\
c(-2 i+4) & \left|6 g=25+\left|F_{i} c\right|^{2}\right. \\
b^{2}=25 i & \left|F_{i} C\right|^{2}=144 . \\
b=5 . j & \mid F_{1} c=12
\end{array}
$$

(iv) Find all 4 vertices.

$$
v_{1}(-7 ;-2 ; 1) v_{2}(-2 ;-9)
$$

QUESTION 2. Given (-3.5) is the focus of a parabola with directrix line $x=2$.
(i) Sketch (rough sketch)
(ii) Find the equation of the Parabola.
eq: $4 d\left(x-x_{1}\right)=\left(y-y_{1}\right)^{2}$.
(3) midget of $(F P)$ vertix.
midpt of $|f B|$ is the vertix.

$$
\begin{aligned}
& x_{V}=\frac{x_{E}+x_{B}}{2}=-\frac{3+9}{2}=3 . \\
& |F V|=|V B|=|d|=|\Delta x|=|-3-3|=|-6|=6
\end{aligned}
$$

since on the left side

$$
\begin{aligned}
& \frac{d}{d}=-6
\end{aligned}
$$

(2)
$|Q F|=|Q L| \quad Q L \quad$ we draw $\rightarrow \frac{d<0}{d=-6}$
intersect point E

$$
E(9 ; ?)-2
$$

Faculty information
Ayman Badawi, Department of Mathematics \& Statistics, American University of Shariah, P.O. Box 26666, Shariah, United Arab Emirates. Email: abadawiqaus.edu, wwr.ayman-badawi.com
iii) find the distance between yestix and directrix.

$$
|v B|=\sqrt{\Delta x^{2}}=|\Delta x|=|9-3|=6
$$

Maya Alshamsi

Exam I: MTH 111, Fall 2017

Ayman Badawi
 Points $=\frac{\not 20}{70}$

QUESTION 1. (6 points) Given $y=11$ is the directrix of of a parabola that has the point $(6,5)$ as its vertex point.
a) Find the equation of the parabola
$-4 d\left(y-y_{i}\right)=\left(x-x_{1}\right)^{2}$
$-4(6)(y-5)=(x-6)^{2}$
$-24(y-5)=(x-6)^{2}$
b) Find the focus of the parabola.

$$
F(6,-1)
$$

QUESTION 2. (3 points) Given that $x=-4$ is the directrix of a parabola that has focus F. If the point $Q=(6,7)$ lies on the curve of the parabola, find $|Q F|$ (ie., find the distance between F and Q).

$$
\begin{aligned}
& |Q L|=|Q F| \\
& |Q B|=|Q F| \\
& |Q F|=10 \text { units }
\end{aligned}
$$

QUESTION 3. (8 points) Given $(-4,2),(6,2)$ are the vertices of the major axis of an ellipse (recall major axis is the longer axis) and (4,2) is one of the foci.
(i) Find the vertices of the minor axis (shorter axis). (you may want to draw such ellipse (roughly)).
$v_{3}(1,6)$
$v_{4}(1,-2)$
(fit) Find the ellipse-constant K.

$$
c(1,2) ; v_{2}(6,2)
$$

$$
\frac{k}{2}=(5) \quad \Rightarrow \quad k=10
$$

$d=6$

Ci) Find the second loci of the ellipse.

$$
F_{1} \quad(-2,2)
$$

(iv) Find the equation of the ellipse.
horizontal ellipse $i k=10 ;(b=-3) b=4$

$$
\frac{(x-1)^{2}}{25}+\frac{(y-2)^{2}}{16}=1
$$

Final Exam: MTH 111, Fall 2017

Ayman Badawi	
Points $=\frac{81}{82}$	Katia

QUESTION 1. (6 points) Given $x=-6$ is the directrix of of a parabola that has the point $(6,5)$ as its vertex point. a) Find the equation of the parabola

$$
\begin{aligned}
& |v L|=|-6-6|=|-12|=12 \\
& 4(12)(x-6)=(y-5)^{2} \Rightarrow 48(x-6)=(y-5)^{2}
\end{aligned}
$$

b) Find the focus of the parabola.

$$
|V F|=12 \rightarrow F(18,5)
$$

QUESTION 2. (8 points) Given $(2,-4),(2,6)$ are the vertices of the major axis of an ellipse (recall major axis is the longer axis) and (2,4) is one of the foci.
(i) Find the vertices of the minor axis (shorter axis). (you may want to draw such ellipse (roughly)).
$\left|V_{1} v_{2}\right|=K=|6+4|=10 \rightarrow \frac{k}{2}=5=\left|v_{1} c\right|$
$C=(2,1) \rightarrow\left|F_{1} C\right|=|4-1|=3 \rightarrow b^{2}=\left(\frac{k}{2}\right)^{2}-\left|F_{1} C\right|^{2}$
$b^{2}=5^{2}-3^{2}=16 \rightarrow V_{3}(18,1), V_{4}(-14,1)$

$K=10$
(iii) Find the second foci of the ellipse.

$$
F_{2}(2,-2)
$$

(iv) Find the equation of the ellipse.

$$
\frac{(x-2)^{2}}{16}+\frac{(y-1)^{2}}{25}=1
$$

QUESTION 3. (5 points) Given $y=3 x^{2}+12 x+9$ is an equation of a parabola. Write the equation of the parabola in the standard form and find the equation of its directrix.

$$
y=3 x^{2}-12 x+9 \rightarrow y=3\left(x^{2}+4 x+3\right) \rightarrow y=3\left[(x+2)^{2}-4+3\right]
$$

$$
y=3(x+2)^{2}-1(3) \rightarrow \frac{1}{3}(y+3)=(x+2)^{2}
$$

Ld $=\frac{1}{3} \rightarrow d=\frac{1}{12}$
$v=(-2,-3) \rightarrow$

$$
\text { directrix } x \rightarrow x=-2-\frac{1}{12}
$$

3.2 Questions with Solutions on parabola from previous semesters

KrstinRaed gooot8656

Quiz II MTH 111, Spring 2019
Ayman Badawi

QUESTION 1. Consider the parabola $y=3 x^{2}-6 x+2$
3 (i) Write the equation above in the standard form.
$y=3 x^{2}-6 x+2$
$y=\left(3\left(x^{2}-2 x\right)\right)+2$

$$
3\left((x-1)^{2}-1^{2}\right)+2
$$

$y=3(x-1)^{2}-3+2$
2 (ii) Sketch the graph (roughly)

$$
y=\text { so up or down }
$$

$4 d=\frac{1}{3} \quad d=\frac{1}{12} \quad$ so up
1 (iii) Find the vertex.

I (iv) Find the FOCUS.

$$
\stackrel{\text { LIe Focus. }}{\mp}=\left(1,-\left\lvert\,+\frac{1}{12}\right.\right)
$$

I (v) Find the equation of the directrix line

$$
y=\frac{-13}{12}
$$

1
QUESTION 2. Consider the parabola $-12(x+4)=(y-2)^{2}$.
A (i) Sketch (rough graph).
$4 d=-12 \quad$ (x so its right or left)
$d=-3$

1 (ii) Find the focus

$$
(-4-(3), 2) \quad(-7,2)
$$

I (iii) Find the vertex

(iv) Find the equation of the directrix line.

Faculty information

Ayman Badawi, Department of Mathematics \& Statistics, American University of Shariah, P.O. Box 26666, Shariah, United Arab Emirates, Email: abadawi@aus.edu, wงw.ayman-badawi.com

QUESTION 3. Given $y=-4$ is the directrix of a parabola that has the point $F=(2.8)$ as its focus point. a) (2 points) Roughly, sketch such parabola.

b) (4 points) Find the equation of the parabola

$$
\begin{aligned}
& 4 d(y-2)=(x-2)^{2} \\
& \begin{array}{l}
4(6)(y-2)=(x-2)^{2} \\
24(y-2)=(x-2)^{2}
\end{array} \\
& \begin{array}{c}
4(6)(y-2)=(x-2)^{2} \\
24(y-2)=(x-2)^{2}
\end{array} \\
& \begin{array}{c}
d=6 \\
\prod_{(2,-4)^{(2,8)}}^{(2,2)}
\end{array} \\
& \text { c) (} 2 \text { points) Find the verexe of the parabola, say } V \text {. } \\
& v=(2,2)
\end{aligned}
$$

$d=6$ \& its up

QUESTION 4. Given $y=4 x^{2}+24 x-3$ is an equation of a parabola. a)(3 points) Write the equation in the standard form.

$$
\begin{gathered}
y=4 x^{2}+24 x-3 \\
y=4\left(x^{2}+6 x\right)-3 \\
y=4\left((x+3)^{2}-9\right)-3 \\
y=4(x+3)^{2}-36-3 \\
y=4(x+3)^{2}-39 \\
\frac{1(y+39)=\frac{4(x+3)^{2}}{4}}{4} \quad \frac{1}{4}(y+39)=(x+3)^{2}
\end{gathered}
$$

$$
4 d=\frac{1}{4}
$$

$$
\begin{aligned}
& d=\frac{1}{4 \times 4} \\
& \frac{d=\frac{1}{16}}{50+}
\end{aligned}
$$

b) (2 points) Find the equation of the directrix line.

$$
y=-\frac{625}{16}
$$

c)(2 points) Find the focus, say F

$$
F=\left(-3,-39+\frac{1}{16}\right)=\left(-3,-\frac{623}{16}\right)
$$

d)(2 points) Roughly, sketch the graph of such parabola.

QUESTION 3. (4 points) Stare at the following graph.

Given $F=(4,6)$, the directrix line, L is $x=-8$, and $|Q F|=10$.
(i) Find $|Q L|=|Q F|=10$
(ii) Find $v=(-2,6)$
(iii) Find the equation of the parabola

$$
24(x+2)=(y-6)^{2}
$$

Quiz I: MTH 111, Spring 2018
Ayman Badawi

QUESTION 2. Consider the parabola $y=3 x^{2}+18 x+5$
(i) Sketch, roughly. Standavel form

(ii) Find the focus.

Wovile answers here!
(iii) Find the directrix line. $=$

$y=\frac{-265}{1-12}$

QUESTION 3. Consider the parabola $-12(x+2)=(y-4)^{2}$
(i) Sketch, roughly.
(ii) Find the focus.

$$
\begin{aligned}
& 4 d=-12 \\
& d=-3
\end{aligned}
$$

$5)(-514)$
(iii) Find the directrix line.

Faculty information

Ayman Badawi, Department of Mathematics \& Statistics, American University of Sharjah, P.O. Box 26666, Sharjah, United Arab Emirates. Email: abadawi@aus.edu, tru.ayman-badavi.com

$x=1$

$$
\begin{aligned}
& (1,4) \\
& (-5,4)
\end{aligned}
$$

\square
QUESTION 3. Given $x=-4$ is the directrix of of a parabola that has the point $(-6,5)$ as its vertex point. a) (2 points) Roughly, sketch such parabola.

$|d|=2$
b)(4 points) Find the equation of the parabola

$$
\begin{aligned}
4 d\left(x-x_{0}\right) & =\left(y-y_{0}\right)^{2} \\
-4(2)(x+6) & =(y-5)^{2} \\
-8(x+6) & =(y-5)^{2}
\end{aligned}
$$

c) (2 points) Find the focus of the parabola, say F.

$$
F(-8,5)
$$

d) (2 points) Given $Q=(-10, b)$ is a point on the curve of the parabola. Find $|Q F|$ (HINT: You should know how to do this QUICKLY!, you do not need the value of b)

$$
|Q L|=|Q B|=|Q F|=6
$$

(vii) (5 points)Find the equation of a parabola that has $x=4$ as its directrix line and $(-2,6)$ as its vertex. What is the
focus of such parabola? $\frac{\text { focus of such parabola? }}{F(-8,6)}$

$$
\begin{cases}x=4 & d=|-2-4|=6 \\ & -4 d\left(x-x_{0}\right)=\left(y-y_{0}\right)^{2} \\ & F\left(-24(x+2)=(y-6)^{2}\right.\end{cases}
$$

Quiz I: Math, for the Architects MTH 111 Cnenina 2017

QUESTION 2. Given (-3.5) is the focus of a parabola youth directrix line it $=0$.

(ii) Find the equation of the Parabola.
(3)
eq: $4 d\left(x-x_{1}\right)=\left(y-y_{1}\right)^{2}$
vert ix.
midpt of $|F P|$ is the vert
$x_{V}=\frac{x_{F}+X_{B}}{2}=-\frac{3+9}{2}=3$.
$|F V|^{2}=|V B|=\left.\right|^{2} d|=|\Delta x|=|-3-3|=|-6|=6$.

Ayman Bradawl, Department of Mathematics \& Statistics, American University of Shariah, PO. Box 26666, Shariah, United Arab Emirates
Email: abadavieaus.edu, ww, ayman-badawi.com
iii) find the distance between fertix and directrix.

$$
|v B|=\sqrt{\Delta x^{2}}=|\Delta x|=|9-3|=6 .
$$

QUESTION 1. (6 points) Given $y=11$ is the directrix of of a parabola that has the point $(6 ; 5)$ as its vertex point. a) Find the equation of the parabola
$-4 d\left(y-y_{1}\right)=\left(x-x_{1}\right)^{2}$ $d=6$
$-4(6)(y-5)=(x-6)^{2}$
$-24(y-5)=(x-6)^{2}$
b) Find the focus of the parabola.

$$
F(6,-1)
$$

QUESTION 2. (3 points) Given that $x=-4$ is the directrix of a parabola that has focus F. If the point $Q=(6,7)$ lies on the curve of the parabola, find $|Q F|$ (ie., find the distance between F and Q).

$$
\begin{aligned}
& |Q L|=|Q F| \\
& |Q B|=|Q F| \\
& |Q F|=10 \text { units }
\end{aligned}
$$

Exam I MTH 111, Fall 2016
Ayman Badawi

QUESTION 1. Given $12(x-2)=(y-4)^{2}$.
(i) Roughly, Sketch the graph of the given parabola.

$$
\begin{gathered}
V=(2,4) \\
4 d=12 \rightarrow d=3 \\
M=(-1,4)
\end{gathered}
$$

(ii) What is the directrix line?

(iii) What is the focus?

$$
F=(5,4)
$$

QUESTION 2. Given $y=x^{2}-6 x+4$
(i) Roughly, Sketch the graph of the given parabola.

$$
\begin{aligned}
& \begin{array}{l}
y=4=(x-3)^{2}-9 \rightarrow(y+5)=(x-3)^{2} \\
4 d= \\
\begin{array}{l}
\text { (i) Roughly, Sketch the graph of the given parabola. } \\
\text { (ii) What is the directrix line? }
\end{array} \\
M=\left(3,-5-\frac{1}{4}\right) \\
\text { directrix } y=-5-\frac{1}{4}=-5.25
\end{array} \\
& \text { (iii) What is the focus! }
\end{aligned}
$$

QUESTION 8. (6 points) Given $x=-4$ is the directrix of of a parabola that has the point $(6,5)$ as its vertex point.
a) Find the equation of the parabola

$$
\begin{aligned}
& 4(10)(x-6)=(y-5)^{2} \\
= & 40(x-6)=(y-5)^{2}
\end{aligned}
$$

QUESTION 9. (6 points) Consider the parabola $x=-0.25(y+3)^{2}+4$ [hint: first write it in the standard form].

$$
x=-0.25(y+3)^{2}+4 \quad \text { yd }=-4
$$

$$
(x-4)=-0.25(y+3)^{2}
$$

$$
d=-1
$$

c) Draw the parabola
(i) Roughly, Sketch the graph of the given parabola.

$$
\begin{aligned}
& y=(x+4)^{2}-16+20 \Rightarrow y=(x+4)^{2}+4 \\
& (y-4)=(x+4)^{2} \\
& \operatorname{tad}\left(y-y_{0}\right)=\left(x-x_{0}\right)^{2}
\end{aligned}
$$

(ii) What is the directrix line?

$$
4 d=1 \Rightarrow d=\frac{1}{4}\left(\Rightarrow \text { directrix } 0, M\left(-4,4-\frac{1}{4}\right)\right.
$$

$$
C=(-4,4)
$$

(iii) What is the focus?

$$
F=\left(-4,4+\frac{1}{4}\right)
$$

${ }^{3.3}$ Questions with Solutions on hyperbola from previous semesters

Quiz I MTH 111, Spring 2019
Ayman Badawi

$$
C F^{2}=\left(\frac{k}{2}\right)^{2}-b^{2}
$$

$$
(x+2)^{2},(y-1)^{2}-1 \quad C F^{2}=25-9
$$

QUESTION 2. Consider the hyperbola $\frac{(x-3)^{2}}{(9)}-\frac{(y+2)^{2}}{16}=1$.
2 (i) Sketch (rough graph).

$$
c=(3,-2)
$$

(ii) Find the heperbola-constant, k

$$
\left(\frac{k}{2}\right)^{2}=9
$$

$$
\frac{k}{2}=\sqrt{9}
$$

$$
k=3 \times 2=6
$$

2 (iii) Find all vertices

$$
\begin{aligned}
v_{1} & (3-3,-2) \\
& (0,-2)
\end{aligned}
$$

$$
\begin{array}{cc}
V_{2} & (3+3,-2) \\
& (6,-2)
\end{array}
$$

2 (iv) Find the Foci

$$
\begin{array}{ll}
C F^{2}=\left(\frac{k}{2}\right)^{2}+b^{2} & C F^{2}=25 \\
C F^{2}=9+16 & C F=5
\end{array}
$$

Faculty information
Ayman Badawi, Department of Mathematics \& Statistics, American University of Shariah, P.O. Box 26666, Shariah, United Arab Emirates.
Email: abadawicaus.edu, wuss. ayman-badawi.com

QUESTION 6. Consider the hyperbola $\frac{(x-2)^{2}}{(9)}-\frac{(y-3)^{2}}{16}=1$.
a) (2 points) Draw the hyperbola, roughs $\stackrel{9}{4}_{\left(\frac{k}{2}\right)^{2}}^{\left(b^{2}\right.}$

b) (2 points) Find the hyperbola-constant K^{*}.

$$
\left(\frac{k}{2}\right)^{2}=9 \quad k=3 \times 2
$$

$$
\frac{k}{2}=\sqrt{9}
$$

c)(3 points) Find the two vertices of the hyperbola.

$$
\begin{array}{rlrl}
v_{2}= & (2+3,3) & v_{1}= & (2-3,3) \\
(5,3) & & (-1,3)
\end{array}
$$

\square

$$
\begin{aligned}
& \text { d) (} \mathbf{3} \text { points) Find the loci of the hyperbola. } \\
& F_{1}=(2-5,3) \quad(-3,3) \\
& C F^{2}=\left(\frac{k}{2}\right)^{2}+b^{2} \\
& C F^{2}=9+16 \\
& =25 \\
& F_{2}=(2+5,3)(7,3) \\
& C F=5
\end{aligned}
$$

Final Exam, MTH 111, Spring 2019

$$
\text { Score }=\frac{75}{78}
$$

Ayman Badawi

\qquad

QUESTION 2. (6 points) Stare at the following graph.

Given $c=(-4,6),|c v 2|=3$, and $F 2=(2,6)$.
(i) Find $v \mathrm{l}=(-1,6) \quad F 1=(-10,6) \cdot v 2=(-7,6) \quad$, and the hyperbola-constant $k=6$
$\left|C F_{2}\right|=\sqrt{v_{1}^{2}+b^{2}}=6$
(ii) Find the equation of the hyperbola

$$
\sqrt{9+b^{2}}=6
$$

$$
\frac{(x+4)^{2}}{9}-\frac{(y-6)^{2}}{27}=1
$$

$$
a+b^{2}=36
$$

$$
b^{2}=36-9
$$

$$
b^{2}=27
$$

Quiz II: MTH 111, Spring 2018
 $$
\frac{\left(y-y_{0}\right)^{2}}{\left(\frac{k}{2}\right)^{2}}-\frac{\left(x-x_{0}\right)^{2}}{b^{2}}=1
$$

QUESTION 1. Consider the hyperbola given by $\frac{(y-2)^{2}}{9}-\frac{(x+1)^{2}}{16}=1$
(i) Sketch, roughly.

$$
c(-1,2)
$$

$$
\begin{aligned}
\left.\frac{k}{2}\right)^{2}=9 & \Rightarrow \frac{k}{2}=3 \\
& \Rightarrow k=6 \\
\mid\left(F_{1}\right) & =\sqrt{16+9} \\
& =5
\end{aligned}
$$

(ii) Find the ellipse-constant K.
$k=6$

$$
\begin{aligned}
& \text { (iii) Find the foci. } \\
& F_{1}(-1,2+5) \Rightarrow F_{1}(-1,7) \quad F_{2}(-1,2-5) \Rightarrow F_{2}(-1,3)
\end{aligned}
$$

$$
\begin{aligned}
& \text { (iv) Find all vertices. } \\
& V_{1}(-1,2+3) \Rightarrow V_{1}(-1,5) \\
& V_{2}(-1,2-3) \Rightarrow V_{2}(-1,-1)
\end{aligned}
$$

QUESTION 2. Given a parabola centered at $(-2,3)$ such that one of the vertices is $(0,3)$ and one of the foci is $(-6,3)$
(i) Sketch, roughly.

$$
\begin{aligned}
& \qquad \frac{\left(x-x_{0}\right)^{2}}{\left(\frac{k}{2}\right)^{2}}-\frac{\left(y-y_{0}\right)^{2}}{b^{2}}=1 \\
& \left\lvert\,\left(\left.F_{1}\left|=\sqrt{\left(\frac{k}{2}\right)^{2}+b^{2}}\right| C F_{1} \right\rvert\,=4\right.\right. \\
& b^{2}=\left\lvert\,\left(\left.F_{1}\right|^{2}-\left(\frac{k}{2}\right)^{2}\right.\right. \\
& b^{2}=4^{2}-4 \Rightarrow b^{2}=12
\end{aligned}
$$

(ii) Find the constant K.

$$
\frac{k}{2}=\left|C_{1} V_{2}\right|=2 \Rightarrow k=4
$$

(iii) Find the second focus and the second vertex.

(iv) Write down the equation of the hyperbola.

$$
\frac{(x+2)^{2}}{4}-\frac{(y-3)^{2}}{12}=1
$$

Faculty information

Ayman Badawi, Department of Mathematics \& Statistics, American University of Shariah, P.O. Box 26666, Sharjah, United Arab Emirates E-mail: abadavi@aus.edu, ยww.ayman-badaui.com

QUESTION 6. Consider the hyperbola $(y+1)^{2}-\frac{(x-2)^{2}}{8}=1$.
a) (2 points) Draw the hyperbola, roughly

$|C F|=\sqrt{1+8}=3$
b) (2 points) Find the hyperbola-constant K.

$$
\begin{aligned}
& \left(\frac{k}{2}\right)^{2}=1 \\
& \frac{k}{2}=1 \Rightarrow k=2
\end{aligned}
$$

c)(3 points) Find the two vertices of the hyperbola.

$$
\begin{aligned}
& \left.V_{1}(2,0)\right) \\
& V_{2}(2,-2)
\end{aligned}
$$

d) (3 points) Find the foci of the hyperbola.

$$
\begin{aligned}
& F_{1}(2,2) \\
& F_{2}(2,-4)
\end{aligned}
$$

\square

QUESTION 4. (8 points)
Draw roughly the hyperbola $\frac{(y-2)^{2}}{9}-\frac{(x-3)^{2}}{16}=1$. Then find positive $y \Rightarrow 0$
a) The hyperbola -constant k.

$$
\begin{array}{r}
\left(\frac{k}{2}\right)^{2}=9 \rightarrow \frac{k}{2}=3 \\
k=6
\end{array}
$$

c) The foci of the hyperbola. $\left|C F_{1}\right|=\sqrt{9+16}=5$

$$
\begin{aligned}
& F_{1}(3,7) \\
& F_{2}(3,-3)
\end{aligned}
$$

QUESTION 7. (8 points) First draw the hyperbola $\frac{y^{2}}{4}-\frac{(x-1)^{2}}{12}=1$. Then find
a) The hyperbola-constant K.

$$
\left(\frac{k}{2}\right)^{2}=4 \quad \frac{k}{2}=2 \quad k=4
$$

b) The two vertices of the hyperbola.

$$
\begin{aligned}
& v_{1}(1,2) \\
& v_{2}(1,-2)_{0}
\end{aligned} \quad \begin{aligned}
& b^{2}=12 \\
& b=\sqrt{12} \\
& \\
& =2 \sqrt{3}
\end{aligned}
$$

c) The foci of the hyperbola.

$$
\begin{aligned}
& F_{1} c= \sqrt{b_{+}^{2}(4 / 2)^{2}}=\sqrt{1 b+1 a+4}=\sqrt{\cot 4} \sqrt{12+4} \\
&=4
\end{aligned}
$$

QUESTION 3. Given the hyperbola $\frac{y^{2}}{4}-\frac{(x-7)^{2}}{5}=1$
(i) Roughly, Sketch the graph of the given hyperbola.
(ii) Find the two vertices, V_{1} and V_{2}

- $\left(\frac{K}{2}\right)^{2}=4 \rightarrow \frac{K}{2}=2 \rightarrow \bar{K}=4 \rightarrow\left|v_{1} v_{2}\right| \rightarrow\left|v_{1}\right|=\left(c v_{2} \mid=2\right.$

$$
r_{1}=(7,2) \quad r_{2}=(7,-2)
$$

(iii) Find the two Foci: F_{1}, F_{2},

$$
\begin{aligned}
& \left|C F_{1}\right|=\left|C_{2}\right|=\sqrt{\left(\frac{k}{2}\right)^{2}+b^{2}}=\sqrt{95+4}=\sqrt{9}=3 \\
& F_{1}=(7,3) / F_{2}=(7,-3)
\end{aligned}
$$

QUESTION 4, Given $F_{1}=(4,1), F_{2}=(-6,1)$ are the foci of a hyperbola and $V_{1}=(1,1)$ is one of the vertices.
(i) Find the hyperbola-constant K.

$$
\begin{aligned}
& C=\left(\frac{-6+4}{2}, 1\right)=(-1,1) \\
& \frac{k}{2}=2 \rightarrow K=4
\end{aligned}
$$

(ii) Find the second vertex of the hyperbola.

$$
e_{2} \left\lvert\,=\frac{k}{2} \rightarrow r_{2}=(-3,1)\right.
$$

(iii) Find the equation of the hyperbola.

$$
\text { equation: } \frac{(x+1)^{2}}{4}-\frac{(y-1)^{2}}{21}=1
$$

semesters

Name KAMYA KANSBA, ID 81881
Draw the projection V over (l

$\operatorname{pog}_{\mu}^{V}=\overrightarrow{L B} \quad \sqrt{4}$

Let $U=\langle z, z\rangle, V=\langle-3,4\rangle$

$$
\mu \cdot v=-6+8=2 ;|\mu|=\sqrt{(2)^{2}+(2)^{2}}=\sqrt{8}=2 \sqrt{2}
$$

Find $\operatorname{Brij}_{u}^{V}=\left(\frac{\mu \cdot v}{|\alpha|^{2}}\right) \mu=\frac{\partial}{\delta_{4}}\langle 2,2\rangle=\frac{1}{4}\langle 2,2\rangle=\left\langle\frac{1}{2}, \frac{1}{2}\right\rangle$
Find $\left|\operatorname{Praj}^{2}\right|=\frac{|u \cdot v|}{|x|}=\frac{2}{\sqrt{8}}=\frac{x}{z \sqrt{2}}=\frac{1}{\sqrt{2}}$

Exam I: MTH 111, Spring 2019

$$
F=v \times w
$$

Ayman Badawi

$$
\text { Points }=\frac{87}{87}
$$

QUESTION 1.b) (4 points) Given $A=(6,10), B=(-7,3)$, and $C=(-4,-2)$ are the vertices of a triangle. Find the area of the triangle $A B C$.
Area of the triangle $A B C=\frac{1}{2}|A B \times A C|$

$$
\begin{aligned}
& \begin{array}{l}
A B=\langle-13,-7\rangle \\
B \cdot A \\
A C \\
C-A
\end{array}=\langle-10,-12\rangle
\end{aligned} \quad \begin{array}{r}
\text { ABNAC=}=\left|\begin{array}{ccc}
i & j & k \\
-13 & -7 & 0 \\
-10 & -12 & 0
\end{array}\right|=0 i-0 j+86 k=86 \\
\text { Area of } \triangle A B C=\frac{1}{2} 86=43 \text { units }^{2}
\end{array}
$$

$$
\begin{aligned}
& \left.\begin{array}{l}
\text { c) (3 points) Find a vector } F \text { that is perpendicular to both vectors } V=\langle 2,6,-3\rangle \operatorname{and} I V=\langle 5,-4,1\rangle \text { such that } \\
|F| 11 .
\end{array}\left|\begin{array}{ccc}
i & j & k \\
2 & 6 & -3 \\
5 & -4 & 1
\end{array}\right|=-6 i-17 j-38 k \right\rvert\, \begin{array}{l}
|F|=111=\frac{111}{|F|} F \\
=\frac{111}{42}\langle-6,-17,-38\rangle
\end{array}
\end{aligned}
$$

QUESTION 2. a) (4 points) The line $L_{1}: x=-2 t-3, y=-3 t+3, z=4 t-2(t \in R)$ intersects the line $L_{2}: x=2 w-13, y=4 w-15, z=4 w-6(w \in R)$ in a point Q. Find Q.

$$
\begin{array}{rlr}
L_{1}: x=-2 t-3 & L_{2}: x=2 w-13 \\
y & =-3 t+3 & y \\
z & =4 t-2 & z=4 w-15 \\
& & =4 w-6
\end{array}
$$

use substation method

$$
-3(2)+3=4(3)-15
$$

$$
-3=-3
$$

$$
\begin{gathered}
4(2)-2=4(3)-6 \\
\frac{16=6}{}
\end{gathered}
$$

$$
\text { Intersection pt }=Q=(-7,-3,6)
$$

$$
\left.\begin{array}{rl}
D_{1}=\langle-2,-3,4\rangle \\
D_{2}=\langle 2,4,4\rangle &
\end{array}\right\rangle \begin{gathered}
D_{1} \cdot D_{2}
\end{gathered}=(-2 \times 2)+(-3 \times 4)+(4 \times 4)
$$

So they are perpendicule because their dot product is zero \& they intersect

$$
\begin{aligned}
& \text { find prof intersection: } \quad-2 t-3=2 w-13 \\
& \text { - now sub in each } \quad \frac{-2 t}{-2}=\frac{2 \omega-13+3}{-2}> \\
& -3(-\omega+5)+3=4 \omega-15 \\
& 3 w-15+3=4 w-1: \\
& 4 \omega-3 \omega=-15+15+5 \\
& 1 \omega=3 \\
& -2(2)-3=2(3)-13 \\
& 1-7=-7 \mid \\
& t=-w+5 \\
& t=-3+5 \\
& t=2
\end{aligned}
$$

QUESTION 6. Consider the hyperbola $\frac{(x-2)^{2}}{(9)^{2}}-\frac{(y-3)^{2}}{16}=1$.
a) (2 points) Draw the hyperbola, roughly
der x so right le ft

b) (2 points) Find the hyperbola-constant K^{*}.

$$
\left(\frac{k}{2}\right)^{2}=9 \quad k=3 \times 2
$$

$$
\frac{k}{2}=\sqrt{9}
$$

c)(3 points) Find the two vertices of the hyperbola.

$$
\begin{aligned}
v_{2}=(2+3,3) & v_{1}= \\
(5,3) & (-1,3)
\end{aligned}
$$

$$
C F^{2}=\left(\frac{k}{2}\right)^{2}+b^{2}
$$

$$
\begin{array}{cc}
F_{1}=(2-5,3) \\
F_{2}=(2+5,3)(-3,3) & C F^{2}=9+16 \\
(7,3) & =25 \\
& \left(\frac{k}{2}\right)^{2}+b^{2} \\
& (F=5
\end{array}
$$

QUESTION 7. (4 points) Given two lines $L_{1}: x=t+1, y=2 t+4, z=-5 t+3(t \in R)$ and $L_{2}: x=2 w-1, y=$ $4 w+1_{1} z=-10 w+13(w \in R)$. Is L_{1} parallel to L_{2} ? Explain (show the work)

- 2 lines orel If they hare cst \& they donor intersect
$L_{1}: x=t+1$

$$
\begin{aligned}
& y=2 t+4 \\
& z=-5 t+3
\end{aligned}
$$

$$
1=c 2 \quad c=\frac{1}{2}
$$

$$
2=c 4 \quad c=\frac{1_{2}^{2}}{2}
$$

$$
-5=c(-10) \quad{ }_{c}^{2}=\frac{1}{2}
$$

$L_{2}: x=2 \omega-1$

$$
\begin{aligned}
& y=4 u+1 \\
& z=-10 w+13
\end{aligned}
$$

$$
D_{2}\langle 2,4,-10\rangle
$$

they have a

2

$$
D_{1}\langle 1,2,-5\rangle
$$

QUESTION 8. (6 points)

Stare at the below. Then find Projection of V over U

QUESTION 9. (4 points) Find the equation of the plane that contains the points $Q_{1}=(4,4,0) \cdot Q_{2}=(0,2,6)$ and $Q_{3}=(4,0,8)$.
$N={\vec{Q} \Theta_{2}}_{2} \times Q_{1} Q_{3}$
$\langle-4,-2,6\rangle \times\langle 0 ;-4,8\rangle$
$\left|\begin{array}{ccc}i & j & k \\ -4 & -2 & 6 \\ 0 & -4 & 8\end{array}\right|=8 j+32 j+16 k$
$8(x-4)+32(y-4)+16 z=0$

QUESTION 10. (6 points) Consider the parabola $-16(x+2)=(y-5)^{2}$.
(i) Sketch the parabola

$$
4 d=-16
$$

\& before x so its left

$$
d=-4
$$

$$
V
$$

(ii) Find the equation of the directrix line

$$
x=-2+4
$$

(iii) Find the focus point.

$$
\begin{array}{r}
\text { Focus }=(-2-4,5) \\
(-6,5)
\end{array}
$$

Quiz III: MTH 111, Spring 2018

Amman Badawi

QUESTION 1. Stare at the following vectors.

