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1 Abstract
Let n ≥ 2 be a positive integer. Then the zero-divisor graph of Zn (i.e., the integers
module n), denoted by ZGn, is undirected simple graph with vertex set Vn = {a ∈
Zn | a 6= 0 and ab = 0 in Zn for some nonzero b ∈ Zn} such that two distinct
vertices, x, y, in Vn are adjacent (i.e., connected by an edge) if and only if xy = 0 in
Zn. Using some elementary techniques and concepts from graph theory and discrete
mathematics, we tackle some properties of ZGn. Specifically, properties of interest are
values of n in which the graph ZGn becomes complete bipartite. Other properties will
be studied as well, for example: connectedness, diameter, and girth of such graphs. We
show that ZGn is connected for every n ≥ 2. We show ZGn is complete bipartite if
and only n = 8, 9, or n = pq for some distinct prime integers p, q. We show that ZGn
is complete if and only if n = p2 for some odd prime positive integer p. For a given
integer n ≥, we show the diameter of ZGn is at most 3 while its girth is either 3, 4 or
∞.

2 Introduction
Let n ∈ N, n > 1, and Vn = {a ∈ Zn | a 6= 0 and ab = 0 in Zn for some
nonzero b ∈ Zn}. The zero-divisor graph of Zn, denoted by ZGn is undirected simple
graph with vertex set Vn such that two distinct vertices, x, y, in Vn are adjacent (i.e.,
connected by an edge) if and only if xy = 0 in Zn.
This thesis is inspired by Anderson and Livingston’s work on the zero-divisor graph
of commutative rings [?]. However, our investigation in this paper focuses only on Zn
(note that (Zn,+, .) is a commutative ring, where ”+” denotes addition modulo n and
”.” is multiplication modulo n). We apply concepts from basic Number Theory and
Graph Theory to arrive to similar results as in [1].
This paper will tackle the following graph properties of ZGn.

• What values of n is ZGn complete bipartite?

• Describe connectedness of ZGn.

• Describe diameter of ZGn.

• Describe girth of ZGn.

We refer to graph theory concepts from Bondy and Murty’s Graph Theory [?]. This
paper will also provide figures of some graphs of interest

We recall some definitions. Let (G,V,E) be a graph with vertex set V and edge set
E. Then G is called complete if any two distinct vertices are adjacent. The complete
graph with n vertices will be denoted by Kn. A graph G is called bipartite if V can
be partitioned into two disjoint nonempty vertex sets A and B such that there is no
edge between every two distinct vertices in A and there is no edge between every two
distinct vertices in B. A graph G is called complete bipartite if it is bipartite and two
distinct vertices are adjacent if and only if they are in distinct vertex sets. If one of
the vertex sets is a singleton, then G is called a star graph. We denote the complete
bipartite graph by Km,n, where |A| = m and |B| = n; so a star graph is a K1,n.
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3 Results

3.1 When is ZGn a complete graph?
Let (G,V,E) be a graph with vertex set V and edge set E. Recall that G is called
complete if any two distinct vertices are adjacent. The complete graph with n vertices
will be denoted by Kn.

Theorem 3.1.1. Assume |Vn| ≥ 2. Then ZGn is complete if and only if n = p2 for
some odd prime positive integer p.

Proof. Assume that ZGn is complete. Assume that p1p2 | n for some distinct prime
positive integers p1 < p2. Then p1, 2p1 ∈ Vn and there is no edge between p1 and
2p1. Thus n = pm for some prime positive integer p and a positive integer m ≥ 2. If
p = 2, then it is clear that ZGn is not complete. Assume that p 6= 2 and m ≥ 3. Then
p, 2p ∈ Vn and there is no edge between p and 2p. Hence m = 2. Now suppose that
n = p2 for some odd prime positive integer p. Let x, y ∈ Vn. Then p | x and p | y.
Hence xy = 0 in Zn. Thus ZGn is a complete graph.

Example 3.1.1. For n = 361 = 192, figure 1 is the graph of ZG361. Note that that
ZG361 = K18.
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Figure 1: Graph of ZG361

3.2 When is ZGn a Complete Bipartite?
Let n ≥ 2. Then using the concept of prime number decomposition, we have n =
pα1
1 · · · p

αk

k , where p1, ..., pk are distinct prime numbers and α1, ..., αk ∈ N.

We recall [?, Theorem 4.7] that states ”A graph is bipartite if and only if it contains no
odd cycle.”

Proposition 3.2.1. If n is a prime number, then Vn = ∅.

Proof. We shall prove that Vp = ∅ by contradiction. Assume ∃x, y ∈ Zp such that
xy = 0 in Zp.

xy ≡ 0 mod p→ xy = mp,m ∈ N.

