Zero Divisor Graph of Integers Modulo n

Saood H. AlMarzooqi Supervised by Prof. Ayman Badawi

A senior project presented for the degree of Bachelors of Science in Mathematics

Department of Mathematics and Statistics American University of Sharjah United Arab Emirates November 2020

1 Abstract

Let $n \ge 2$ be a positive integer. Then the zero-divisor graph of Z_n (i.e., the integers module n), denoted by ZG_n , is undirected simple graph with vertex set $V_n = \{a \in Z_n \mid a \ne 0 \text{ and } ab = 0 \text{ in } Z_n \text{ for some nonzero } b \in Z_n\}$ such that two distinct vertices, x, y, in V_n are adjacent (i.e., connected by an edge) if and only if xy = 0 in Z_n . Using some elementary techniques and concepts from graph theory and discrete mathematics, we tackle some properties of ZG_n . Specifically, properties of interest are values of n in which the graph ZG_n becomes complete bipartite. Other properties will be studied as well, for example: connectedness, diameter, and girth of such graphs. We show that ZG_n is connected for every $n \ge 2$. We show ZG_n is complete bipartite if and only n = 8, 9, or n = pq for some distinct prime integers p, q. We show that ZG_n is complete if and only if $n = p^2$ for some odd prime positive integer p. For a given integer $n \ge$, we show the diameter of ZG_n is at most 3 while its girth is either 3, 4 or ∞ .

2 Introduction

Let $n \in \mathbb{N}$, n > 1, and $V_n = \{a \in Z_n \mid a \neq 0 \text{ and } ab = 0 \text{ in } Z_n \text{ for some nonzero } b \in Z_n\}$. The zero-divisor graph of Z_n , denoted by ZG_n is undirected simple graph with vertex set V_n such that two distinct vertices, x, y, in V_n are adjacent (i.e., connected by an edge) if and only if xy = 0 in Z_n .

This thesis is inspired by Anderson and Livingston's work on the zero-divisor graph of commutative rings [?]. However, our investigation in this paper focuses only on Z_n (note that $(Z_n, +, .)$ is a commutative ring, where "+" denotes addition modulo n and "." is multiplication modulo n). We apply concepts from basic Number Theory and Graph Theory to arrive to similar results as in [1].

This paper will tackle the following graph properties of ZG_n .

- What values of n is ZG_n complete bipartite?
- Describe connectedness of ZG_n .
- Describe diameter of ZG_n .
- Describe girth of ZG_n .

We refer to graph theory concepts from Bondy and Murty's *Graph Theory* [?]. This paper will also provide figures of some graphs of interest

We recall some definitions. Let (G, V, E) be a graph with vertex set V and edge set E. Then G is called *complete* if any two distinct vertices are adjacent. The complete graph with n vertices will be denoted by K_n . A graph G is called *bipartite* if V can be partitioned into two disjoint nonempty vertex sets A and B such that there is no edge between every two distinct vertices in A and there is no edge between every two distinct vertices in B. A graph G is called *complete bipartite* if it is bipartite and two distinct vertices are adjacent if and only if they are in distinct vertex sets. If one of the vertex sets is a singleton, then G is called a *star* graph. We denote the complete bipartite graph by $K_{m,n}$, where |A| = m and |B| = n; so a star graph is a $K_{1,n}$.

3 Results

3.1 When is ZG_n a complete graph?

Let (G, V, E) be a graph with vertex set V and edge set E. Recall that G is called *complete* if any two distinct vertices are adjacent. The complete graph with n vertices will be denoted by K_n .

Theorem 3.1.1. Assume $|V_n| \ge 2$. Then ZG_n is complete if and only if $n = p^2$ for some odd prime positive integer p.

Proof. Assume that ZG_n is complete. Assume that $p_1p_2 \mid n$ for some distinct prime positive integers $p_1 < p_2$. Then $p_1, 2p_1 \in V_n$ and there is no edge between p_1 and $2p_1$. Thus $n = p^m$ for some prime positive integer p and a positive integer $m \ge 2$. If p = 2, then it is clear that ZG_n is not complete. Assume that $p \ne 2$ and $m \ge 3$. Then $p, 2p \in V_n$ and there is no edge between p and 2p. Hence m = 2. Now suppose that $n = p^2$ for some odd prime positive integer p. Let $x, y \in V_n$. Then $p \mid x$ and $p \mid y$. Hence xy = 0 in Z_n . Thus ZG_n is a complete graph.