1. Draw Projú
(2)

2. Draw Pro ${ }_{V}^{W}$

QUESTION 2. Given $(1,2,4)$ and $(7,-4,3)$ lie on a line L.

$$
\begin{aligned}
& \text { a) Find a parametric equations of } L \\
& \qquad D=(7-1,-4-2,3-4)=(6,-6,-1) \\
& (1,2,4) \text { and }(6,-6,-1) \\
& (1+6 L, 2-6 L, 4-L) \\
& X=1+6 L, \quad y=2-6 L \quad 2=4-L
\end{aligned}
$$

b) Find a symmetric equations of L.

$$
C L=2-Y
$$

En

$$
L: \frac{x-1}{6}=\frac{2-x}{6}=\frac{4-2}{1}
$$

c) Does the point $(1,4,8)$ lie on the line L.

- $\frac{x-1}{6}=\frac{1-1}{6}=0$
- $84-8=-4$
- It doesn't lie on the line L
- $\frac{4-8}{6}=\frac{-2}{6}=\frac{-1}{3}$ because sue values vales framer

QUESTION 3. Let $V=<1,1,2>$ and $W=<-2,2,-1>$. Find Proj W^{\prime}. Will it be in the direction of V ?

$$
\begin{aligned}
& \operatorname{Proj} W=\frac{U \cdot w}{|v|^{2}} \times v \\
& =1(-2)+\mid(2)+2(-1)=1 \\
& =-2+7
\end{aligned}
$$

$$
|v|=\sqrt{1^{2}+1^{2}+2^{2}}=\sqrt{1+1+4}=\sqrt{6}
$$

$$
|v|^{2}=6
$$

$$
=-2+2-2=-2
$$

Faculty information
Ayman Badawi, Department of Mathernatics \& Statistics, A

$$
\operatorname{Prg} \frac{W}{v}=\frac{-2}{6} \times(1,1,2)=\left(\frac{-2}{6}, \frac{-2}{6}, \frac{-4}{6}\right)
$$

E. mail: abadari@aus.edu, wry. ayman-badaui.com

Les it will be in the direction of V

2. NADIN - 12434 Ayman Badawi

QUESTION 2. a) (4 points) Does the line $L_{1}: x=5 t-20, y=-t+3, z=3 t-27(t \in R$) intersect the line $L_{2}: x=-2 w+20, y=-4 w-5, z=2 w-3(w \in R)$? If yes find the intersection point Q.

$$
\begin{aligned}
& L_{1}:\left\{\begin{array}{l}
x=5 t-20 \\
y=-t+3 \\
z=3 t-27
\end{array} \quad L_{2}:\left\{\begin{array}{l}
x=-2 w+20 \\
y=-4 w-5 \\
z=2 w-3
\end{array}\right.\right. \\
& 5 t-20=-2 w+20 \Rightarrow 5 t+2 w=40 \\
& -t+3=-4 w-5 \Rightarrow-t+4 w=-8 \\
& t=8 \quad w=0
\end{aligned}
$$

check for z :

The point of intersection

$$
\begin{aligned}
& x=2 w+20=2(0)+20=20 \\
& y=-4 w-5=-4(0)-5=-5 \\
& z=2 w-3=2(0)-3=-3
\end{aligned}
$$

$$
\begin{aligned}
& \text { point } 2 \text { interncorar is } \\
& (20,-5,-3)
\end{aligned}
$$

b)(2 points) Are the lines in (a) perpendicular? Explain

$$
\begin{aligned}
& D_{1}=\langle 5,-1,3\rangle \quad D_{2}=\langle-2,-4,2\rangle \\
& D_{1} \cdot D_{2}=5(-2)-1(-4)+3(2)=0
\end{aligned}
$$

$$
\text { dot product }=0 \Rightarrow \text { They are perpendicular. }
$$

QUESTION 3. Given $x=-4$ is the directrix of of a parabola that has the point $(-6,5)$ as its vertex point.
a) (2 points) Roughly, sketch such parabola.

$$
|d|=2
$$

b)(4 points) Find the equation of the parabola

$$
\begin{aligned}
4 d\left(x-x_{0}\right) & =\left(y-y_{0}\right)^{2} \\
-4(2)(x+6) & =(y-5)^{2} \\
-8(x+6) & =(y-5)^{2}
\end{aligned}
$$

c) (2 points) Find the focus of the parabola, say F.

$$
F(-8,5)
$$

d) (2 points) Given $Q=(-10, b)$ is a point on the curve of the parabola. Find $|Q F|$ (HINT: You should know how to do this QUICKLY!, you do not need the value of b)

$$
|Q L|=|Q B|=|Q F|=|6|
$$

QUESTION 6. Consider the hyperbola $(y+1)^{2}-\frac{(x-2)^{2}}{8}=1$.
a) (2 points) Draw the hyperbola, roughly

b) (2 points) Find the hyperbola-constant K.

$$
\begin{aligned}
& \left(\frac{k}{2}\right)^{2}=1 \\
& \frac{k}{2}=1 \Rightarrow k=2
\end{aligned}
$$

c)(3 points) Find the two vertices of the hyperbola.

d) (3 points) Find the foci of the hyperbola.

$$
\begin{aligned}
& F_{1}(2,2) \\
& F_{2}(2,-4)
\end{aligned}
$$

QUESTION 7. Given two lines $L_{1}: x=t+1, y=2 t+4, z=-5 t+3$ and $L_{2}: x=2 w+7, y=4 w+16, z=-10 w-27$.
(i) (3 points) Find the symmetric equation of L_{1}.
$x-1=\frac{y-4}{2}=\frac{-z+3}{5}$
(ii) (3 points) Is D_{1} parallel to D_{2} ? (note that D_{1} is the directional vector of L_{1} and D_{2} is the directional vector of L_{2}) Show the work

(iii) (2 points) Is L_{1} parallel to L_{2} ? Explain (show the work)

Take $t=0 \rightarrow(1,4,3)$
check if $(1,4,3) \in L_{2}$

$$
\begin{aligned}
& \left.\begin{array}{l}
1=2 w+7 \Rightarrow w=-3 \\
4=4 w+16=7 w=-3 \\
=-10 w-27 \Rightarrow w=-3
\end{array}\right\} \Rightarrow \begin{array}{l}
\text { it } c \text { to } L_{2} . \\
L_{1} \text { and } L_{2} \text { intersect and they are NOT } \\
\text { parallel. They ane collinear (someone }
\end{array} \\
& 3=-10 w-27 \Rightarrow W=-3 \text { parallel. They are collinear (some line) } \\
& \text { on top of each other? }
\end{aligned}
$$

QUESTION 8. Let $(0,0)$ be the initial point of the two vectors $V=\langle 4,-2\rangle$, and $w=\langle 0,6\rangle$.
a) (2 points) Draw V and W in the $x y$-plane.
b)

prop $_{W}=\overrightarrow{1 B}$

$$
\text { prof }_{v}^{W}=\overrightarrow{1 B}
$$

b) (2 points) Use the picture that you draw in (a) in order to draw Pro j_{w}^{V} c)(2 points) Use the picture that you draw in (a) in order to draw Projw d) (4 points) Find Projejw $_{w}^{v}$ and find its length.

$$
\begin{aligned}
& \operatorname{proj}_{w}^{v}=\frac{v \cdot w}{|w|^{2}} \cdot w=\frac{-12}{36} \cdot w=-\frac{1}{3}\langle 0,6\rangle=\mid\langle 0,-2\rangle \\
& \left|\operatorname{proj}_{w}\right|=\sqrt{2^{2}}=2
\end{aligned}
$$

c)(3 points) Find the angle between V and W

$$
\begin{aligned}
& \cos \theta=\frac{v \cdot w}{|v||w|}=\frac{-12}{(6)(2 \sqrt{5})}=\frac{-\sqrt{5}}{5} \\
& \theta=\cos ^{-1}\left(-\frac{\sqrt{5}}{5}\right)=\frac{116.565^{\circ}}{}
\end{aligned}
$$

Faculty information

Ayman Badawi, Department of Mathematics \& Statistics, American University of Shariah, PO. Box 26666, Shariah, United Arab Emirates. E-thail: abadari¢aus.edu, wry.ayman-badavi.com

NTH 111 Malh.for the Architects Fall 2017, 1-1
Quiz Four: MTH 111, Fall 2017
Ayman Badawi

QUESTION 1. Find a parametric equations of the line that passes through $(1,6,9)$ and $(0,4,-1)$
(1) $L_{D}:\langle 0-1,4-6,-1-9\rangle$
(2)
$L:(1,6,9\rangle++\langle-1,-2,-10\rangle$
$=\langle-1,-2,-10\rangle$

$$
=(1+-t, 6+-2 t, 9+-101)
$$

$-z=$

$$
\left[\begin{array}{l}
x=1-t \\
y=6-2 t \\
z=9-10 t
\end{array}\right]
$$

$t=\mathbb{R}$

QUESTION 2. Find a parametric equations of the line that has directional vector $D=\langle 3,-4.8 \geq$ and it passes through (2, -6, 7)
$L:(2,-6,7)+t\langle 3,-4,8\rangle$

$$
=(2+3 t,-6+-4 t, 7+8 t)
$$

QUESTION 3. Does $L_{1}: x=2 t+1, y=-4 t+6, z=3 t+2(t \in R)$ intersect $L_{2}: x=4 u+1, y=w-12, z=4 u+6$ $(w \in R)$? If yes, then find the intersection point.

$$
t=\frac{0-(72)}{-2-(16)} \quad w=\frac{-36-0}{-2-16}
$$

$-4 t-\omega=-12-6$
$t=\frac{-72}{-18}$
$\omega=\frac{-36}{-18}$
$2+-4 w=0$
$t=4$
$\omega=2$
$-4 t-\omega=-18$
CHECK: 2 of $L_{1} \stackrel{?}{=}$ of L_{2}
$\begin{aligned} 3++2 & \stackrel{?}{=} 4 w+6 \\ 3(4)+2 & =4(2)+6\end{aligned} \rightarrow 14=14$

Eyman Badawi, Department of Mathematics \& Statistics, American University of Shariah, P.O. Box 26666, Shariah, United Arab Emirates.
(2) L_{1} INTERSECT L_{2}
YES!

$$
\begin{aligned}
& \text { (3) FIND INTENSECTION POINT } \rightarrow(9,-10,14) \\
& X=2(4)+1=9 \\
& Y=-4(4)+6=-10 \\
& z=3(4)+2=14
\end{aligned}
$$

QUESTION 10. (12 points)

a) Convince me that $g_{1}=(0,4,2), q_{2}=(2,1,-1)$, and $q_{3}=(2,3,5)$ are not co-linear

$$
\begin{aligned}
& {\vec{Q} Q_{2}}_{\vec{Q}_{2}}=\langle 2,-3,-3\rangle \\
& {\vec{Q} Q_{3}}=\langle 2,-1,3\rangle
\end{aligned}
$$

$$
\begin{aligned}
& \overrightarrow{Q_{1} Q_{2}} \times{\vec{Q}, Q_{3}}=\left|\begin{array}{ccc}
\hat{i} & \hat{j} & \hat{k} \\
2 & -3 & -3 \\
2 & -1 & 3
\end{array}\right| \\
& =-12 \hat{i}-12 \hat{j}+4 \hat{k} \\
& \text { The cross-product is not }
\end{aligned}
$$

b) Find the area of the triangle with vertices $q_{1}, q_{2}, q_{3} .\left(q_{1}, q_{2}, q_{3}\right.$ as in (a))

$$
\text { a zerv-vector } \Rightarrow \text { the }
$$

$$
\begin{aligned}
& \left.A \Delta=\frac{1}{2} \right\rvert\, \overrightarrow{Q, Q_{2}} \times{\vec{Q}, Q_{3}}^{A} \\
& A \Delta=\frac{1}{2} \sqrt{144+144+16}=\frac{1}{2}(4 \sqrt{19})=2 \sqrt{19} \text { units }^{2}
\end{aligned}
$$

c) Find a vector F that is perpendicular to both vectors $\overrightarrow{q_{1} q_{2}}$ and $\overrightarrow{q_{1} q_{3}} .\left(q_{1}, q_{2}, q_{3}\right.$ as in (a))

$$
F=\left|\vec{Q}_{1} \vec{Q}_{2} \times \vec{Q}_{1} Q_{3}\right|=-12 \hat{i}-12 \hat{j}+4 \hat{k}=\langle-12,-12,4\rangle .
$$

d) Convince me that the line $L_{1}: x=2 t+1, y=-t+3, z=4 t+1(t \in R)$ is perpendicular to the line $L_{2}: x=-2 w+5, y=4 w-5, z=2 w-3(w \in R)$.

$$
\begin{aligned}
& L_{1}:\left\{\begin{array}{l}
\nu x=2 t+1 \\
\nu y=-t+3 \\
z=4 t+1
\end{array} ; t \in \mathbb{R} \quad D_{1} ;\langle 2,-1,4\rangle\right. \\
& L_{2}:\left\{\begin{array}{l}
w x=-2 w+5 \\
-y=4 w-5 ; w \in \mathbb{R} \quad D_{2} ;\langle-2,4,2\rangle \\
z=2 w-3
\end{array}\right.
\end{aligned}
$$

Ayman Badawi, Department of Mathematics \& Statistics, American University of Shariah, M.O. Box 26666, Shariah, United Arab Emirates. E-mail: abadawilaus.edu, wwu.ayman-badawi.com
the two lines intersect at
$(1,3,1) \Rightarrow$ The two
lines are perpendicular.

AIMA BIJULAL Exam E MTH III, Spring 2017	65495	3

QUESTION 8. (6 points) Given $x=-4$ is the directrix of of a parabola that has the point $(6,5)$ as its vertex point.
a) Find the equation of the parabola

$$
\begin{aligned}
& 4(10)(x-6)=(y-5)^{2} \\
& =40(x-6)=(y-5)^{2} \\
& \text { a) Find the focus of the parabola. } \\
& F(16,5)
\end{aligned}
$$

QUESTION 9. (6 points) Consider the parabola $x=-0.25(y+3)^{2}+4$ [hint: first write it in the standard form].

$$
\begin{array}{rlrl}
x=-0.25(y+3)^{2}+4 & 4 / d & =-y \\
(x-4)=-0.25(y+3)^{2} & d & =-1
\end{array}
$$

$$
-4(x-4)=(y+3)^{2}
$$

a) Find the focus.

b) Find the equation of the directrix

QUESTION 10. (6 points) Given two lines $L_{1}: x=t, y=1+t, z=3-2 t, L_{2}: x=2+w, y=3-w, z=-1+2 w$.
If L_{1} intersects L_{2}, find the intersection point.

$$
\begin{array}{llll}
\text { If } L_{1} \text { intersects } L_{2} \text {, find the intersection point. } \\
L_{1}: x=t, y=1+1, z=3-2 t, L_{2}: x=2+w, y=3-w, z=-1+2 w . & L_{1}: x=2 & L_{2}: x=2 \\
y=1+t & L_{2}: x=2+w & y=3 & y=3 \\
z=3-2 t & y=3-w & z=-1 & z=-1
\end{array}
$$

The point of

$$
(2,3,-1)
$$

QUESTION 11. Bonus: (4 points) Imagine this: You are staring at 4 tables; table one has 3 legs; table 2 has 4 legs; table 3 has 6 legs; table 4 has 8 legs. Which one of the tables is more stable? explain CLEARLY and briefly in order to get the full mark (NO PARTLAL CREDIT, i.e., 0 or 4)

The table 4 with 8 legs is more stale. since the le ane 8 legs east The weight on the cafe will be equally distributed among more number of legs. each leg will have to support less weight as compared to table 1 when each leg will have to support
Ayman Badawi, Department of Mathematics \& Statistics, American University of Shariah, P,O. Box 26666, Shariah, United Arab Emirates,
Email: abadauilaus.edu, wчץ,ayman-badawi،com
(iv) Find the fourth vertex of the ellipse.

$$
b=\mid\left(\left.v_{3}\right|^{\frac{v}{4}}=2 \rightarrow v_{4}=(-1,-2)\right.
$$

(v) Find the two Foci: F_{1}, F_{2} of the ellipse.

$$
\left|C F_{1}\right|=\left|C F_{2}\right|=\sqrt{\left(\frac{K}{2}\right)^{2}-b^{2}}=\sqrt{49-4}=\sqrt{45} \leadsto F_{1}=(1,-2+\sqrt{45}) / F_{2}=(1,-2-\sqrt{4}=
$$

(vi) Find the equation of the ellipse.

$$
\frac{(y+2)^{2}}{49}+\frac{(x-1)^{2}}{4}=1 \rightarrow \text { see back }
$$

QUESTION 7. Given $V=\langle-4,2\rangle$, $V=\langle 4,3\rangle$ (you may consider $(0,0)$ as the initial point for both vectors)
(i) Sketch both vectors in the $x y$-plane
(ii) Find the angle between V, W (to the nearest 2 decimals)

$$
\left|\operatorname{Proj}_{w}\right|=\frac{|w \cdot V|}{|w|}=\frac{10}{\sqrt{16+9}}=\frac{10}{5}=2
$$

$$
\begin{aligned}
I_{n j}^{v}=F M \& V_{-} \operatorname{proj}_{w}=\langle-4,2\rangle-\left\langle-\frac{8}{5},-\frac{6}{5}\right\rangle & =\left\langle-4+\frac{8}{5} ; 2+\frac{6}{5}\right\rangle \\
& \left\langle-\frac{12}{5}, \frac{16}{5}\right\rangle
\end{aligned}
$$

3.5 Questions with Solutions on Planes in 3 D from

 previous semesters

 Quiz V MTH 111, Spring 2019
 Ayman Badawi

7/7 QUESTION 1. Let $Q_{1}=(1,1,2), Q_{2}=(0,1,3), Q_{3}=(2,1,5)$. Find the equation of the plane that passes through Q_{1}, Q_{2}, Q_{3}
$N \perp \overrightarrow{Q_{1} Q_{2}} \times \overrightarrow{Q_{1} Q_{3}}$

$\overrightarrow{Q Q}_{1}=\langle 0.1,1.1,3.2\rangle \quad \vec{Q}_{1} \vec{Q}_{3}=\langle 2.1,1.1,5.2\rangle$
$=\langle-1,0,1\rangle, 1 \quad-\langle 1,0,3\rangle$
$\begin{aligned} & \overrightarrow{Q Q}_{1} \\ & Q_{2} \vec{Q}_{1} Q_{3}=\left|\begin{array}{ccc}i & j & k \\ -1 & 0 & 1 \\ 1 & 0 & 3\end{array}\right|=(0) i-(-3-1) j+(0) k \\ & 0,\langle 0,4,0\rangle{ }_{3}\end{aligned}$
choose $Q_{1} \&$ a random point $\mid \vec{N} \cdot \overrightarrow{Q, w}=\langle 0,4,0\rangle \cdot\langle x-1, y-1,2.2\rangle=0$
$w=(\alpha, y, z)$
$Q_{i}=(1,1,2)$
$\overrightarrow{Q_{1} \omega}=(x-1, y-1, z-2)$

$$
\begin{aligned}
& 0(x-1)+4(y-1)+0(z-2)=0 \\
& 4(y-1)=0
\end{aligned}
$$

(ii) (4 points) Given $N=<-2,3,2>$ is perpendicular to the plane P and the point $(-1,4,2)$ lies inside the plane P. Find the equation of the plane P.

$$
\begin{aligned}
& N_{x}\left(x-P_{x}\right)+N_{y}\left(y-P_{y}\right)+N_{z}\left(z-P_{z}\right)=0 \\
& -2(x+1)+3(y-4)+2(z-2)=0 \Leftrightarrow \text { plane }
\end{aligned}
$$

$$
\begin{aligned}
& \langle 11 ' \varepsilon-' 2\rangle=a \\
& \left\langle 2-^{\prime} 9-' 2\right\rangle=N
\end{aligned}
$$

$$
O=75 n \mathrm{~m}{ }^{2 w i 1} \mathrm{O} \cdot 203 \mathrm{~d} \mathrm{~N}
$$

\square

NTH 111 Math.for the Architects Spring 2018, 1-1

Ayman Badawi
QUESTION 1. a) Find the equation of the plane that contains the points $Q_{1}=(0,1,1), Q_{2}=(0,2,3), Q_{3}=(1,3,2)$.
$\vec{Q}_{1}: \quad(0,2,3)-(0,1,1) \rightarrow\langle 0,1,2\rangle$
$\vec{Q}_{1}{ }_{3}$.

$$
(1,3,2)-(0,1,1) \rightarrow\langle 1,2,1\rangle
$$

$\vec{Q}_{1} \vec{Q}_{2} \cdot \overrightarrow{Q_{1} Q_{3}}=\langle N\rangle=i[(|x|)-(2.2)]-j[(0.1)-(2.1)]+k[(0.2)-(1.1)]$

c) Given a plane $P: 5 x-7 y+z=21$ Can we draw the vector $V=<-4,-3,-1>$ inside the plane P ? explain

$$
\begin{array}{ll}
N\langle 5,-7,1\rangle & N \cdot V=0=A \rightarrow \text { so inside plane } \\
V\langle-4,-3,-1\rangle & (5 \cdot-4)+(-7 \cdot-3)+(1 \cdot-1)=-20+21-1
\end{array}
$$

Exam II: MTH 111, Spring 2018
Ayman Badawi
Points $=$

QUESTION 2. (i) (3 points) What can you say about the line $L: x=2 t+1, y=t-1, z=-2 t+3$ and the plane
$x+2 y+z=16$? (i.e., Doe L lie inside the plane? Does L intersect the plane exactly in one point? or neither?
L: $x=2 t+1$
$P: x+2 y+z=16$
$x: 2(7)+1=15$
$y=t-1$
$(2 t+1)+2(t-1)-2 t+3=16$
$y: 7-1=6$
$z=-2 t+3$
$2 t+1+2 t-2(-2 t+3=16$
$2 t=14 \Rightarrow t=1412 \Rightarrow t=7$
/ $/ \begin{aligned} & z:-2(1)+3=-11 \\ & \begin{array}{l}\text { Q: intersection } \\ \text { point }=(15,6,-11)\end{array}\end{aligned}$
(ii) (4 points) Given $N=<-2,3,2>$ is perpendicular to the plane P and the point $(-1,4,2)$ lies inside the plane P Find the equation of the plane P.
$N=\langle-2,3,2\rangle \perp P$ at $Q(-1,4,2)$

$$
\begin{aligned}
& p:-2(x+1)+3(y-4)+2(z-2)=0 \\
& p:-2 x-2+3 y-12+2 z-4=0 \\
& p:-2 x+3 y+2 z=18
\end{aligned}
$$

(iii) (6 points) Find the equation of the plane that contains the points $Q_{1}=(4,4,0), Q_{2}=(0,2,6)$ and $Q_{3}=(4,0,8)$.
Eqn of plane \rightarrow directional vector and point φ_{1}
$Q_{1}:(4,4,0)$
$\varphi_{2}:(0,2,6)$
$Q_{3}:(4,0,8)$
$Q_{1} \quad \begin{aligned} & V=Q_{1} Q_{2}=\langle 4,2,-6\rangle \\ & W=Q_{3} Q_{2}=\langle 4,-2,2\rangle\end{aligned}$
Q_{2}

$$
\begin{aligned}
& V \times N=\left|\begin{array}{ccc}
1 & 1 & k \\
4 & 2 & -6 \\
4 & -2 & 2
\end{array}\right|=\left|\begin{array}{cc}
2 & -6 \\
-2 & 2
\end{array}\right|,\left|\begin{array}{cc}
4 & -6 \\
4 & 2
\end{array}\right|,\left|\begin{array}{cc}
4 & 2 \\
4 & -2
\end{array}\right| \\
& \\
& =\langle 4-12,-(8+24),-8-8\rangle \\
& \\
& =\langle-8,-32,-16\rangle \\
& >\quad P:-8(x-4)-32(y-4)-16(z+0)=0 \\
& P:-8 x+32-32 y+128-16 z=0 \\
& P:-8 x-32 y-16 z=-160
\end{aligned}
$$

Exam II: MTH 111, Fall 2017

$$
\text { Points }=\frac{47}{47} \quad \text { Maya Alshamsi }
$$

QUESTION 2^{x} (i) (3 points) Can we draw the vector $v=\langle 3,-5,2\rangle$ inside the plane $x-4 y-11 z=7$? explain

$$
\begin{aligned}
& V=\langle 3,-5,2\rangle \\
& N=\langle 1,-4,-11\rangle
\end{aligned}
$$

$$
N \cdot V=3(1)-5(-4)+2(-11)
$$

$$
\frac{N O}{T L}:
$$

The two vectors are
$N=\langle 1,-4,-11\rangle \quad N \cdot V=3+20-22=1 \neq 0$ not perpendicular,

$$
N \cdot V=3+20-22=1 \neq 0
$$

(ii) (4 points) Given $N=<4,6,2>$ is perpendicular to the plane P and the point $(4,1,1)$ lies inside the plane P. Find inside the the equation of the plane P.

$$
\begin{gathered}
a\left(x-x_{0}\right)+b\left(y-y_{0}\right)+\left(\left(z-z_{0}\right)=0\right. \\
4(x-4)+6(y-1)+2(z-1)=0 \\
4 x-16+6 y-6+2 z-2=0 \\
4 x+6 y+2 z=24
\end{gathered}
$$

$N=\begin{aligned} & \langle 4,6,2\rangle \\ & \langle a, b, c\rangle\end{aligned}$

$$
\langle a, b, c\rangle
$$

$Q(4,1,1)$
(iii) (6 points) Find the equation of the plane that contains the points $Q_{1}=(1,1,4), Q_{2}=(2,3,6)$ and $Q_{3}=(1,1,8)$.

$$
\begin{gathered}
Q_{1}(1,1,4)\left|\begin{array}{rl}
Q_{1} Q_{2} & =\langle 1,2,2\rangle \\
Q_{2}(2,3,6) \\
Q_{3}(1,1,8)
\end{array}\right| \begin{aligned}
& Q_{1} Q_{3}=\langle 0,0,4\rangle \\
& \vec{N}=\overrightarrow{Q_{1} Q_{2}} \times \overrightarrow{Q_{1} Q_{3}}=\left|\begin{array}{lll}
\hat{i} & \hat{j} & \hat{k} \\
1 & 2 & 2 \\
0 & 0 & 4
\end{array}\right| \\
& \vec{N}=8 \hat{i}-4 \hat{j}+0 \hat{k} \\
& \vec{N}=\langle 8,-4,0\rangle
\end{aligned} \\
(8(x-1)-4(y+4)+\theta(z) \\
8(x-1)-4(y-1)+0(z-4)=0 \\
8 x-8-4 y+4=0 \\
8 x-4 y=4 \\
2 x-y=1
\end{gathered}
$$

FiCTION 3. (i) (4 points) The line $L: x=2 w, y=-w+1, z=3$ intersects the plane $4 x+7 y+z=12$ in a point

$$
\text { L: }\left\{\begin{array}{l}
x=2 w \\
y=-w+1 ; w \in \mathbb{R} \\
z=3
\end{array}\right.
$$ Pi $4 x+7 y+z=12$

$$
\begin{aligned}
& 4(2 w)+7(-w+1)+3=12 \\
& 8 w-7 w+7+3=12
\end{aligned}
$$

$$
w+10=12
$$

and the line
$\Rightarrow \Phi(4,-1,3)$

Exam I: MTH 111, Spring 2017

QUESTION 1. (4 points) Given that the line $L=2+t, y=-3 t, z=1+2 t$ is perpendicular to a plane, say P. If the point $(1,2,-5)$ lies in the plane P, find the equation of the plane P.

The parancticic eq cantbe written as $L: t\langle 1,-3,2\rangle+(2,0,1)$
since $L \perp$ to plane \& $\operatorname{pt}(1,2,-5)$ lies on the plane $\vec{N} \hat{\imath}$ $1(x-1)+-3(y-2)+2(z+5)=0$
$x-1-3 y+6+2 z+10=0$
$x-3 y+2 z+15=$

（iii）Let $Q_{1}=(1,1,0), Q_{2}=(0,-1,2)$ and $Q_{3}=(2,2,2)$ ．
a．（ 5 points）Find the equation of the plane that contains Q_{1}, Q_{2}, Q_{3} ．
$\vec{Q}_{1} \vec{Q}_{2}\langle-1,-2,2\rangle \quad \vec{Q}_{1} \vec{Q}_{3}\langle 1,1,2\rangle$
$N=\left|Q_{1} Q_{2} \times Q_{1} Q_{2}\right|=\left|\begin{array}{ccc}1 & J_{2} \\ -1 & -2 & 2 \\ 1 & 1 & 2\end{array}\right|=\langle-6,4,1\rangle$
P：$-6(x-2)+4(y-2)+1(z-2)=0$
b．（2 points）Find the area of the triangle that has Q_{1}, Q_{2}, Q_{3} as vertices．
$A=\frac{1}{2}\left|\vec{Q}_{1} \vec{Q}_{2} \times \vec{Q}_{1} Q_{3}\right|=\frac{\sqrt{6^{2}+4^{2}+1^{2}}}{2}=\frac{\sqrt{53}}{2}$
unit ${ }^{2}$ 1
（iv）（4 points）Given $L: x=t+1, y=8, z=4 t+1$ lies entirely inside the plane $P: a x+2 y+z=6$ Find the values of $a, b . \quad D\langle 1,0,4\rangle \quad N<a, 2,1\rangle$

$$
\begin{array}{lr}
N \cdot D=0 & -4(t+1)+2(8)+4 t+1=b \\
a+4=0 & -4 t-4+16+4 t+1=b \\
a=-4 & b=13
\end{array}
$$

3.6 Questions with Solutions on Intersection of Planes in 3 D from previous semesters

Exam I: MTH 111, Spring 2017

QUESTION 1. (4 points) Given that the line $L=2+t, y=-3 t_{s} z=1+2 t$ is perpendicular to a plane, say P. If the point $(1,2,-5)$ lies in the plane P, find the equation of the plane P.

