Zero Divisor Graph of Integers Modulo n

Saood H. AlMarzooqi
Supervised by Prof. Ayman Badawi

A senior project presented for the degree of Bachelors of Science in Mathematics

Department of Mathematics and Statistics
American University of Sharjah
United Arab Emirates
November 2020

1 Abstract

Let $n \geq 2$ be a positive integer. Then the zero-divisor graph of Z_{n} (i.e., the integers module n), denoted by $Z G_{n}$, is undirected simple graph with vertex set $V_{n}=\{a \in$ $Z_{n} \mid a \neq 0$ and $a b=0$ in Z_{n} for some nonzero $\left.b \in Z_{n}\right\}$ such that two distinct vertices, x, y, in V_{n} are adjacent (i.e., connected by an edge) if and only if $x y=0$ in Z_{n}. Using some elementary techniques and concepts from graph theory and discrete mathematics, we tackle some properties of $Z G_{n}$. Specifically, properties of interest are values of n in which the graph $Z G_{n}$ becomes complete bipartite. Other properties will be studied as well, for example: connectedness, diameter, and girth of such graphs. We show that $Z G_{n}$ is connected for every $n \geq 2$. We show $Z G_{n}$ is complete bipartite if and only $n=8,9$, or $n=p q$ for some distinct prime integers p, q. We show that $Z G_{n}$ is complete if and only if $n=p^{2}$ for some odd prime positive integer p. For a given integer $n \geq$, we show the diameter of $Z G_{n}$ is at most 3 while its girth is either 3,4 or ∞.

2 Introduction

Let $n \in \mathbb{N}, n>1$, and $V_{n}=\left\{a \in Z_{n} \mid a \neq 0\right.$ and $a b=0$ in Z_{n} for some nonzero $\left.b \in Z_{n}\right\}$. The zero-divisor graph of Z_{n}, denoted by $Z G_{n}$ is undirected simple graph with vertex set V_{n} such that two distinct vertices, x, y, in V_{n} are adjacent (i.e., connected by an edge) if and only if $x y=0$ in Z_{n}.
This thesis is inspired by Anderson and Livingston's work on the zero-divisor graph of commutative rings [?]. However, our investigation in this paper focuses only on Z_{n} (note that $\left(Z_{n},+,.\right)$ is a commutative ring, where " + " denotes addition modulo n and "." is multiplication modulo n). We apply concepts from basic Number Theory and Graph Theory to arrive to similar results as in [1].
This paper will tackle the following graph properties of $Z G_{n}$.

- What values of n is $Z G_{n}$ complete bipartite?
- Describe connectedness of $Z G_{n}$.
- Describe diameter of $Z G_{n}$.
- Describe girth of $Z G_{n}$.

We refer to graph theory concepts from Bondy and Murty's Graph Theory [?]. This paper will also provide figures of some graphs of interest

We recall some definitions. Let (G, V, E) be a graph with vertex set V and edge set E. Then G is called complete if any two distinct vertices are adjacent. The complete graph with n vertices will be denoted by K_{n}. A graph G is called bipartite if V can be partitioned into two disjoint nonempty vertex sets A and B such that there is no edge between every two distinct vertices in A and there is no edge between every two distinct vertices in B. A graph G is called complete bipartite if it is bipartite and two distinct vertices are adjacent if and only if they are in distinct vertex sets. If one of the vertex sets is a singleton, then G is called a star graph. We denote the complete bipartite graph by $K_{m, n}$, where $|A|=m$ and $|B|=n$; so a star graph is a $K_{1, n}$.

3 Results

3.1 When is $Z G_{n}$ a complete graph?

Let (G, V, E) be a graph with vertex set V and edge set E. Recall that G is called complete if any two distinct vertices are adjacent. The complete graph with n vertices will be denoted by K_{n}.

Theorem 3.1.1. Assume $\left|V_{n}\right| \geq 2$. Then $Z G_{n}$ is complete if and only if $n=p^{2}$ for some odd prime positive integer p.

