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1 Abstract

Let n > 2 be a positive integer. Then the zero-divisor graph of Z,, (i.e., the integers
module n), denoted by ZG,,, is undirected simple graph with vertex set V,, = {a €
Zn | a # 0and ab = 0 in Z,, for some nonzero b € Z,} such that two distinct
vertices, x,y, in V,, are adjacent (i.e., connected by an edge) if and only if xy = 0 in
Z,,. Using some elementary techniques and concepts from graph theory and discrete
mathematics, we tackle some properties of ZG,,. Specifically, properties of interest are
values of n in which the graph ZG,, becomes complete bipartite. Other properties will
be studied as well, for example: connectedness, diameter, and girth of such graphs. We
show that Z@,, is connected for every n > 2. We show Z(G,, is complete bipartite if
and only n = 8,9, or n = pq for some distinct prime integers p, g. We show that ZG,,
is complete if and only if n = p? for some odd prime positive integer p. For a given
integer n >, we show the diameter of ZG, is at most 3 while its girth is either 3,4 or
0.

2 Introduction

Letn € Nyn > 1,and V,, = {a € Z, | a # 0 and ab = 0 in Z,, for some
nonzero b € Z,, }. The zero-divisor graph of Z,,, denoted by Z@,, is undirected simple
graph with vertex set V,, such that two distinct vertices, x,y, in V,, are adjacent (i.e.,
connected by an edge) if and only if xy = 0 in Z,,.

This thesis is inspired by Anderson and Livingston’s work on the zero-divisor graph
of commutative rings [?]. However, our investigation in this paper focuses only on Z,,
(note that (Z,,, +,.) is a commutative ring, where ”+” denotes addition modulo n and
”” is multiplication modulo n). We apply concepts from basic Number Theory and
Graph Theory to arrive to similar results as in [1].

This paper will tackle the following graph properties of ZG,,.
¢ What values of n is ZG,, complete bipartite?
¢ Describe connectedness of ZG,,.
¢ Describe diameter of ZG,,.
* Describe girth of ZG,,.

We refer to graph theory concepts from Bondy and Murty’s Graph Theory [?]. This
paper will also provide figures of some graphs of interest

We recall some definitions. Let (G, V, E)) be a graph with vertex set V' and edge set
E. Then G is called complete if any two distinct vertices are adjacent. The complete
graph with n vertices will be denoted by K,,. A graph G is called bipartite if V' can
be partitioned into two disjoint nonempty vertex sets A and B such that there is no
edge between every two distinct vertices in A and there is no edge between every two
distinct vertices in B. A graph G is called complete bipartite if it is bipartite and two
distinct vertices are adjacent if and only if they are in distinct vertex sets. If one of
the vertex sets is a singleton, then G is called a star graph. We denote the complete
bipartite graph by K, ,,, where |A| = m and |B| = n; so a star graph is a K7 ,,.



3 Results

3.1 Whenis ZG,, a complete graph?

Let (G,V, F) be a graph with vertex set V' and edge set E. Recall that G is called
complete if any two distinct vertices are adjacent. The complete graph with n vertices
will be denoted by K.

Theorem 3.1.1. Assume |V,,| > 2. Then ZG,, is complete if and only if n = p? for
some odd prime positive integer p.

Proof. Assume that Z@G,, is complete. Assume that pips | n for some distinct prime
positive integers p; < p2. Then p1,2p; € V,, and there is no edge between p; and
2p1. Thus n = p™ for some prime positive integer p and a positive integer m > 2. If
p = 2, then it is clear that ZG,, is not complete. Assume that p # 2 and m > 3. Then
p,2p € V,, and there is no edge between p and 2p. Hence m = 2. Now suppose that
n = p? for some odd prime positive integer p. Let x, € V,,. Thenp | z and p | y.
Hence xy = 0 in Z,,. Thus ZG,, is a complete graph. O

Example 3.1.1. For n = 361 = 192, figure|l|is the graph of ZG3e1. Note that that
ZG361 = Kis.
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Figure 1: Graph of ZG361

3.2 Whenis ZG,, a Complete Bipartite?

Let n > 2. Then using the concept of prime number decomposition, we have n =
Pyt - pp¥, where pi, ..., py are distinct prime numbers and oy, ..., o € N.

We recall [?, Theorem 4.7] that states A graph is bipartite if and only if it contains no
odd cycle.”