The parancetlic eq cant be written as $L: t\langle 1,-3,2\rangle+(2,0,1)$
since $L \perp$ to plane \& $\operatorname{pt}(1,2,-5)$ lies on the plane

$$
\begin{aligned}
& 1(x-1)+-3(y-2)+2(z+5)=0 \\
& x-1-3 y+6+2 z+10=0 \\
& x-3 y+2 z+15=0
\end{aligned}
$$

QUESTION 2. (5 points) The two planes $P_{1}: 2 x-y+z=6$ and $P_{2}:-x+y+4 z=4$ intersect in a line L. Find a parametric equations of L.

$$
\begin{aligned}
& P_{1}: 2 x-y+z=6 \quad\langle 2,-1,1\rangle \rightarrow \overrightarrow{N_{1}} \\
& P_{2}:-x+y+4 z=4\langle-1,1,4\rangle \rightarrow \overrightarrow{N_{2}} \\
& \overrightarrow{N_{1}} \times \vec{N}_{2}=\left|\begin{array}{ccc}
i & k \\
2 & -1 & 1 \\
-1 & 1 & 4
\end{array}\right|=\hat{i}(-4-1)-\hat{j}(8+1)+\hat{k}(2-1) \\
& =-5 i-9 \hat{j}+\hat{k} \rightarrow\langle-5,-9,1\rangle
\end{aligned}
$$

Assume $z=0$

$$
p t(10,14,0)
$$

QUESTION 3. (6 points) From the origin (ie, $(0,0)$) draw the two vectors $V=\langle 4, \mathrm{I}\rangle, W=\langle-2,-6\rangle$. First draw Proj$V_{V}^{W}$. Then find ProjW and its length.

$$
6 / 6
$$

$$
\begin{aligned}
& \operatorname{proj} w= \frac{v \cdot \omega}{|v|^{2}} \cdot v \\
&=\frac{-8-6}{17}\langle 4,1\rangle \\
&=\left\langle\frac{-14}{17}\langle 4,1\rangle\right. \\
& \mid \text { prof } w \mid\left.=\frac{-14}{17}\right\rangle / \frac{3186}{196} \\
& \left\lvert\, \frac{332}{28}\right. \\
&=\sqrt{\left.\frac{-56}{17}\right)^{2}+\left(\frac{-14}{17}\right)^{2}} \\
&=11.52
\end{aligned}
$$

QUESTION 4. (3 points) Given that $y=-2$ is the directrix of a parabola that has focus F. If the point $Q=(4,7)$ lies on the curve of the parabola, find $|Q F|$ (ie., find the distance between F and Q).

$$
|Q L|=9
$$

since $|Q F|=|Q L|$

$$
\therefore|Q|=\mid=9 \text { wits }
$$

Quiz 5: MTH 111, Spring 2018
Ayman Badawi

QUESTION $1:$ a) The Plane $P: \geq x+y-z=16$ intersects the line $L: x=3 t \cdot y=-2 t+4,=-1-2$ at a point Q find Q.

$$
\begin{aligned}
& 2(3 t)-2 t+4+t+2=16 \\
& 6 t-2 t+4+t+2=16 \\
& t=2 \mathrm{Y} \\
& x=3(2)=6 \\
& y=-2(2)+4=0 \\
& z=-2-2=-4
\end{aligned}
$$

c) The wo planes $P_{1}: 9 x+y-z=6$ atkd $P_{2}: 4 x-y+=x 12$ intersect in a line L. Find a parametric equations of
L.

$$
\begin{aligned}
& N_{1}:\langle 2,1,-1\rangle \\
& D=N_{1} \times N_{2}=\left|\begin{array}{ccc}
i & N_{2} & k \\
2 & 1 & -1 \\
4 & -1 & 1
\end{array}\right|=\langle 1\rangle
\end{aligned} \quad\langle,-6,-6\rangle, \begin{aligned}
& x=3 \\
& y=-6 t \\
& z=-6 t
\end{aligned} \quad: t \in \mathbb{R}
$$

take $z=0$.

$$
\begin{aligned}
& 2 x+y=6 \\
& 4 x-y=12 \\
& x=3 \quad y=0
\end{aligned} \quad Q(3,0,0)
$$

QUES'ION 2. Find $f^{\prime}(x)$ and do not simplify

$$
\text { cf }\left[f f(x)=18 \sqrt{x}+7 x+1 \text {. find } f^{\prime}(9)\right.
$$

$$
f^{\prime}(x)=\frac{9}{\sqrt{x}}+\left.7\right|_{x=9}=10
$$

, Faculty information

Ayman Badawi, Department of Mathematics \& Statistics, inuerican University of Shajah, PO. Box 26666, Sharjah. United Arab Emirates.
E-muil: abadayidaus.odu, \%ve ayman-badavi.com

$$
\begin{aligned}
& \text { a) } f(x)=3 x^{2}(x+2)^{2}+2018 x-2017 \\
& f^{\prime}(x)=6 x(x+2)^{2}+6 x^{2}(x+2)+2018 \\
& \text { Product farimula } \\
& \text { b) } f(x)=8 \sqrt{x}+\frac{h}{x^{2}}+2 x^{2} \\
& f^{\prime}(x)=\frac{4}{\sqrt{x}}-\frac{18}{x^{4}}+4 x \\
& \begin{array}{l}
1 / 2 \\
\text { or } f(x)=3 x^{2}\left(x^{2}+4 x+4\right)+2018 x-2 d z
\end{array} \\
& \begin{array}{l}
v_{2} \\
\text { or } f(x)=3 x^{2}\left(x^{2}+4 x+4\right)+2018 x-2 d x
\end{array} \\
& \begin{aligned}
&=3 x^{4}+12 x^{3}+12 x^{2}+2018 x-2 d x \\
&(x)=12 x^{3}+36 x^{2}+24 x+2018 x
\end{aligned} \\
& \begin{aligned}
\text { so } & =3 x^{4}+12 x^{3}+12 x^{2}+2018 x \times 242 \\
f^{\prime}(x) & =12 x^{3}+36 x^{2}+24 x+2018 x
\end{aligned}
\end{aligned}
$$

0
QUESTION 11. (4 points) Given that $z=6$ is the directrix line of a parabola that has F as its focus point. If the point $Q=(-2,12)$ lies on the parabola. Find $|Q F|$ (i.e., the distance between Q and F).

$$
10 \% 1=10 L 1=8
$$

QUESTION 12. (6 points) Consider the ellipse $\frac{(y-1)^{2}}{(9)}+\frac{(x+2)^{2}}{(25)}=1$.
(i) Sketch (roughly)
 is

(ii) Find the foci of the ellipse

$$
\begin{aligned}
C F^{2} & =\left(\frac{k}{2}\right)^{2}-b^{2} \\
& =25-9 \\
& =16
\end{aligned}
$$

$$
C F^{2}=16
$$

$$
50 \quad \overline{C F}=4
$$

$$
\text { so } \begin{gathered}
F_{1}(-2+4,1) \\
(2,1)
\end{gathered}
$$

$$
F_{2}(-2-4,1)
$$

QUESTION 13. (4 points) Given $Q=(1,6,4)$ is not on the line $L: x=t+1, y=2 t+4, z=-5 t+3(t \in R)$. Find $|Q L|$.

$$
\begin{aligned}
& \begin{array}{l}
|Q L|=\frac{|D \times I Q|}{|D|}=\frac{\sqrt{12^{2}+1^{2}+2^{2}}}{\sqrt{1^{2}+2^{2}+5^{2}}} \\
\text { Faculty information }
\end{array} \\
& =\frac{\sqrt{149}}{\sqrt{30}}
\end{aligned}
$$

$$
\begin{aligned}
& D=\langle 1,2,-5\rangle \\
& I=\langle 1,4,3\rangle \\
& \quad I Q=\langle 0,2,1\rangle \\
& I Q \times D=\left|\begin{array}{lll}
i & j & k \\
0 & 2 & 1 \\
1 & 2 & -5
\end{array}\right|
\end{aligned}
$$

Ayman Badawi, Department of Mathematics \& Statistics, American University of Shariah, P.O. Box 26666, Shariah, United Arab Emirates. Email: abadawiCaus.edu, ww. ayman-badawi. com

$$
=-12 i+1 j-2 k
$$

$$
\begin{aligned}
& \text { (iii) Find all four vertices of the ellipse. } \\
& \left(\frac{k}{2}\right)^{2}=25 \quad \pm \frac{k}{2} \\
& \frac{k}{2}=5 \quad \frac{5}{5} \\
& (-6,1) \\
& v_{1}=\left(\begin{array}{c}
-2+5,1) \\
(3,1)
\end{array}\right. \\
& V_{2}=(-2-5,1) \\
& v_{4}=(-2,1-3)^{2}(-2,-2) \\
& b^{2}=9 \quad b=3 \quad(-7,1)
\end{aligned}
$$

(ii) (4 points) Given $N=<-2,3,2>$ is perpendicular to the plane P and the point $(-1,4,2)$ lies inside the plane P. Find the equation of the plane P.

$$
\begin{aligned}
& N_{x}\left(x-P_{x}\right)+N_{y}\left(y-P_{y}\right)+N_{z}\left(z-P_{z}\right)=0 \\
& -2(x+1)+3(y-4)+2(z-2)=0 \Leftrightarrow \text { plane }
\end{aligned}
$$

(iii) (4 points) Find the distance between $Q=(10,10,33)$ and the plane $P:-2 x+2 y-5 z=21$.

$$
\begin{aligned}
& \text { Find the distance between } Q=\frac{|P(0)|}{|N|} \quad \frac{\mid-2(10)+23) \text { and the plane } P:-2 x+2 y-5 z=21}{\sqrt{4+4+25}}=\frac{\mid 86}{\sqrt{33}} \text { units. }
\end{aligned}
$$

(iv) (6 points) The two planes $P_{1}: x+4 y+z=10$ and $P_{2}:-x+2 y-z=8$ intersects in a line L. Find a parametric equations of L.

$$
\begin{array}{ll}
N_{1} \times N_{2}=D & 2 \rightarrow D=(-2,3,0) \\
N_{i}=\langle 1,4,1\rangle & D=\langle-6,0,6\rangle
\end{array}
$$

$$
N_{2}=\langle-1,2,-1\rangle
$$

$$
\text { (3) } \rightarrow L \text { : }
$$

$$
\left.\begin{array}{l}
x=-6 t-2 \\
y=3 \\
z=6 t
\end{array}\right\} t \in \mathbb{R}
$$

$$
(-4-2) i-(-1+1) j+(2+4) k
$$

$$
\begin{array}{rlr}
\text { (1) } \rightarrow \quad D & =\langle-6,0,6\rangle \\
\text { let } z=0 & \\
-x+2 y=8 & x=-2 \\
x+4 y=10 & y=3 \\
& z=0
\end{array}
$$

\int Hance

QUESTION 6. (5 points). Let $H=(4,6), F=(6,34)$. Find a point Q on the line $x=-2$ such that $|H Q|+|F Q|$ is minimum.
$y=m x+b$
$m=\frac{6-34}{4+10}=-2$
$6=-2(4)+b$
$b=14$
$y=-2 x+14$

$$
Q=(-2,18)
$$

$y=-2(-2)+14$
$=18$

QUESTION 7. (4 points). For what values of x does the tangent line to the curve $y=\ln (4 x+1)+7 x+2$ have slope
equal 8 ?

$$
\begin{aligned}
& y^{\prime}=8 \\
& y^{\prime}=\frac{4}{4 x+1}+7=8 \\
& \frac{4}{4 x+1}=1 \\
& 4=4 x+1 \\
& 4 x=4-1 \\
& x=3 / 4
\end{aligned}
$$

$$
\begin{array}{r}
\frac{4}{4\left(\frac{3}{4}\right)+1}+7= \\
1+7=8
\end{array}
$$

$$
\text { the Tine has slope } 8 \text { at } x=\frac{3}{4}
$$

QUESTION 8. (6 points). The plane $P_{1}: x+2 y-3 z=2$ intersects the plane $P_{2}:-x+5 y+z=19$ in a line L. Find a parametric equations of L.

$$
\begin{gathered}
N_{1} \times N_{2}=D \\
N_{1}=\langle 1,2,-3\rangle \\
N_{1}=\langle-1,5,1\rangle \\
D=(2+15)_{i}-(1-3) j+(5+2) k \\
=\langle 1\rangle, 2,\rangle\rangle
\end{gathered}
$$

$$
\text { (3) } \rightarrow(-4,3,0)
$$

$$
D=\langle 17,2,7\rangle
$$

$$
L: \quad x=17 t-4
$$

$$
\left.\begin{array}{l}
y=2 t+3 \\
z=7 t
\end{array}\right\} t \in \mathbb{R}
$$

(2) $\rightarrow \quad 2=0$
$x+2 y=2$
$-x+5 y=19$

QUESTION 9. (5 points). Can we draw the entire line $L^{3}: x=2 t, y=-3 t+1, z=11 t+4$ inside the plane $2 x-6 y-2 z=20$? EXPLAIN

$$
\text { Nplare }- \text { Dine must }=0
$$

$$
N=\langle 2,-6,-2\rangle
$$

 nth plat
on not

the lime can be entirely drawn on the plane because the dol product normal and diectiunat vector is ∂

Exam I: MTH 111, Spring 2018

> Ayman Badawi \quad Nadin El Shirbini Points $=\frac{80}{80}$

QUESTION 1. a) (3 points) Are the points $q_{1}=(1,2,-2), q_{2}=(3,3,1)$, and $q_{3}=(5,4,4)$ collinear? Show the work $\overrightarrow{Q_{1} \vec{Q}_{2}}=\langle 2,1,3\rangle$ $Q_{1} Q_{3}=\langle 4,2,6\rangle$
b) (3 points) Given $A=(10,4), B=(4,2)$, and $C=(-6,0)$ are the vertices of a triangle. Roughly, sketch the triangle $A B C$. Find the area of the triangle $A B C$.

$$
\begin{array}{ll}
\overrightarrow{A B}=\langle-6,-2\rangle & \overrightarrow{A B} \times \overrightarrow{A C}=\left|\begin{array}{ccc}
i & j & k \\
-6 & -2 & 0 \\
-16 & -4 & 0
\end{array}\right|=\langle 0,0,-8\rangle \\
\overrightarrow{A C}=\langle-16,-4\rangle & \\
A_{\triangle A B C}=\frac{1}{2}|\overrightarrow{A B} \times \overrightarrow{A C}|=\frac{1}{2} \sqrt{(-8)^{2}}=4 \text { units }^{2}
\end{array}
$$

c) (3 points) Find a vector F that is perpendicular to both vectors $V=\langle 2,-1,4\rangle$ and $W=\langle 0,4,2\rangle$
$\vec{F}=\vec{V} \times \vec{W}=\left|\begin{array}{ccc}i & j & k \\ 2 & -1 & 4 \\ 0 & 4 & 2\end{array}\right|=\langle-18,-4,8\rangle$
d) (2 points) Let V, W as in (c). Find a vector F that is perpendicular to both V and W such that $|F|=2$. (hint: Just think a little)

$$
|F|=\sqrt{18^{2}+4^{2}+8^{2}}=2 \sqrt{101}(2)\left(\frac{1}{1 F 1}\right) \cdot F=\frac{2}{\sqrt{101}} \cdot F=\frac{1}{\sqrt{101}} \cdot F=\frac{1}{\sqrt{101}}<-18,-4,81
$$

$$
\left.\left|F<-\frac{18}{\sqrt{10}}, \frac{-4}{\sqrt{10}}, \frac{2}{\sqrt{101}}\right\rangle \right\rvert\,
$$

$$
\left(\begin{array}{l}
\text { check if }|F|=2 \\
\\
\left(\frac{1-18}{\sqrt{101}}\right)^{2}+\left(\frac{-4}{\sqrt{10}}\right)^{2} \\
\end{array}\right.
$$

$$
\begin{aligned}
& \overrightarrow{Q_{1}} \times \overrightarrow{Q_{1}} \vec{Q}_{3}=\left|\begin{array}{lll}
i & 1 & k \\
2 & 1 & 3 \\
4 & 2 & 6
\end{array}\right|=<\left|\begin{array}{ll}
j & k \\
1 & 3 \\
2 & 6
\end{array}\right|,\left|\begin{array}{ll}
i & k \\
2 & 3 \\
4 & 6
\end{array}\right| \begin{array}{ll}
1 & j \\
2 & 1 \\
4 & 2
\end{array}|>\ll 0,0,0\rangle \\
& \text { rose product is zero } \Rightarrow \text { they are collinear }
\end{aligned}
$$

QUESTION 3. (i) (4 points) (1) Convince me that the line $L: x=4 t, y=-4 t+1, z \equiv 2 t+1$ is perpendicular to the plane $P: 2 x+-2 y+z=12$ (If you think that F am wrong, then state your reason). (2) Can we draw the vector $V=<1,-2,-6>$ inside P ?
L: $x=4 t$
P: $2 x+-2 y+z=12$ $y=-4 t+1$
$D_{2}=\langle 2,-2,1\rangle$
$z=2 t+1$
i)
$D_{1}=\langle 4,-4,2\rangle$
 eire are
(ii) (3 points) Find the distance between $Q=(10,10,33)$ and the plane $P: 2 x=2 y+z=2 t$.

$$
\begin{array}{ll}
Q=(10,10,33) \\
P: 2 x-2 y+z=21
\end{array} \quad Q P=\frac{|2(10)-2(10)+33-21|}{\sqrt{(2)^{2}+(-2)^{2}+(1)^{2}}},
$$

(iii) (3 points) Find the distance between $Q=(10,10,33)$ and the line $L: x=t+1, y=-2 t+3, z=t$

$$
\begin{aligned}
& Q=(10,10,33) \\
& L: x=t+1
\end{aligned}
$$

$$
\begin{aligned}
& W=|Q B|=9,7,33 \quad \frac{|W \times 0|}{101}=\frac{\sqrt{73^{2}+24^{2}+25^{2}}}{1 \sqrt{1^{2}+211^{2}}}=32.99 \text { units }
\end{aligned}
$$

(iv) (6 points) The two planes $P_{1}: x+2 y+z=10$ and $P_{2}:-x+2 y-z=6$ intersects in a line L. Find a parametric equations of L.
$P_{1}=x+2 y+z=10 \rightarrow N_{1}=\langle 1,2,1\rangle$
$P_{2}:-x+2 y-z=6 \rightarrow N_{2}=\langle-1,2,-1\rangle$
$\begin{aligned} N_{1} \times N_{2}=\left|\begin{array}{ccc}i & j & k \\ 1 & 2 & 1 \\ -1 & 2 & -1\end{array}\right| & =\left|\begin{array}{cc}2 & 1 \\ 2 & -1\end{array}\right|,-\left|\begin{array}{cc}1 & 1 \\ -1 & -1\end{array}\right|,\left|\begin{array}{cc}1 & 2 \\ -1 & 2\end{array}\right| \\ & =\langle-2-2,-(-1+1), 2+2\rangle \\ N, \times N_{2} & =\langle-4,0,4\rangle\end{aligned}$
Let $Z=0$ in P_{1} and P_{2}

$$
\begin{aligned}
& x+2 y=10 \rightarrow x=10-2 y \rightarrow \\
& \begin{array}{l}
-x+2 y=6 \\
1 \\
-(10-2 y)+2 y=6
\end{array} \\
& \begin{array}{l}
10-2(1)=10-8=1 \\
-10+2 y+2 y=6
\end{array} \left\lvert\, \begin{array}{l}
\text { Parametric eqns: } \\
x=-4 t-2 \\
y: 4 \\
z: 4 t
\end{array}\right.
\end{aligned}
$$

$$
-10+4 y=6
$$

$$
4 y=6+10
$$

$$
\begin{aligned}
& 4 y=6+10 \\
& 4 y=16 \Rightarrow y=16 / 4 \Rightarrow y=4
\end{aligned}
$$

FUSTITON 3. (i) (4 points) The line $L: x=2 w, y=-w+1, z=3$ intersects the plane $4 x+7 y+z=12$ in a point

$$
\text { L: } \begin{cases}x=2 w \\ y=-w+1 ; w \in \mathbb{R} & \text { pi } 4 x+7 y+z=12 \\ z=3 & 4(2 w)+7(-w+1)+3=12 \\ & 8 w-7 w+7+3=12\end{cases}
$$

Q(4,-1,3)

$$
\begin{aligned}
& w+10=12 \\
& w=2
\end{aligned} \rightarrow \text { and the plane line } \begin{aligned}
& \text { intersect when } \\
& w=2
\end{aligned}
$$

(ii) (4 points) Find the distance between $Q=(2,1,4)$ and the plane $2 x-2 y+z=21$.
$1(0,0,21)$
$Q(2,1,4)$
$d=\frac{|\vec{Q} \cdot N|}{|N|}=\frac{|2(2)+1(-2)+|(-17)|}{\sqrt{4+4+1}}$
$\overrightarrow{1 Q}=\langle 2,1,-17\rangle$
$d=\frac{15}{\sqrt{9}}=\frac{15}{3}=5$ units

(iii) (6 points) The two planes $P_{\mathrm{t}}: x+y+z=2$ and $P_{2}:-x+y-z=6$ intersects in a line L. Find a parametric equations of L.

$$
\begin{aligned}
& N_{1}=\langle 1,1,1\rangle \\
& N_{2}=\langle-1,1,-1\rangle
\end{aligned}
$$

$$
\vec{D}=\vec{N}, \overrightarrow{N_{2}}=\left|\begin{array}{ccc}
\hat{i} & \hat{j} & \hat{k} \\
1 & 1 & 1 \\
-1 & 1 & -1
\end{array}\right|
$$

$$
\vec{D}=-2 \hat{i}+0 \hat{j}+2 \hat{k}
$$

\rightarrow Let $z=0$; find x and y :

$$
\left\{\left.\begin{array}{l}
x+y=2 \\
-x+y=6 \\
2 y=8 \\
y=4
\end{array} \right\rvert\, \begin{array}{l}
x+4=2 \\
x=2-4 \\
x=-2
\end{array}\right.
$$

* Parametric Ens: $\frac{\text { The point is }(-2,4,0) \text { and } D=\langle-2,0,2\rangle}{\left\{\begin{array}{l}x=-2-2 t \\ y=4 \\ z=2 t\end{array} t \in \mathbb{R}\right.}$

Exam I: MTH 111, Spring 2017

QUESTION 1. (4 points) Given that the line $L=2+t, y=-3 t_{s} z=1+2 t$ is perpendicular to a plane, say P. If the point $(1,2,-5)$ lies in the plane P, find the equation of the plane P.

The parancetlic eq cant be written as $L: t\langle 1,-3,2\rangle+(2,0,1)$
since $L \perp$ to plane \& $\operatorname{pt}(1,2,-5)$ lies on the plane

$$
\begin{aligned}
& 1(x-1)+-3(y-2)+2(z+5)=0 \\
& x-1-3 y+6+2 z+10=0 \\
& x-3 y+2 z+15=0
\end{aligned}
$$

QUESTION 2. (5 points) The two planes $P_{1}: 2 x-y+z=6$ and $P_{2}:-x+y+4 z=4$ intersect in a line L. Find a parametric equations of L.

$$
\begin{aligned}
& P_{1}: 2 x-y+z=6 \quad\langle 2,-1,1\rangle \rightarrow \overrightarrow{N_{1}} \\
& P_{2}:-x+y+4 z=4\langle-1,1,4\rangle \rightarrow \overrightarrow{N_{2}} \\
& \overrightarrow{N_{1}} \times \vec{N}_{2}=\left|\begin{array}{ccc}
i & k \\
2 & -1 & 1 \\
-1 & 1 & 4
\end{array}\right|=\hat{i}(-4-1)-\hat{j}(8+1)+\hat{k}(2-1) \\
& =-5 i-9 \hat{j}+\hat{k} \rightarrow\langle-5,-9,1\rangle
\end{aligned}
$$

Assume $z=0$

$$
p t(10,14,0)
$$

QUESTION 3. (6 points) From the origin (ie, $(0,0)$) draw the two vectors $V=\langle 4, \mathrm{I}\rangle, W=\langle-2,-6\rangle$. First draw Proj$V_{V}^{W}$. Then find ProjW and its length.

$$
6 / 6
$$

$$
\begin{aligned}
& \operatorname{proj} w= \frac{v \cdot \omega}{|v|^{2}} \cdot v \\
&=\frac{-8-6}{17}\langle 4,1\rangle \\
&=\left\langle\frac{-14}{17}\langle 4,1\rangle\right. \\
& \mid \text { prof } w \mid\left.=\frac{-14}{17}\right\rangle / \frac{3186}{196} \\
& \left\lvert\, \frac{332}{28}\right. \\
&=\sqrt{\left.\frac{-56}{17}\right)^{2}+\left(\frac{-14}{17}\right)^{2}} \\
&=11.52
\end{aligned}
$$

QUESTION 4. (3 points) Given that $y=-2$ is the directrix of a parabola that has focus F. If the point $Q=(4,7)$ lies on the curve of the parabola, find $|Q F|$ (ie., find the distance between F and Q).

$$
|Q L|=9
$$

since $|Q F|=|Q L|$

$$
\therefore|Q|=\mid=9 \text { wits }
$$

3.7 Notes on Trig. Functions, area and volume

Trig. Fuunctions

$$
\begin{aligned}
& y=a \sin (b x) \\
& y^{\prime}=a b \cos (b x) \\
& y=5 \sin (7 x)
\end{aligned}
$$

why!

$$
\longrightarrow \begin{aligned}
& \\
& y=f^{\prime}(x)=a \cos (b x) \\
& y^{\prime}=f^{\prime}(x)=-a b \sin (b x) \\
& y=10 \cos (-3 x) \\
& y^{\prime}=-(-30) \sin (-3 x) \\
& y^{\prime}=30 \sin (-3 x)
\end{aligned}
$$

(1)

$$
\begin{aligned}
& y=a \sin (b x) \\
& y^{\prime}=a b \cos (b x)
\end{aligned}
$$

$$
\begin{gathered}
y=3 \cos (x) \\
y^{\prime}=-3 \sin (x)
\end{gathered}
$$

$$
f(x)=3 \cos (x)
$$

$$
f^{\prime}(x)=-3 \sin (x)
$$

(2) $y=a \cos (b x)$

$$
y^{\prime}=\frac{-}{y} a b \sin (b x)
$$

$$
\begin{aligned}
\int 3 \cos (2 x) d x=\sqrt{A n s i n} & =\frac{3 \sin (3 x)}{2+c} \\
& =\frac{3}{2} \sin (2 x)
\end{aligned}
$$

$$
\int 5 \cos (7 x) d x=\frac{5}{7} \sin (7 x)+c
$$

(3) $\int a \cos (b x) d x=\frac{a}{b} \sin (b x)+c$

$$
\begin{aligned}
& \text { (4) } \int a \sin (b x) d x=-\frac{a}{b} \cos (b x)+c \\
& \int 3 \sin (10 x)=-\frac{3}{10} \cos (10 x)+c \\
& \int 12 \sin (2 x)=-\frac{12}{2} \cos (2 x)+c \\
& f(x)=x^{3}+e^{4 x}+3 \cos (10 x) \\
& f^{\prime}(x)=3 x^{2}+4 e^{4 x}+-30 \sin (10 x)
\end{aligned}
$$

Q. Area is bounded by $y_{1}=\sin (x)$,

$$
\begin{aligned}
& y_{2}=0(x-a x i s), x=0, \\
& \text { and } x=2 \pi
\end{aligned}
$$

A.
$\int_{x=0}^{x-\pi}$ biggen-smaller

A: $\int_{x=0}$ biggen-smaller

$$
\begin{aligned}
& =-\left.\cos x\right|_{x=0} ^{x=\pi}+\left.\cos (x)\right|_{x=\pi} ^{x=2 \pi} \\
& -\cos (\pi) \int_{i}(-\cos (0))+\cos (2 \pi) \frac{\cos (\pi)}{j} \\
& 1+1+1+1=4 \text { unit }^{2} \text {. }
\end{aligned}
$$

Some basic facts

$$
\begin{aligned}
& \rightarrow \text { (1.5) } \sin (2 x)=2 \sin (x) \cos (x) \\
& \rightarrow \text { (2) } \sin ^{2}(x)+\cos ^{2}(x)=1 \\
& \text { (3) } \sin ^{2}(x)=\frac{1+\cos (2 x)}{2} \\
& 2
\end{aligned}
$$

$$
\left\{\begin{array}{l}
\text { (4) } \cos ^{2}(b x)=\frac{1+\cos (2 b x)}{2} \\
\text { (5) } \sin ^{2}(b x)=\frac{1-\cos (2 b x)}{2}
\end{array}\right.
$$

Q. Find the volume of Whee the object when We rotate $y=\cos (x)$
 $a b_{x=\frac{11}{2}} x$-axis $(y=0)$

$$
A: \pi \int_{x=0}^{x=\frac{\pi}{2}}[\cos (x)-0]^{2} d x
$$

$A: \pi \int_{0}^{\pi} \cos ^{2} x d x$

$$
\cos ^{2}(x)=
$$

$=\pi \int_{0}^{\frac{\pi}{2}} \frac{1}{2}+\frac{1}{2} \cos (2 x) d x$

$$
\frac{1}{2}+\frac{\cos (7 x)}{2}
$$

$$
\begin{aligned}
& \pi \quad \int_{0} \frac{1}{2}+\frac{1}{2} \cos (2 x) d x \\
& =\left.\pi\left[\frac{1}{2} x+\frac{1}{4} \sin (2 x)\right]\right|_{x=0} ^{\frac{\pi}{2}} \\
& =\pi\left[\frac{1}{2} \frac{\pi}{2}+\frac{1}{4} \cdot 0=0\right]=\frac{\pi^{2}}{4}
\end{aligned}
$$

Integration by substitution

$$
\begin{aligned}
& \left.\int \frac{1}{x}\right] d x=[\text { Answer }]^{\prime}=\ln (|x|)+\frac{\delta}{1} \ln (x) \\
& \int_{1}^{\ln (x)+c} \\
& \ln (-x)+c \\
& \int_{1}^{1} \frac{-1}{-x}=\frac{1}{x} \\
& \int a x^{m \neq-1} d x=\frac{a}{m+1} x^{m+1}+c \\
& y=\left((1+2 B)^{4} \longrightarrow\right. \text { Chain } \\
& y^{\prime}=4\left(1+2 x^{3}\right)^{3}\left(6 x^{2}\right)^{\text {Ponder }} \begin{array}{c}
\text { Rormunk }
\end{array} \\
& \int \frac{1}{x} d x= \\
& \ln (\mid x) \mid+c \\
& y=\frac{1}{x}=\bar{x}-\bar{x}^{1} \\
& y^{\prime}=-1 x^{-2}=\frac{-1}{x^{2}} \\
& \begin{array}{l}
y=\left(1+2 x^{3}\right)^{4} \\
y^{\prime}=24 x^{2}\left(1+2 x^{3}\right)^{3}
\end{array} \\
& \int\left(24 x^{2}\right)\left(1+2 x^{3}\right)^{3} d x=\left(1+2 x^{3}\right)^{4}+c
\end{aligned}
$$

Integration by substitution ${ }^{n-1}$

$$
[f(x)]^{n \neq-1} \rightarrow n f^{-}(x)[f(x)
$$

$$
\begin{aligned}
& \sqrt{\frac{1}{8}} \int 8 x(\underbrace{\left(1+4 x^{2}\right.})^{5} d x=\frac{1}{8} \frac{\left(1+4 x^{2}\right)^{6}}{6} \\
& u=1+4 x^{2} \\
& \frac{d u}{d x}=u^{\prime}=8 x \\
& \frac{1}{3} \int^{\left(3\left(1+x^{2}\right)\left[\left(3 x+x^{3}\right]\right]^{10}\right.} d x=\frac{1}{3} \frac{\left(3 x+x^{3}\right)^{\prime \prime}}{11+c}+\begin{array}{c}
u=3 x+x^{3} \\
u^{\prime}=3+3 x^{2}=\frac{1}{33}\left(3 x+x^{3}\right)^{\prime \prime}
\end{array} \\
& +c \\
& \int \underset{u=1+\sin x}{\cos (x)}\left[[1+\sin (x)]^{3} d x=\frac{[1+\sin (x)]^{4}}{4}+c\right. \\
& \begin{array}{l}
u_{1}=1+\sin x \\
x=\cos (t)
\end{array} \\
& u=\cos (x) \\
& \int \underline{\underline{f^{\prime}(x)}}[f(x)]^{n \neq-1} d x=\frac{f(x)^{n+1}}{n+1}+C \\
& \int 6\left(e ^ { e ^ { x } } \left(\sqrt{\left.\left(\sqrt{3+e^{x}}\right)\right)^{10}} d x=6 \frac{\left(3+e^{x}\right)^{11}}{11}+c\right.\right.
\end{aligned}
$$

$$
\begin{aligned}
& \int \frac{x+1}{x^{2}+2 x+3} d x \\
& \frac{1}{2} \xlongequal{\left(2(x+1)\left(x^{2}+2 x+3\right)\right.} u x=\frac{1}{2} \ln \left|x^{2}+2 x+3\right|+c \\
& u=x^{2}+2 x+3 \\
& u^{\prime}=2 x+2 \\
& \rightarrow \int f^{\prime}(x)[f(x)]^{-1} d x=\ln |f(x)|+C \\
& \int \frac{-\sin x+3}{2 \cos (x)+6 x} d x \\
& \frac{1}{2} \int \frac{-\sin (x)+3]}{\frac{(2 \cos (x)+6 x)^{-1}}{l}} d x \\
& u=2 \cos (x)+6 x \\
& u^{\prime}=-2 \sin (x)+6 \\
& =\frac{1}{2} \ln |2 \cos (x)+6 x|+C \\
& \int \underline{\tan (x)} d x= \\
& \int \frac{\sin (x)}{\cos (x)} d x= \\
& -\int-\sin (x)[[\cos (x)] d x=-\ln |\cos (x)|+c \\
& \begin{array}{l}
u=\cos (x) \\
u^{\prime}=-\sin x
\end{array}=\ln \left|\frac{1}{\cos (x)}\right|+c
\end{aligned}
$$

$$
\left.\begin{array}{rl}
& =\ln (\sec (x))+c \\
\left.3 \int \frac{\left(9 e^{3 x}+12 \cos (x)\right.}{3}\left(e^{3 x}+4 \sin (x)\right)\right)^{3}
\end{array} d x\right] \begin{aligned}
& u=e^{3 x}+4 \sin x \\
& u^{\prime}=3 e^{3 x}+4 \cos (x)
\end{aligned}
$$