Example 3.1.1. For $n = 361 = 19^2$, figure 1 is the graph of ZG_{361} . Note that that $ZG_{361} = K_{18}$.

Graph of Z_361 Zero Divisors

Figure 1: Graph of ZG_{361}

3.2 When is ZG_n a Complete Bipartite?

Let $n \ge 2$. Then using the concept of prime number decomposition, we have $n = p_1^{\alpha_1} \cdots p_k^{\alpha_k}$, where $p_1, ..., p_k$ are distinct prime numbers and $\alpha_1, ..., \alpha_k \in \mathbb{N}$.

We recall [?, Theorem 4.7] that states "A graph is bipartite if and only if it contains no odd cycle."

Proposition 3.2.1. If n is a prime number, then $V_n = \emptyset$.

Proof. We shall prove that $V_p = \emptyset$ by contradiction. Assume $\exists x, y \in \mathbb{Z}_p$ such that xy = 0 in \mathbb{Z}_p .

 $xy \equiv 0 \mod p \to xy = mp, m \in \mathbb{N}.$

Since x, y are both nonzero integers, then at least one of them has to be divisible by p such that $\frac{xy}{p} = m$, but since x < p and y < p and products of primes less than n, then we have a contradiction and $V_p = \emptyset$.

Proposition 3.2.2. If $n = p^{\alpha}$, where $p \ge 2$ is a prime integer and $\alpha \ge 1$, then ZG_n is complete bipartite if and only if $n = 2^3 = 8$ or $n = 3^2 = 9$.

Proof. If n = 4, then $V_4 = \{2\}$. Hence there is not much to say. If n = 8, then $V_8 = \{2, 4, 6\}$ and hence $ZG_8 = K_{1,2}$. If $n = 2^{\alpha}$, where $\alpha \ge 4$, then $4-3\cdot 2^{\alpha-2}-2^{\alpha-1}-4$ is a cycle in ZG_n of length 3 (note that since $\alpha \ge 4$, we have $2^{\alpha-2} \cdot 2^{\alpha-1} = 2^{2\alpha-3} = 0$ in Z_n). Since ZG_n has an odd cycle, we conclude that ZG_n is not bipartite, and hence it is not complete bipartite. If $n = 3^2 = 9$, then $V_9 = \{3, 6\}$. It is clear that $ZG_9 = K_{1,1}$. Suppose that $n = 3^{\alpha}$, where $\alpha \ge 3$. Then $3 - 2 \cdot 3^{\alpha-1} - 3^{\alpha-1} - 3$ is a cycle in ZG_n of length 3 (note that since $\alpha \ge 3$, we have $3^{\alpha-1} \cdot 3^{\alpha-1} = 3^{2\alpha-2} = 0$ in Z_n). Since ZG_n has an odd cycle, we conclude that ZG_n is not bipartite, and hence it is not complete bipartite. Suppose that $n = p^{\alpha}$, where $p \ne 2$, $p \ne 3$, and $\alpha \ge 2$. Then $p - 2 \cdot p^{\alpha-1} - 3 \cdot p^{\alpha-1} - p$ is a cycle in ZG_n of length 3. Since ZG_n has an odd cycle, we conclude that ZG_n is not bipartite. Thus ZG_n is complete bipartite if and only if $n = 2^3 = 8$ or $n = 3^2 = 9$.

Example 3.2.1. The graph of ZG_8 is given in figure 2a (note that $ZG_8 = K_{1,2}$). The graph of ZG_{27} is given in figure 2b (note that ZG_{27} is not complete bipartite; in fact, ZG_{27} is not a bipartite graph).

Proposition 3.2.3. Assume that $n = p_1^{m_1} \cdots p_k^{m_k}$, where $k \ge 3$, $p_1, ..., p_k$ are distinct prime positive integers, and $m_1, m_2, ..., m_k \ge 1$. Then ZG_n is not a complete bipartite graph.

Proof. Let $v_1 = p_1^{m_1} p_2^{m_2}$, $v_2 = p_1^{m_1} p_3^{m_3} \cdots p_k^{m_k}$, and $v_3 = p_2^{m_2} p_3^{m_3} \cdots p_k^{m_k}$. Then $v_1, v_2, v_3 \in V_n$ and $v_1 - v_2 - v_3 - v_1$ is a cycle in ZG_n of length 3. Since ZG_n has an odd cycle, we conclude that ZG_n is not bipartite, and hence it is not a complete bipartite graph.