Since x, y are both nonzero integers, then at least one of them has to be divisible by p
such that xyp = m, but since x < p and y < p and products of primes less than n, then
we have a contradiction and Vp = ∅.

Proposition 3.2.2. If n = pα, where p ≥ 2 is a prime integer and α ≥ 1, then ZGn is
complete bipartite if and only if n = 23 = 8 or n = 32 = 9.
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Proof. If n = 4, then V4 = {2}. Hence there is not much to say. If n = 8, then V8 =
{2, 4, 6} and henceZG8 = K1,2. If n = 2α, whereα ≥ 4, then 4−3·2α−2−2α−1−4 is
a cycle in ZGn of length 3 (note that since α ≥ 4, we have 2α−2 · 2α−1 = 22α−3 = 0
in Zn). Since ZGn has an odd cycle, we conclude that ZGn is not bipartite, and
hence it is not complete bipartite. If n = 32 = 9, then V9 = {3, 6}. It is clear that
ZG9 = K1,1. Suppose that n = 3α, where α ≥ 3. Then 3− 2 · 3α−1 − 3α−1 − 3 is a
cycle in ZGn of length 3 (note that since α ≥ 3, we have 3α−1 · 3α−1 = 32α−2 = 0
in Zn). Since ZGn has an odd cycle, we conclude that ZGn is not bipartite, and hence
it is not complete bipartite. Suppose that n = pα, where p 6= 2, p 6= 3, and α ≥ 2.
Then p− 2 · pα−1− 3 · pα−1− p is a cycle in ZGn of length 3. Since ZGn has an odd
cycle, we conclude that ZGn is not bipartite, and hence it is not complete bipartite.
Thus ZGn is complete bipartite if and only if n = 23 = 8 or n = 32 = 9.

Example 3.2.1. The graph of ZG8 is given in figure 2a (note that ZG8 = K1,2). The
graph of ZG27 is given in figure 2b (note that ZG27 is not complete bipartite; in fact,
ZG27 is not a bipartite graph).

(a) Graph of ZG8 (b) Graph of ZG27

Proposition 3.2.3. Assume that n = pm1
1 · · · p

mk

k , where k ≥ 3, p1, ..., pk are distinct
prime positive integers, andm1,m2, ...,mk ≥ 1. ThenZGn is not a complete bipartite
graph.

Proof. Let v1 = pm1
1 pm2

2 , v2 = pm1
1 pm3

3 · · · p
mk

k , and v3 = pm2
2 pm3

3 · · · p
mk

k . Then
v1, v2, v3 ∈ Vn and v1 − v2 − v3 − v1 is a cycle in ZGn of length 3. Since ZGn has
an odd cycle, we conclude that ZGn is not bipartite, and hence it is not a complete
bipartite graph.

Example 3.2.2. For n = 30 = 2 · 3 · 5, figure 3 is the graph of ZG30. Note that ZG30

is not bipartite and hence it is not complete bipartite.
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Figure 3: Graph of ZG30

Proposition 3.2.4. Assume that n = pm1
1 pm2

2 , where p1, p2 are distinct prime positive
integers, m1 ≥ 2 and m2 ≥ 1. Then ZGn is not a complete bipartite graph.

Proof. Assume that ZGn is a complete bipartite graph. Then Vn can be partitioned
into two sets A,B such that two distinct vertices are adjacent if and only if they are in
distinct vertex sets. We may assume that p1 inA. Since p1 ·pm1−1

1 pm2
2 = 0 in Zn (note

thatm1 ≥ 2), we conclude that pm1−1
1 pm2

2 ∈ B. Since p1p2 6= 0 in Zn and p1 ∈ A, we
conclude that p2 ∈ A. Since pm1−1

1 pm2
2 ∈ B and p2 ∈ A, we have p2 · pm1−1

1 pm2
2 = 0

in Zn, a contradiction. Thus ZGn is not a complete bipartite graph.

Example 3.2.3. For n = 12 = 22 · 3, figure 4 is the graph of ZG12. Note that ZG12

is bipartite, but it is not complete bipartite.
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Figure 4: Graph of ZG12

Example 3.2.4. For n = 20 = 22 · 5, figure 5 is the graph of ZG20. Note that ZG20

is bipartite, but it is not complete bipartite.
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Figure 5: Graph of ZG20

For n = 28 = 22 · 7, figure 6 is the graph of ZG28. Note that ZG28 is bipartite,
but it is not complete bipartite.
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Figure 6: Graph of ZG28

Example 3.2.5. For n = 24 = 23 · 3, figure 7 is the graph of ZG24. Note that ZG24

is not bipartite and hence it is not complete bipartite.
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Figure 7: Graph of ZG24

Example 3.2.6. For n = 18 = 32 · 2, figure 8 is the graph of ZG18. Note that ZG18

is not bipartite and hence it is not complete bipartite.
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Figure 8: Graph of ZG18

Example 3.2.7. For n = 45 = 32 · 5, figure 9 is the graph of ZG45. Note that ZG45

is not bipartite and hence it is not complete bipartite.
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Figure 9: Graph of ZG45

Example 3.2.8. For n = 36 = 22 ·32, figure 10 is the graph of ZG36. Note that ZG36

is not bipartite and hence it is not complete bipartite.
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Figure 10: Graph of ZG36

Proposition 3.2.5. Assume that n = p1p2, where p1, p2 are distinct prime positive
integers. Then ZGn is complete bipartite and ZGn = Kp1−1,p2−1.