Proposition 3.2.1. If n is a prime number, then V,, = (.
Proof. We shall prove that Vj, = ) by contradiction. Assume 3x,y € Z, such that
xy = 01in Zy,.
zy =0 modp— zy =mp,m e N.
Since x, y are both nonzero integers, then at least one of them has to be divisible by p

such that %y = m, but since x < p and y < p and products of primes less than n, then
we have a contradiction and V}, = (). OJ

Proposition 3.2.2. Ifn = p®, where p > 2 is a prime integer and o > 1, then ZG,, is
complete bipartite if and only ifn = 23 =8 orn =32 = 9.



Proof. If n = 4, then V; = {2}. Hence there is not much to say. If n = 8, then Vg =
{2,4,6} and hence ZGs = K1 5. If n = 2%, where o > 4, then 4—3-2472 22714 s
acycle in ZG,, of length 3 (note that since o > 4, we have 2072 . 2971 = 220=3 —
in Z,). Since ZG,, has an odd cycle, we conclude that ZG,, is not bipartite, and
hence it is not complete bipartite. If n = 3% = 9, then Vo = {3,6}. It is clear that
ZGg9 = K 1. Suppose that n = 3, where o« > 3. Then 3 — 2 - 3e-1_30-1_3igq
cycle in ZG,, of length 3 (note that since o > 3, we have 3¢~ ! . 32~ = 329-2 = ¢
in Z,). Since ZG, has an odd cycle, we conclude that ZG,, is not bipartite, and hence
it is not complete bipartite. Suppose that n = p®, where p # 2, p # 3, and o > 2.
Thenp —2-p*~ ! —3.p*~1 —pisacyclein ZG,, of length 3. Since ZG,, has an odd
cycle, we conclude that ZG,, is not bipartite, and hence it is not complete bipartite.
Thus ZG,, is complete bipartite if and only if n = 23 = 8orn = 32 = 9. O

Example 3.2.1. The graph of ZGsy is given inﬁgure (note that ZGg = K1 2). The
graph of ZGay is given in figure 2B (note that Z Gz is not complete bipartite; in fact,
Z (a7 is not a bipartite graph).
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Proposition 3.2.3. Assume that n = p{"* - - p;'*, where k > 3, p1, ..., py, are distinct
prime positive integers, and my, ma, ..., my > 1. Then ZG,, is not a complete bipartite
graph.

Proof. Let vi = p{"'py™, vo = p"'pg™® ---p**, and v3 = py"*ps"® ---p."*. Then

v1, V2,03 € Vi, and v; — vy — v3 — vy is a cycle in ZG,, of length 3. Since ZG,, has
an odd cycle, we conclude that ZG,, is not bipartite, and hence it is not a complete
bipartite graph. O

Example 3.2.2. Forn =30 = 2-3 -5, figure[3)is the graph of ZGs. Note that ZG's
is not bipartite and hence it is not complete bipartite.
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Figure 3: Graph of ZG3

Proposition 3.2.4. Assume that n = p]"* py'?, where p1, pa are distinct prime positive
integers, my > 2 and mg > 1. Then ZG,, is not a complete bipartite graph.

Proof. Assume that ZG,, is a complete bipartite graph. Then V,, can be partitioned
into two sets A, B such that two distinct vertices are adjacent if and only if they are in
distinct vertex sets. We may assume that p; in A. Since p; - p"* ~'p3"? = 0in Z,, (note

that m; > 2), we conclude that p}"* ~*pi*> € B. Since p1ps # 0in Z,, and p; € A, we
conclude that p, € A. Since p™ ~'pJ*2 € Band py € A, we have py - p["* ~'ph? =0
in Z,, a contradiction. Thus ZG,, is not a complete bipartite graph. O

Example 3.2.3. Forn = 12 = 22 . 3, ﬁgureis the graph of ZG1o. Note that ZG 1o
is bipartite, but it is not complete bipartite.
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Figure 4: Graph of ZG15

Example 3.2.4. For n = 20 = 22 -5, figure|5is the graph of ZGg. Note that ZGog
is bipartite, but it is not complete bipartite.
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Figure 5: Graph of ZGyo

Forn = 28 = 22.7, ﬁgure|§|is the graph of ZGys. Note that Z(Gog is bipartite,
but it is not complete bipartite.