Example 3.2.2. For $n = 30 = 2 \cdot 3 \cdot 5$, figure 3 is the graph of ZG_{30} . Note that ZG_{30} is not bipartite and hence it is not complete bipartite.

Figure 3: Graph of ZG_{30}

Proposition 3.2.4. Assume that $n = p_1^{m_1} p_2^{m_2}$, where p_1, p_2 are distinct prime positive integers, $m_1 \ge 2$ and $m_2 \ge 1$. Then ZG_n is not a complete bipartite graph.

Proof. Assume that ZG_n is a complete bipartite graph. Then V_n can be partitioned into two sets A, B such that two distinct vertices are adjacent if and only if they are in distinct vertex sets. We may assume that p_1 in A. Since $p_1 \cdot p_1^{m_1-1} p_2^{m_2} = 0$ in Z_n (note that $m_1 \ge 2$), we conclude that $p_1^{m_1-1} p_2^{m_2} \in B$. Since $p_1 p_2 \ne 0$ in Z_n and $p_1 \in A$, we conclude that $p_2 \in A$. Since $p_1^{m_1-1} p_2^{m_2} \in B$ and $p_2 \in A$, we have $p_2 \cdot p_1^{m_1-1} p_2^{m_2} = 0$ in Z_n , a contradiction. Thus ZG_n is not a complete bipartite graph.

Example 3.2.3. For $n = 12 = 2^2 \cdot 3$, figure 4 is the graph of ZG_{12} . Note that ZG_{12} is bipartite, but it is not complete bipartite.

Graph of Z_12 Zero Divisors

Figure 4: Graph of ZG_{12}

Example 3.2.4. For $n = 20 = 2^2 \cdot 5$, figure 5 is the graph of ZG_{20} . Note that ZG_{20} is bipartite, but it is not complete bipartite.

Figure 5: Graph of ZG_{20}

For $n = 28 = 2^2 \cdot 7$, figure 6 is the graph of ZG_{28} . Note that ZG_{28} is bipartite, but it is not complete bipartite.

Figure 6: Graph of ZG_{28}

Example 3.2.5. For $n = 24 = 2^3 \cdot 3$, figure 7 is the graph of ZG_{24} . Note that ZG_{24} is not bipartite and hence it is not complete bipartite.

Figure 7: Graph of ZG_{24}

Example 3.2.6. For $n = 18 = 3^2 \cdot 2$, figure 8 is the graph of ZG_{18} . Note that ZG_{18} is not bipartite and hence it is not complete bipartite.

Figure 8: Graph of ZG_{18}

Example 3.2.7. For $n = 45 = 3^2 \cdot 5$, figure 9 is the graph of ZG_{45} . Note that ZG_{45} is not bipartite and hence it is not complete bipartite.

Figure 9: Graph of ZG_{45}

Example 3.2.8. For $n = 36 = 2^2 \cdot 3^2$, figure 10 is the graph of ZG_{36} . Note that ZG_{36} is not bipartite and hence it is not complete bipartite.

Figure 10: Graph of ZG_{36}

Proposition 3.2.5. Assume that $n = p_1p_2$, where p_1, p_2 are distinct prime positive integers. Then ZG_n is complete bipartite and $ZG_n = K_{p_1-1,p_2-1}$.

Proof. Let $A = \{a \in V_n \mid p_1 \mid a\} = \{aP_1 \mid 1 \le a \le p_2 - 1\}$ and $B = \{b \in V_n \mid p_2 \mid b\} = \{aP_2 \mid 1 \le a \le p_1 - 1\}$. It is clear that $|A| = p_2 - 1$, $|B| = p_1 - 1$, $A \cup B = V_n$ and $A \cap B = \emptyset$. Note that $p_1 \nmid b$ for every $b \in B$ and $p_2 \nmid a$ for every $a \in A$. It is clear that two distinct vertices of V_n are adjacent if and only if they are in distinct vertex sets. Thus ZG_n is a complete bipartite graph. Since $|B| = p_1 - 1$ and $|A| = p_2 - 1$, we conclude that $ZG_n = K_{p_1-1,p_2-1}$.