3.9 Open Questions-Solutions Last lecture

Questions $\sqrt[n]{()^{m}}=$
Q. $\int(x+1) \sqrt[3]{\left(x^{2}+2 x+1\right)^{1}} d x()^{\frac{1}{3}} d x$
A. $\frac{1}{2} \int 2 \overbrace{\{ }^{(x+1)}(\underbrace{x^{2}+2 x+1})^{\frac{1}{3}} d x=x^{2}+2 x+1 .=$

$$
\begin{aligned}
& \begin{array}{l}
a=x^{\prime}+2 x+1 \\
\frac{u^{\prime}}{2} \\
\frac{1}{2}\left(x^{2}+2 x+1\right)^{\frac{4}{3}}
\end{array}+C \\
& \frac{3}{8}\left(x^{\frac{4}{3}}+2 x+1\right)^{\frac{4}{3}}+C
\end{aligned}
$$

Q.
A. black $^{2}=\operatorname{proj}_{w}^{V}$
Q.

Know

$$
\begin{aligned}
& \sin ^{2}(\theta)+\cos ^{2}(\theta)=1 \\
& \sin (2 \theta)=2 \sin (\theta) \cos (\theta) \\
& \sin ^{2}(a \theta)=\frac{1}{2}-\frac{1}{2} \cos (2 a \theta) \\
& \cos ^{2}(a \theta)=\frac{1^{2}}{2}+\frac{1}{2} \cos (2 a \theta)
\end{aligned}
$$

Q. $c=(3,-1)$
one of the vertices is

$$
(2,-1)
$$

Find F_{2}, Find all vertices, Find ellipse-constant, Find the equation.

$$
\begin{aligned}
& \left\lvert\, \begin{array}{l}
\left|F_{1} C\right|=5, F_{2}=(3,-6) \\
\left|C v_{3}\right|=b
\end{array}=3-2=1\right., \frac{\left(k=\sqrt{|-1 c|^{2}+\left|C U_{3}\right|^{2}}\right.}{\frac{k}{2}=\sqrt{25+1}}=\sqrt{26} \\
& k=2 \sqrt{26} \\
& \frac{(x-3)^{2}}{b^{2}}+\frac{(y+1)^{2}}{\left(\frac{k}{2}\right)^{2}}=1
\end{aligned}
$$

$$
0 \quad \frac{(x-3)^{2}}{1}+\frac{(y+1)^{2}}{26}=1
$$

Questions
Q. $y=\left(5 e^{2 x}+3 \cos (5 x)+3\right)^{10}$
$A \cdot y^{\prime}=10\left(5 e^{2 x}+3 \cos (5 x)+3\right)^{9}\left(10 e^{2 x}+\right.$ $-15 \sin (5 x))$
Q. $\int \frac{1}{x[\ln (x)]^{2}} d x$
A. $\int \begin{gathered}\left(\frac{1}{x}\right)[\ln (x)]^{-2)} d x \\ \left\{\begin{array}{l}u=\ln (x) \\ u^{\prime}=\frac{1}{x}\end{array}\right.\end{gathered}$
Q. $y=\ln \left(\left(x^{2}+1\right)^{3}(5 x+1)^{10}\right)$ - find
A.

$$
\left\{\begin{array}{l}
y=\ln \left(\left(x^{2}+1\right)^{3}\right)+\ln \left((5 x+1)^{10}\right) \\
y=3 \ln \left(x^{2}+1\right)+10 \ln (5 x+1)^{\prime} \\
y^{\prime}=\frac{3(2 x)}{x^{2}+1}+\frac{10(5)}{5 x+1}
\end{array}\right.
$$

Exam I: MTH 111, Spring 2018

> Ayman Badawi \quad Nadin El Shirbini Points $=\frac{80}{80}$

QUESTION 1. a) (3 points) Are the points $q_{1}=(1,2,-2), q_{2}=(3,3,1)$, and $q_{3}=(5,4,4)$ collinear? Show the work $\overrightarrow{Q_{1} \vec{Q}_{2}}=\langle 2,1,3\rangle$ $Q_{1} Q_{3}=\langle 4,2,6\rangle$
b) (3 points) Given $A=(10,4), B=(4,2)$, and $C=(-6,0)$ are the vertices of a triangle. Roughly, sketch the triangle $A B C$. Find the area of the triangle $A B C$.

$$
\begin{array}{ll}
\overrightarrow{A B}=\langle-6,-2\rangle & \overrightarrow{A B} \times \overrightarrow{A C}=\left|\begin{array}{ccc}
i & j & k \\
-6 & -2 & 0 \\
-16 & -4 & 0
\end{array}\right|=\langle 0,0,-8\rangle \\
\overrightarrow{A C}=\langle-16,-4\rangle & \\
A_{\triangle A B C}=\frac{1}{2}|\overrightarrow{A B} \times \overrightarrow{A C}|=\frac{1}{2} \sqrt{(-8)^{2}}=4 \text { units }^{2}
\end{array}
$$

c) (3 points) Find a vector F that is perpendicular to both vectors $V=\langle 2,-1,4\rangle$ and $W=\langle 0,4,2\rangle$
$\vec{F}=\vec{V} \times \vec{W}=\left|\begin{array}{ccc}i & j & k \\ 2 & -1 & 4 \\ 0 & 4 & 2\end{array}\right|=\langle-18,-4,8\rangle$
d) (2 points) Let V, W as in (c). Find a vector F that is perpendicular to both V and W such that $|F|=2$. (hint: Just think a little)

$$
|F|=\sqrt{18^{2}+4^{2}+8^{2}}=2 \sqrt{101}(2)\left(\frac{1}{1 F 1}\right) \cdot F=\frac{2}{\sqrt{101}} \cdot F=\frac{1}{\sqrt{101}} \cdot F=\frac{1}{\sqrt{101}}<-18,-4,81
$$

$$
\left.\left|F<-\frac{18}{\sqrt{10}}, \frac{-4}{\sqrt{10}}, \frac{2}{\sqrt{101}}\right\rangle \right\rvert\,
$$

$$
\left(\begin{array}{l}
\text { check if }|F|=2 \\
\\
\left(\frac{1-18}{\sqrt{101}}\right)^{2}+\left(\frac{-4}{\sqrt{10}}\right)^{2} \\
\end{array}\right.
$$

$$
\begin{aligned}
& \overrightarrow{Q_{1}} \times \overrightarrow{Q_{1}} \vec{Q}_{3}=\left|\begin{array}{lll}
i & 1 & k \\
2 & 1 & 3 \\
4 & 2 & 6
\end{array}\right|=<\left|\begin{array}{ll}
j & k \\
1 & 3 \\
2 & 6
\end{array}\right|,\left|\begin{array}{ll}
i & k \\
2 & 3 \\
4 & 6
\end{array}\right| \begin{array}{ll}
1 & j \\
2 & 1 \\
4 & 2
\end{array}|>\ll 0,0,0\rangle \\
& \text { rose product is zero } \Rightarrow \text { they are collinear }
\end{aligned}
$$

2. NADIN - 12434 Ayman Badawi

QUESTION 2. a) (4 points) Does the line $L_{1}: x=5 t-20, y=-t+3, z=3 t-27(t \in R$) intersect the line $L_{2}: x=-2 w+20, y=-4 w-5, z=2 w-3(w \in R)$? If yes find the intersection point Q.

$$
\begin{aligned}
& L_{1}:\left\{\begin{array}{l}
x=5 t-20 \\
y=-t+3 \\
z=3 t-27
\end{array} \quad L_{2}:\left\{\begin{array}{l}
x=-2 w+20 \\
y=-4 w-5 \\
z=2 w-3
\end{array}\right.\right. \\
& 5 t-20=-2 w+20 \Rightarrow 5 t+2 w=40 \\
& -t+3=-4 w-5 \Rightarrow-t+4 w=-8 \\
& t=8 \quad w=0
\end{aligned}
$$

check for z :

The point of intersection

$$
\begin{aligned}
& x=2 w+20=2(0)+20=20 \\
& y=-4 w-5=-4(0)-5=-5 \\
& z=2 w-3=2(0)-3=-3
\end{aligned}
$$

$$
\begin{aligned}
& \text { point } 2 \text { interncorar is } \\
& (20,-5,-3)
\end{aligned}
$$

b)(2 points) Are the lines in (a) perpendicular? Explain

$$
\begin{aligned}
& D_{1}=\langle 5,-1,3\rangle \quad D_{2}=\langle-2,-4,2\rangle \\
& D_{1} \cdot D_{2}=5(-2)-1(-4)+3(2)=0
\end{aligned}
$$

$$
\text { dot product }=0 \Rightarrow \text { They are perpendicular. }
$$

QUESTION 3. Given $x=-4$ is the directrix of of a parabola that has the point $(-6,5)$ as its vertex point.
a) (2 points) Roughly, sketch such parabola.

$$
|d|=2
$$

b)(4 points) Find the equation of the parabola

$$
\begin{aligned}
4 d\left(x-x_{0}\right) & =\left(y-y_{0}\right)^{2} \\
-4(2)(x+6) & =(y-5)^{2} \\
-8(x+6) & =(y-5)^{2}
\end{aligned}
$$

c) (2 points) Find the focus of the parabola, say F.

$$
F(-8,5)
$$

d) (2 points) Given $Q=(-10, b)$ is a point on the curve of the parabola. Find $|Q F|$ (HINT: You should know how to do this QUICKLY!, you do not need the value of b)

$$
|Q L|=|Q B|=|Q F|=|6|
$$

QUESTION 4. Given $y=x^{2}-6 x-1$ is an equation of a parabola. a)(3 points) Write the equation in the standard form.

b) (2 points) Find the equation of the directrix line.

$$
y=-10-\frac{1}{4}=-\frac{41}{4}
$$

c) (2 points) Find the focus, say F

$$
F\left(3,-10+\frac{1}{4}\right) \rightarrow F\left(3,-\frac{39}{4}\right)
$$

d)(2 points) Roughly, sketch the graph of such parabola.
(dee picture)

QUESTION 5. An ellipse is centered at $(-4,0), F_{1}=(-1,0)$ is one of the foci, and $(-4,4)$ is one of the vertices.
(i) (2 points) Roughly, sketch such ellipse.

(ii) (3 points) Find the ellipse-constant K.
$V_{3}(-4,-4)$

$$
\left|V_{3} F_{1}\right|=\frac{k}{2}=5 \Rightarrow K=10
$$

(iii) (2 points) Find the second foci of the ellipse.

(iv) (3 points) Find the remaining three vertices of the ellipse

(v) (3 points) Find the equation of the ellipse.

$$
\frac{(x+4)^{2}}{25}+\frac{y^{2}}{16}=1
$$

QUESTION 6. Consider the hyperbola $(y+1)^{2}-\frac{(x-2)^{2}}{8}=1$.
a) (2 points) Draw the hyperbola, roughly

b) (2 points) Find the hyperbola-constant K.

$$
\begin{aligned}
& \left(\frac{k}{2}\right)^{2}=1 \\
& \frac{k}{2}=1 \Rightarrow k=2
\end{aligned}
$$

c)(3 points) Find the two vertices of the hyperbola.

d) (3 points) Find the foci of the hyperbola.

$$
\begin{aligned}
& F_{1}(2,2) \\
& F_{2}(2,-4)
\end{aligned}
$$

QUESTION 7. Given two lines $L_{1}: x=t+1, y=2 t+4, z=-5 t+3$ and $L_{2}: x=2 w+7, y=4 w+16, z=-10 w-27$.
(i) (3 points) Find the symmetric equation of L_{1}.
$x-1=\frac{y-4}{2}=\frac{-z+3}{5}$
(ii) (3 points) Is D_{1} parallel to D_{2} ? (note that D_{1} is the directional vector of L_{1} and D_{2} is the directional vector of L_{2}) Show the work

(iii) (2 points) Is L_{1} parallel to L_{2} ? Explain (show the work)

Take $t=0 \rightarrow(1,4,3)$
check if $(1,4,3) \in L_{2}$

$$
\begin{aligned}
& \left.\begin{array}{l}
1=2 w+7 \Rightarrow w=-3 \\
4=4 w+16=7 w=-3 \\
=-10 w-27 \Rightarrow w=-3
\end{array}\right\} \Rightarrow \begin{array}{l}
\text { it } c \text { to } L_{2} . \\
L_{1} \text { and } L_{2} \text { intersect and they are NOT } \\
\text { parallel. They ane collinear (someone }
\end{array} \\
& 3=-10 w-27 \Rightarrow W=-3 \text { parallel. They are collinear (some line) } \\
& \text { on top of each other? }
\end{aligned}
$$

QUESTION 8. Let $(0,0)$ be the initial point of the two vectors $V=\langle 4,-2\rangle$, and $w=\langle 0,6\rangle$.
a) (2 points) Draw V and W in the $x y$-plane.
b)

prop $_{W}=\overrightarrow{1 B}$

$$
\text { prof }_{v}^{W}=\overrightarrow{1 B}
$$

b) (2 points) Use the picture that you draw in (a) in order to draw Pro j_{w}^{V} c)(2 points) Use the picture that you draw in (a) in order to draw Projw d) (4 points) Find Projejw $_{w}^{v}$ and find its length.

$$
\begin{aligned}
& \operatorname{proj}_{w}^{v}=\frac{v \cdot w}{|w|^{2}} \cdot w=\frac{-12}{36} \cdot w=-\frac{1}{3}\langle 0,6\rangle=\mid\langle 0,-2\rangle \\
& \left|\operatorname{proj}_{w}\right|=\sqrt{2^{2}}=2
\end{aligned}
$$

c)(3 points) Find the angle between V and W

$$
\begin{aligned}
& \cos \theta=\frac{v \cdot w}{|v||w|}=\frac{-12}{(6)(2 \sqrt{5})}=\frac{-\sqrt{5}}{5} \\
& \theta=\cos ^{-1}\left(-\frac{\sqrt{5}}{5}\right)=\frac{116.565^{\circ}}{}
\end{aligned}
$$

Faculty information

Ayman Badawi, Department of Mathematics \& Statistics, American University of Shariah, PO. Box 26666, Shariah, United Arab Emirates. E-thail: abadari¢aus.edu, wry.ayman-badavi.com

Exam I: MTH 111, Spring 2019

$$
F=v \times w
$$

Ayman Badawi

$$
\text { Points }=\frac{87}{87}
$$

QUESTION 1.b) (4 points) Given $A=(6,10), B=(-7,3)$, and $C=(-4,-2)$ are the vertices of a triangle. Find the area of the triangle $A B C$.
Area of the triangle $A B C=\frac{1}{2}|A B \times A C|$

$$
\begin{aligned}
& \begin{array}{l}
A B=\langle-13,-7\rangle \\
B \cdot A \\
A C \\
C-A
\end{array}=\langle-10,-12\rangle
\end{aligned} \quad \begin{array}{r}
\text { ABNAC=}=\left|\begin{array}{ccc}
i & j & k \\
-13 & -7 & 0 \\
-10 & -12 & 0
\end{array}\right|=0 i-0 j+86 k=86 \\
\text { Area of } \triangle A B C=\frac{1}{2} 86=43 \text { units }^{2}
\end{array}
$$

$$
\begin{aligned}
& \left.\begin{array}{l}
\text { c) (3 points) Find a vector } F \text { that is perpendicular to both vectors } V=\langle 2,6,-3\rangle \operatorname{and} I V=\langle 5,-4,1\rangle \text { such that } \\
|F| 11 .
\end{array}\left|\begin{array}{ccc}
i & j & k \\
2 & 6 & -3 \\
5 & -4 & 1
\end{array}\right|=-6 i-17 j-38 k \right\rvert\, \begin{array}{l}
|F|=111=\frac{111}{|F|} F \\
=\frac{111}{42}\langle-6,-17,-38\rangle
\end{array}
\end{aligned}
$$

QUESTION 2. a) (4 points) The line $L_{1}: x=-2 t-3, y=-3 t+3, z=4 t-2(t \in R)$ intersects the line $L_{2}: x=2 w-13, y=4 w-15, z=4 w-6(w \in R)$ in a point Q. Find Q.

$$
\begin{array}{rlr}
L_{1}: x=-2 t-3 & L_{2}: x=2 w-13 \\
y & =-3 t+3 & y \\
z & =4 t-2 & z=4 w-15 \\
& & =4 w-6
\end{array}
$$

use substation method

$$
-3(2)+3=4(3)-15
$$

$$
-3=-3
$$

$$
\begin{gathered}
4(2)-2=4(3)-6 \\
\frac{16=6}{}
\end{gathered}
$$

$$
\text { Intersection pt }=Q=(-7,-3,6)
$$

$$
\left.\begin{array}{rl}
D_{1}=\langle-2,-3,4\rangle \\
D_{2}=\langle 2,4,4\rangle &
\end{array}\right\rangle \begin{gathered}
D_{1} \cdot D_{2}
\end{gathered}=(-2 \times 2)+(-3 \times 4)+(4 \times 4)
$$

So they are perpendicule because their dot product is zero \& they intersect

$$
\begin{aligned}
& \text { find prof intersection: } \quad-2 t-3=2 w-13 \\
& \text { - now sub in each } \quad \frac{-2 t}{-2}=\frac{2 \omega-13+3}{-2}> \\
& -3(-\omega+5)+3=4 \omega-15 \\
& 3 w-15+3=4 w-1: \\
& 4 \omega-3 \omega=-15+15+5 \\
& 1 \omega=3 \\
& -2(2)-3=2(3)-13 \\
& 1-7=-7 \mid \\
& t=-w+5 \\
& t=-3+5 \\
& t=2
\end{aligned}
$$

QUESTION 3. Given $y=-4$ is the directrix of a parabola that has the point $\underline{F}=(2.8)$ as its focus point.
a) (2 points) Roughly, sketch such parabola.

b)(4 points) Find the equation of the parabola

$d=6 \&$ its up

4

$$
\begin{aligned}
4 d(y-2) & =(x-2)^{2} \\
4(6)(y-2) & =(x-2)^{2} \\
24(y-2) & =(x-2)^{2}
\end{aligned}
$$

c) (2 points) Find the vertex of the parabola, say V.

$$
v=(2,2)
$$

$$
d=(-4-2)
$$

QUESTION 4. Given $y=4 x^{2}+24 x-3$ is an equation of a parabola.
a)(3 points) Write the equation in the standard form.

$$
\begin{aligned}
& y=4 x^{2}+24 x-3 \\
& y=4\left(x^{2}+6 x\right)-3 \\
& y=4\left((x+3)^{2}-9\right)-3 \\
& y=4(x+3)^{2}-36-3 \\
& y=4(x+3)^{2}-39 \\
& \frac{1(y+39)=\frac{4(x+3)^{2}}{4}}{} \quad \frac{1}{4}(y+39)=(x+3)^{2}
\end{aligned}
$$

b) (2 points) Find the equation of the directrix line.

$$
y=-\frac{625}{16}
$$

c)(2 points) Find the focus, say F

$$
\begin{aligned}
& F=\left(-3,-39+\frac{1}{16}\right)=\left(-3,-\frac{623}{16}\right) \\
& \text { ughly, sketch the graph of such parabola. } \\
& \qquad\left(-3,-39,-\frac{39}{16}\right)
\end{aligned}
$$

QUESTION 5. An ellipse is centered at $(4,3), F_{1}=(4,0)$ is one of the foci, and $(8,3)$ is one of the vertices.
(i) (2 points) Roughly, sketch such ellipse.

x does not el-onge

$$
C F^{2}=\left(\frac{k}{2}\right)^{2}-b^{2}
$$

$$
C F=3
$$

(ii) (3 points) Find the ellipse-constant k.

$$
\begin{gathered}
C F^{2}=\left(\frac{k}{2}\right)^{2}=b^{2} \\
3^{2}=\left(\frac{k}{2}\right)^{2}-4^{2} \\
k=10
\end{gathered}
$$

$$
b=4
$$

(iii) (2 points) Find the second foci of the ellipse.

$$
\begin{aligned}
t_{2}= & (4,3+3 \\
& (4,6)
\end{aligned}
$$

QUESTION 6. Consider the hyperbola $\frac{(x-2)^{2}}{(9)^{2}}-\frac{(y-3)^{2}}{16}=1$.
a) (2 points) Draw the hyperbola, roughly
der x so right le ft

b) (2 points) Find the hyperbola-constant K^{*}.

$$
\left(\frac{k}{2}\right)^{2}=9 \quad k=3 \times 2
$$

$$
\frac{k}{2}=\sqrt{9}
$$

c)(3 points) Find the two vertices of the hyperbola.

$$
\begin{aligned}
v_{2}=(2+3,3) & v_{1}= \\
(5,3) & (-1,3)
\end{aligned}
$$

$$
C F^{2}=\left(\frac{k}{2}\right)^{2}+b^{2}
$$

$$
\begin{array}{cc}
F_{1}=(2-5,3) \\
F_{2}=(2+5,3)(-3,3) & C F^{2}=9+16 \\
(7,3) & =25 \\
& \left(\frac{k}{2}\right)^{2}+b^{2} \\
& (F=5
\end{array}
$$

QUESTION 7. (4 points) Given two lines $L_{1}: x=t+1, y=2 t+4, z=-5 t+3(t \in R)$ and $L_{2}: x=2 w-1, y=$ $4 w+1_{1} z=-10 w+13(w \in R)$. Is L_{1} parallel to L_{2} ? Explain (show the work)

- 2 lines orel If they hare cst \& they donor intersect
$L_{1}: x=t+1$

$$
\begin{aligned}
& y=2 t+4 \\
& z=-5 t+3
\end{aligned}
$$

$$
1=c 2 \quad c=\frac{1}{2}
$$

$$
2=c 4 \quad c=\frac{1_{2}^{2}}{2}
$$

$$
-5=c(-10) \quad{ }_{c}^{2}=\frac{1}{2}
$$

$L_{2}: x=2 \omega-1$

$$
\begin{aligned}
& y=4 u+1 \\
& z=-10 w+13
\end{aligned}
$$

$$
D_{2}\langle 2,4,-10\rangle
$$

they have a

2

$$
D_{1}\langle 1,2,-5\rangle
$$

QUESTION 8. (6 points)

Stare at the below. Then find Projection of V over U

QUESTION 9. (4 points) Find the equation of the plane that contains the points $Q_{1}=(4,4,0) \cdot Q_{2}=(0,2,6)$ and $Q_{3}=(4,0,8)$.
$N={\vec{Q} \Theta_{2}}_{2} \times Q_{1} Q_{3}$
$\langle-4,-2,6\rangle \times\langle 0 ;-4,8\rangle$
$\left|\begin{array}{ccc}i & j & k \\ -4 & -2 & 6 \\ 0 & -4 & 8\end{array}\right|=8 j+32 j+16 k$
$8(x-4)+32(y-4)+16 z=0$

QUESTION 10. (6 points) Consider the parabola $-16(x+2)=(y-5)^{2}$.
(i) Sketch the parabola

$$
4 d=-16
$$

\& before x so its left

$$
d=-4
$$

$$
V
$$

(ii) Find the equation of the directrix line

$$
x=-2+4
$$

(iii) Find the focus point.

$$
\begin{array}{r}
\text { Focus }=(-2-4,5) \\
(-6,5)
\end{array}
$$

0
QUESTION 11. (4 points) Given that $z=6$ is the directrix line of a parabola that has F as its focus point. If the point $Q=(-2,12)$ lies on the parabola. Find $|Q F|$ (i.e., the distance between Q and F).

$$
10 \% 1=10 L 1=8
$$

QUESTION 12. (6 points) Consider the ellipse $\frac{(y-1)^{2}}{(9)}+\frac{(x+2)^{2}}{(25)}=1$.
(i) Sketch (roughly)
 is

(ii) Find the foci of the ellipse

$$
\begin{aligned}
C F^{2} & =\left(\frac{k}{2}\right)^{2}-b^{2} \\
& =25-9 \\
& =16
\end{aligned}
$$

$$
C F^{2}=16
$$

$$
50 \quad \overline{C F}=4
$$

$$
\text { so } \begin{gathered}
F_{1}(-2+4,1) \\
(2,1)
\end{gathered}
$$

$$
F_{2}(-2-4,1)
$$

QUESTION 13. (4 points) Given $Q=(1,6,4)$ is not on the line $L: x=t+1, y=2 t+4, z=-5 t+3(t \in R)$. Find $|Q L|$.

$$
\begin{aligned}
& \begin{array}{l}
|Q L|=\frac{|D \times I Q|}{|D|}=\frac{\sqrt{12^{2}+1^{2}+2^{2}}}{\sqrt{1^{2}+2^{2}+5^{2}}} \\
\text { Faculty information }
\end{array} \\
& =\frac{\sqrt{149}}{\sqrt{30}}
\end{aligned}
$$

$$
\begin{aligned}
& D=\langle 1,2,-5\rangle \\
& I=\langle 1,4,3\rangle \\
& \quad I Q=\langle 0,2,1\rangle \\
& I Q \times D=\left|\begin{array}{lll}
i & j & k \\
0 & 2 & 1 \\
1 & 2 & -5
\end{array}\right|
\end{aligned}
$$

Ayman Badawi, Department of Mathematics \& Statistics, American University of Shariah, P.O. Box 26666, Shariah, United Arab Emirates. Email: abadawiCaus.edu, ww. ayman-badawi. com

$$
=-12 i+1 j-2 k
$$

$$
\begin{aligned}
& \text { (iii) Find all four vertices of the ellipse. } \\
& \left(\frac{k}{2}\right)^{2}=25 \quad \pm \frac{k}{2} \\
& \frac{k}{2}=5 \quad \frac{5}{5} \\
& (-6,1) \\
& v_{1}=\left(\begin{array}{c}
-2+5,1) \\
(3,1)
\end{array}\right. \\
& V_{2}=(-2-5,1) \\
& v_{4}=(-2,1-3)^{2}(-2,-2) \\
& b^{2}=9 \quad b=3 \quad(-7,1)
\end{aligned}
$$

3.11 Exam2-Review from previous semesters

QUESTION 6. (5 points). Let $H=(4,6), F=(6,34)$. Find a point Q on the line $x=-2$ such that $|H Q|+|F Q|$ is minimum.
$y=m x+b$
$m=\frac{6-34}{4+10}=-2$
$6=-2(4)+b$
$b=14$
$y=-2 x+14$
$y=-2(-2)+14$
$=18$

QUESTION 7. (4 points). For what values of x does the tangent line to the curve $y=\ln (4 x+1)+7 x+2$ have slope equal 8 ?

$$
\begin{aligned}
& y^{\prime}=8 \\
& y^{\prime}=\frac{4}{4 x+1}+7=8 \\
& \frac{4}{4 x+1}=1 \\
& 4=4 x+1 \\
& 4 x=4-1 \\
& x=3 / 4
\end{aligned}
$$

$$
\begin{array}{r}
\frac{4}{4\left(\frac{3}{4}\right)+1}+7= \\
1+7=8
\end{array}
$$

$$
\text { the Tine has slope } 8 \text { at } x=\frac{3}{4}
$$

QUESTION 8. (6 points). The plane $P_{1}: x+2 y-3 z=2$ intersects the plane $P_{2}:-x+5 y+z=19$ in a line L. Find a parametric equations of L.

$$
\begin{gather*}
N_{1} \times N_{2}=D \tag{1}\\
N_{1}=\langle 1,2,-3\rangle \\
N_{1}=\langle-1,5,1\rangle \\
D=(2+15)_{i}-(1-3) j+(5+2) k \\
=\langle 17,2,7\rangle
\end{gather*}
$$

$$
\text { (3) } \rightarrow(-4,3,0)
$$

$$
x=\frac{-28}{7}
$$

$$
\begin{aligned}
& y=\frac{\left|\begin{array}{cc}
1 & 2 \\
-1 & 14
\end{array}\right|}{\left\lvert\, \begin{array}{ll}
1 & 2 \\
-1 & 5
\end{array}\right.} \\
& y=\frac{21}{7} \\
& y=3
\end{aligned}
$$

QUESTION 9. (5 points). Can we draw the entire line $L^{3}: x=2 t, y=-3 t+1, z=11 t+4$ inside the plane

$$
\begin{gathered}
D=\langle 17,2,7) \\
\left.L: \quad \begin{array}{l}
x=17 t-4 \\
y=2 t+3 \\
z=7 t
\end{array}\right\} t \in \mathbb{R}
\end{gathered}
$$

(2) \rightarrow

$$
2=0
$$

$$
x+2 y=2
$$

$$
-x+5 y=19
$$

$2 x-6 y-2 z=20$? EXPLAIN

Nplare - Dine must $=0$
$N=\langle 2,-6,-2\rangle$ take a point on L and check if the

$$
N \cdot D=4+18-22
$$ point lies $D=\langle 2,-3,11\rangle$

$\underbrace{=0}_{y=0}$
 of the normal and chineciuratupelor is d

4

 Hr.laQUESTION 10. (8 points) Stare at the following picture.

We want to construct a rectangle $A B C D$ of largest area as in the picture above. Note that A and D tie on the y-axis, D and C lie on the line $y=4$ (note that $y=4$ intersects the y-axis at D), and B lies on the line $y=12-x$. Find IDCI and (BCl .

$$
|B C|=(12-e)-4
$$

$$
|D C|=e
$$

$$
\text { (2) } \rightarrow|B C|=(12-4)-4
$$

$$
A=|B C 1 \cdot| D C 1
$$

$$
=8-4
$$

$$
=[(12-e)-4] \cdot e
$$

$$
=4 \text { unis }
$$

$$
=(-e+8) e
$$

A)

$$
=-e^{2}+8 e
$$

$$
=-2 e+8
$$

$$
\begin{aligned}
D C D & =e \\
& =4 \text { units } \\
\text { Area } & =4 \times 4 \\
& =16 \text { units }^{2}
\end{aligned}
$$

(1) \rightarrow $-2 e+8=0$ $e=4$
QUESTION 11. (4 points) Stare at the following picture.