Figure 6: Graph of ZGs

Example 3.2.5. Forn = 24 = 23 - 3, figure |z is the graph of ZG44. Note that ZGoy
is not bipartite and hence it is not complete bipartite.
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Figure 7: Graph of ZGoy

Example 3.2.6. Forn = 18 = 32 -2, ﬁgure@is the graph of ZGhg. Note that ZG1g
is not bipartite and hence it is not complete bipartite.
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Figure 8: Graph of ZGs

Example 3.2.7. Forn = 45 = 32 - 5, figure E is the graph of ZG 5. Note that ZG 45
is not bipartite and hence it is not complete bipartite.
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Figure 9: Graph of ZGy5

Example 3.2.8. Forn = 36 = 22-32, ﬁgureis the graph of ZGsg. Note that ZGsg
is not bipartite and hence it is not complete bipartite.

11
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Figure 10: Graph of ZG36

Proposition 3.2.5. Assume that n = p1p2, where pi1,ps are distinct prime positive
integers. Then Z G, is complete bipartite and ZG,, = Ky, _1 p,—1.

Proof. Let A={a €V, |p1|a}={aP1|1<a<p—1}and B={beV, |
pe | b} ={aP2 | 1 < a < p; —1}. Ttisclear that |A] = p2 — 1, |B| = p1 — 1,
AUB =V, and AN B = (). Note that p; { b for every b € B and ps t a for every
a € A. Itis clear that two distinct vertices of V,, are adjacent if and only if they are in
distinct vertex sets. Thus ZG,, is a complete bipartite graph. Since |B| = p; — 1 and
|A| = p2 — 1, we conclude that ZG,, = Kp, _1 py—1- O

Example 3.2.9. The following (I1) is the complete bipartite graph of ZGgq.
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Figure 12: Graph of ZGao

Combining Propositions [3.2.1] [3.2.2] [3.2.3] 3.2.4} and [3.2.3] we arrive at the fol-
lowing result

Theorem 3.2.6. Assume |V,,| > 2. Then ZG,, is complete bipartite if and only if either
n = p1pa, where p1, ps are distinct prime positive integers orn = 8 orn = 9.

3.3 Connectedness and diameter of ZG,,

Recall that a graph (G, V| E) is called connected if there exists a path between every
two distinct vertices of G. If P : v1 —vg—- - - — vy, 41 is a path in G, where vy, ..., U1
are distinct vertices of GG, then we say that ” P” is a path of length m. If vy, vy are two
distinct vertices of G, then the distance between vy, vo, is denoted by d(v1, vo) and it
is the length of the shortest path between v; and vo. The diameter of GG, denoted by
diam(G), is defined as sup{d(v,w) | v, w are distinct vertices of G'}.

Theorem 3.3.1. Assume |V,,| > 2. Then ZG,, is connected. Furthermore, 1 <
d(v,w) < 3 for every two distinct vertices v,w € V,,, and hence 1 < diam(ZG,,) <
3.
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Proof. Assume that V,, > 2. Let z,y € V,, be two distinct vertices. If xy = 0 in Z,,,
then d(x,y) = 1. Suppose that zy # 0 in Z,. Since x,y € V,,, there exist v,w € V,
such that v = 0 and wy = 0. We consider two cases.

Case 1. Suppose that h = vw # 0 in Z,,. Hence hz = hy = 0 in Z,,. Since xy # 0 in
Zps h =vw # z and h = vw # y. Thus x — h — y is a path in ZG,, of length 2, and
hence d(z,y) = 2.

Case 2. Suppose that vw = 0 in Z,,. If vy = 0 in Z,,, then v # «x (since xy # 0 and
vy = 01in Z,), and hence z — v — y is a path in ZG,, of length 2 (i.e, d(z,y) = 2). If
wz = 01in Z,, then w # y (since xy # 0 and wx = 0 in Z,,), and hence z — w — y
is a path in ZG,, of length 2 (i.e, d(x,y) = 2). Now, assume that x,y, v, w € V,, are
distinct vertices. Since xy # 0in Z,, and vw = 0in Z,,, we conclude that x —v—w—y
is a path in ZG,, of length 3 (i.e, d(z,y) = 3).

Thus ZG,, is connected and 1 < diam(ZG,,) < 3. O

3.4 Girth of ZG,, and bipartite ZG,

Let (G,V,E) beagraphand C : v;y — vy — v3 — - -+ — v, — v1 be a path in G from
v1 to vy, where v, ..., v, are distinct vertices of G. Then we say "C” is a cycle in G
of length m. The girth of G, denoted by gr(G), is the length of the shortest cycle in G
and if G has no cycles, then we say gr(G) = oo.