Example 3.2.9. The following (11) is the complete bipartite graph of ZG_{69} .

Figure 11: Graph of ZG_{69}

Example 3.2.10. The following (12) is the complete bipartite graph of ZG_{22} .

Figure 12: Graph of ZG_{22}

Combining Propositions 3.2.1, 3.2.2, 3.2.3, 3.2.4, and 3.2.5, we arrive at the following result

Theorem 3.2.6. Assume $|V_n| \ge 2$. Then ZG_n is complete bipartite if and only if either $n = p_1p_2$, where p_1, p_2 are distinct prime positive integers or n = 8 or n = 9.

3.3 Connectedness and diameter of ZG_n

Recall that a graph (G, V, E) is called *connected* if there exists a path between every two distinct vertices of G. If $P: v_1 - v_2 - \cdots - v_{m+1}$ is a path in G, where $v_1, ..., v_{m+1}$ are distinct vertices of G, then we say that "P" is a path of length m. If v_1, v_2 are two distinct vertices of G, then the *distance* between v_1, v_2 , is denoted by $d(v_1, v_2)$ and it is the length of the shortest path between v_1 and v_2 . The *diameter* of G, denoted by diam(G), is defined as $sup\{d(v, w) \mid v, w$ are distinct vertices of G}.

Theorem 3.3.1. Assume $|V_n| \ge 2$. Then ZG_n is connected. Furthermore, $1 \le d(v, w) \le 3$ for every two distinct vertices $v, w \in V_n$, and hence $1 \le diam(ZG_n) \le 3$.

Proof. Assume that $V_n \ge 2$. Let $x, y \in V_n$ be two distinct vertices. If xy = 0 in Z_n , then d(x, y) = 1. Suppose that $xy \neq 0$ in Z_n . Since $x, y \in V_n$, there exist $v, w \in V_n$ such that vx = 0 and wy = 0. We consider two cases.

Case 1. Suppose that $h = vw \neq 0$ in Z_n . Hence hx = hy = 0 in Z_n . Since $xy \neq 0$ in $Z_n, h = vw \neq x$ and $h = vw \neq y$. Thus x - h - y is a path in ZG_n of length 2, and hence d(x, y) = 2.

Case 2. Suppose that vw = 0 in Z_n . If vy = 0 in Z_n , then $v \neq x$ (since $xy \neq 0$ and vy = 0 in Z_n), and hence x - v - y is a path in ZG_n of length 2 (i.e., d(x, y) = 2). If wx = 0 in Z_n , then $w \neq y$ (since $xy \neq 0$ and wx = 0 in Z_n), and hence x - w - yis a path in ZG_n of length 2 (i.e., d(x,y) = 2). Now, assume that $x, y, v, w \in V_n$ are distinct vertices. Since $xy \neq 0$ in Z_n and vw = 0 in Z_n , we conclude that x - v - w - yis a path in ZG_n of length 3 (i.e, d(x, y) = 3). Thus ZG_n is connected and $1 \leq diam(ZG_n) \leq 3$.

Girth of ZG_n and bipartite ZG_n 3.4

Let (G, V, E) be a graph and $C: v_1 - v_2 - v_3 - \cdots - v_m - v_1$ be a path in G from v_1 to v_1 , where $v_1, ..., v_m$ are distinct vertices of G. Then we say "C" is a cycle in G of length m. The girth of G, denoted by gr(G), is the length of the shortest cycle in G and if G has no cycles, then we say $gr(G) = \infty$.

Proposition 3.4.1. Assume that n = 4p for some odd prime positive integer p. Then ZG_n is a bipartite graph that is not complete bipartite. Furthermore, $gr(ZG_n) = 4$.

Proof. Let $A = \{a \in V_n \mid p \nmid a\}$ and $B = V_n - A$. Then $A \cup B = V_n$ and $A \cap B = \emptyset$. It is clear that every two distinct vertices in A are not connected by an edge. Let $x, y \in B$. Then x = ap, y = bp, where $1 \le a, b \le 2$. Hence $xy = abp^2 = 0$ in Z_n if and only if a = b = 2. Thus xy = 0 in Z_n if and only if x = y = 2p. Hence every two distinct vertices in B are not connected by an edge. Thus ZG_n is a bipartite graph. By Theorem 3.3.1, ZG_n is not complete bipartite. Since ZG_n is bipartite, $gr(ZG_n) \neq 3$. Since n = 4p for some odd prime positive integer p, we conclude that $4, 8 \in V_n$. Hence 2p - 4 - p - 8 - 2p is a cycle in ZG_n of length 4. Thus $gr(ZG_n) = 4$.