Proof. Assume that $Z G_{n}$ is complete. Assume that $p_{1} p_{2} \mid n$ for some distinct prime positive integers $p_{1}<p_{2}$. Then $p_{1}, 2 p_{1} \in V_{n}$ and there is no edge between p_{1} and $2 p_{1}$. Thus $n=p^{m}$ for some prime positive integer p and a positive integer $m \geq 2$. If $p=2$, then it is clear that $Z G_{n}$ is not complete. Assume that $p \neq 2$ and $m \geq 3$. Then $p, 2 p \in V_{n}$ and there is no edge between p and $2 p$. Hence $m=2$. Now suppose that $n=p^{2}$ for some odd prime positive integer p. Let $x, y \in V_{n}$. Then $p \mid x$ and $p \mid y$. Hence $x y=0$ in Z_{n}. Thus $Z G_{n}$ is a complete graph.

Example 3.1.1. For $n=361=19^{2}$, figure 1 is the graph of $Z G_{361}$. Note that that $Z G_{361}=K_{18}$.

Figure 1: Graph of $Z G_{361}$

3.2 When is $Z G_{n}$ a Complete Bipartite?

Let $n \geq 2$. Then using the concept of prime number decomposition, we have $n=$ $p_{1}^{\alpha_{1}} \cdots p_{k}^{\alpha_{k}}$, where p_{1}, \ldots, p_{k} are distinct prime numbers and $\alpha_{1}, \ldots, \alpha_{k} \in \mathbb{N}$.

We recall [?, Theorem 4.7] that states "A graph is bipartite if and only if it contains no odd cycle."

Proposition 3.2.1. If n is a prime number, then $V_{n}=\emptyset$.
Proof. We shall prove that $V_{p}=\emptyset$ by contradiction. Assume $\exists x, y \in \mathbb{Z}_{p}$ such that $x y=0$ in \mathbb{Z}_{p}.

$$
x y \equiv 0 \quad \bmod p \rightarrow x y=m p, m \in \mathbb{N} .
$$

Since x, y are both nonzero integers, then at least one of them has to be divisible by p such that $\frac{x y}{p}=m$, but since $x<p$ and $y<p$ and products of primes less than n, then we have a contradiction and $V_{p}=\emptyset$.

Proposition 3.2.2. If $n=p^{\alpha}$, where $p \geq 2$ is a prime integer and $\alpha \geq 1$, then $Z G_{n}$ is complete bipartite if and only if $n=2^{3}=8$ or $n=3^{2}=9$.

Proof. If $n=4$, then $V_{4}=\{2\}$. Hence there is not much to say. If $n=8$, then $V_{8}=$ $\{2,4,6\}$ and hence $Z G_{8}=K_{1,2}$. If $n=2^{\alpha}$, where $\alpha \geq 4$, then $4-3 \cdot 2^{\alpha-2}-2^{\alpha-1}-4$ is a cycle in $Z G_{n}$ of length 3 (note that since $\alpha \geq 4$, we have $2^{\alpha-2} \cdot 2^{\alpha-1}=2^{2 \alpha-3}=0$ in Z_{n}). Since $Z G_{n}$ has an odd cycle, we conclude that $Z G_{n}$ is not bipartite, and hence it is not complete bipartite. If $n=3^{2}=9$, then $V_{9}=\{3,6\}$. It is clear that $Z G_{9}=K_{1,1}$. Suppose that $n=3^{\alpha}$, where $\alpha \geq 3$. Then $3-2 \cdot 3^{\alpha-1}-3^{\alpha-1}-3$ is a cycle in $Z G_{n}$ of length 3 (note that since $\alpha \geq 3$, we have $3^{\alpha-1} \cdot 3^{\alpha-1}=3^{2 \alpha-2}=0$ in Z_{n}). Since $Z G_{n}$ has an odd cycle, we conclude that $Z G_{n}$ is not bipartite, and hence it is not complete bipartite. Suppose that $n=p^{\alpha}$, where $p \neq 2, p \neq 3$, and $\alpha \geq 2$. Then $p-2 \cdot p^{\alpha-1}-3 \cdot p^{\alpha-1}-p$ is a cycle in $Z G_{n}$ of length 3 . Since $Z G_{n}$ has an odd cycle, we conclude that $Z G_{n}$ is not bipartite, and hence it is not complete bipartite. Thus $Z G_{n}$ is complete bipartite if and only if $n=2^{3}=8$ or $n=3^{2}=9$.