Proof. Let A = {a ∈ Vn | p1 | a} = {aP1 | 1 ≤ a ≤ p2 − 1} and B = {b ∈ Vn |
p2 | b} = {aP2 | 1 ≤ a ≤ p1 − 1}. It is clear that |A| = p2 − 1, |B| = p1 − 1,
A ∪ B = Vn and A ∩ B = ∅. Note that p1 - b for every b ∈ B and p2 - a for every
a ∈ A. It is clear that two distinct vertices of Vn are adjacent if and only if they are in
distinct vertex sets. Thus ZGn is a complete bipartite graph. Since |B| = p1 − 1 and
|A| = p2 − 1, we conclude that ZGn = Kp1−1,p2−1.

Example 3.2.9. The following (11) is the complete bipartite graph of ZG69.
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Figure 11: Graph of ZG69

Example 3.2.10. The following (12) is the complete bipartite graph of ZG22.
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Figure 12: Graph of ZG22

Combining Propositions 3.2.1, 3.2.2, 3.2.3, 3.2.4, and 3.2.5, we arrive at the fol-
lowing result

Theorem 3.2.6. Assume |Vn| ≥ 2. Then ZGn is complete bipartite if and only if either
n = p1p2, where p1, p2 are distinct prime positive integers or n = 8 or n = 9.

3.3 Connectedness and diameter of ZGn

Recall that a graph (G,V,E) is called connected if there exists a path between every
two distinct vertices ofG. If P : v1−v2−· · ·−vm+1 is a path inG, where v1, ..., vm+1

are distinct vertices of G, then we say that ”P ” is a path of length m. If v1, v2 are two
distinct vertices of G, then the distance between v1, v2, is denoted by d(v1, v2) and it
is the length of the shortest path between v1 and v2. The diameter of G, denoted by
diam(G), is defined as sup{d(v, w) | v, w are distinct vertices of G}.

Theorem 3.3.1. Assume |Vn| ≥ 2. Then ZGn is connected. Furthermore, 1 ≤
d(v, w) ≤ 3 for every two distinct vertices v, w ∈ Vn, and hence 1 ≤ diam(ZGn) ≤
3.

14



Proof. Assume that Vn ≥ 2. Let x, y ∈ Vn be two distinct vertices. If xy = 0 in Zn,
then d(x, y) = 1. Suppose that xy 6= 0 in Zn. Since x, y ∈ Vn, there exist v, w ∈ Vn
such that vx = 0 and wy = 0. We consider two cases.
Case 1. Suppose that h = vw 6= 0 in Zn. Hence hx = hy = 0 in Zn. Since xy 6= 0 in
Zn, h = vw 6= x and h = vw 6= y. Thus x− h− y is a path in ZGn of length 2, and
hence d(x, y) = 2.
Case 2. Suppose that vw = 0 in Zn. If vy = 0 in Zn, then v 6= x (since xy 6= 0 and
vy = 0 in Zn), and hence x− v − y is a path in ZGn of length 2 (i.e, d(x, y) = 2). If
wx = 0 in Zn, then w 6= y (since xy 6= 0 and wx = 0 in Zn), and hence x − w − y
is a path in ZGn of length 2 (i.e, d(x, y) = 2). Now, assume that x, y, v, w ∈ Vn are
distinct vertices. Since xy 6= 0 in Zn and vw = 0 in Zn, we conclude that x−v−w−y
is a path in ZGn of length 3 (i.e, d(x, y) = 3).
Thus ZGn is connected and 1 ≤ diam(ZGn) ≤ 3.

3.4 Girth of ZGn and bipartite ZGn

Let (G,V,E) be a graph and C : v1 − v2 − v3 − · · · − vm − v1 be a path in G from
v1 to v1, where v1, ..., vm are distinct vertices of G. Then we say ”C” is a cycle in G
of length m. The girth of G, denoted by gr(G), is the length of the shortest cycle in G
and if G has no cycles, then we say gr(G) =∞.

Proposition 3.4.1. Assume that n = 4p for some odd prime positive integer p. Then
ZGn is a bipartite graph that is not complete bipartite. Furthermore, gr(ZGn) = 4.