Find the area of the shaded region. Note that $y=f(x)=x^{3}$ and x is between -3 and 2 .

$$
\begin{aligned}
A & =\left[\int_{-3}^{0} x^{3} d x\right]+\int_{0}^{2} x^{3} d x \\
& =\left[\int_{-3}^{0} \frac{1}{4} x^{4}\right]+\int_{0}^{2} \frac{1}{4} x^{4} \\
& \left.=\left[\left[\frac{1}{4} 0^{4}\right]-\left[\frac{1}{4}(-3)^{4}\right]\right]+\left[\frac{1}{4}(2)^{4}\right]-\left[\frac{1}{4}(0)^{4}\right]\right] \\
& =[0+20.25]+[4-0] \\
& =24.25 \text { units }^{2}
\end{aligned}
$$

Exam II: MTH 111, Fall 2017

$$
\begin{array}{r}
\text { Ayman Badawi } \\
\text { Points }=\frac{47}{47}
\end{array}
$$

QUESTION 1. (8 points) Find y^{\prime} and DO NOT SIMPLIFY
(i) $y=2 x^{3}+10 x-7$

$$
y^{\prime}=6 x^{2}+10
$$

$$
\text { (ii) } y=\sqrt{x}+(3 x-1)^{11} \rightarrow y=x^{1 / 2}+(3 x-1)^{11}
$$

$$
y^{\prime}=\frac{1}{2 \sqrt{x}}+11(3 x-1)^{10}(3)
$$

(iii) $y=\frac{4}{x^{2}}+\frac{2}{\sqrt{x^{2}+4}} \quad y^{\prime}=\frac{1}{2 \sqrt{x}}+33(3 x-1)^{10}$.
$y=4 x^{-2}+2\left(x^{2}+4\right)^{-1 / 2}$
$y^{\prime}=-8 x^{-3}+\not 2\left(-\frac{1}{x}\right)\left(x^{2}+4\right)^{-3 / 2}(2 x)$
$y^{\prime}=-\frac{8}{x^{3}}-2 x\left(x^{2}+4\right)^{-3 / 2}$
(iv) Given $y=k\left(4 x^{2}-x\right)$ such that $k^{\prime}(3)=-7$. Find $y^{\prime}(1)$ (i.e., evaluate y^{\prime} when $x=1$.)

$$
\begin{aligned}
& y^{\prime}=(8 x-1) k^{\prime}\left(4 x^{2}-x\right) \\
& y^{\prime \prime}=7 k^{\prime}(3)=7(-7)=-49
\end{aligned}
$$

QUESTION 2 . (i) (3 points) Can we draw the vector $v=<3,-5,2>$ inside the plane $x-4 y-11 z=7$? explain

$$
V=\langle 3,-5,2\rangle \quad N \cdot V=3(1)-5(-4)+2(-11)
$$

$$
N=\langle 1,-4,-11\rangle \quad N \cdot V=3+20-22=1 \neq 0 \text { f ot perpendicular, }
$$

(ii) (4 points) Given $N=<4,6,2>$ is perpendicular to the plane P and the point $(4,1,1)$ lies inside the plane P. Find inside the the equation of the plane P.

$$
\begin{gathered}
a\left(x-x_{0}\right)+b\left(y-y_{0}\right)+\left(\left(z-z_{0}\right)=0\right. \\
4(x-4)+6(y-1)+2(z-1)=0 \\
4 x-16+6 y-6+2 z-2=0 \\
4 x+6 y+2 z=24
\end{gathered}
$$

$\begin{aligned} & N=\langle 4,6,2\rangle \\ &\langle a, b, c\rangle\end{aligned}$
$Q(4,1,1)$
$Q\left(x_{0}, y_{0}, z_{0}\right)$
(ii)) (6 points) Find the equation of the plane that contains the points $Q_{1}=(1,1,4), Q_{2}=(2,3,6)$ and $Q_{3}=(1,1,8)$.

$$
\begin{gathered}
Q_{1}(1,1,4)\left|\begin{array}{rl}
\overrightarrow{Q_{1} Q_{2}} & =\langle 1,2,2\rangle \\
Q_{2}(2,3,6) \\
Q_{1}(1,1,8)
\end{array}\right| \begin{aligned}
& \overrightarrow{Q_{3}}=\langle 0,0,4\rangle \\
& \vec{N}=\overrightarrow{Q_{1} Q_{2}} \times \vec{Q}_{1} Q_{3}=\left|\begin{array}{lll}
\hat{i} & \hat{j} & \hat{k} \\
1 & 2 & 2 \\
0 & 0 & 4
\end{array}\right| \\
& \vec{N}=8 \hat{i}-4 \hat{j}+0 \hat{k} \\
& \vec{N}=\langle 8,-4,0\rangle
\end{aligned} \\
\quad(8(x-1)-4(y+4)+0(z) \\
8(x-1)-4(y-1)+0(z-4)=0 \\
8 x-8-4 y+4=0 \\
8 x-4 y=4 \\
2 x-y=1
\end{gathered}
$$

FUSTITON 3. (i) (4 points) The line $L: x=2 w, y=-w+1, z=3$ intersects the plane $4 x+7 y+z=12$ in a point

$$
\text { L: } \begin{cases}x=2 w \\ y=-w+1 ; w \in \mathbb{R} & \text { pi } 4 x+7 y+z=12 \\ z=3 & 4(2 w)+7(-w+1)+3=12 \\ & 8 w-7 w+7+3=12\end{cases}
$$

Q(4,-1,3)

$$
\begin{aligned}
& w+10=12 \\
& w=2
\end{aligned} \rightarrow \text { and the plane int }
$$

(ii) (4 points) Find the distance between $Q=(2,1,4)$ and the plane $2 x-2 y+z=21$.
$\begin{array}{ll}1(0,0,21) & d=\frac{|\vec{Q} \cdot N|}{|N|}=\frac{|2(2)+1(-2)+|(-17 \mid}{\sqrt{4+4+1}} \\ \vec{Q}(2,1,4) & d=\frac{15}{\sqrt{9}}=\frac{15}{3}=5 \text { units } \\ N=\langle 2,1,-17\rangle & \end{array}$
(iii) (6 points) The two planes $P_{\mathrm{t}}: x+y+z=2$ and $P_{2}:-x+y-z=6$ intersects in a line L. Find a parametric equations of L.

$$
\begin{aligned}
& N_{1}=\langle 1,1,1\rangle \\
& N_{2}=\langle-1,1,-1\rangle
\end{aligned}
$$

$$
\vec{D}=\vec{N}, \times \overrightarrow{N_{2}}=\left|\begin{array}{ccc}
\hat{i} & \hat{j} & \hat{k} \\
1 & 1 & 1 \\
-1 & 1 & -1
\end{array}\right|
$$

$$
\vec{D}=-2 \hat{i}+0 \hat{j}+2 \hat{k}
$$

\rightarrow Let $z=0$; find x and y :

$$
\left\{\left.\begin{array}{l}
x+y=2 \\
-x+y=6 \\
2 y=8 \\
y=4
\end{array} \right\rvert\, \begin{array}{l}
x+4=2 \\
x=2-4 \\
x=-2
\end{array}\right.
$$

* Parametric Ens i $\frac{\text { The is }(-2,4,0) \text { and } D=\langle-2,0,2\rangle}{\left\{\begin{array}{l}x=-2-2 t \\ y=4 \\ z=2 t\end{array} \quad t \in \mathbb{R}\right.}$

QUESTION 9. (8 points)

$$
\begin{aligned}
& y=-x^{2}+4 x \\
& D(a, 0) \rightarrow A=\left(a,-a^{2}+4 a\right) \\
& L=-a^{2}+4 a \\
& |O D|=|C F|=a \\
& |C D|=W=4-2 a
\end{aligned}
$$

We want to construct a rectangle ABCD (see picture) of maximum area between the x-axis and the curve $y=$ $-x^{2}+4 x$. Find the length and the width of such rectangle. (Hint: Note that the curve intersects x-axis at $x=0$ and at

$$
\begin{aligned}
& x=4 \text {. Let } O \text { be the origin }(0,0) \text { and } F \text { be }(4,0) \text {. Then }|O D|=|C F|) \\
& L=-a^{2}+4 a, W=4-2 a, \quad A=(4-2 a)\left(-a^{2}+4 a\right) \\
& A=-4 a^{2}+16 a+2 a^{3}-8 a^{2}=2 a^{3}-12 a^{2}+16 a \\
& A^{\prime}=6 a^{2}-24 a+16=0 \rightarrow 2\left(3 a^{2}-12 a+8\right)=0 \\
& \Rightarrow 3 a^{2}-12 a+8=0 \quad \Rightarrow \quad a=\frac{12 \pm \sqrt{48}}{2(3)} \\
& A^{\prime \prime}=12 a-24 \rightarrow a=\frac{12+\sqrt{48}}{6} \rightarrow A^{\prime \prime}>0 \\
& a=\frac{12-\sqrt{48}}{6} \rightarrow A^{\prime \prime}<0 \rightarrow \text { Area max. } \\
& \text { when } a=\frac{12-\sqrt{48}}{6} \\
& L=\frac{8}{3}, W=\frac{4 \sqrt{3}}{3} \rightarrow A=\frac{32 \sqrt{3}}{9} \text { units }^{2}
\end{aligned}
$$

Faculty information
Ayman Badawi, Department of Mathematics \& Statistics, American University of Shariah, P.O. Box 26666, Shariah, United Arab Emirates.
Email: abadariตaus.edu, ww. ayman-badawi.com

Exam II: MTH 111, Spring 2018

$$
\begin{array}{r}
\text { Ayman Badawi } \\
\text { Points }=\frac{62}{62}
\end{array}
$$

QUESTION 1. (12 points) Find y^{\prime} and DO NOT SIMPLIFY

$$
\begin{aligned}
\text { (i) } y & =4 e^{\left(2 x^{2}-4 x\right)}+2 x-5 \\
y^{\prime} & =4 e^{\left(2 x^{2}-4 x\right)} \cdot(4 x-4)+2
\end{aligned}
$$

(ii) $y=\left(5 x^{2}+3 x\right) \sqrt{5 x+10}$
$y=\left(5 x^{2}+3\right)(5 x+10)^{1 / 2}$
$y^{\prime}=\left[\left(5 x^{2}+3\right) \cdot \frac{1}{2}(5 x+10)^{-1 / 2} \cdot 5\right]+\left[(5 x+10)^{1 / 2} \cdot(10 x)\right]$
(iii) $y=\ln \left[\left(2 x^{5}+4 x^{3}-3 x\right)(2 x+7)^{5}\right]$
$y=\ln \left(2 x^{5}+4 x^{3}-3 x\right)+\ln (2 x+7)^{5}$
$y^{\prime}=\frac{10 x^{4}+12 x^{2}-3}{2 x^{5}+4 x^{3}-3 x}+\frac{10}{2 x+7}$
(iv) $y=3\left(e^{(3 x+2)}+7 x^{4}+5 x+2\right)^{4}$

(ii) (4 points) Given $N=\langle-2,3,2\rangle$ is perpendicular to the plane P and the point $(-1,4,2)$ lies inside the plane P. Find the equation of the plane P.

$$
\begin{aligned}
& N_{x}\left(x-P_{x}\right)+N_{y}\left(y-P_{y}\right)+N_{z}\left(z-P_{z}\right)=0 \\
& -2(x+1)+3(y-4)+2(z-2)=0 \Leftrightarrow \text { plane }
\end{aligned}
$$

(iii) (4 points) Find the distance between $Q=(10,10,33)$ and the plane $P:-2 x+2 y-5 z=21$.

$$
\begin{aligned}
& \text { Find the distance between } Q=(10,10,33) \text { and the plane } P:-2 x+2 y-5 z=21 . \\
& D=\frac{|P(0)|}{|N|} \frac{|-2(10)+2(10)-5(33)-2| \mid}{\sqrt{4+4+25}}=\frac{\mid 86}{\sqrt{33}} \text { units. }
\end{aligned}
$$

(iv) (6 points) The two planes $P_{1}: x+4 y+z=10$ and $P_{2}:-x+2 y-z=8$ intersects in a line L. Find a parametric equations of L.

$$
\begin{array}{ll}
N_{1} \times N_{2}=D & 2 \rightarrow D=(-2,3,0) \\
N_{i}=\langle 1,4,1\rangle & D=\langle-6,0,6\rangle
\end{array}
$$

$$
N_{2}=\langle-1,2,-1\rangle
$$

$$
3 \rightarrow c:
$$

$$
\left.\begin{array}{l}
x=-6 t-2 \\
y=3 \\
z=6 t
\end{array}\right\} t \in \mathbb{R}
$$

$$
(-4-2) i-(-1+1) j+(2+4) k
$$

$$
\begin{array}{rl}
\text { (1) } \rightarrow D & =\langle-6,0,6\rangle \\
\text { let } & z=0 \\
-x+2 y=8 & x=-2 \\
x+4 y=10 & y=3 \\
& z=0
\end{array}
$$

(v) (4 points) Can we draw the vector $V=\langle 1,-2,-6\rangle$ inside P : $5 x+7 y-3 z=19$? explain

QUESTION 3. (7 points) Let $f(x)=e^{\left(x^{2}+2 x+1\right)}+3$.
(i) For what values of x does $f(x)$ increase?

$f^{\prime}(x)=e^{\left(x^{2}+2 x+1\right)} \cdot(2 x+2)$	
$e^{\left(x^{2}+2 x+1\right)}$	$\cdot(2 x+2)=0$

$$
x^{2}+2 x+1=0
$$

(1) $\rightarrow x=-1 \leftarrow \begin{gathered}\text { critical } \\ \text { value }\end{gathered}$

$$
\begin{aligned}
& f^{\prime}(-2)=- \\
& f^{\prime}(0)=+
\end{aligned}
$$

$$
\begin{equation*}
\therefore f(x) \text { increases from } \tag{3}
\end{equation*}
$$

$$
(-1,+\infty)
$$

(ii) For what values of x does $f(x)$ decrease?

$$
f(x) \text { is decreasing from }(-\infty,-1)
$$

(iii) Find all local minimum, maximum points of $f(x)$ (just find the x-values where local min. and local max exist).
[No local or absolve maximum]
$\left[\begin{array}{l}\text { local and absolute minimum at } x=-1 \\ \text { point }(-1,4)\end{array}\right]$

$$
f(-1)=4
$$

(iv) Roughly, sketch the graph of $f(x)$.

4
Ayman Badawi Hay
QUESTION 4. (5 points) Let $f(x)=\ln (5 x-4)+4$. Find the equation of the tangent line to the curve of $f(x)$ at $x=1$.

$$
\text { (1) } \rightarrow f^{\prime}(1)=m=\frac{5}{1}
$$

QUESTION 5. (7 points) Given H and F. Find a point Q on the line $x=12$ such that $|H Q|+|F Q|$ is minimum.

QUESTION 6. (7 points) Consider the following picture. Find $|A B|$ and \mid so that the area is MAXIMUM.

Ayman Badawi, Department of Mathematics \& Statistics, American University of Shariah, P.O. Box 26666, Shariah, United Arab Emirates. E-mail: abadari@aus.edu, wrr.ayman-badari.com

$$
\begin{aligned}
& f(1)=\ln (5-4)+4 \\
& y=5 x+b \\
& =4 \quad 4=5(1)+b \\
& \text { point }=(1,4) \\
& \text { (2) } \rightarrow \begin{aligned}
b & =4-5 \\
& =-1
\end{aligned} \\
& f^{\prime}(x)=\frac{5}{5 x-4} \\
& \text { (3) } \rightarrow y=5 x-1 \text { is the equation of the }
\end{aligned}
$$

Exam II: MTH 111, Spring 2018

Ayman Badawi

$$
\text { Points }=\frac{}{47}
$$

QUESTION 1. (8 points) Find y^{\prime} and DO NOT SIMPLIFY

(ii) $y=(2 x+3) \sqrt{7 x+2}$

(i) $\begin{aligned} & y=6 e^{\left(3 x^{2}+6 x+1\right)} \\ & y^{\prime}=6 e^{\left(3 x^{2}+6 x+1\right)} \cdot(6 x+6)\end{aligned}$
$y=(2 x+3)(7 x+2)^{\frac{1}{2}}$
$y^{\prime}=(1)^{\prime}(2)+(2)^{\prime}(1)$
(iii) $y=\ln \left[\frac{[3 x+2)^{\prime}(2 x+7)^{2}}{(7 x+12)^{2}}\right]$
$y=3 \ln (3 x+2)+2 \ln (2 x+7)-4 \ln (7 x+12)$

$$
y^{\prime}=\frac{3(3)}{3 x+2}+\frac{2(2)}{2 x+7}-\frac{4(7)}{7 x+12}
$$

$$
y^{\prime}=\frac{9}{3 x+2}+\frac{4}{2 x+7}-\frac{28}{7 x+12}
$$

(iv) $y=2\left(3 x^{2}+5 x\right)^{12}$

$$
y=24\left(3 x^{2}+5 x\right)^{11} \cdot\left(6 x^{1}+5\right)
$$

QUESTION 2. (i) (3 points) What can you say about the line $L: x=2 t+1, y=t-1, z=-2 t+3$ and the plane $x+2 y+z=16$? (i.e., Doe L lie inside the plane? Does L intersect the plane exactly in one point? or neither?
L: $x=2 t+1$

$$
P: x+2 y+z=16
$$

$$
\begin{aligned}
& y=t-1 \\
& z=-2 t+3
\end{aligned}
$$

$y: 7-1=6$

$$
\begin{aligned}
& (2 t+1)+2(t-1)-2 t+3=16 \\
& 2 t+1+2 t-2-2 t+3=16
\end{aligned}
$$

$$
\begin{aligned}
& 2 t+1+2 t-2(-2 t+3=16 \\
& 2 t=14 \Rightarrow 1-14
\end{aligned}
$$

$$
2 t=14 \Rightarrow t=1412 \Rightarrow t=7
$$

$z:-2($ A $)+3=-11$
Q: intersection
(ii) (4 points) Given $N=\langle-2,3,2\rangle$ is perpendicular to the plane P and the point $(-1,4,2)$ lies inside the plane P_{2} Find the equation of the plane P. $N=\langle-2,3,2\rangle \perp P$ at $Q(-1,4,2) \xrightarrow{\text { Find eqn }} \underset{\sim}{ }$ Directional vector

$$
\begin{aligned}
& p:-2(x+1)+3(y-4)+2(z-2)=0 \\
& p:-2 x-2+3 y-12+2 z-4=0 \\
& p:-2 x+3 y+2 z=18
\end{aligned}
$$

(iii) (6 points) Find the equation of the plane that contains the points $Q_{1}=(4,4,0), Q_{2}=(0,2,6)$ and $Q_{3}=(4,0,8)$.

En of plane \rightarrow directional vector and point φ_{1}

$$
\begin{array}{ll}
\Phi_{1}:(4,4,0) \\
\phi_{2}:(0,2,6) \\
Q_{3}:(4,0,8)
\end{array} \quad V \times W=\left|\begin{array}{ccc}
1 & 1 & k \\
4 & 2 & -6 \\
4 & -2 & 2
\end{array}\right|=\left|\begin{array}{cc}
2 & -6 \\
-2 & 2
\end{array}\right|,\left|\begin{array}{cc}
4 & -6 \\
4 & 2
\end{array}\right|,\left|\begin{array}{cc}
4 & 2 \\
4 & -2
\end{array}\right|
$$

QUESTION 3. (i) (4 points) (1) Convince me that the line $L: x=4 t, y=-4 t+1, z \equiv 2 t+1$ is perpendicular to the plane $P: 2 x+-2 y+z=12$ (If you think that F am wrong, then state your reason). (2) Can we draw the vector $V=<1,-2,-6>$ inside P ?
L: $x=4 t$
P: $2 x+-2 y+z=12$ $y=-4 t+1$
$D_{2}=\langle 2,-2,1\rangle$
$z=2 t+1$
(1)
$D_{1}=\langle 4,-4,2\rangle$
$D_{1 \times D_{1}}=\left|\begin{array}{ccc}i & j & k \\ 4 & -4 & 2 \\ 2 & -2 & 1\end{array}\right|=\left|\begin{array}{cc}-4 & 2 \\ -2 & 1\end{array}\right|,-\left|\begin{array}{ll}4 & 2 \\ 2 & 1\end{array}\right|,\left|\begin{array}{cc}4 & -4 \\ 2 & -2\end{array}\right|$
(2) $\begin{aligned} & V=\langle 1,-2,-6\rangle \\ & D_{2}:\langle 2,-2,1\rangle\end{aligned}$
$\left\{\begin{array}{l}V \cdot D_{2}=0 \rightarrow \text { Yes } \quad V \cdot D_{2} \neq 0 \rightarrow N 0 \\ V \cdot D_{2}=\langle 1,-2,-6\rangle,\langle 2,-2,1\rangle \\ V \cdot D_{2}=2+4 / 6=0 \rightarrow \text { Yes, we can } \\ \text { draw vinsidep. }\end{array}\right.$
$-4+4,-(4-4),-8+8$
$=20,0,0>\rightarrow$ Plane and eire are
(ii) (3 points) Find the distance between $Q=(10.10,33)$ and the plane $P: 2 x-2 y+z=21$.

$$
\begin{array}{ll}
Q=(10,10,33) \\
P: 2 x-2 y+z=21
\end{array} \quad Q P=\frac{|2(10)-2(10)+33-21|}{\sqrt{(2)^{2}+(-2)^{2}+(1)^{2}}},
$$

(iii) (3 points) Find the distance between $Q=(10,10,33)$ and the line $L: x=t+1, y=-2 t+3, z=t$
(iv) (6 points) The two planes $P_{1}: x+2 y+z=10$ and $P_{2}:-x+2 y-z=6$ intersects in a line L. Find a parametric equations of L.
$P_{1}=x+2 y+z=10 \rightarrow N_{1}=\langle 1,2,1\rangle$
$P_{2}:-x+2 y-z=6 \rightarrow N_{2}=\langle-1,2,-1\rangle$
$\begin{aligned} N_{1} \times N_{2}=\left|\begin{array}{ccc}i & j & k \\ 1 & 2 & 1 \\ -1 & 2 & -1\end{array}\right| & =\left|\begin{array}{cc}2 & 1 \\ 2 & -1\end{array}\right|,-\left|\begin{array}{cc}1 & 1 \\ -1 & -1\end{array}\right|,\left|\begin{array}{cc}1 & 2 \\ -1 & 2\end{array}\right| \\ & =\langle-2-2,-(-1+1), 2+2\rangle \\ N, \times N_{2} & =\langle-4,0,4\rangle\end{aligned}$
Let $Z=0$ in P_{1} and P_{2}

$$
\begin{aligned}
& x+2 y=10 \rightarrow x=10-2 y \rightarrow \\
& \begin{array}{l}
-x+2 y=6 \\
\vdots \\
-(10-2 y)+2 y=6
\end{array} \\
& \begin{array}{l}
10-2(4)=10-8=1 \\
-10+2 y+2 y=6
\end{array} \\
& \text { Parametric ecus: } \\
& x=-4 t-2 \\
& y: 4 \\
& z: 4 t
\end{aligned}
$$

$$
-10+4 y=6
$$

$$
4 y=6+10
$$

$$
\begin{aligned}
& 4 y=6+10 \\
& 4 y=16 \Rightarrow y=16 / 4 \Rightarrow y=4
\end{aligned}
$$

$$
\begin{aligned}
& Q=(10,10,33) \\
& L: x=t+1
\end{aligned}
$$

$$
\begin{aligned}
& W=|P B|=9,7,33 \quad \frac{|W \times 0|}{101}=\frac{\sqrt{73^{2}+24^{2}+28^{2}}}{1 \sqrt{1^{2}+21 / 1^{2}}}=32.99 \text { units }
\end{aligned}
$$

QUESTION 4. (7 points) Let $f(x)=-x^{3}+6 x^{2}+15 x+1$.
(i) For what values of x does $f(x)$ increase?
$f^{\prime}(x)=-3 x^{2}+12 x^{1}+15$

$f(x)$ increases $\rightarrow(-1,5)$

(ii) For what values of x does $f(x)$ decrease?

$$
f(\phi) \text { decreases } \rightarrow(-\infty,-1) \cup(5,+\infty)
$$

(iii) Find all minimum, maximum points of $f(x)$.

$$
\begin{aligned}
& \min \text { at } x=-1 \rightarrow \\
& \max \text { at } x=5 \rightarrow
\end{aligned}
$$

$$
\checkmark
$$

$$
\begin{aligned}
& (-1,27) \\
& (5,-43) \rightarrow 10 \\
& -(5)^{3}+6(25)+15(5)+1= \\
& 101
\end{aligned}
$$

(iv) Roughly, sketch the graph of $f(x)$.

QUESTION 5. (4 points) Let $f(x)=\left(2 \pi e^{2 x-1)}+\ln (2 x-1)+4\right.$. Find the equation of the tangent line to the curve of $f(x)$ at $x=1$.

$$
\begin{array}{ll}
\text { Q:(1,f(1) }=(1,6) & f(x)=2 x e^{(x-1)}+\ln (2 x-1)+4 \\
f(1)=2(1) e^{(1-1)}+\ln (2(1)-1)+4=b & y=m x+b \\
f^{\prime}(x)=(1)^{\prime}(2)+(2)^{\prime}(1)+\frac{\log (2 x-1)}{\lg (w)}+0 & 6=6(1)+b \\
f^{\prime}(x)=2 e^{(x-1)}+e^{(x-1)}(1)(2 x)+\log (2 x-1) \cdot 1 / \log 10 & 6+b \\
f^{\prime}(x)=2 e^{(x-1)}+2 x e^{(x-1)}+\frac{2}{\log (10)} \Rightarrow f^{\prime}(1)=6 & y=0 \\
& y=6 x \\
\end{array}
$$

QUESTION 6. (7 points) Consider $f(x)=4-\sqrt{x}, k(x)=-2$. Find the length and the width of the largest rectangle that you can draw between $f(x)$ and $k(x)$, see picture.

Faculty information
Ayman Badawi, Department of Mathematics \& Statistics, American University of Shariah, P.O. Box 26666. Sharjah. United Arab Emirates. E-mail: abadawi@aus,edu, www.ayman-badaui.com

$$
\begin{aligned}
\rightarrow A & =l \cdot w \\
A & =m(6-\sqrt{m}) \\
A & =m\left(6-m^{1 / 2}\right) \\
A & =6 m-m^{3 / 2} \\
\rightarrow A^{\prime} & =6-\frac{3}{2} m^{1 / 2} \\
\rightarrow 0 & =6-\frac{3}{2} m^{1 / 2} \\
6 & =\frac{3}{2} m^{1 / 2} \\
\frac{6}{3 / 2} & =\frac{312}{3 / 2} m^{1 / 2} \\
0.5 \sqrt{4} & =\sqrt[3]{1 / 2} \\
m & =16
\end{aligned}
$$

$$
L=m=16
$$

$$
W=6-\sqrt{m}=6-\sqrt{16}=2
$$

$$
\rightarrow A^{\prime \prime}=-\frac{3}{4} m^{-1 / 2}
$$

$$
A^{\prime \prime}(16)=-\frac{3}{4}(16)^{-1 / 2}<0 \quad \checkmark \rightarrow \max
$$

Q. $\int \frac{6 \cos (2 x)}{1+\sin (2 x)} d x$
A. $\int 6 \cos (2 x)[1+\sin (2 x)]^{-1} d x=$

$$
\int_{6=3.2}\left\{\begin{array}{l}
u=1+\sin (2 x) \\
u^{\prime}=2 \cos (2 x)
\end{array}\right.
$$

$3 \int 2 \cos (2 x)\left[\frac{(1+\sin (x))}{6}\right]^{-1} d x=$ $u=1+\sin (2 x)$
$=3 \ln |1+\sin (2 x)|+c$
Q. $\int\left(2 x+5 e^{5 x}-\sin (x)\right)\left[\sqrt{x^{2}+e^{5 x}+\cos (x)}\right]^{4} d x$

$$
\begin{aligned}
& \left\{\begin{array}{l}
u=x^{2}+e^{5 x}+\cos (x) \\
u^{\prime} \\
=2 x+5 e^{5 x}-\sin (x)
\end{array}\right. \\
= & \frac{\left(x^{2}+e^{5 x}+\cos (x)\right)^{5}}{5}+c
\end{aligned}
$$

Find ${ }^{\text {the }}$ volume of the object when we rotate $y=3+\sin (x)$ about $y=1$, where $0 \leq x<\pi$ (see picture) $x=\pi$
A: $\pi \int[3+\sin (x)-1]^{2} d x \quad y=1 \pi$ $x=00 \pi$

$$
\begin{aligned}
& x=0 \int_{0}^{\pi}[2+\sin (x)]^{2} d x \\
& =\pi=\pi
\end{aligned}
$$

$$
=\pi
$$

$$
\int_{x=0}\left[4+4 \sin (x)+\sin ^{2}(x)\right] d x
$$

Now $\sin ^{2}(x)=\frac{1}{2}-\frac{1}{2} \cos (2 x)$

$$
\begin{aligned}
& =\pi \int_{x=0}^{x=\pi} 4+4 \sin (x)+\frac{1}{2}-\frac{1}{2} \cos (2 x) d x= \\
& =\pi\left[\begin{array}{c}
4 x+-4 \cos (x)+\frac{1}{2} x-\frac{1}{4} \sin (2 x) \\
=\pi \\
\left(n d e \int 4 \sin x=-4 \cos x\right. \\
\left.\quad \int \frac{-1}{2} \cos (2 x)=\frac{-1}{2} \cdot \frac{\sin (2 x)}{2}\right) \\
=\frac{-1}{4} \sin (2 x)
\end{array}\right] \\
& =\pi\left[\begin{array}{c}
4 \pi-4 \cos (\pi)+\frac{1}{2} \pi-\frac{1}{4} \sin (2 \pi) \\
\left.\left(0-4 \cos (0)+\frac{1}{2}(0)-\frac{1}{4} \sin (0)\right)\right]
\end{array}\right]
\end{aligned}
$$

$$
\begin{aligned}
& =\pi\left[4 \pi+4+\frac{1}{2} \pi-0 \times 0+4-0\right. \\
& =. \pi[4.5 \pi+8]=\left(4.5 \pi^{2}+8 \pi\right) \text { unit }
\end{aligned}
$$

Q. Find the area of the region as in the picture, where $y=\sin (x)$

$$
0 \leq x \leq \pi
$$

Solution: by staring-

$$
\begin{aligned}
& 0 \leqslant x \leqslant \frac{3 \pi}{4}, \sin (x)>-\cos (x) \\
& \frac{3 \pi}{4} \leq x=\frac{3 \pi}{4} \leq \pi,-\cos (x)>\pi \sin (x) \\
& \text { Area }=\int_{x=0}^{x=\frac{3 \pi}{x}}\left(\sin (x) \underset{+x=3 \frac{1 \pi}{4}}{-\cos (x)) d x+\int_{x=\frac{3 \pi}{4}}^{\pi}-\cos (x)-\sin (x) d x} x\right. \\
& =-\cos (x)+\sin x]^{\frac{3 \pi}{4}}+-\sin (x)+\left.\cos (x)\right|^{x=\pi}= \\
& -\cos \left(\frac{3 \pi}{4}\right)+\sin \left(\frac{3 \pi}{4}\right) x=0(-\cos (0)+\sin (0))+-\sin (\pi)+\frac{3 \pi}{4} \\
& -\cos \left(\frac{3 \pi}{4}\right)+\sin \left(\frac{3 \pi}{4}\right) x=0(-\cos (0)+\sin (0))+-\sin (\pi)+\cos (\pi) \\
& -\left(-\sin \left(\frac{3 \pi}{4}\right)+\cos \left(\frac{3 \pi}{4}\right)\right) \\
& =\frac{\sqrt{2}}{2}+\frac{\sqrt{2}}{2}+1-0-1+\frac{\sqrt{2}}{2}+\frac{\sqrt{2}}{2} \\
& =2 \sqrt{2} u n i t^{2}
\end{aligned}
$$

Final Exam, MTH 111, Spring 2019

$$
\text { Score }=\frac{75}{78}
$$

Ayman Badawi

QUESTION 1. (7 points) Stare at the following graph.

Given $F 1=(-10,6), F 2=(4,6)$ and the ellipse-constant is 20 .
(ii) Find the center $c=$
\square
(iii) Find the vertices $A=(-3,-1.14), D=(-3,13.14), H=(-13,6)$, and $B=(7,6)$
(iv) Find the equation of the ellipse.

$$
\frac{(x+3)^{2}}{100}+\frac{(y-6)^{2}}{51}=1
$$

QUESTION 2. (6 points) Stare at the following graph.

Given $c=(-4,6),|c v 2|=3$, and $F 2=(2,6)$.

2 Maya
QUESTION 3. (4 points) Stare at the following graph.

Given $F=(4,6)$, the directrix line, L is $x=-8$, and $|Q F|=10$.
(i) Find $|Q L|=|Q F|=10$
(ii) Find $v=(-2,6)$
(iii) Find the equation of the parabola

$$
24(x+2)=(y-6)^{2}
$$

QUESTION 4. (6 points). Find y^{\prime} and do not simplify

(i) $y=\ln \left[(4 x+3)^{10}(-5 x+30)^{3}\right]$

$$
\begin{aligned}
& y=\ln (4 x+3)^{10}+\ln (-5 x+30)^{3} \\
& y=\operatorname{loln}(4 x+3)+3 \ln (-5 x+30) \\
& y^{\prime}=10 \cdot 4+3 \cdot-5
\end{aligned} \quad y^{\prime}=\frac{40}{(4 x+3)}+\frac{-15}{(-5 x+30)}
$$

(ii) $y=e^{\left(6 x^{3}+x^{2}-1\right)}+10 x^{2}-x+23$
$y=\left[\left[e^{\left(6 x^{3}-x^{2}-1\right)} \cdot\left(18 x^{2}+2 x\right)\right]+20 x-1\right]$
$1]$
(iii) $y=\left(21+5 x-6 x^{3}\right)^{7}$

$$
y^{\prime}=7\left(21+5 x-6 x^{3}\right)^{6} \cdot\left(5-18 x^{2}\right)
$$

QUESTION 5. (6 points).