Example 3.2.1. The graph of $Z G_{8}$ is given in figure $2 a$ (note that $Z G_{8}=K_{1,2}$). The graph of $Z G_{27}$ is given in figure $\sqrt{2 b}$ (note that $Z G_{27}$ is not complete bipartite; in fact, $Z G_{27}$ is not a bipartite graph).

Proposition 3.2.3. Assume that $n=p_{1}^{m_{1}} \cdots p_{k}^{m_{k}}$, where $k \geq 3, p_{1}, \ldots, p_{k}$ are distinct prime positive integers, and $m_{1}, m_{2}, \ldots, m_{k} \geq 1$. Then $Z G_{n}$ is not a complete bipartite graph.

Proof. Let $v_{1}=p_{1}^{m_{1}} p_{2}^{m_{2}}, v_{2}=p_{1}^{m_{1}} p_{3}^{m_{3}} \cdots p_{k}^{m_{k}}$, and $v_{3}=p_{2}^{m_{2}} p_{3}^{m_{3}} \cdots p_{k}^{m_{k}}$. Then $v_{1}, v_{2}, v_{3} \in V_{n}$ and $v_{1}-v_{2}-v_{3}-v_{1}$ is a cycle in $Z G_{n}$ of length 3. Since $Z G_{n}$ has an odd cycle, we conclude that $Z G_{n}$ is not bipartite, and hence it is not a complete bipartite graph.

Example 3.2.2. For $n=30=2 \cdot 3 \cdot 5$, figure 3 is the graph of $Z G_{30}$. Note that $Z G_{30}$ is not bipartite and hence it is not complete bipartite.

Graph of Z_30 Zero Divisors

Figure 3: Graph of $Z G_{30}$
Proposition 3.2.4. Assume that $n=p_{1}^{m_{1}} p_{2}^{m_{2}}$, where p_{1}, p_{2} are distinct prime positive integers, $m_{1} \geq 2$ and $m_{2} \geq 1$. Then $Z G_{n}$ is not a complete bipartite graph.

Proof. Assume that $Z G_{n}$ is a complete bipartite graph. Then V_{n} can be partitioned into two sets A, B such that two distinct vertices are adjacent if and only if they are in distinct vertex sets. We may assume that p_{1} in A. Since $p_{1} \cdot p_{1}^{m_{1}-1} p_{2}^{m_{2}}=0$ in Z_{n} (note that $m_{1} \geq 2$), we conclude that $p_{1}^{m_{1}-1} p_{2}^{m_{2}} \in B$. Since $p_{1} p_{2} \neq 0$ in Z_{n} and $p_{1} \in A$, we conclude that $p_{2} \in A$. Since $p_{1}^{m_{1}-1} p_{2}^{m_{2}} \in B$ and $p_{2} \in A$, we have $p_{2} \cdot p_{1}^{m_{1}-1} p_{2}^{m_{2}}=0$ in Z_{n}, a contradiction. Thus $Z G_{n}$ is not a complete bipartite graph.

Example 3.2.3. For $n=12=2^{2} \cdot 3$, figure 4 is the graph of $Z G_{12}$. Note that $Z G_{12}$ is bipartite, but it is not complete bipartite.

Graph of Z_12 Zero Divisors

Figure 4: Graph of $Z G_{12}$

Example 3.2.4. For $n=20=2^{2} \cdot 5$, figure 5 is the graph of $Z G_{20}$. Note that $Z G_{20}$ is bipartite, but it is not complete bipartite.

Graph of Z_20 Zero Divisors

Figure 5: Graph of $Z G_{20}$

For $n=28=2^{2} \cdot 7$, figure 6 is the graph of $Z G_{28}$. Note that $Z G_{28}$ is bipartite, but it is not complete bipartite.

Graph of Z_28 Zero Divisors

Figure 6: Graph of $Z G_{28}$

Example 3.2.5. For $n=24=2^{3} \cdot 3$, figure 7 is the graph of $Z G_{24}$. Note that $Z G_{24}$ is not bipartite and hence it is not complete bipartite.