Proof. Let A = {a ∈ Vn | p - a} and B = Vn − A. Then A ∪ B = Vn and
A ∩ B = ∅. It is clear that every two distinct vertices in A are not connected by an
edge. Let x, y ∈ B. Then x = ap, y = bp, where 1 ≤ a, b ≤ 2. Hence xy = abp2 = 0
in Zn if and only if a = b = 2. Thus xy = 0 in Zn if and only if x = y = 2p.
Hence every two distinct vertices in B are not connected by an edge. Thus ZGn is
a bipartite graph. By Theorem 3.3.1, ZGn is not complete bipartite. Since ZGn is
bipartite, gr(ZGn) 6= 3. Since n = 4p for some odd prime positive integer p, we
conclude that 4, 8 ∈ Vn. Hence 2p − 4 − p − 8 − 2p is a cycle in ZGn of length 4.
Thus gr(ZGn) = 4.

Proposition 3.4.2. Assume that n = pm1
1 pm2

2 , where p1, p2 are distinct odd prime
positive integers, m1 ≥ 2 and m2 ≥ 1. Then gr(ZGn) = 3, and hence ZGn is not a
bipartite graph.

Proof. Let v1 = pm1
1 , v2 = p1p

m2
2 , and v3 = 2pm1−1

1 pm2
2 . Since p1, p2 are odd prime

integers and m1 ≥ 2, we conclude that v1, v2, v3 are distinct vertices in Vn. Hence
v1 − v2 − v3 − v1 is a cycle in ZGn of length 3. Thus gr(ZGn) = 3.

Remark 3.4.3. Observe that in the proofs of Propositions 3.2.1, 3.2.2, and 3.2.3, we
constructed a cycle in ZGn of length 3.

In light of Remark 3.4.3, Theorem 3.3.1, Proposition 3.4.1, and Proposition 3.4.2,
we arrive at the following result.

Theorem 3.4.4. Assume |Vn| ≥ 2. Then ZGn is a bipartite graph if and only if either
n = 8 or n = 9 or n = p1p2 for some distinct prime positive integers p1, p2 or n = 4p
for some odd prime positive integer p.

In view of Theorem 3.3.1 and Theorem 3.4.4, we have the following result.

15



Corollary 3.4.5. Assume |Vn| ≥ 2. Then ZGn is a bipartite graph that is not complete
bipartite if and only if n = 4p for some odd prime positive integer p.

Theorem 3.4.6. Assume |Vn| ≥ 2. Then gr(ZGn) ∈ {∞, 3, 4}. In particular:

1. gr(ZGn) = ∞ if and only n = 8 or n = 9 or n = 2p for some odd prime
positive integer p.

2. gr(ZGn) = 4 if and only if n = 4p for some odd prime positive integer p or
n = p1p2 for some odd prime positive integers p1, p2.

3. gr(ZGn) = 3 if and only if neither n = 8 nor n = 9 nor n = p1p2 for some
prime positive integers p1, p2 nor n = 4p for some odd prime positive integer p.

Proof. The proofs of (i), (ii), (iii) are now clear by Remark 3.4.3, Propositions 3.2.5,
3.4.1, 3.4.2 and Theorem 3.4.4.

4 Conclusion
This thesis is inspired by Anderson and Livingston’s work on the zero-divisor graph of
commutative rings [?]. However, our investigation in this paper focused only on Zn
(note that (Zn,+, .) is a commutative ring, where ”+” denotes addition modulo n and
”.” is multiplication modulo n). We applied concepts from basic Number Theory and
Graph Theory to arrive to similar results as in [1].
Let n ≥ 2 be a positive integer. Then the zero-divisor graph of Zn (i.e., the integers
module n), denoted by ZGn, is undirected simple graph with vertex set Vn = {a ∈
Zn | a 6= 0 and ab = 0 in Zn for some nonzero b ∈ Zn} such that two distinct vertices,
x, y, in Vn are adjacent (i.e., connected by an edge) if and only if xy = 0 in Zn. We
showed that ZGn is complete bipartite if and only n = 8, 9, or n = pq for some
distinct prime integers p, q. We showed that ZGn is complete if and only if n = p2

for some odd prime positive integer p. For a given integer n ≥, we showed that the
diameter of ZGn is at most 3 while its girth is either 3, 4 or∞.

Further work related to this paper could include :
(1) For what values of n is ZGn a polypartite ?
(2) For what values of n is ZGn a planar?
(3) What is the relationship between Euler’s Totient Function of n, denoted as ϕ(n),

and |Vn| for ZGn?

16


	Abstract
	Introduction
	Results
	When is ZGn a complete graph?
	When is ZGn a Complete Bipartite? 
	Connectedness and diameter of ZGn
	Girth of ZGn and bipartite ZGn

	Conclusion