(i) Find $\int \begin{array}{ll}x / e^{\left(x^{2}+1\right)} d x \\ u=x^{2}+1 & \frac{1}{2}\left(e^{\left(x^{2}+1\right)}\right)+C \\ u^{\prime}=2 x\end{array}$ \qquad
(ii) Find $\int \frac{e^{2 z}+1}{\left(e^{2 x}+2 x-5\right)} d x$

$$
\begin{array}{ll}
\int\left(e^{2 x}+1\right)\left(e^{2 x}+2 x-5\right)^{-3} d x & \\
u=e^{2 x}+2 x-5 & \frac{1}{2} \cdot \frac{1}{-2}\left(e^{2 x}+2 x-5\right)^{-2}+C \\
u^{\prime}=2 e^{2 x}+2 &
\end{array}
$$

(iii) Find $\mathcal{M}(6 x+3)\left(x^{2}+x-5\right)^{11} d x$

$$
\begin{aligned}
& u=x^{2}+x-5 \\
& u^{\prime}=2 x+1 \\
& 3=\frac{1}{12}\left(x^{2}+x-5\right)^{12}+C
\end{aligned}
$$

$$
\imath
$$

QUESTION 6. (5 points). Let $H=(4,6), F=(6,34)$. Find a point Q on the line $x=-2$ such that $|H Q|+|F Q|$ is minimum.
$y=m x+b$

$$
\begin{aligned}
m & =\frac{6-34}{4+10}=-2 \\
6 & =-2(4)+b \\
b & =14 \\
y & =-2 x+14 \\
y & =-2(-2)+14 \\
& =18
\end{aligned}
$$

$$
Q=(-2,18)
$$

QUESTION 7. (4 points). For what values of x does the tangent line to the curve $y=\ln (4 x+1)+7 x+2$ have slope

equal 8 ?

$$
\begin{aligned}
& y^{\prime}=8 \\
& y^{\prime}=\frac{4}{4 x+1}+7=8 \\
& \frac{4}{4 x+1}=1 \\
& 4=4 x+1 \\
& 4 x=4-1 \\
& x=3 / 4
\end{aligned}
$$

$$
\text { check } \frac{4}{4\left(\frac{3}{4}\right)+1}+7=
$$

$$
1+7=8
$$

$$
\text { the Tine has slope } 8 \text { at } x=\frac{3}{4}
$$

QUESTION 8. (6 points). The plane $P_{1}: x+2 y-3 z=2$ intersects the plane $P_{2}:-x+5 y+z=19$ in a line L. Find a parametric equations of L.
$(1) \rightarrow \quad N_{1} \times N_{2}=D$

$$
\begin{aligned}
& N_{1}=\langle 1,2,-3\rangle \\
& N_{i}=\langle-1,5,1\rangle \\
& 0=(2+15)_{i}-(1-3) j+(5+2) k \\
& =\langle 17,2,\rangle\rangle
\end{aligned}
$$

(2) $\rightarrow \quad z=0$
$x+2 y=2$
$-x+5 y=19$
$x=\frac{-28}{7}$

QUESTION 9. (5 points). Can we draw the entire line $L^{3}: x=2 t, y=-3 t+1, z=11 t+4$ inside the plane $2 x-6 y-2 z=20$? EXPLAIN

$$
\begin{aligned}
& \text { Spare } \cdot \text { Dine must }=0 \\
N= & \langle 2,-6,-2\rangle \\
D= & \langle 2,-3,11\rangle
\end{aligned}
$$

$$
\begin{aligned}
& D=\langle 17,2,7) \\
& \left.L: \quad \begin{array}{l}
x=17 t-4 \\
y=2 t+3 \\
z=7 t
\end{array}\right\} t \in \mathbb{R}
\end{aligned}
$$

\square

(3) $\rightarrow(-4,3,0)$
$\frac{4}{\text { QUESTION 10. (8 points) Stare at }}$
Ayman Badawi
QUESTION 10. (8 points) Stare at the following picture.
$(0,12-e)$

$y=4$
e want to construct a rectangle $A B C D$ of largest area as in the picture above. Note that A and D lie on the y-axis, D and C lie on the line $y=4$ (note that $y=4$ intersects the y-axis at D), and B lies on the line $y=12-x$. Find IDCI and Cl.

$$
\mid B C 1=(12-e)-4
$$

$|D C|=e$
$A=|B C| \cdot|D C|$
$=[(12-c)-4] \cdot e$
$=(-e+8) e$
$=-e^{2}+8 e$
$A^{\prime}=-2 e+8$
(2) $\rightarrow|B C|=(12-4)-4$
$=8-4$
$=4$ units
$1 D C \mid=e$ $=4$ units
Area $=4 \times 4$
$=16$ units 2
(1) \rightarrow

$$
-2 e+8=0
$$

QUESTION 11. (4 points) Stare at the following picture.

Find the area of the shaded region. Note that $y=f(x)=x^{3}$ and x is between -3 and 2 .

$$
\begin{aligned}
A & =\left[\int_{-3}^{0} x^{3} d x\right]+\int_{0}^{2} x^{3} d x \\
& =\left[\int_{-3}^{0} \frac{1}{4} x^{4}\right]+\int_{0}^{1} \frac{1}{4} x^{4} \\
& =\left[\left[\frac{1}{4} 0^{4}\right]-\left[\frac{1}{4}(-3)^{4}\right]\right]+\left[\left[\frac{1}{4}(2)^{4}\right]-\left[\frac{1}{4}(0)^{4}\right]\right] \\
& =[0+20.25]+[4-0] \\
& =24.25 \text { units }^{2}
\end{aligned}
$$

QUESTION 12. (4.5 points) Stare at the following picture.

Draw the projection of V over W .
QUESTION 13. (7.5 points) Stare at the following graph of $y=f^{\prime}(x)$.

(i) At what value(s) of x does $f(x)$ have local max.?

$$
\text { critical values }=0,2,4,6
$$

$$
\text { at } x=0 \text { and } x=4
$$

(ii) At what value(s) of x does $f(x)$ have local min.?

$$
\text { at } x=2 \text { and } x=6
$$

(iii) For what values of x does $f(x)$ increase?

$$
(-\infty, 0) \cup(2,4) \cup(6 ;+\infty)
$$

(iv) For what values of x does $f(x)$ decrease?
$(0,2) \cup(4,6)$
(v) For what values of x will the normal lines have positive slope.

Normal lint will have $a+$ slope whe phe tengen line has - slope
\therefore when the function x is decreasing $\therefore(0,2) \cup(4,6)$
QUESTION 14. (5 points) Given $L_{1}: x=2 t, y=t+1, z=3 t$ is perpendicular to $L_{2}: x=4 w+6, y=-2 w, z=$ $a w+1$ and they intersect at a point Q. Find the value of a and find the point Q.
 $7=(-\infty, 0),(2,4),(6,+\infty)$ $y=(0,2),(4,6)$

American University of Sharjah
 Department of Mathematics and Statistics

Final Exam - spring 2018
MTH 111 - Math for Architects

Instructor Name: Ayman Badawi

\Rightarrow The name above must be the name of your instructore

100

Student Name: NADIN ELSHIRBINI
Student ID Number: 72494

1. No Questions are allowed during the examination.
2. This exam has 6 pages plus this cover page .
3. Do not separate the pages of the exam.
4. Scientific calculator are allowed but cannot be shared. Graphing Calculators are not allowed.
5. Take off your cap. Turn off all cell phones and remove all headphones.
6. No communication of any kind is permitted.
7. All working must be shown

Student signature: \qquad

Final Exam: MTH 111, Spring 2018

Ayman Badawi

Points $=\frac{}{100}$

QUESTION 1. (9 points) Find y^{\prime} and DO NOT SIMPLIFY
(i) $y=(x+1) e^{(3 x+2)}$
$y^{\prime}=e^{3 x+2}+(3 x+3) e^{3 x+2}=e^{3 x+2}(3 x+4)$
((i) $y=\ln \left[(3 x-2)^{4}(2 x+1)^{7}\right]$
$y^{\prime}=\frac{12}{3 x-2}+\frac{14}{2 x+1}$
(iii) $y=(7 x+2)^{9}$
$y^{\prime}=63(7 x+2)^{8}$
QUESTION 2. (i) (6 points) Does the line line $L_{1}: x=t+1, y=t-1, z=7$ intersect the line $L_{2}: x=-w+4, y=$
$w-2, z=2 w+3$? If yes, then find the intersection point. Is L_{1} perpendicular to L_{2} ?

$$
\begin{aligned}
& \left.\left.D_{1}<1,1,0\right\rangle \quad D_{2}<-1,1,2\right\rangle \\
& P_{1} \neq c P_{2} \Rightarrow L, \text { and } L_{2} \text { intersect } \\
& t+1=-w+4 \rightarrow t+w=3 \\
& t-1=w-2 \rightarrow \frac{t-w=-1}{t=1 \quad w=2}
\end{aligned}
$$

$\operatorname{sing} t=11$

$$
\begin{aligned}
& x=1+1=2 \\
& y=1-1=0 \\
& z=7
\end{aligned}
$$

$$
\begin{aligned}
v \operatorname{sing} w & =2: \\
x & =-2+4=2 \\
y & =2-2=0 \\
z & =2(2)+3=7
\end{aligned}
$$

point of intersection

$$
(2,0,7)
$$

(ii) (4 points) Convince me that $L_{1}: x=t, y=10, z=-t+4$ is parallel to $L_{2}: x=4 w+1, y=7, z=-4 w+2$

$$
\begin{aligned}
& D_{1}=\langle 1,0,-1\rangle \quad D_{2}=\langle 4,0,-4\rangle \\
& D_{2}=4 D_{1} \\
& t=0 \rightarrow(0,10,4) \\
& x: 0=4 w+1 \rightarrow w=-\frac{1}{4} \\
& z: 4=-4 w+2 \rightarrow w=-\frac{1}{4} \\
& y: w=0
\end{aligned}
$$

(iii) Let $Q_{1}=(1,1,0), Q_{2}=(0,-1,2)$ and $Q_{3}=(2,2,2)$.
a. (5 points) Find the equation of the plane that contains Q_{1}, Q_{2}, Q_{3}.

$$
\begin{aligned}
& \overrightarrow{Q_{1} Q_{2}}\langle-1,-2,2\rangle \\
& N=\left|Q_{1} Q_{2} \times Q_{1} Q_{2}\right|=\left|\begin{array}{ccc}
Q_{2} & \langle 1,1,2\rangle \\
-1 & -2 & 2 \\
1 & 1 & 2
\end{array}\right|=\langle-6,4,1\rangle
\end{aligned}
$$

$$
P:-6(x-2)+4(y-2)+1(z-2)=0
$$

b. (2 points) Find the area of the triangle that has Q_{1}, Q_{2}, Q_{3} as vertices.
$A=\frac{1}{2}\left|\vec{Q}_{1} \vec{Q}_{2} \times \vec{Q}_{1}\right|=\frac{\sqrt{6_{3}^{2}+4^{2}+1^{2}}}{2}=\frac{\sqrt{53}}{2}$ unit 2
(iv) (4 points) Given $L: x=t+1, y=8, z=4 t+1$ lies entirely inside the plane $P: a x+2 y+z=6$ Find the values
of abb. $D\langle 1,0,4\rangle \quad N\langle a, 2,1\rangle$

(v) (4 points) item Find the distance between the point $(1,-1,1)$ and the line $L: x=t+1, y=2 t+3, z=-2 t+10$
$Q(1,-1,1) \quad I(1,3,10)$
$V=\overrightarrow{1 Q}=\langle 0,-4,-9\rangle \quad D\langle 1,2,-2\rangle$
$V \times D=\left|\begin{array}{rrr}i & j & k \\ 0 & -4 & -9 \\ 1 & 2 & -2\end{array}\right|=\langle 26,-9,4\rangle$
$d=\frac{|V \times D|}{|D|}=\frac{\sqrt{26^{2}+9^{2}+4^{2}}}{\sqrt{1^{2}+2^{2}+2^{2}}}=\frac{\sqrt{773}}{3}$ units
(vi) (3 points) For what values of x will the tangent line to the curve $f(x)=e^{x}-4 x+2$ be horizontal? (Hint: Note that horizontal lines have slope 0)

$$
\begin{aligned}
f^{\prime}(x) & =e^{x}-4 \\
0 & =e^{x}-4 \\
e^{x} & =4
\end{aligned}
$$

$\ln e^{x}=\ln 4$
$x \ln e=\ln 4$
(vii) (5 points) Find the equation of a parabola that has $x=4$ as its directrix line and $(-2,6)$ as its vertex. What is the

$$
\begin{array}{ll}
\text { focus of such parabola? } & \begin{array}{l}
x=4 \\
F(-8,6)
\end{array} \\
& \begin{array}{l}
\\
\\
\\
\\
\\
\\
\\
\\
\hline F(-26) \\
\hline F(-8,6)
\end{array}
\end{array}
$$

(viii) (6 points)

$\operatorname{rog}_{B A}^{B C}=\overline{B I}$

$$
\operatorname{prg}_{E D}^{\cdot E F}=\overrightarrow{E I}
$$

Use the pictures above

1. Draw the projection vector of BC over BA
2. Draw the projection vector of EF over ED
3. Draw the projection vector of GH over GI
(ix) Let $f(x)=\left(x^{2}-6 x+5\right)^{4}$.
a. (3 points) Find $f^{\prime}(x)$. Then find the sign of $f^{\prime}(x)$.

$$
\begin{gathered}
f^{\prime}(x)=4(2 x-6)\left(x^{2}-6 x+5\right)^{3} \\
0=4(2 x-6)\left(x^{2}-6 x+5\right)^{3} \\
2 x-6=0 \quad x^{2}-6 x+5=0 \\
x=3 \quad x=5 \quad x=1
\end{gathered}
$$

$$
f^{\prime}(x) \text { negative for }(-\infty, 1) \cup(3,5)
$$

$$
f^{\prime}(x) \text { positive for }(1,3) \cup(5,+\infty)
$$

b. (2 points) For what values of x does $f(x)$ increase?

$$
(1,3) \cup(5,+\infty)
$$

c. (2 points) For what values of x does $f(x)$ decrease?

$$
(-\infty, 1) \cup(3,5)
$$

d. (2 points) Find all local min (max) points of $f(x)$ if possible

$$
\begin{array}{ll}
\min \text { at } x=1 \text { and } x=5 & \operatorname{MIN:}(1,0) \text { and }(5,0) \\
\max \text { at } x=3
\end{array} \quad \begin{array}{ll}
\operatorname{MAx}:(3,256)
\end{array}
$$

e. (2 points) Roughly, sketch $f(x)$.

(x) Consider the ellipse $(x+1)^{2}+\frac{(y-2)^{2}}{10}=1$
a. (2 points) Roughly, draw such ellipse

1

$c(-1,2)$
$\frac{k}{2}=\sqrt{10}$
$V_{1} F_{1}(-1,2+3)$
$\left|C F_{1}\right|=\sqrt{10-1}=3$
b. (2 points) Find the foci
$F_{1}(-1,5)$
$F_{2}(-1,-1)$

c. (2 points) Find the ellipse constant
$k=2 \sqrt{10}$

d. (2 points) Find all four vertices

$$
\begin{array}{ll}
v_{4}(-1,2+\sqrt{10}) \\
v_{2}(-1,2-\sqrt{10}) & v_{3}(0,2) \\
v_{4}(-2,2)
\end{array}
$$

(xi) (6 points) Let $H=(5,11)$ and $F=(10,-3)$. Find a point Q on the vertical line $x=4$ such that $|H Q|+|Q F|$ is minimum.

$$
\begin{gathered}
m=\frac{-3-11}{10-3}=-2 \\
11=-2(3)+b \\
b=17 \\
y=-2 x+17 \\
y=-2(4)+17=9 \\
Q(4,9)
\end{gathered}
$$

(xiii) (6 points)

γ (xiv) (4 points)

(xv) (3 points) $\int_{\frac{6}{2}} x^{2}\left(2 x^{3}+7\right)^{9} d x$

$$
\frac{\left(2 x^{3}+7\right)^{10}}{60}+C
$$

(xvi) (3 points) $\int \frac{2 x+1)}{x^{2}+2 x+3} d x$

$$
\frac{\ln \left|x^{2}+2 x+3\right|}{2}+C
$$

(xvii) (3 points) $\int(x)(x+5) e^{\left(2 x^{2}+20 x+1\right)} d x$

$$
\frac{1}{4} e^{2 x^{2}+20 x+1}+C
$$

Faculty information

Ayman Badawi, Department of Mathernatics \& Statistics, American University of Sharjah, P.O. Box 26666, Sharjah, United Arab Emirates, E-mail: abadaui@aus.edu, иин.ayman-badaui.com

Final Exam: MTH 111, Fall 2017

> Ayman Badawi
> Points $=\frac{81}{82}$

QUESTION 1. (6 points) Given $x=-6$ is the directrix of of a parabola that has the point $(6,5)$ as its vertex point. a) Find the equation of the parabola

$$
\begin{aligned}
& |V L|=|-6-6|=|-12|=12 \\
& 4(12)(x-6)=(y-5)^{2} \Rightarrow 48(x-6)=(y-5)^{2}
\end{aligned}
$$

b) Find the focus of the parabola.

$$
|V F|=12 \rightarrow F(18,5)
$$

QUESTION 2. (8 points) Given $(2,-4),(2,6)$ are the vertices of the major axis of an ellipse (recall major axis is the longer axis) and $(2,4)$ is one of the foci.
(i) Find the vertices of the minor axis (shorter axis). (you may want to draw such ellipse (roughly)).

$$
\begin{aligned}
& \left|V_{1} V_{2}\right|=K=|6+4|=10 \rightarrow \frac{k}{2}=5=\left|V_{1} C\right| \\
& C=(2,1) \rightarrow\left|F_{1} C\right|=|4-1|=3 \rightarrow b^{2}=\left(\frac{k}{2}\right)^{2}-\left|F_{1} C\right|^{2} \\
& b^{2}=5^{2}-3^{2}=1 b \rightarrow V_{3}(18,1), V_{4}(-14,1) \\
& \text { (ii) Find the ellipse-constant } K .
\end{aligned}
$$

$$
K=10
$$

(iii) Find the second foci of the ellipse.

$$
F_{2}(2,-2)
$$

(iv) Find the equation of the ellipse.

$$
\frac{(x-2)^{2}}{16}+\frac{(y-1)^{2}}{25}=1
$$

QUESTION 3. (5 points) Given $y=3 x^{2}+12 x+9$ is an equation of a parabola. Write the equation of the parabola in the standard form and find the equation of its directrix.

$$
y=3 x^{2}+12 x+9 \rightarrow y=3\left(x^{2}+4 x+3\right) \rightarrow y=3\left[(x+2)^{2}-4+3\right]
$$

$$
y=3(x+2)^{2}-1(3) \rightarrow \frac{1}{3}(y+3)=(x+2)^{2}
$$

id $=\frac{1}{3} \rightarrow d=\frac{1}{12}$
$v=(-2,-3) \rightarrow$

$$
\text { directrix } x \rightarrow x=-2-\frac{1}{12}
$$

QUESTION 4. a) (4 points) Given two lines $L_{1}: x=2 t, y=-2 t+3, z=-t+1$ and $L_{2}: x=-4 w-12, y=$
QUESTION 4. a) (4 points) Given two lines $L_{1}: x=2 t, y=-2 t+3, z=-t+1$ and $L_{2}: x=-4 w-12, y=$
$4 w+15 . z=2 w+7$. Is L_{1} parallel to L_{2} ? EXPLAIN clearly.
$4 w+15, z=2 w+7$. Is $L_{\text {I }}$ parallel to L_{2} ? EXPLAIN clearly.
$\left.\begin{array}{rl}4: x & =2 t \\ y & =-2 t+3 \\ z & =-t+1\end{array}\right\} t \in \mathbb{R}$

$$
\begin{aligned}
& D_{1}=\langle 2,-2,-1\rangle, D_{2}=\langle-4,4,2\rangle \\
& D_{2}=C D_{1} \rightarrow C=-2 \rightarrow D_{1} / / D_{2}
\end{aligned}
$$

$$
\begin{aligned}
& Q V^{i e^{8 n}} \\
& V^{2}
\end{aligned}
$$

$$
\left.\begin{array}{l}
D_{1} \| D_{2} \\
0,3,1)
\end{array}\right\}
$$

b)(4 points) Let L be the line L_{1} as in (a). Given that the point $Q=(2,3,4)$ does not lie on L . Find $|Q L|$ (distance $\quad y: 3=-3,1 / 2$ between Q and L). $I=(0,3,1), Q(2,3,4) \rightarrow \vec{I}=\langle 2,0,3\rangle$

$$
\Psi|Q L|=\frac{\sqrt{6^{2}+8^{2}+(-4)^{2}}}{\sqrt{2^{2}+(-2)^{2}+(-1)^{2}}}=\frac{2 \sqrt{29}}{3}
$$

d)(6 points) The two planes $P_{1}: 2 x+y+2 z=2$ and $P_{2}:-x+y-z=5$ intersects in a line L. Find a parametric equations of L.

$$
N_{1}=\langle 2,1,2\rangle, N_{2}=\langle-1,1,-1\rangle
$$

$$
D=N_{1} \times N_{2}=\left|\begin{array}{ccc}
1 & j & k \\
2 & 1 & 2 \\
-1 & 1 & -1
\end{array}\right|=\langle-3,0,3\rangle
$$ $\left\{\begin{array}{l}\left.A_{\Delta}=\frac{1}{2} \right\rvert\, \overrightarrow{Q_{1}} \times \overrightarrow{Q_{Q}} \\ =\frac{1}{2} \sqrt{3^{2}+(-6)^{2}+7^{2}} \\ =\sqrt{\frac{14}{2}} \text { units }^{2}\end{array}\right.$

$$
\begin{aligned}
& \rightarrow \text { Let } z=0 \rightarrow 2 x+y=2 \\
& -1 x[-x+y=5] \\
& Q=(-1,4,0) \\
& \rightarrow 4: \begin{array}{l}
x=-3 t-1 \\
y
\end{array}, 4
\end{aligned}
$$ $3 x=-3 \rightarrow x=-1 \rightarrow 2(-1)+y+2(6)=2$

$$
y=4
$$

QUESTION 5 .(6 points) Lee $A=(2,8)$, $B \in(0,10)$. Find a point Q on the in e $y=4$ such hat $|B Q|+|Q A|$ is

$$
|A L|=|8-4|=4
$$

$$
\begin{aligned}
& \rightarrow m=\frac{y_{1}-y_{2}}{x_{1}-x_{2}}=\frac{10-0}{0-2}=\frac{10}{-2}=-5 . \\
& y=-5 x+b \rightarrow 10=-5(0)+b \rightarrow b=10
\end{aligned}
$$

$$
y=-5 x+10 \rightarrow 4=-5 x+10 \rightarrow 4-10=-5 x \rightarrow x=\frac{+6}{+5}
$$

$$
Q=\left(\frac{6}{5}, 4\right)
$$

$$
\begin{aligned}
& |Q|=\frac{\left|\overrightarrow{I Q} \times D_{1}\right|}{\left|D_{1}\right|}, \overrightarrow{I Q} \times D=\left|\begin{array}{ccc}
i j & k \\
2^{j} & 0 & 3^{\prime} \\
2 & -2 & -1
\end{array}\right|=\langle 6,8,-4\rangle \\
& \begin{array}{l}
\text { c) (} 6 \text { points) Convince me that } q_{1}=(1,4,2), q_{2}=(2,1,-1) \text {, and } q_{3}=(3,5,2) \text { are not collinear. Then find the area } \\
\text { f the triangle with vertices } q_{1}, q_{2}, q_{3} \text {. }
\end{array}
\end{aligned}
$$

QUESTION 6. (9 points)
(i) Given $f^{\prime}(1)=2$ and $y=f\left(x^{2}+2 x-7\right)$. Then $y^{\prime}(2)=$

$$
\begin{gathered}
y^{\prime}=\left[f^{\prime}\left(x^{2}+2 x-7\right)\right][2 x+2]=\left[f^{\prime}\left(2^{2}+2(2)-7\right)\right][2(2)+2]= \\
{\left[f^{\prime}(1)\right][6]=6(2)=12}
\end{gathered}
$$

(ii) Let $f(x)=-6 e^{\left(x^{3}+6 x-7\right)}$. Then $f^{\prime}(x)=$

$$
\begin{aligned}
& f(x)=-6 e^{\left(x^{3}+6 x-7\right)} \rightarrow f^{\prime}(x)=-6\left(3 x^{2}+6\right)\left(e^{x^{3}+6 x-7}\right) \\
& \Rightarrow f(x)=\ln (5 x-9)^{3}+\ln (2 x-3)^{7}=3 \ln (5 x-9)+7 \ln (2 x-3) \\
& \begin{array}{l}
\text { (iii) Let } f(x)=\ln \left((5 x-9)^{3}(2 x-3)^{7}\right) \text {. Then } f^{\prime}(x)= \\
\text { QUESTION 7. (10 points) } \\
\left.\int \frac{x+1}{x^{2}+2 x+1} d x=\int(x+1)\left(x^{2}+2 x+1\right)^{-1} d x=\frac{3(5)}{5 x-9}+\frac{7(2)}{2 x-3} \right\rvert\,\left(x^{2}+2 x+1\right)+C
\end{array}
\end{aligned}
$$

(ii) $\int \frac{e^{x}+3}{\left(e^{x}+3 x+1\right)^{2}} d x=\int\left(e^{x}+3\right)\left(e^{x}+3 x+1\right)^{-2} d x=\frac{\left(e^{x}+3 x+1\right)^{-1}}{-1}+C$

$$
\text { (iii) } \int x^{5}(x+1)^{2} d x=\int x^{5}\left(x^{2}+2 x+1\right) d x=\int x^{7}+2 x^{6}+x^{5} d x=
$$

$$
\int x^{7} d x+2 \int x^{6} d x+\int x^{5} d x=\frac{x^{8}}{8}+\frac{2 x^{7}}{7}+\frac{x^{6}}{6}+C
$$

(iv) $\int 10(2 x+7)^{11} d x=5 \int 2(2 x+7)^{11} d x \Rightarrow \frac{5(2 x+7)^{12}}{12}+c$

$$
\begin{gathered}
y=\sqrt{x+4}-2 \\
2=\sqrt{x+4} \\
4=x+4 \\
x=0
\end{gathered}
$$

Stare at $f(x)=\sqrt{x+4}-2$ where $-4 \leq x \leq 4$. Then
a) (6 points) Find the area of the region bounded by the curve of $f(x), \mathrm{x}$-axis, and $-4 \leq x \leq 4$.

$$
\begin{aligned}
& -\int_{-4}^{0} \sqrt{x+4}-2 d x+\int_{0}^{4} \sqrt{x+4}-2 d x=-\left(\frac{2}{3}(x+4)^{3 / 2}-\left.2 x\right|_{-4} ^{0}\right)+ \\
& \left(\frac{2}{3}(x+4)^{3 / 2}-\left.2 x\right|_{0} ^{4}\right)=-\left(\frac{16}{3}-8\right)+\left[\left(\frac{2}{3}(8)^{3 / 2}-8\right)-\frac{16}{3}\right]
\end{aligned}
$$

Area ≈ 4.42 unit 2
b) (4 points) Imagine that the region between $\mathrm{x}=0$ and $\mathrm{x}=4$ is rotated about x-axis 360 degrees. What is the volume

$$
\begin{aligned}
& \left.\pi \int_{0}^{4}(\sqrt{x+4}-2)^{2} d x\right] \pi \int_{0}^{4}(x+4)-4 \sqrt{x+4}+4 d x \\
& \Rightarrow \pi\left[\int_{0}^{4} x+8 d x-4 \int_{0}^{4} \sqrt{x+4} d x\right] \pi\left[\left(\frac{x^{2}}{2}+\left.8 x\right|_{0} ^{4}\right)-4\left(\left.\frac{2(x+4)^{3 / 2}}{3}\right|_{0} ^{4}\right)\right. \\
& \Rightarrow \pi\left[(40-0)-4\left(\frac{2(8)^{3 / 2}}{3}-\frac{2(4)^{3 / 2}}{3}\right)\right]
\end{aligned}
$$

Volume $\approx 0.99 \pi$ units 3

QUESTION 9. (8 points)

$$
\begin{aligned}
& Y=-x^{2}+4 x \\
& D(a, 0) \rightarrow A=\left(a,-a^{2}+4 a\right) \\
& L=-a^{2}+4 a \\
& |O D|=|C F|=a \\
& |C D|=W=4-2 a
\end{aligned}
$$

We want to construct a rectangle ABCD (sec picture) of maximum area between the x -axis and the curve $y=$ $-x^{2}+4 x$. Find the length and the width of such rectangle. (Hint: Note that the curve intersects x-axis at $x=0$ and at $x=4$. Let O be the origin $(0,0)$ and F be $(4,0)$. Then $|O D|=|C F|)$

$$
\begin{aligned}
& L=-a^{2}+4 a, W=4-2 a \rightarrow 2=(4-2 a)\left(-a^{2}+4 a\right) \\
& A=-4 a^{2}+16 a+2 a^{3}-8 a^{2}=2 a^{3}-12 a^{2}+16 a \\
& A^{\prime}=6 a^{2}-24 a+16=0 \rightarrow 2\left(3 a^{2}-12 a+8\right)=0 \\
& \Rightarrow 3 a^{2}-12 a+8=0 \Rightarrow a=\frac{12 \pm \sqrt{48}}{2(3)} \\
& A^{\prime \prime}=12 a-24 \rightarrow A^{\prime \prime}>0 \\
& L=\frac{8}{3}
\end{aligned}
$$

Faculty information
Ayman Badawi, Department of Mathematics \& Statistics, American University of Shariah, P.O. Box 26666, Shariah, United Arab Emirates,
E-mail: abadarimaus, edt, trus.ayman-badawi.com

4 Worked out Solutions for all Assessment Tools

4.1 Solution for Quiz I

Quiz One, MTH 111, Fall 2020
Ayman Badawi
QUESTION 1. Consider the ellipse $\frac{(y-2)^{2}}{9}+\frac{(x+3)^{2}}{4}=1$
(i) Roughly, sketch such ellipse.