Proposition 3.4.1. Assume that n = 4p for some odd prime positive integer p. Then
Z @G, is a bipartite graph that is not complete bipartite. Furthermore, gr(ZG,,) = 4.

Proof. Let A = {a €V, | pta}and B =V, — A Then AUB =V, and
AN B = (. Ttis clear that every two distinct vertices in A are not connected by an
edge. Let z,y € B. Then x = ap,y = bp, where 1 < a,b < 2. Hence zy = abp®? =0
in Z, ifand only if a = b = 2. Thus 2y = 0in Z, if and only if x = y = 2p.
Hence every two distinct vertices in B are not connected by an edge. Thus ZG,, is
a bipartite graph. By Theorem [3.3.1] ZG,, is not complete bipartite. Since ZG,, is
bipartite, gr(ZG,,) # 3. Since n = 4p for some odd prime positive integer p, we
conclude that 4,8 € V,,. Hence 2p — 4 — p — 8 — 2p is a cycle in ZG,, of length 4.
Thus gr(ZG,,) = 4. O

Proposition 3.4.2. Assume that n = p{"'p3'?, where py, pa are distinct odd prime

positive integers, m1 > 2 and mo > 1. Then gr(ZG,,) = 3, and hence ZG,, is not a
bipartite graph.

Proof. Let vy = pi™*, vy = p1p4*, and vg = 2p}"*~'p4*2. Since p;, py are odd prime

integers and my > 2, we conclude that vy, v9, v3 are distinct vertices in V,,. Hence
v] — vy — vz — v is acycle in ZG,, of length 3. Thus gr(ZG,,) = 3. O

Remark 3.4.3. Observe that in the proofs of Propositions[3.2.1| [3.2.2} and[3.2.3] we
constructed a cycle in ZG, of length 3.

In light of Remark [3.4.3] Theorem [3.3.1] Proposition [3.4.1] and Proposition [3.4.2]

we arrive at the following result.

Theorem 3.4.4. Assume |V,,| > 2. Then ZG,, is a bipartite graph if and only if either
n =8 orn =9 orn = pipy for some distinct prime positive integers py,p2 orn = 4p
for some odd prime positive integer p.

In view of Theorem [3.3.1]and Theorem [3.4.4] we have the following result.
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Corollary 3.4.5. Assume |V,,| > 2. Then ZG,, is a bipartite graph that is not complete
bipartite if and only if n = 4p for some odd prime positive integer p.

Theorem 3.4.6. Assume |V,,| > 2. Then gr(ZG,,) € {00, 3,4}. In particular:

1. gr(ZG,) = o ifand only n = 8 or n = 9 or n = 2p for some odd prime
positive integer p.

2. gr(ZG,) = 4 if and only if n = 4p for some odd prime positive integer p or
n = p1ps for some odd prime positive integers p1, pa.

3. gr(ZG,) = 3 if and only if neither n = 8 nor n = 9 nor n = p1ps for some
prime positive integers p1, pa nor n = 4p for some odd prime positive integer p.

Proof. The proofs of (i), (ii), (iii) are now clear by Remark [3.4.3] Propositions
[3:4.1] 3.4.2)and Theorem[3.4.4] O

4 Conclusion

This thesis is inspired by Anderson and Livingston’s work on the zero-divisor graph of
commutative rings [?]. However, our investigation in this paper focused only on Z,
(note that (Z,,,+, .) is a commutative ring, where ”+” denotes addition modulo n and
. is multiplication modulo n). We applied concepts from basic Number Theory and
Graph Theory to atrive to similar results as in [1].
Let n > 2 be a positive integer. Then the zero-divisor graph of Z,, (i.e., the integers
module n), denoted by ZG,,, is undirected simple graph with vertex set V,, = {a €
Zyn | @ # 0and ab = 0in Z,, for some nonzero b € Z,, } such that two distinct vertices,
x,y, in V,, are adjacent (i.e., connected by an edge) if and only if xy = 0 in Z,,. We
showed that ZG,, is complete bipartite if and only n = 8,9, or n = pq for some
distinct prime integers p,q. We showed that ZG,, is complete if and only if n = p?
for some odd prime positive integer p. For a given integer n >, we showed that the
diameter of ZG,, is at most 3 while its girth is either 3, 4 or co.

Further work related to this paper could include :

(1) For what values of n is ZG,, a polypartite ?

(2) For what values of n is ZG,, a planar?

(3) What is the relationship between Euler’s Totient Function of n, denoted as ¢ (n),
and |V,| for ZG,,?
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