Graph of Z_24 Zero Divisors

Figure 7: Graph of $Z G_{24}$
Example 3.2.6. For $n=18=3^{2} \cdot 2$, figure 8 is the graph of $Z G_{18}$. Note that $Z G_{18}$ is not bipartite and hence it is not complete bipartite.

Graph of Z_18 Zero Divisors

Figure 8: Graph of $Z G_{18}$
Example 3.2.7. For $n=45=3^{2} \cdot 5$, figure 9 is the graph of $Z G_{45}$. Note that $Z G_{45}$ is not bipartite and hence it is not complete bipartite.

Figure 9: Graph of $Z G_{45}$
Example 3.2.8. For $n=36=2^{2} \cdot 3^{2}$, figure 10 is the graph of $Z G_{36}$. Note that $Z G_{36}$ is not bipartite and hence it is not complete bipartite.

Graph of Z_36 Zero Divisors

Figure 10: Graph of $Z G_{36}$

Proposition 3.2.5. Assume that $n=p_{1} p_{2}$, where p_{1}, p_{2} are distinct prime positive integers. Then $Z G_{n}$ is complete bipartite and $Z G_{n}=K_{p_{1}-1, p_{2}-1}$.

Proof. Let $A=\left\{a \in V_{n}\left|p_{1}\right| a\right\}=\left\{a P_{1} \mid 1 \leq a \leq p_{2}-1\right\}$ and $B=\left\{b \in V_{n} \mid\right.$ $\left.p_{2} \mid b\right\}=\left\{a P_{2} \mid 1 \leq a \leq p_{1}-1\right\}$. It is clear that $|A|=p_{2}-1,|B|=p_{1}-1$, $A \cup B=V_{n}$ and $A \cap B=\emptyset$. Note that $p_{1} \nmid b$ for every $b \in B$ and $p_{2} \nmid a$ for every $a \in A$. It is clear that two distinct vertices of V_{n} are adjacent if and only if they are in distinct vertex sets. Thus $Z G_{n}$ is a complete bipartite graph. Since $|B|=p_{1}-1$ and $|A|=p_{2}-1$, we conclude that $Z G_{n}=K_{p_{1}-1, p_{2}-1}$.

Example 3.2.9. The following (11) is the complete bipartite graph of $Z G_{69}$.

Graph of Z_69 Zero Divisors

Figure 11: Graph of $Z G_{69}$

Example 3.2.10. The following $(\sqrt{12})$ is the complete bipartite graph of $Z G_{22}$.

Figure 12: Graph of $Z G_{22}$

Combining Propositions $3.2 .1,3.2 .2,3.2 .3,3.2 .4$, and 3.2 .5 , we arrive at the following result

Theorem 3.2.6. Assume $\left|V_{n}\right| \geq 2$. Then $Z G_{n}$ is complete bipartite if and only if either $n=p_{1} p_{2}$, where p_{1}, p_{2} are distinct prime positive integers or $n=8$ or $n=9$.

3.3 Connectedness and diameter of $Z G_{n}$

Recall that a graph (G, V, E) is called connected if there exists a path between every two distinct vertices of G. If $P: v_{1}-v_{2}-\cdots-v_{m+1}$ is a path in G, where v_{1}, \ldots, v_{m+1} are distinct vertices of G, then we say that " P " is a path of length m. If v_{1}, v_{2} are two distinct vertices of G, then the distance between v_{1}, v_{2}, is denoted by $d\left(v_{1}, v_{2}\right)$ and it is the length of the shortest path between v_{1} and v_{2}. The diameter of G, denoted by $\operatorname{diam}(G)$, is defined as $\sup \{d(v, w) \mid v, w$ are distinct vertices of $G\}$.

Theorem 3.3.1. Assume $\left|V_{n}\right| \geq 2$. Then $Z G_{n}$ is connected. Furthermore, $1 \leq$ $d(v, w) \leq 3$ for every two distinct vertices $v, w \in V_{n}$, and hence $1 \leq \operatorname{diam}\left(Z G_{n}\right) \leq$ 3.