(ii) Find the center c

(iii) Find the ellipse constant k

$$
\text { From eq. }\left(\frac{k}{2}\right)^{2}=9 \Rightarrow \frac{k}{2}=3
$$

$$
\therefore k=6
$$

$$
\begin{aligned}
& \text { (iv) Find the foci. } F_{1}, F_{2} \\
& \left|\overline{C_{1}}\right|^{2} \\
& \left\lvert\,\left(\frac{k}{2}\right)^{2}-b^{2} .\right. \text { (fromeq. } b^{2}=4 \Rightarrow b=2 \text {) } \\
& |\overline{C F}|^{2}=9-4=5 \rightarrow\left|\overline{C F_{1}}\right|^{2}=\frac{1}{5} 5 \text { (or) }\left|\overline{C F_{1}}\right|=\sqrt{5} .
\end{aligned}
$$

$$
\left|\overline{C F_{1}}\right|=\left|C F_{2}\right|
$$

$$
\therefore F_{1} \rightarrow(-3,2+\sqrt{5}) \text { and } F_{2} \rightarrow(-3,2-\sqrt{5})
$$

(v) Find all vertices.
$\left|\bar{v}_{1} v_{3}\right|=k \Rightarrow\left|\overline{v_{1} c}\right|=\left|\overline{v_{3} c}\right|=\frac{k}{2} \Rightarrow\left|\overline{v_{1}}\right|=\left|\overline{v_{3}} c\right|=3$
and, $|\sqrt{2 c}|=\left|\overline{V_{4}}\right|=b=2$
$\therefore V_{1} \rightarrow\left(-3,5 ; v_{3} \rightarrow(-3,-1) ; V_{2} \rightarrow(-5,2) ; V_{4} \rightarrow(-1,2)\right.$
(vi) Given that $Q=\left(x_{1}, y_{1}\right)$ is a point on the ellipse and $\left|Q F_{1}\right|=2$. Find $\left|Q F_{2}\right|$.
$\left|\overline{Q F_{1}}\right|+\left|\bar{Q} \bar{F}_{2}\right|=k$.
In this question, $k=6$. and given, $\left|\overline{Q F_{1}}\right|=2$
$\therefore 2+\left|\overline{G F_{2}}\right|=6 \Rightarrow\left|\overline{Q F}_{2}\right|=6-2$
$\therefore\left|\bar{Q} F_{2}\right|=4$

Faculty information

Ayman Badawi, Department of Mathematics \& Statistics. American University of Shariah. P.O. Box 26666. Sharjah. United Arab Emirates. E-mail: abadawi@aus.edu, www.ayman-badawi.com

NAME: Afraa Parkar
AUSID: g00088916

DATE: $17 \mid 09 / 2020$
(1) (i) $-12(x+2)=(y-4)^{2}$

From equation, the parabola opens either towards right or left.

$$
\begin{aligned}
\Rightarrow a=-1214=-3<0 \Rightarrow & \text { The parabola opens towards } \\
& \text { left. }
\end{aligned}
$$

(ii) From the equations,
coordinates of vertex are: $(-2,4)$ [Ans]
(iii)

$$
\begin{aligned}
4 a=-12 \Rightarrow a & =-3 \\
|a| & =3 \text { units }
\end{aligned}
$$

Coordinates of focus F are: $(-2-3,4)$

$$
\Rightarrow(-5,4)
$$

[Ans]
(iv) $\quad|F V|=|V A|=3$ wits.

Equation of the directrix line is

$$
x=-2+3
$$

$$
x=1
$$

[Ans]
(v) Fora parabola, $|Q F|=\mid Q 4$

$$
\begin{gathered}
|Q L|=|\Delta x|=7 \text { units } \\
|Q F|=7 \text { units. }
\end{gathered}
$$

$$
\begin{aligned}
& \text { (2) (1) } y=x^{2}-10 x+20 \\
& \Rightarrow y-20=x^{2}-10 x \\
& \Rightarrow y-20=(x-5)^{2}-25 \\
& \Rightarrow y-20+25=(x-5)^{2} \\
& \Rightarrow y+(y+5)=(x-5)^{2} \Rightarrow \text { STANDARD FORM }
\end{aligned}
$$

From equation parabola opens either upwards or downwards.

$$
\begin{aligned}
4 a & =1 \\
a & =1 / 4>0 \Rightarrow \text { Parabola opens upwards. }
\end{aligned}
$$

(ii) From equation, vertex $=(5,-5)$

$$
4 a=1 \Rightarrow a=1 / 4
$$

Coordinates of focus F : $\left(5,-5+\frac{1}{4}\right)$

$$
\Rightarrow(5,-19 / 4)
$$

[Ans]
(iii) $\quad|F V|=|V A|=1 / 4$
\therefore Equatian of directrix une is $y=-5-\frac{1}{4}$

$$
y=\frac{-21}{4}
$$

4.3 Solution for Quiz III

Nama KHADEEJA MOOPAN id 87433

MTH 111, Fall 2020, 1-1

Quiz three, MTH 111 , Fall 2020

Amman Badawi

QUESTION 1. (SHOW THE WORK)

consider the hyperbola $\frac{(x-2)^{2}}{4}-\frac{(y-1)^{2}}{12}=1$
(i) Roughly, sketch such hyperbola.
tue $x \rightarrow$ right-left.

(ii) Find the center c
From eq. center $c \rightarrow(2,1)$
(iii) Find the hyper-constant k.

From eq. $\left(\frac{k}{2}\right)^{2}=4$
$\Rightarrow \frac{k}{2}=2$

$$
\Rightarrow k=4
$$

(iv) Find the foci, F_{1}, F_{2}

From eq. $\left(\frac{k}{2}\right)^{2}=4$ and $b^{2}=12$.
$|\overline{C F}|=\left|\overline{C F}_{2}\right|=\sqrt{\left(\frac{k}{2}\right)^{2}+b^{2}}=\sqrt{4+12}=\sqrt{16}=4$
$\therefore\left|\overline{C F}_{1}\right|=\left|\overline{C F}_{2}\right|=4$
$\Rightarrow F_{1} \rightarrow(2-4,1) \Rightarrow F_{1} \rightarrow(-2,1)$
$\Rightarrow F_{2} \rightarrow(2+4,1) \Rightarrow F_{2} \rightarrow(6,1)$
(v) Find all vertices.
$\left|v_{1} v_{2}\right|=k=4$. and $\left|c v_{1}\right|=\left|c v_{2}\right|=\frac{k}{2}=2$

$$
\begin{array}{ll}
\therefore & v_{1} \rightarrow(2-2,1) \Rightarrow \\
& v_{2} \rightarrow(2+2,1) \Rightarrow
\end{array} \begin{aligned}
& v_{1} \rightarrow(6,1) \\
& v_{2} \rightarrow(4,1)
\end{aligned}
$$

(vi) Given that $Q=\left(x_{1}, y_{1}\right)$ is a point on the hyperbola and $\left|Q F_{1}\right|=3$. Find $\left|Q F_{2}\right|$.

For Hyperbola, we have $\left\|Q F_{1}|-| Q F_{2}\right\|=k$.
Given $\left|q F_{1}\right|=3$ and we know that $k=4$.
So, $3-1| | g F_{2}|-3|=4$.
$\therefore\left|Q_{1} F_{2}\right|=7$

Faculty information

Ayman Badawi. Department of Mathematics \& Statistics. American University of Shariah. P.O. Box 26666 . Shariah. United Arab Emirates ?-mail abadawi ©aus.edu, wws.ayman-badavi.com

Quiz \#3
(Hyperbola)
NAME: Afraa Parkar
AUS ID: g00088916
(A) (i) Since $(x-2)^{2}$ is a positive tein the hyperbola is in the right-left direction.

(ii) From the equation,

The coordinates of centre are

(iii) From the given equation,

$$
\left(\frac{k}{\alpha}\right)^{2}=4 \Rightarrow \frac{k}{\alpha}=2 \Rightarrow k=4
$$

[ANS]
(iv) For a hyperbola,

$$
\left|\overline{C F_{1}}\right|=\left|\overline{C F_{2}}\right|=\sqrt{(k \mid 2)^{2}+b^{2}}=\sqrt{4+12}=\sqrt{16}=4 \text { units }
$$

Coordinates of $F_{1}:(2+4,1) \Rightarrow(6,1)$
[Ans]
L. Coordinates of $F_{2}:(2-4,1) \Rightarrow(-2,1)$
(v) From equation, $k / 2=2$

$$
\text { and, centre }=(2,1)
$$

Coordinates of $v_{2}:(2-2,1) \Rightarrow(0,1)$

[Ans]
(vi) $\left.\begin{array}{l}Q=\left(x_{1}, y_{1}\right) \\ |\overline{\phi F}|=3\end{array}\right\}$ given

$$
\begin{aligned}
& \left|\left|\overline{Q F}_{1}\right|-\left|\overline{Q F_{2}}\right|=k .\right. \\
& \left|\left|\overline{Q F_{1}}\right|-k\right|=\left|\overline{Q F}_{2}\right|
\end{aligned}
$$

$$
(k \text { can be }-4 a r+4)
$$

(Here, $k=-4$)

$$
\begin{array}{r}
\nmid 3-(-4)|=|\overline{Q \sqrt{2}}| \\
\Rightarrow 1=\left|\overline{Q F_{2}}\right| . \\
\therefore\left|\overline{Q F}_{2}\right|=1 \text { units }
\end{array}
$$

[Ans].

Name: Joan Dsilva Course: MTHIII section: 01
Date: $8^{\text {min }}$ Oct 2020

1D: 900087567
classmate
\qquad

Q.

$$
\begin{aligned}
v=\langle 3,4\rangle & w=\langle-1,4\rangle \\
\left\lvert\, \begin{aligned}
v \\
\mid \text { prof } v
\end{aligned}\right. & =\frac{|w \cdot v|}{|v|} \\
& =\frac{|(-1 \times 3)+(u \times 4)|}{|\sqrt{9+16}|} \\
& =\frac{|-3+16|}{|5|} \\
& =\frac{13}{5}
\end{aligned}
$$

\qquad
\qquad
3.

$$
A=(1,2,4) \quad B=(-3,6,-8)
$$

Let D be the chirectional vector

$$
\begin{aligned}
\vec{D} & =B-A \\
& =\langle-3-1,6-2,-8-4\rangle \\
D & =\langle-4,4,-12\rangle
\end{aligned}
$$

$$
\begin{aligned}
\text { parametric eq } & =(1,2,4)+t\langle-4,4,-12\rangle \\
& =(1-4 t, 2+4 t, 4-12 t)
\end{aligned}
$$

$$
\begin{aligned}
L: x & =1-4 t \\
y & =2+4 t \\
z & =4-12 t
\end{aligned}
$$

4.

$$
\left.\begin{array}{rl}
L_{1} \cdot x_{1} & =t+2 \\
y_{0} & =-2 t+1 \\
z_{1} & =-t+4
\end{array}\right\} t \in R
$$

$$
\left.\begin{array}{rl}
L_{2}: x & =-3 w+13 \\
y & =2 w-9 \\
z & =3 w-7
\end{array}\right\}
$$

If L_{1} intersects L_{2}, then L_{1} values equal to L_{2} values.

$$
\begin{aligned}
& \Rightarrow t+2=-3 w+13 \\
& \Rightarrow t+3 w=11 \\
& \left.\begin{array}{l}
t+3 w=11 \\
t+w=5 \\
2 w=6 \\
w=3 .
\end{array} \right\rvert\, \begin{array}{l}
\Rightarrow 2 t+2 w=10 \\
\Rightarrow t+w=5
\end{array} \\
& \therefore t=2 .
\end{aligned}
$$

\qquad
\qquad
$L_{1}: z=-t+4 \quad L_{2}:$

$$
z=-2+4
$$

$$
\begin{aligned}
L_{2}: z & =3 w-7 \\
z & =3 \times 3-7 \\
z & =2
\end{aligned}
$$

\qquad

$$
z=2
$$

5
Intersecting point $=(4,-3,2)$

$$
\begin{gathered}
t+2 \\
=4 \\
-2 \times 2+1 \\
=-3 \\
-2+4 \\
=2
\end{gathered}
$$

If L_{1} is perpendicular to L_{2}, then $D_{1} \cdot D_{2}=0$.

$$
\begin{aligned}
& D_{1}=\langle 1,-2,-1\rangle \\
& D_{2}=\langle-3,2,3\rangle
\end{aligned}
$$

$$
\begin{aligned}
D_{1} \cdot D_{2} & =(1 \times-3)+(-2 \times 2)+(-1 \times 3) \\
& =-10 .
\end{aligned}
$$

NAME: Afraa Parkar

AUS ID: g00088916

13

(iii)

(2)

$$
\begin{aligned}
|v \cdot w| & =3(-1)+4(4) \\
& =-3+16=\underline{\underline{13}} \\
|v| & =\sqrt{(\Delta x)^{2}+(\Delta y)^{2}}=\sqrt{9+16}=285
\end{aligned}
$$

2

$$
\text { M } \therefore \mid \text { Prop }_{V}^{w} \left\lvert\,=\frac{|v \cdot w|}{|V|}=\frac{13}{5} \quad\right. \text { (Ans) }
$$

(3) Let Q_{1} be $(1,2,4)$ and Q_{2} be $(-3,6,-8)$
then,

$$
\begin{aligned}
\overrightarrow{Q_{1} Q_{2}} & =Q_{2}-Q_{1} \\
& =\langle-4,4,-12\rangle
\end{aligned}
$$

then,

$$
l_{1}:(1,2,4)+t\langle-4,4,-12\rangle
$$

$$
\begin{aligned}
L_{1}: x & =-4 t+1 \\
y & =4 t+2 \\
z & =-12 t+4
\end{aligned}, t \in \mathbb{R}
$$

\Rightarrow Parametric equation
(4)

$$
\begin{aligned}
L_{1}: x & =t+2 \\
y & =-2 t+1 \quad, t \in \mathbb{R} \\
z & =-t+4
\end{aligned}
$$

$$
\begin{aligned}
L_{2}: x & =-3 w+13 \\
y & =2 w-9 \\
z & =3 w-1
\end{aligned}, w \in \mathbb{R}
$$

Forming two equation,

$$
\begin{aligned}
& t+2=-3 w+13 \Rightarrow(t+3 w=11) x-2 \Rightarrow-2 t-6 w=-22 \\
&-2 t+1=2 w-9 \Rightarrow(-2 t-2 w=-10) \times 1 \Rightarrow-2 t-2 w=-10 \\
&\Rightarrow(t) c t c) \\
&-4 w=-12
\end{aligned}
$$

$$
\Rightarrow w=3
$$

Substituting w in eq. (1),

$$
\begin{gathered}
-2 t-18=-22 \\
-2 t=-22+18=-4 \\
t=2 \\
=w=3 \& t=2
\end{gathered}
$$

Now, substituting $t \& w$ in $L_{1} \& L_{2}$ respectively,

$$
\begin{array}{rlr}
L_{1}: x=4 \\
y=-3 & L_{2}: x=4 \\
z=2 & y=-3 \\
z=2
\end{array}
$$

The paint of intersection of L_{1} and L_{2} is $(4,-3,2)$

$$
D_{-} 1 . D_{-} 2=<1,-2,-1>.<-3,2,3>=-3+-4+-3=-10 \text { not equal } 0
$$

Name: Joan Dsilva
Course: MTH 111
ID: 900087567 section: 01

Quiz 5.
1.

$$
\begin{aligned}
& Q_{1}=(-2,1,3) \\
& Q_{2}=(4,2,4) \\
& Q_{3}=(0,5,5)
\end{aligned}
$$

Let $V=\overrightarrow{Q_{1} Q_{2}}$ and $W=\overrightarrow{Q_{1} Q_{3}}$

$$
\begin{aligned}
& V=\overrightarrow{Q_{1} Q_{2}}=\langle 6,1,1\rangle \\
& W=\overrightarrow{Q_{1} Q_{3}}=\langle 2,4,2\rangle \\
& V \times W=\left|\begin{array}{ccc}
i & j & k \\
6 & 1 & 1 \\
2 & 4 & 2
\end{array}\right| \\
& =\langle 2-4,-(12-2), 24-2\rangle \\
& \quad=\langle-2,-10,22\rangle=N
\end{aligned}
$$

Let $A=(x, y, z)$ be a point

$$
\begin{aligned}
& \overrightarrow{Q, A}=\langle x+2, y-1, z-3\rangle \\
& \begin{aligned}
\overrightarrow{N \cdot} \overrightarrow{Q, A} & =-2(x+2)-10(y-1)+22(z-3)=0 \\
& =-2 x-4-10 y+10+22 z-166=0 \\
& =-2 x-10 y+22 z=60 \text { (simplified) }
\end{aligned}
\end{aligned}
$$

2. $P:-2 x+6 y+z=2$
(i) $V=\langle 8,4,-8\rangle$

$$
\begin{aligned}
& \text { Normal, } N=\langle-2,6,1\rangle \\
& \begin{aligned}
\begin{array}{r}
N \cdot \\
V
\end{array} & =-16+24-8 \\
& =-2 u+24 \\
& =0
\end{aligned}
\end{aligned}
$$

Since dot product of Normal vector of plane and the vector given a zero, the vector lies plane.
inside the plater inside the plane.
(ii) Let $Q=(8,-4,-8$)

$$
\begin{aligned}
P & =-2 x+6 y+z=2 . \\
& \Rightarrow-2(8)+6(-4)+(-8) \\
& \Rightarrow-16-24-8 \\
& \Rightarrow-48 \neq 2
\end{aligned}
$$

Hence the point/does not lie on the plane.

$$
\begin{gathered}
\text { (iii) } \left.L=\begin{array}{rl}
x & =t-3 \\
y & =2 t-1 \\
z=-9 t-2
\end{array}\right\} t \in R . \\
P:-2 x+6 y+z=2 . \\
-2(t-3)+6(2 t-1)-9 t-2 \\
\Rightarrow-2 t+6+12 t-6-9 t-2 . \\
\Rightarrow t-2=2 \\
\Rightarrow t=4 .
\end{gathered}
$$

Hence the line intersects the plane at $t=4$.

$$
\begin{aligned}
L: & x=1 \\
y & =7 \\
z & =-38
\end{aligned}
$$

Therefore, intersection point of lime and plane is $(1,7 / 2-38)$

Quir 6 Dina Saed Abu Alfentat. 11-05

Q2) Given $Q=(1,2,4)$
Q1) $p_{1}:-2 x+4 y+3 z=6$

$$
\begin{aligned}
& N_{1}=\langle-2,4,3\rangle \\
& N_{2}=\langle 1,-1,2\rangle \\
& N_{1} \times N_{2}=\left|\begin{array}{ccc}
1 & 1 & k \\
-2 & 4 & 3 \\
1 & -1 & 2
\end{array}\right| \\
& =\langle | \begin{array}{cc}
4 & 3 \\
-1 & 2
\end{array}\left|,-\left|\begin{array}{cc}
-2 & 3 \\
1 & 2
\end{array}\right|,\right|_{1}^{-2} \\
& =\langle 11,-(-7),-2\rangle \\
& =\langle 11,7,-2\rangle .
\end{aligned}
$$

$$
\begin{aligned}
& \text { 2i) } \left\lvert\, Q C_{1}=\frac{|V \times D|}{1 D 1} \quad D=\langle 1,-2,2\rangle\right. \\
& I=(1,3,5)
\end{aligned}
$$

$$
V=\overrightarrow{I Q}=\langle 0,-1,-1\rangle
$$

$$
V \times D=\left|\begin{array}{ccc}
1 & j & x \\
1 & -2 & 2 \\
0 & -1 & -1
\end{array}\right|
$$

$$
=\langle | \begin{array}{cc}
-2 & 2 \\
-1 & -1
\end{array}\left|,-\left|\begin{array}{cc}
1 & 2 \\
0 & -1
\end{array}\right|,\left|\begin{array}{cc}
1 & -2 \\
0 & -1
\end{array}\right|\right\rangle
$$

$$
=\langle 0,4,-(-1),-1\rangle
$$

$$
=\langle 4,1,-1\rangle .
$$

$$
=\sqrt{(4)^{2}+(1)^{2}}+(-1)^{2}
$$

$$
=\sqrt{18}
$$

Assume $z=0$.

$$
\begin{aligned}
D_{1} & =\sqrt{(1)^{2}+(-2)^{2}}+(2)^{2} \\
& =\sqrt{9}=3 .
\end{aligned}
$$

$-2 x+y(7)=6 \quad 2 y=14 \quad y=7$

$$
-2 x+28=6
$$

$$
\begin{gathered}
2 x=+22 \\
{[x=11]^{2}}
\end{gathered}
$$

common

$$
|Q|\rangle=\frac{\sqrt{18}}{\text { units }} 3
$$

$$
\begin{aligned}
L: & x \\
y & =11 t+11 \\
y & =7 t+7 \\
z & =-2 t .
\end{aligned}
$$

Is $P_{1} \perp P_{2}$?

$$
\begin{aligned}
N_{1} & =\langle-2,4,3\rangle \\
N_{2} & =\langle 1,-1,2\rangle \\
N_{1} \cdot N_{2} & =(-2)(1)+(4)(-1)+(3)(2) \\
& =-2-4+6=
\end{aligned}
$$

$$
-6+6=0
$$

Yes they're penpencicular a) dot produot is zero.

$$
\begin{aligned}
& \text { L: } \begin{array}{l}
x=t+1 \\
y=-2 t+3
\end{array} \\
& z=2 t+5 \\
& P_{1}=2 x+y+z=42 \text {. }
\end{aligned}
$$

Name-Noor AbL El Sound $1 \mathrm{go0} 087597$
© copyright Ayman Badawi 2020
Quiz Six, MTH 111 , Fall 2020
Ayman Badawi

Parametric equations

$$
\begin{aligned}
& x=11 t+11 \\
& y=7 t+7
\end{aligned}
$$

QUESTION 1. $\underline{P}_{1}:-2 x+4 y+3 z=6$ and $\underline{P_{2}}: x-y+2 z=4$ intersect at a line L find a parametric equations of L.
(2)

$$
\begin{aligned}
& -2(11)+4 y=6 \\
& -22+4 y=6
\end{aligned}
$$

$$
\begin{aligned}
& \text { Is } \left.\left.P_{1} \text { perpendicular to } P_{2} \text { ? } 4 x-4 y=16 \Rightarrow \text { The point }(11,7,0) \text { lies on intersection line } \quad \begin{array}{rl}
2 x &
\end{array}\right)=22 \quad \mid x=11\right)
\end{aligned}
$$

$Q=(1,2,4) \quad P=2 x+y+z-42=0 \quad$ substitute point

$$
\begin{array}{rlrl}
|2(1)+2+4-42| & N=\langle 2,1,1\rangle & |N| & =\sqrt{4+1+1} \\
& =\sqrt{6}
\end{array}
$$

QUESTION 3. i) Let $y=2 x^{3}+\sqrt[5]{x^{3}}+10$. Find $y \quad y=2 x^{3}+x^{\frac{3}{5}}+10$

$$
\quad y^{\prime}=6 x^{2}+3 / 5 x^{-\frac{1}{5}}
$$

$$
y=(2 x+4) x^{-5} \quad y=2 x^{-4}+4 x^{-5} \quad y^{\prime}=-8 x^{-5}+-20 x^{-6}
$$

Faculty information
Ayman Badawi, Department of Mathematics \& Statistics, American University of Shariah, P.O. Box 26666, Shariah, United Arab Emirates. Email: abadawi@aus.edu, wwr.ayman-badari.com

$$
\begin{aligned}
& \rightarrow \text { then let } z=0 \Rightarrow \begin{array}{l}
-2 x+4 y=6 \\
(x-y=4)^{\times 4} \\
-2 x+4 y=6
\end{array} \quad \begin{array}{l}
8-3,-(-4-3\rangle, 2\rangle \\
D=\langle 11,7,-2\rangle
\end{array} \\
& -2 x+4 y=6 \quad 2 x=22 \quad x=11 \text { subativile } 4 y=28
\end{aligned}
$$

4.7 Solution for EXAM I
$55 / 5)$ Exam 1, Fall zo20

1) $-8(y-2)=(x+3)^{2}$

i)
i)

$$
\begin{aligned}
& \text { ii) }=(-3,1) \\
& \text { (3.2 .iii) }\left(\frac{k}{2}\right)^{z}=\sqrt{25} \\
& \text { N/VK=5×2=10 }
\end{aligned}
$$

iv)

$$
\begin{array}{ll}
\left(\frac{K}{2}\right)^{2}=b^{2}+|C F|^{2} & F_{1}=(-3,1-3)=(-3,-2) \\
\sqrt{25-16}=C F & F_{2}=(-2,+1+3)=(-3,4) \\
C F=3 &
\end{array}
$$

v)

$$
\begin{aligned}
& v_{1}=(-3+4,1)=(1,1) \quad v_{2}=(-3,1-5)=(-3,-4) \\
& v_{3}=(-3-4,1)=(-7,1) \quad v_{4}=(-3,1+5)=(-3,6)
\end{aligned}
$$

vi)

$$
\begin{aligned}
& \left|Q F_{1}\right|=7 \\
& \left|Q F_{1}\right|+\left|Q F_{2}\right|=K \\
& 7+Q F_{2}=10 \\
& \left|Q F_{1}\right|=3
\end{aligned}
$$

5) $\frac{(y+1)^{2}}{9}-\frac{(x-3)^{2}}{16}=1$
i)

$$
\text { iii) } \begin{aligned}
& C F=\sqrt{9+16} \\
& C F=5 \\
& F_{1}=(3,-1+5)=(3,4) \\
& F_{2}=(3,-1-5)=(3,-6)
\end{aligned}
$$

ii) $\left(\frac{k}{2}\right)^{x}=\sqrt{9}$

$$
\begin{aligned}
& \left(\frac{k}{2}\right)^{x}=\sqrt{9} \\
& k=3 \times 2=6
\end{aligned} \text { iv) } v_{1}=(3,-1+3)=(3,2)
$$

2) $2 y=x^{2}+6 x+13$

$$
\begin{aligned}
& 2 y-13=x^{2}+6 x \\
& \left.2 y-13=(x+3)^{2}-9\right) \\
& 2 y-13+9=(x+3)^{2} \\
& 2 y-4=(x+3)^{2}
\end{aligned}
$$

$$
\begin{aligned}
& 2 y-4=(x+3)^{2} \\
& 2(y-2)=(x+3)^{2}
\end{aligned}
$$

iii) $F=\left(-3,2+\frac{1}{2}\right)$ iii)
$F \in\left(-3, \frac{8}{2}\right)$
4)

$$
\begin{aligned}
& \begin{array}{l}
\text { ellipse } \\
c(-2,1) \\
v=(10,1) \\
v=(-2,6) \\
b=5 \\
K=2 \times 12=24
\end{array}
\end{aligned}
$$

$$
\left(\frac{k}{2}\right)^{2}=b^{2}+k f f^{2}
$$

i) $F_{1}=(-2-10.0,1)$

$$
F_{2}=(-2+10.9,1)
$$

$\zeta=(8.9,1)$

$\sqrt{\left(\frac{24}{2}\right)^{2}-5^{2}}=C F$ $C F=10.9$
993) $(x+2)^{2}-(y-1)^{2}$
ii)

7) $L_{1}: x=4 t+2 \quad L_{2}: x=-2 w+12 \quad$ (1) if L_{1} intersects L_{2}, then find intersection point?

$$
\begin{array}{ll}
y=-2 t+1 & y=-2 w-1 \\
z=t+4 & z=4 w+2
\end{array}
$$

(2) is L_{1} perpendicular to L_{2} ? $D_{1}=\langle 4,-2,1\rangle \quad D_{2}=\langle-2,-2,4\rangle$

$$
\begin{aligned}
& 4(-2)+(-2)(-2)+1(4)= \\
& -8+4+4=0
\end{aligned}
$$

$$
-8+4+4=0
$$

L_{1} is perpendicular to L_{2} based off dot product.
(3) Find the symmetric equation of the line L_{1}
$\sqrt{\frac{x-2}{4}}=\frac{y-1}{-2}=z-4$

$\begin{array}{ll}z=2+4 & z=4(1)+2 \\ z=0 & z=6\end{array}$, $z=0 \quad z=6$
$\frac{\text { yes } L_{1} \text { intersect } L_{2}}{\text { at point }(10,-13)}$

$$
\begin{aligned}
& x=4(2)+2 \quad x=-2(1)+12 \\
& \begin{array}{l}
4 t+2=-2 w+12 \\
2 w=-4 t-2+12
\end{array} \quad \begin{array}{l}
-2 t+1=-2 w-1 \\
-2 t+1=-2(-2 t+5)-1
\end{array} \\
& \frac{\psi_{\omega}}{6}=-\frac{4 t}{2}+\frac{10}{2} \quad-2 t+1=+4 t-10-1 \\
& W=-2 t+5 \quad 4 t+2 t=10+1+1 \\
& w=-4+5
\end{aligned}
$$

1 $\quad W=-2(2)+5$
$x=10$
$x=10$
at point $(10,-3,6) \quad y=-2(2)+1 \quad y=-2(1)-1$
$y=-3$
$y=-3$

$$
\text { 8) } \begin{aligned}
& a=(-4,2) V=(1--4,-1-2)=(5,-3) \text { turn 3D }(5,-3,0) \\
& b=(1,-1) \\
& c=(4,5) \\
& A=(4-4,5-2)=(8,3) \operatorname{turn} 3 D(8,3,0) \frac{1}{2}|v \cdot W| \\
& A=\frac{1}{2} \int \theta^{2}+\theta^{2}+39^{2}
\end{aligned}\left|\begin{array}{ccc}
i & j & k \\
5 & -3 & 0 \\
8 & 3 & 0
\end{array}\right|
$$

9) $L_{10}: x=3 t+2 \quad L_{2}: x=-6 w+14$

$$
y=2 t+1 \quad y=-4 w+9
$$

$$
z=3 t+4 \quad z=-6 w+16
$$

$$
D_{1}=\langle 3,2,3\rangle \quad D_{2}=\langle-6,-4,-6\rangle
$$

$$
D_{1}=+D_{2}
$$

$$
\frac{3}{-6}=\frac{1-6}{6}
$$

$$
t=-\frac{1}{2}
$$

$$
D_{1}=-\frac{1}{2} D_{2}
$$

$\mathrm{D}_{1} \| \mathrm{D}_{2}$
$t=0$:

$$
\begin{aligned}
& x=2 \\
& y=1 \\
& z=4
\end{aligned} \quad \Longrightarrow \quad \begin{aligned}
& 2=-6 w+14 \\
& \frac{-12}{-6}=\frac{-6 w}{-6}
\end{aligned} \quad \frac{1}{-\frac{8}{-4}}=-4 w+9
$$

($W=2$

$4=-6 w+16$ $\frac{-12}{-6}=\frac{-16 w}{-6}$
$\omega=2$

4.s Solution for EXAM II

$$
\begin{gathered}
\text { Qii) } L: x=-2 t+8 \quad P: x+2 y+z=12 \\
y=t-1 \\
z=t+3 \\
(-2 t+8)+2(t-1)+(t+3)=12 \\
-2 t+8+2 t-2+t+3=12 \\
t+9=12 \\
\mid t=3
\end{gathered}
$$

line Listersects Plane P when is 3

$$
\begin{gathered}
-2(3)+8=x \\
3-1=y \\
3+3=2
\end{gathered}
$$

$(2,2,6) \rightarrow$ point f intersections.
$\left.Q_{i i}\right)$

$$
\begin{aligned}
& N_{1} \cdot N_{2}=0 \\
& \left.N_{1}=22,1,3\right\rangle \quad N_{2}=\langle 4,6, a\rangle \\
& (2 \times 4)+(1 \times b)+3 a=0 \\
& 8+6+3 a=0 \\
& 14+3 a=0 \\
& 3 a=-14 \\
& {\left[a=-\frac{14}{3}\right.}
\end{aligned}
$$

Q (iii)

$$
\begin{gathered}
P_{1}: 2 x+y+32=4 \quad P_{2}: 4 x+2 y+a z=8 \\
4 x=8 \\
N_{1}=c N_{2} \\
N_{1}:\langle 2,1,3\rangle=c, N_{2}=\langle 4,2, a\rangle \\
2=c 4 \quad 1=c 2 \quad 3=a c \\
c=\frac{1}{2} \quad c=1 / 2 . \\
3=a 1 / 2
\end{gathered}
$$

$\xrightarrow{\text { Chuck }}$
iv) $Q(4,4,-15) \quad$ Plane: $-2 x+2 y-z=21$.

$$
\frac{|-2(4)+2(4)-(-15)-21|}{\sqrt{(-2)^{2}+(2)^{2}+1^{2}}}=\frac{6}{3}=2 \text { units } \quad N=(-2,2,-1
$$

v) $P_{1}: x+4 y+z=10$

$$
P_{2}:-x+3 y-z=11
$$

$$
N_{1}=\langle 1,4,1\rangle \quad N_{2}=\langle-1,3,-1\rangle
$$

$x=-2 \quad y=3$
point $=(-2,3,0)$ live equation.

$$
\begin{aligned}
& l: x=-7 t-2 \\
& y=3
\end{aligned}
$$

$$
\begin{aligned}
2 \\
2
\end{aligned}
$$

$$
\begin{aligned}
& \left.\begin{array}{l}
\text { let } z=0 \\
x+4 y=10
\end{array}\left|\left|\begin{array}{ccc}
1 & 4 & 1 \\
-1 & 3 & -1
\end{array}\right| \quad\right|(1 \times 3)-\left(4 x^{3}-1\right) \right\rvert\, 1 . \\
& -x+3 y=11 \\
& \langle-7,-0,7\rangle \rightarrow D
\end{aligned}
$$

$$
\begin{aligned}
& y=0 \quad z=0 \text { for } p_{1} \quad p_{2}=\quad \begin{array}{l}
a=6
\end{array}
\end{aligned}
$$

vi)

$$
\begin{aligned}
& V=\langle 1,4,11\rangle \quad P: 5 x+7 y-3 z=19 . \\
& N=\langle 5,7,-3\rangle
\end{aligned}
$$