Proposition 3.4.2. Assume that $n = p_1^{m_1} p_2^{m_2}$, where p_1, p_2 are distinct odd prime positive integers, $m_1 \ge 2$ and $m_2 \ge 1$. Then $gr(ZG_n) = 3$, and hence ZG_n is not a bipartite graph.

Proof. Let $v_1 = p_1^{m_1}, v_2 = p_1 p_2^{m_2}$, and $v_3 = 2p_1^{m_1-1} p_2^{m_2}$. Since p_1, p_2 are odd prime integers and $m_1 \ge 2$, we conclude that v_1, v_2, v_3 are distinct vertices in V_n . Hence $v_1 - v_2 - v_3 - v_1$ is a cycle in ZG_n of length 3. Thus $gr(ZG_n) = 3$. \square

Remark 3.4.3. Observe that in the proofs of Propositions 3.2.1, 3.2.2, and 3.2.3, we constructed a cycle in ZG_n of length 3.

In light of Remark 3.4.3, Theorem 3.3.1, Proposition 3.4.1, and Proposition 3.4.2, we arrive at the following result.

Theorem 3.4.4. Assume $|V_n| \ge 2$. Then ZG_n is a bipartite graph if and only if either n = 8 or n = 9 or $n = p_1 p_2$ for some distinct prime positive integers p_1, p_2 or n = 4pfor some odd prime positive integer p.

In view of Theorem 3.3.1 and Theorem 3.4.4, we have the following result.

Corollary 3.4.5. Assume $|V_n| \ge 2$. Then ZG_n is a bipartite graph that is not complete bipartite if and only if n = 4p for some odd prime positive integer p.

Theorem 3.4.6. Assume $|V_n| \ge 2$. Then $gr(ZG_n) \in \{\infty, 3, 4\}$. In particular:

- 1. $gr(ZG_n) = \infty$ if and only n = 8 or n = 9 or n = 2p for some odd prime positive integer p.
- 2. $gr(ZG_n) = 4$ if and only if n = 4p for some odd prime positive integer p or $n = p_1p_2$ for some odd prime positive integers p_1, p_2 .
- 3. $gr(ZG_n) = 3$ if and only if neither n = 8 nor n = 9 nor $n = p_1p_2$ for some prime positive integers p_1, p_2 nor n = 4p for some odd prime positive integer p.

Proof. The proofs of (i), (ii), (iii) are now clear by Remark 3.4.3, Propositions 3.2.5, 3.4.1, 3.4.2 and Theorem 3.4.4.

4 Conclusion

This thesis is inspired by Anderson and Livingston's work on the zero-divisor graph of commutative rings [?]. However, our investigation in this paper focused only on Z_n (note that $(Z_n, +, .)$ is a commutative ring, where "+" denotes addition modulo n and "." is multiplication modulo n). We applied concepts from basic Number Theory and Graph Theory to arrive to similar results as in [1].

Let $n \ge 2$ be a positive integer. Then the zero-divisor graph of Z_n (i.e., the integers module n), denoted by ZG_n , is undirected simple graph with vertex set $V_n = \{a \in Z_n \mid a \ne 0 \text{ and } ab = 0 \text{ in } Z_n \text{ for some nonzero } b \in Z_n\}$ such that two distinct vertices, x, y, in V_n are adjacent (i.e., connected by an edge) if and only if xy = 0 in Z_n . We showed that ZG_n is complete bipartite if and only n = 8, 9, or n = pq for some distinct prime integers p, q. We showed that ZG_n is complete if and only if $n = p^2$ for some odd prime positive integer p. For a given integer $n \ge$, we showed that the diameter of ZG_n is at most 3 while its girth is either 3, 4 or ∞ .

Further work related to this paper could include :

- (1) For what values of n is ZG_n a polypartite ?
- (2) For what values of n is ZG_n a planar?

(3) What is the relationship between Euler's Totient Function of n, denoted as $\varphi(n)$, and $|V_n|$ for ZG_n ?