Proof. Assume that $V_{n} \geq 2$. Let $x, y \in V_{n}$ be two distinct vertices. If $x y=0$ in Z_{n}, then $d(x, y)=1$. Suppose that $x y \neq 0$ in Z_{n}. Since $x, y \in V_{n}$, there exist $v, w \in V_{n}$ such that $v x=0$ and $w y=0$. We consider two cases.
Case 1. Suppose that $h=v w \neq 0$ in Z_{n}. Hence $h x=h y=0$ in Z_{n}. Since $x y \neq 0$ in $Z_{n}, h=v w \neq x$ and $h=v w \neq y$. Thus $x-h-y$ is a path in $Z G_{n}$ of length 2 , and hence $d(x, y)=2$.
Case 2. Suppose that $v w=0$ in Z_{n}. If $v y=0$ in Z_{n}, then $v \neq x$ (since $x y \neq 0$ and $v y=0$ in Z_{n}), and hence $x-v-y$ is a path in $Z G_{n}$ of length 2 (i.e, $d(x, y)=2$). If $w x=0$ in Z_{n}, then $w \neq y$ (since $x y \neq 0$ and $w x=0$ in Z_{n}), and hence $x-w-y$ is a path in $Z G_{n}$ of length 2 (i.e, $d(x, y)=2$). Now, assume that $x, y, v, w \in V_{n}$ are distinct vertices. Since $x y \neq 0$ in Z_{n} and $v w=0$ in Z_{n}, we conclude that $x-v-w-y$ is a path in $Z G_{n}$ of length 3 (i.e, $d(x, y)=3$).
Thus $Z G_{n}$ is connected and $1 \leq \operatorname{diam}\left(Z G_{n}\right) \leq 3$.

3.4 Girth of $Z G_{n}$ and bipartite $Z G_{n}$

Let (G, V, E) be a graph and $C: v_{1}-v_{2}-v_{3}-\cdots-v_{m}-v_{1}$ be a path in G from v_{1} to v_{1}, where v_{1}, \ldots, v_{m} are distinct vertices of G. Then we say " C " is a cycle in G of length m. The girth of G, denoted by $\operatorname{gr}(G)$, is the length of the shortest cycle in G and if G has no cycles, then we say $\operatorname{gr}(G)=\infty$.

Proposition 3.4.1. Assume that $n=4 p$ for some odd prime positive integer p. Then $Z G_{n}$ is a bipartite graph that is not complete bipartite. Furthermore, $\operatorname{gr}\left(Z G_{n}\right)=4$.

Proof. Let $A=\left\{a \in V_{n} \mid p \nmid a\right\}$ and $B=V_{n}-A$. Then $A \cup B=V_{n}$ and $A \cap B=\emptyset$. It is clear that every two distinct vertices in A are not connected by an edge. Let $x, y \in B$. Then $x=a p, y=b p$, where $1 \leq a, b \leq 2$. Hence $x y=a b p^{2}=0$ in Z_{n} if and only if $a=b=2$. Thus $x y=0$ in Z_{n} if and only if $x=y=2 p$. Hence every two distinct vertices in B are not connected by an edge. Thus $Z G_{n}$ is a bipartite graph. By Theorem 3.3.1, $Z G_{n}$ is not complete bipartite. Since $Z G_{n}$ is bipartite, $\operatorname{gr}\left(Z G_{n}\right) \neq 3$. Since $n=4 p$ for some odd prime positive integer p, we conclude that $4,8 \in V_{n}$. Hence $2 p-4-p-8-2 p$ is a cycle in $Z G_{n}$ of length 4 . Thus $\operatorname{gr}\left(Z G_{n}\right)=4$.