$V \cdot N=0$ then yes $V \cdot N \neq 0$ then N_{0}

$$
\begin{aligned}
(1 \times 5) & +(4 \times 7)+(-3 \times 11) \\
5 & +28
\end{aligned}+33=0 \quad V \cdot N=0
$$

So the rector \checkmark bes.can be draw in Plane P.

$$
\begin{aligned}
& \text { Vii). } \quad Q=(1,2,4) \\
& 2: x=1+3 \text {. } \\
& y=-2 t+1 \\
& D=\langle 1,-2,2,\rangle \\
& z=2 t+4 \\
& \text { Let } t=0 \text {. } \\
& x=3 \quad y=1 \quad z=4 \quad I=(3,1,4) \text {. } \\
& \overrightarrow{C P}=V \\
& V=\langle-2,1,0\rangle
\end{aligned}
$$

$$
\begin{aligned}
& \frac{\sqrt{2^{2}+4^{2}+3^{2}}}{\sqrt{1^{2}+(-2)^{2}+2^{2}}}=\frac{\sqrt{29}<2,4,3\rangle}{3} \text { units }
\end{aligned}
$$

Q2i) L.et $f(x)=x^{3}-6 x^{2}-15 x+10$
i)

$$
\begin{gathered}
f^{\prime}(x)=3 x^{2}-12 x-15 \\
3 x^{2}-\frac{12 x-15=0}{x=5 \quad x=-11} \\
\frac{x+++1++-1}{-1}+5
\end{gathered}
$$

i) $f(x)$ increases

$$
\text { at }(x>5) /(5,+\infty) \cup \cup(-\infty,-1)
$$

ii) $f(x)$ decreesesfor $(-1,5)$
iii) dorad max is at $x=-1$

Cocal minisat $x=+5$
iv)

Q3) $\quad H=(4,7) \cdot F \cdot(-2,10)$ Fid $Q \quad y=-4(H \varphi|+| F Q)$

$$
\frac{17}{3}=\frac{25}{6}(x)
$$

$$
\frac{102}{75}=x
$$

$$
x=\frac{34}{25}
$$

$$
\begin{aligned}
& y=m x+c \\
& m=\frac{\Delta y}{\Delta x}=\frac{7-(-18)}{4-(-2)}=\frac{25}{6} \\
& y=\frac{25}{6}(4)+C \\
& 7=\frac{50}{3}+C \\
& c=-\frac{29}{3} \\
& y=\frac{25}{6} x-\frac{29}{3} \\
& Q=\left(\frac{34}{25},-4\right) \\
& Q=(1.36,-4)
\end{aligned}
$$

$$
\begin{aligned}
& \text { Q4il } y=\sqrt{3 x+2}+\frac{4}{x^{7}}+10 \\
& y=(3 x+2)^{1 / 2}+4 x^{-7}+10 \\
& y^{\prime}=1 / 2(3 x+2)^{-1 / 2}-28 x^{-8} \\
& \text { ii) }=e^{(7 x+2)}+10 x^{2}+5 \\
& y^{\prime}=e^{(7 x+2)} \cdot(7)+20 x \\
& y^{\prime}=7 e^{(7 x+2)}+20 x
\end{aligned}
$$

$$
\begin{aligned}
& \text { iii) } \left.y=\ln \left[2 x^{5}+8 x^{2}-3 x\right) /(2 x+7)^{3}\right] \\
& y=\ln \left(2 x^{5}+8 x^{2}-3 x\right)-3 \ln (2 x+7) \\
& y^{\prime}=\frac{80 x^{4}+16 x-3}{2 x^{5}+8 x^{2}-3 x}-\frac{3(2)}{2 x+7} \\
& y^{\prime}=\frac{10 x^{4}+16 x-3}{2 x^{5}+8^{2}-3 x}-\frac{6}{2 x+7} \\
& \text { iv) } y=10\left(3 x^{6}+5 x^{3}+2\right) 7 . \\
& y^{\prime}=70\left(3 x^{6}+5 x^{3}+2\right)^{6} \cdot\left(18 x^{5}+15 x^{2}\right)
\end{aligned}
$$

1.a) Are bounded $=\int_{0}^{1 / 2} \cos (x)-\sin (x) d x+\int_{4}^{1 / 2} \sin (x)-\cos (x) d x$

$$
\begin{aligned}
&= \cos (x)-\sin (x \operatorname{tax}+1 / \sin (x) \\
&=[\sin (x)+\cos (x)]_{0}^{\pi / 4}+[-\cos (x)-\sin (x)]_{\pi}^{\pi / 2} \\
&=\left[s\left(\frac{\pi}{4}\right)+\cos \left(\frac{\pi}{4}\right)\right]-[\sin (0)+\cos (0)]+\left[-\cos \left(\frac{\pi}{4}\right)-\sin \left(\frac{\pi}{2}\right)\right] \\
&-\left[-\cos \left(\frac{\pi}{4}\right)-\sin \left(\frac{\pi}{4}\right)\right]
\end{aligned}
$$

$\Delta \vec{A}=\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{2}}=0-1,-0-1+\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{2}}$

$$
=\frac{4}{\sqrt{2}}-2=2 \sqrt{2}-2=082 \frac{7}{9} \cdot \text { que } 0.82 \mathrm{qq} \cdot \text { unit. }
$$

b)

$$
\begin{aligned}
\text { Volume } & =\pi \int_{0}^{\pi / 2}[2+\cos (x)-(-1)]^{2} d x \\
& =\pi^{\frac{1}{2}} \int[2+\cos (x)+1]^{2} d x \\
& =\pi^{\frac{1}{2}} \int_{0}^{2}[3+\cos (x)] d x=\pi \int_{0}^{\pi} \int 9+6 \cos (x)+\cos ^{2} x d x \\
& =\pi_{0}^{\frac{1}{2}} \int 9+6 \cos (x)+\frac{1}{2}+\frac{1}{2} \cos (2 x) d x \\
& =\pi\left[9 x+6 \sin (x)+\frac{1}{2} \cdot x+\frac{1}{4} \cdot \sin (2 x)\right]_{0}^{\frac{\pi}{2}}
\end{aligned}
$$

$$
\begin{aligned}
& =\pi\left[\left\{\frac{\pi}{2}+6 \sin \left(\frac{\pi}{2}\right)+\frac{1}{2} \cdot \frac{\pi}{2}+\frac{1}{4} \sin \left(2 \cdot \frac{\pi}{8}\right)\right]-\left[\begin{array}{c}
0+6 \sin (0)+0 \\
+\frac{1}{4} \cdot \sin
\end{array}\right)\right. \\
& =\pi\left[\frac{9 \pi}{2}+6+\frac{\pi}{4}+0\right]-0=\frac{9 \pi^{2}}{2}+6 \pi+\frac{\pi^{2}}{4} \\
& =\frac{18 \pi^{2}+74 \pi+\pi^{2}}{4}=\frac{19 \pi^{2}+24 \pi}{4} \\
& 2
\end{aligned}
$$

i) From alteration, $C=(4,-1)$

$$
\begin{aligned}
& B=\left|C V_{3}\right|=3 \text { unit } \\
& \left|V_{3} F_{1}\right|^{2}=\left|V_{3} C\right|^{2}+\left|C F_{1}\right|^{2} \\
& \left(\frac{C}{V}\right)^{2}\left(\frac{K}{2}\right)^{2}=3^{2}+2^{2}=9+4=13 \\
& \left(\frac{K}{2}\right)^{2}=13 \Rightarrow \frac{K}{2}=\sqrt{13} \\
& K=2 \sqrt{13}
\end{aligned}
$$

$\ddot{\mu})$

$$
\begin{array}{ll}
C=(4,-1) & \\
V_{1}=(4,-4) & \\
V_{2}+(4)+\sqrt{13}(\sqrt{14}) \quad V_{2}=(4+\sqrt{13},-1) \\
V_{104}= & V_{4}=(4-\sqrt{13},-1)
\end{array}
$$

ii) $F_{2}=(2,-1)$
iv) Eq. of ellipse $=\frac{(x-4)^{2}}{13}+\frac{(y+1)^{2}}{9}=1$
$3 \cdot i)$

$$
\begin{aligned}
& \left|V_{1} V_{2}\right|=K \\
& K=4 \\
& \text { ii) } C=(2,-2) \\
& F_{2}=(-3,-2)
\end{aligned}
$$

ii)

$$
\begin{aligned}
& \left(\frac{K}{2}\right)^{2}=\left|C F_{1}\right|^{2}+B^{2} \\
& 4=25+B^{2} \\
& B^{2}=21 \\
& B=\sqrt{21}
\end{aligned}
$$

$$
\therefore E_{q} \text {. of hypobola }=\frac{(x-2)^{2}}{4}-\frac{(y+2)^{2}}{21}=1
$$

$$
\begin{aligned}
& \text { i) }|V L|=-2-1=3 \text { units } \\
& F=(-5,1)
\end{aligned}
$$

$$
\text { ii) }|F Q|=|Q L|
$$

$$
=5 \text { units }
$$

in)

$$
\begin{aligned}
&|A D|=5-\left(a^{2}+1\right) \\
&|A B|=(2+a)-(2-a)=x+a-2+a \\
&=2 a
\end{aligned}
$$

Rectangle of max area $\Rightarrow|A D| \times|A B|$

$$
\begin{aligned}
y & \Rightarrow\left[5-\left(a^{2}+1\right)\right](2 a) \\
y & =10 a-2 a^{3}-2 a \\
& =8 a-2 a^{3}
\end{aligned}
$$

$$
\begin{aligned}
& y^{\prime}=8-6 a^{2}=0 \\
& a^{\prime} \Rightarrow 8=6 a^{2}
\end{aligned}
$$

$$
y_{y^{\prime} \Rightarrow 8=6 a^{2}}
$$

$$
a^{2}=\frac{8}{6}=\frac{4}{3}
$$

$$
a=\frac{2}{\sqrt{3}}
$$

$$
y^{\prime \prime}=-12 a \rightarrow \text { Max ara. }
$$

$$
\begin{aligned}
\therefore A & =\left(2-\frac{2}{\sqrt{3}}, 5\right) \\
B & =\left(2+\frac{2}{\sqrt{3}}, 5\right) \\
C & =\left(2-\frac{2}{\sqrt{3}}, \frac{4}{3}+1\right)=\left(2-\frac{2}{\sqrt{3}}, \frac{7}{3}\right) \\
D & =\left(2+\frac{2}{\sqrt{3}}, \frac{7}{3}\right)
\end{aligned}
$$

ii)

$$
y=m x+b
$$

$$
\begin{aligned}
m & =\frac{-8-6}{6+8}=\frac{-14}{14}=-1 \\
-8 & =-1(6)+b \\
-8 & =-6+b \\
b & =-8+6 \\
& =-2
\end{aligned}
$$

$$
\begin{aligned}
\therefore y & =-1(-2)-2 \\
& =2-2=0 \\
\therefore Q & =\operatorname{CO}-\operatorname{Ax} \quad(-2,0)
\end{aligned}
$$

6-i) $y=[\sin (3 x)+2 x+1]^{5}$

$$
y^{\prime}=5[\sin (3 x)+2 x+1]^{4} \cdot[3 \cos (3 x)+2]
$$

ii)

$$
\begin{aligned}
y & =\ln \left[\frac{(5 x+2)^{4}}{(3 x+7)^{3}}\right] \\
& =\ln \left[(5 x+2)^{4}\right]-\ln \left[(3 x+7)^{3}\right] \\
y^{\prime} & =\frac{4(5 x+2)^{3} \cdot 5}{(5 x+2)^{4}}-\left[\frac{3(3 x+7)^{2} \cdot 3}{(3 x+7)^{3}}\right]
\end{aligned}
$$

ii) $y=\cos (2 x) e^{\left(x^{2}+1\right)}$

$$
\begin{aligned}
y^{\prime} & =\left[-2(\sin (2 x)) \cdot e^{\left.\left(x^{2}+1\right)\right]+\left[\cos (2 x) \cdot e^{\left(x^{2}+1\right)} \cdot(2)\right]}\right. \\
y & =\sqrt{3 x+1}+\frac{4}{x^{3}} \\
& =(3 x+1)^{1 / 2}+4(x)^{-3} \\
y^{\prime} & =\left[\frac{1}{2} \cdot(3 x+1)^{-1 / 2} \cdot(3)\right]-\left[12(x)^{-4}\right]
\end{aligned}
$$

7.i) $\int\left(e^{2 x}+x\right)\left(e^{2 x}+x^{2}+1\right)^{8} d x$

$$
u=e^{2 x}+x^{2}+1
$$

$$
\begin{aligned}
& \Rightarrow \frac{1}{2} \int 2\left(e^{2 x}+x\right)\left(e^{2 x}+x^{2}+1\right)^{9} d x \\
& \Rightarrow \frac{1}{2} \cdot \frac{1}{9} \cdot\left(e^{2 x}+x^{2}+1\right)^{9}+C
\end{aligned}
$$

$$
u^{\prime}=2 e^{2 x}+2 x
$$

i) $\int \frac{\sin (x)-2 x}{\cos (x)+x^{2}+3} d x$

$$
u=\cos (x)+x^{2}+3
$$

$u^{\prime} y=-\sin (x)+2 x$

$$
\begin{aligned}
& =\frac{1}{-1} \int \frac{-1(3 \cdot(x)-2 x)}{\cos (x)+x^{2}+3} d x \\
& =\frac{1}{-1} \int-1(\sin (x)-2 x)\left[\cos (x)+x^{2}+3\right]^{-1} d x \\
& =-\ln \left|\cos (x)+x^{2}+3\right|+C
\end{aligned}
$$

8. i)

$$
\begin{aligned}
& Q_{1}=(2,1,0) \\
& Q_{2}=(4,2,0) \\
& Q_{3}=(-8,3,10)
\end{aligned}
$$

$$
\overrightarrow{Q Q}_{1}=<2,1,0>
$$

$$
\vec{Q}_{1}=\langle-10,2,10\rangle
$$

$$
\left|Q_{1} Q_{2} \times Q_{1} Q_{3}\right| \Rightarrow\left|\begin{array}{ccc}
\hat{\imath} & \hat{\jmath} & \hat{k} \\
2 & 0 \\
-10 & 2 & 10
\end{array}\right|
$$

$$
\Rightarrow \sqrt{100+400+196}=\sqrt{616}
$$

Area of $\Delta=\frac{1}{2} \sqrt{696}=13.19$ eq wint. (aporx.)
i) From pes.

$$
\begin{aligned}
\vec{N} & =Q_{1} Q_{2} \times Q_{1} Q_{3} \\
& =\langle 10,-20,14\rangle
\end{aligned}
$$

Eq. of pore $=10(x+8)-20(y-3)+14(z-10)$
9.i)

$$
\begin{array}{rlrl}
L \Rightarrow & x & =A x+\cap \text { at } \\
& y & =4 t+a \\
z & =-t+b \\
P l_{\text {are }} \Rightarrow & x+2 y+3 z=13
\end{array} \quad \begin{array}{|l|l}
& N_{1}=\langle a, 4,-1\rangle \\
\end{array}
$$

Sine line his estiely in ide the pan:

$$
\begin{gathered}
N_{1} \cdot N_{2}=0 \\
a+8-3=0 \\
a=3-8 \\
=-5
\end{gathered}
$$

Sub L in pore eq.:

$$
\begin{aligned}
& a t+2+2(4 t+a)+3(-t+b)=13 \\
& -5 t+2+8 t-10=3 t+b=13 \\
& -8+b=13 \\
& b=13+8 \\
& =21 \\
& \therefore a=-5, b=21
\end{aligned}
$$

$$
\text { ii) } \begin{aligned}
& P_{1}: x+2 y-z=10 \rightarrow N_{1}=\langle 1,2,-1\rangle \\
& P_{2}=-x-y+z=-7 \rightarrow N_{2}=\langle-1,-1,1\rangle \\
& N_{1} \times N_{2}=\left|\begin{array}{rrr}
\hat{\imath} & \hat{j} & \hat{k} \\
1 & 2 & -1 \\
-1 & -1 & 1
\end{array}\right| \\
&=\hat{\imath}(2-1)-\hat{\jmath}(1-1)+\hat{k}(-1+2) \\
&=\hat{\imath}+\hat{k} \rightarrow\langle 1,0,1\rangle
\end{aligned}
$$

Let $z=0$

$$
\begin{aligned}
x+2 y & =10 \\
-x-y & =-7 \\
\Rightarrow y & =3 \\
\Rightarrow-x-3 & =-7 \\
-x & =-7+3 \\
& =-4 \\
x & =4
\end{aligned}
$$

\therefore Paretic of of $L \Rightarrow x=t+4$

$$
\begin{aligned}
& y_{2}=3 \\
& y^{2}=t
\end{aligned}
$$

iii)

$$
\begin{aligned}
& \text { i) } P_{2}=-x-y+z=-7 \\
& Q=(1,4,-20) \\
&\text { Dist } \left.\Rightarrow \frac{|-|-4-20+7|}{\operatorname{sqr}(3)}=\frac{-18 \mid}{18 / \mathrm{sqrt}} \text { uit } 3\right)
\end{aligned}
$$

10. Gutide volues $\Rightarrow-5,-3,-1,4,8$

Inturats $\Rightarrow(\infty,-5) ;(-5,-3) ;(-3,-1) ;(-1,4) ;(4,8) ;(8, \infty)$
i) Values of x
wher $p(x)$ here $\Rightarrow-5,-1,8$
boal nin.
ii) Values of x
wher $f(x)$ bes $\Rightarrow-3,4$ wher $f(x)$ but max.
iii) Values of $x \quad \Rightarrow(-5,-3) \cup(-1,4) \cup(8, \infty)$ whe $f(x)$ ineares
in)

${ }_{5}$ Section : Assessment Tools-Quizzes (unanswered)

Quiz One, MTH 111, Fall 2020

Ayman Badawi

QUESTION 1. consider the ellipse $\frac{(y-2)^{2}}{9}+\frac{(x+3)^{2}}{4}=1$
(i) Roughly, sketch such ellipse.
(ii) Find the center c
(iii) Find the ellipse constant k.
(iv) Find the foci, F_{1}, F_{2}
(v) Find all vertices.
(vi) Given that $Q=\left(x_{1}, y_{1}\right)$ is a point on the ellipse and $\left|Q F_{1}\right|=2$. Find $\left|Q F_{2}\right|$.

Faculty information

Ayman Badawi, Department of Mathematics \& Statistics, American University of Sharjah, P.O. Box 26666, Sharjah, United Arab Emirates. E-mail: abadawi@aus.edu, www.ayman-badawi.com

Quiz Two, MTH 111 , Fall 2020

Ayman Badawi

QUESTION 1. consider the parabola $-12(x+2)=(y-4)^{2}$
(i) Roughly, sketch such Parabola.
(ii) Find the vertex, V
(iii) Find the focus, F.
(iv) Find the equation of the directrix line.
(v) Given that $Q=\left(-6, y_{1}\right)$ is a point on the parabola. Find $|Q F|$. (Think: it is not difficult!!)

QUESTION 2. Given $y=x^{2}-10 x+20$
(i) Rewrite the equation of the parabola in the standard form and sketch (roughly).
(ii) Find the Focus F.
(iii) Find the equation of the directrix line.

Faculty information

Ayman Badawi, Department of Mathematics \& Statistics, American University of Sharjah, P.O. Box 26666, Sharjah, United Arab Emirates. E-mail: abadawi@aus.edu, www.ayman-badawi.com

Quiz three, MTH 111 , Fall 2020

Ayman Badawi

QUESTION 1. (SHOW THE WORK)

consider the hyperbola $\frac{(x-2)^{2}}{4}-\frac{(y-1)^{2}}{12}=1$
(i) Roughly, sketch such hyperbola.
(ii) Find the center c
(iii) Find the hyper-constant k.
(iv) Find the foci, F_{1}, F_{2}
(v) Find all vertices.
(vi) Given that $Q=\left(x_{1}, y_{1}\right)$ is a point on the hyperbola and $\left|Q F_{1}\right|=3$. Find $\left|Q F_{2}\right|$.

Faculty information

Ayman Badawi, Department of Mathematics \& Statistics, American University of Sharjah, P.O. Box 26666, Sharjah, United Arab Emirates. E-mail: abadawi@aus.edu, www.ayman-badawi.com

Quiz Four, MTH 111 , Fall 2020

Ayman Badawi

QUESTION 1. For each of the below figures, draw $\operatorname{Proj} j_{W}^{V}$.

QUESTION 2. Let $V=<3,4>$ and $W=<-1,4>$. Find $\left|\operatorname{Proj}_{V}^{w}\right|$ (i.e., find the length of the projection vector (W over V)).

QUESTION 3. Find a parametric equations of the line that passes through the points $(1,2,4)$ and $(-3,6,-8)$

QUESTION 4. Let $L_{1}: x=t+2 ; y=-2 t+1 ; z=-t+4 ; t \in R$ and $L_{2}: x=-3 w+13 ; y=2 w-9 ; z=3 w-7 ; w \in R$. If L_{1} intersects L_{2}, then find the intersection point.

Is L_{1} perpendicular to L_{2} ?

Faculty information

Ayman Badawi, Department of Mathematics \& Statistics, American University of Sharjah, P.O. Box 26666, Sharjah, United Arab Emirates. E-mail: abadawi@aus.edu, www.ayman-badawi.com

.

Quiz Five, MTH 111 , Fall 2020

Ayman Badawi

QUESTION 1. Find an equation of the plane that passes through the points $Q_{1}=(-2,1,3), Q_{2}=(4,2,4), Q_{3}=$ $(0,5,5)$.

QUESTION 2. Given $\mathrm{P}:-2 x+6 y+z=2$ is an equation of a plane.
i) Can we draw the vector $V=<8,4,-8>$ inside the plane? explain.
ii) Does the point $(8,-4,-8)$ lie on the plane?
iii) Does the line $L: x=t-3, y=2 t-1, z=-9 t-2,(t \in R)$ lie entirely inside the plane P (above)? If not, does L intersect P ? If yes, find the intersection point

Faculty information

Ayman Badawi, Department of Mathematics \& Statistics, American University of Sharjah, P.O. Box 26666, Sharjah, United Arab Emirates. E-mail: abadawi@aus.edu, www.ayman-badawi.com

\author{

}

0
\qquad

$\overline{l o l}$

Quiz Six, MTH 111 , Fall 2020

Ayman Badawi

QUESTION 1. $P_{1}:-2 x+4 y+3 z=6$ and $P_{2}: x-y+2 z=4$ intersect at a line L find a parametric equations of L.

Is P_{1} perpendicular to P_{2} ?

QUESTION 2. Given $Q=(1,2,4)$ is not on the line $L: x=t+1, y=-2 t+3, z=2 t+5$ and Q is not on the plane $P: 2 x+y+z=42$
i) Find $|Q L|$
ii) Find $|Q P|$

QUESTION 3. i) Let $y=2 x^{3}+\sqrt[5]{x^{3}}+10$. Find y^{\prime}.
ii) Let $\frac{2 x+4}{x^{5}}$. Find y^{\prime}.

Faculty information

${ }_{6}$ Section: Assessment Tools-EXAMS (unanswered)

Exam One, MTH 111 , Fall 2020

Ayman Badawi

QUESTION 1. consider the parabola $-8(y-2)=(x+3)^{2}$
(i) Roughly, sketch such Parabola.
(ii) Find the vertex, V
(iii) Find the focus, F.
(iv) Find the equation of the directrix line.
(v) Given that $Q=\left(x_{1},-16\right)$ is a point on the parabola. Find $|Q F|$. (Think: it is not difficult!!)

QUESTION 2. Given $2 y=x^{2}+6 x+13$
(i) Rewrite the equation of the parabola in the standard form and sketch (roughly).
(ii) Find the Focus F.
(iii) Find the equation of the directrix line.

QUESTION 3. consider the ellipse $\frac{(x+3)^{2}}{16}+\frac{(y-1)^{2}}{25}=1$
(i) Roughly, sketch such ellipse.
(ii) Find the center c
(iii) Find the ellipse constant k.
(iv) Find the foci, F_{1}, F_{2}
(v) Find all vertices.
(vi) Given that $Q=\left(x_{1}, y_{1}\right)$ is a point on the ellipse and $\left|Q F_{1}\right|=7$. Find $\left|Q F_{2}\right|$.

QUESTION 4. An ellipse is centralized at $(-2,1)$ such that $(10,1)$ and $(-2,6)$ are two vertices of such ellipse.
(i) Find the foci (i.e., F_{1}, F_{2}) of the ellipse
(ii) Find the equation of the ellipse.

QUESTION 5. consider the hyperbola $\frac{(y+1)^{2}}{9}-\frac{(x-3)^{2}}{16}=1$
(i) Roughly, sketch such hyperbola.
(ii) Find the hyper-constant k.
(iii) Find the foci, F_{1}, F_{2}
(iv) Find all vertices.

QUESTION 6. For each of the below figures, draw $\operatorname{Proj}_{V}^{W}$.

QUESTION 7. Let $L_{1}: x=4 t+2 ; y=-2 t+1 ; z=t+4 ; t \in R$ and $L_{2}: x=-2 w+12 ; y=-2 w-1 ; z=$ $4 w+2 ; w \in R$. If L_{1} intersects L_{2}, then find the intersection point.

Is L_{1} perpendicular to L_{2} ? (explain)

Find the symmetric equation of the line L_{1} (above).

QUESTION 8. Use the concept of cross product in order to find the area of the triangle that have the vertices $a=$ $(-4,2), b=(1,-1), c=(4,5)$

QUESTION 9. Let $L_{1}: x=3 t+2 ; y=2 t+1 ; z=3 t+4 ; t \in R$ and $L_{2}: x=-6 w+14 ; y=-4 w+9 ; z=$ $-6 w+16 ; w \in R$. Is $L_{1} \| L_{2}$?

Faculty information

0

Le_

Exam II: MTH 111, Fall 2020

Ayman Badawi

Points $=\frac{}{56}$

QUESTION 1. (i) (4 points) Does the line $L: x=-2 t+8, y=t-1, z=t+3$ lie entirely inside the plane $x+2 y+z=12$? If not, does it intersect the plane? If yes, then find the intersection point.
(ii) (3 points) Find the value a so that the plane $P_{1}: 2 x+y+3 z=4$ is perpendicular to the plane $P_{2}: 4 x+6 y+a z=8$.
(iii) (4 points) For what values of a, b is the plane $P_{1}: 2 x+y+3 z=4$ parallel to the plane $P_{2}: 4 x+2 y+a z=b$? (i.e., P_{1} does not intersect P_{2}).
(iv) (4 points) Find the distance between $Q=(4,4,-15)$ and the plane $P:-2 x+2 y-z=21$.
(v) (6 points) The two planes $P_{1}: x+4 y+z=10$ and $P_{2}:-x+3 y-z=11$ intersects in a line L. Find a parametric equations of L.
(vi) (2 points) Can we draw the vector $V=<1,4,11>$ inside $P: 5 x+7 y-3 z=19$? explain
(vii) (4 points) Find the distance between the point $Q=(1,2,4)$ and the line $L: x=t+3, y=-2 t+1, z=2 t+4(t>=$ 0)

QUESTION 2. (10 points) Let $f(x)=x^{3}-6 x^{2}-15 x+10$.
(i) For what values of x does $f(x)$ increase?
(ii) For what values of x does $f(x)$ decrease?
(iii) Find all local minimum, maximum points of $f(x)$ (just find the x-values where local min. and local max exist).
(iv) Roughly, sketch the graph of $f(x)$.

QUESTION 3. (7 points) Given $H=(4,7)$ and $F=(-2,10)$. Find a point Q on the line $y=-4$ such that $|H Q|+|F Q|$ is minimum.

QUESTION 4. (12 points) Find y^{\prime} and DO NOT SIMPLIFY
(i) $y=\sqrt{3 x+2}+\frac{4}{x^{7}}+10$
(ii) $y=e^{(7 x+2)}+10 x^{2}+5$
(ii) $y=\ln \left[\left(2 x^{5}+8 x^{2}-3 x\right) /(2 x+7)^{3}\right]$
(iv) $y=10\left(3 x^{6}+5 x^{3}+2\right)^{7}$

Faculty information

Ayman Badawi, Department of Mathematics \& Statistics, American University of Sharjah, P.O. Box 26666, Sharjah, United Arab Emirates. E-mail: abadawi@aus.edu, www.ayman-badawi.com

路

Final Exam, MTH 111 , Fall 2020
Ayman Badawi

$$
\text { Score }=\frac{66}{66}
$$

QUESTION 1. (8 points) Stare at the following graphs

$$
\operatorname{Red}: y_{1}=\cos (x)
$$

$$
\text { Black: } y_{2}=\sin (x)
$$

Find the area bounded by $y_{2}=\cos (x)$,

$$
y_{2}=\sin (x) \text {, and } 0 \leq x \leq \frac{\pi}{2}
$$

Find the volume of the object when we rotate $y=2+\cos (x)$ about $y=-1$,

$$
\text { where o } \leq x \leq \frac{\pi}{2}
$$

QUESTION 2. (6 points) Stare at the below ellipse. Then

(i) Find the ellipse-constant k.
(ii) Find $c($ the center $), v_{1}, v_{2}, v_{4}$.
(iii) Find F_{2}
(iv) Find the equation of the ellipse.

QUESTION 3. (5 points) Stare at the below hyperbola. Then

(i) Find the hyperbola-constant k.
(ii) Find $c($ the center $), F_{2}$.
(iii) Find the equation of the hyperbola.

(i) Find the focus F.
(ii) Find $|F Q|$.
(iii) Find the equation of the parabola.

QUESTION 5. (10 points) Stare at the following pictures.
$A B D C$ is a rectangle of maximum area, where A, B lie on the line $\overline{y=5}$, C, D lie on the
parabola $y=(x-2)^{2}+1$.
Note $|F D|=\mid F C l$, and x-coordinate of F is 2 .
$V=(2,1)$ is the vertex x. Find the points A, B, C, D i.e, write each point os $(-, \rightarrow$.

$$
\begin{aligned}
& H=(4,6) \\
& F=(6,-8)
\end{aligned}
$$

Find a point Q on the line $x=-2$ sit.
 $\int F Q|+|Q+1|$ is $\quad x=-2$

QUESTION 6. (6 points) Find y^{\prime}. Do not simplify.
(i) $y=(\sin (3 x)+2 x+1)^{5}$
(ii) $y=\ln \left[\frac{(5 x+2)^{4}}{(3 x+7)^{3}}\right]$
(iii) $y=\cos (2 x) e^{\left(x^{2}+1\right)}$
(iv) $y=\sqrt{3 x+1}+\frac{4}{x^{3}}$

QUESTION 7. (4 points)

i) Find $\int\left(e^{2 x}+x\right)\left(e^{2 x}+x^{2}+1\right)^{8} d x$
ii) Find $\int \frac{\sin (x)-2 x}{\cos (x)+x^{2}+3} d x$

QUESTION 8. (6 points) Consider the points: $Q_{1}=(2,1,0), Q_{2}(4,2,0), Q_{3}=(-8,3,10)$.
(i) Find the area of the triangle $Q_{1} Q_{2} Q_{3}$.
(ii) Find the equation of the plane that passes through Q_{1}, Q_{2}, and Q_{3}.

QUESTION 9. (10 points)

i) If the line $L: x=a t+2, y=4 t+a, z=-t+b$ lies entirely inside the plane $x+2 y+3 z=13$, then find the values of a and b.
ii) The Plane $P_{1}: x+2 y-z=10$ intersects the plane $P_{2}:-x-y+z=-7$ in a line L. Find a parametric equations of L.
iii) Let P_{2} as in (ii). Find the distance between $Q=(1,4,-20)$ and P_{2}.

QUESTION 10. (6 points) Stare at the following graph of $f^{\prime}(x)$. Then answer the following.

1) For what values of x does $f(x)$ have local minimum?
2) For what values of x does $f(x)$ have
3) For what values of x does $f(x)$
4) Roughly, sketch the curve of
$f(x)$ $f(x)$

Faculty information

Ayman Badawi, Department of Mathematics \& Statistics, American University of Sharjah, P.O. Box 26666, Sharjah, United Arab Emirates. E-mail: abadawi@aus.edu, www.ayman-badawi.com

Faculty information

Ayman Badawi, American University of Sharjah, UAE.
E-mail: abadawi@aus.edu