Proposition 3.4.2. Assume that $n=p_{1}^{m_{1}} p_{2}^{m_{2}}$, where p_{1}, p_{2} are distinct odd prime positive integers, $m_{1} \geq 2$ and $m_{2} \geq 1$. Then $\operatorname{gr}\left(Z G_{n}\right)=3$, and hence $Z G_{n}$ is not a bipartite graph.
Proof. Let $v_{1}=p_{1}^{m_{1}}, v_{2}=p_{1} p_{2}^{m_{2}}$, and $v_{3}=2 p_{1}^{m_{1}-1} p_{2}^{m_{2}}$. Since p_{1}, p_{2} are odd prime integers and $m_{1} \geq 2$, we conclude that v_{1}, v_{2}, v_{3} are distinct vertices in V_{n}. Hence $v_{1}-v_{2}-v_{3}-v_{1}$ is a cycle in $Z G_{n}$ of length 3. Thus $\operatorname{gr}\left(Z G_{n}\right)=3$.

Remark 3.4.3. Observe that in the proofs of Propositions 3.2.1 3.2.2 and 3.2.3 we constructed a cycle in $Z G_{n}$ of length 3 .

In light of Remark 3.4.3. Theorem 3.3.1. Proposition 3.4.1, and Proposition 3.4.2, we arrive at the following result.

Theorem 3.4.4. Assume $\left|V_{n}\right| \geq 2$. Then $Z G_{n}$ is a bipartite graph if and only if either $n=8$ or $n=9$ or $n=p_{1} p_{2}$ for some distinct prime positive integers p_{1}, p_{2} or $n=4 p$ for some odd prime positive integer p.

In view of Theorem 3.3.1 and Theorem 3.4.4, we have the following result.

Corollary 3.4.5. Assume $\left|V_{n}\right| \geq 2$. Then $Z G_{n}$ is a bipartite graph that is not complete bipartite if and only if $n=4 p$ for some odd prime positive integer p.

Theorem 3.4.6. Assume $\left|V_{n}\right| \geq 2$. Then $\operatorname{gr}\left(Z G_{n}\right) \in\{\infty, 3,4\}$. In particular:

1. $\operatorname{gr}\left(Z G_{n}\right)=\infty$ if and only $n=8$ or $n=9$ or $n=2 p$ for some odd prime positive integer p.
2. $\operatorname{gr}\left(Z G_{n}\right)=4$ if and only if $n=4 p$ for some odd prime positive integer p or $n=p_{1} p_{2}$ for some odd prime positive integers p_{1}, p_{2}.
3. $\operatorname{gr}\left(Z G_{n}\right)=3$ if and only if neither $n=8$ nor $n=9$ nor $n=p_{1} p_{2}$ for some prime positive integers p_{1}, p_{2} nor $n=4 p$ for some odd prime positive integer p.

Proof. The proofs of (i), (ii), (iii) are now clear by Remark 3.4.3. Propositions 3.2.5, 3.4.1, 3.4.2 and Theorem 3.4.4

4 Conclusion

This thesis is inspired by Anderson and Livingston's work on the zero-divisor graph of commutative rings [?]. However, our investigation in this paper focused only on Z_{n} (note that $\left(Z_{n},+,.\right)$ is a commutative ring, where " + " denotes addition modulo n and "." is multiplication modulo n). We applied concepts from basic Number Theory and Graph Theory to arrive to similar results as in [1].
Let $n \geq 2$ be a positive integer. Then the zero-divisor graph of Z_{n} (i.e., the integers module n), denoted by $Z G_{n}$, is undirected simple graph with vertex set $V_{n}=\{a \in$ $Z_{n} \mid a \neq 0$ and $a b=0$ in Z_{n} for some nonzero $\left.b \in Z_{n}\right\}$ such that two distinct vertices, x, y, in V_{n} are adjacent (i.e., connected by an edge) if and only if $x y=0$ in Z_{n}. We showed that $Z G_{n}$ is complete bipartite if and only $n=8,9$, or $n=p q$ for some distinct prime integers p, q. We showed that $Z G_{n}$ is complete if and only if $n=p^{2}$ for some odd prime positive integer p. For a given integer $n \geq$, we showed that the diameter of $Z G_{n}$ is at most 3 while its girth is either 3,4 or ∞.

Further work related to this paper could include :
(1) For what values of n is $Z G_{n}$ a polypartite?
(2) For what values of n is $Z G_{n}$ a planar?
(3) What is the relationship between Euler's Totient Function of n, denoted as $\varphi(n)$, and $\left|V_{n}\right|$ for $Z G_{n}$?

