On *n*-pseudo valuation domains (n-PVD)

Ayman Badawi American University of Sharjah, Sharjah, UAE David F. Anderson University of Tennessee, Knoxville, TN. USA

July 20, 2021

INTRODUCTION

(1) J. R. Hedstrom and E. G. Houston, Pseudo-valuation domains. Pacific J. Math. 4(1978), 551-567. (2) J. R. Hedstrom and E. G. Houston, Pseudo-valuation domains, II. Houston J. Math.4(1978), 199-207. Pseudo valuation domains were introduced in 1978 (Hedtrom-Houston) : R is an integral domain with quotient field K. If every prime ideal, say Q, of R satisfies the condition : whenever $xy \in Q$ for some $x, y \in K$, then $x \in Q$ or $y \in Q$, then R is called a pseudo-valuation domain. (Many authors studied this class of domains including myself). The concept of pseudo valuation domains is a generalization of the concept of valuation domains: R is called an integral domain with quotient field K, then R is called a valuation domain if $x \in R$ or

 $x^{-1} \in R$ for every nonzero $x \in K$.

INTRODUCTION

(3) D. D. Anderson and M. Zafrullah, Almost Bezout domains, J. Algebra, 142(1991), 285–309.

Almost valuation domains were born in 1991 (D.D. Anderson and Muhammad Zafrulla): R is an integral domain with quotient field K, then R is called an almost valuation domain if for every nonzero $x \in K$, there exists n (n depends on x) such that $x^n \in R$ or $x^{-n} \in R$. So every valuation domain is an almost valuation domain.

For a recent article on almost valuation domains see [4] N. Mahdou, A. Mimouni and M. Moutui, On almost valuation and almost Bezout rings, Commun. Algebra, 43(2015), 297–308.

INTRODUCTION (5)

A. Badawi, On pseudo-almost valuation domains, Commun. Algebra 35(2007), 1167–1181.

Pseudo-almost valuation domain was introduced in 2007 (Ayman Badawi): Let R be an integral domain with quotient field K. If every prime ideal, say Q, of R satisfies the condition: For every $x \in K$, there exists a positive integer n such that $x^n \in Q$ or $x^{-n}a \in Q$, then R is called a pseudo-almost valuation domain (It turns out that every almost valuation domain and pseudo-valuation domain is a pseudo-almost valuation domain but not vice-versa).

伺 ト イ ヨ ト イ ヨ ト

Definition

Let R be an integral domain with quotient field K, I be a proper ideal of R and $n \ge 1$ be a positive integer. We say that I is a n-powerful ideal of R if whenever $x^ny^n \in I$ for some $x, y \in K$, then $x^n \in R$ or $y^n \in R$. We say I is a n-powerful semiprimary ideal of R if whenever $x^ny^n \in I$ for some $x, y \in K$, then $x^n \in I$ or $y^n \in I$. The concept of powerful ideals was studied by Ayman Badawi and Evan Houston (Powerful ideals, strongly primary ideals, almost pseudo-valuation domains, and conducive domains. Communications in Algebra, 30(4) (2002))

Definition

Let R be an integral domain with quotient field K and $n \ge 1$ be a positive integer. We say that R is an n-pseudo valuation domain (n-PVD) if every prime ideal of R is a n-powerful semiprimary ideal of R. Note that if n = 1, then a pseudo-valuation domain in the sense of Houston-Hedstrom is a 1-PVD.

Let $R = Q + X^2C + X^4C[[X]]$, where Q is the field of rational numbers and C is the field of complex numbers. Then one can see that R is neither a PAVD as in Badawi nor a PVD as in Hedstrom-Houston nor an almost valuation domain as in Anderson-Zafrulla. However, it is easily checked that R is a 4-PVD with maximal ideal $M = X^2C + X^4C[[X]]$ and $\overline{R} = \overline{Q} + XC[[X]]$ is a PVD with maximal ideal $N = \{x \in K \mid x^n \in M\} = XC[[X]]$, where \overline{Q} is the algebraic closure of Q inside C, and K is the quotient field of R. Note that \overline{R} is not a valuation domain and R is not an n-PVD for every $1 \le n \le 3$.

Theorem

Let $n \ge 1$ and I be a prime ideal of an integral domain R with quotient field K. Then I is a n-powerful semiprimary ideal of R if and only if I is a n-powerful ideal of R.

Assume $P \subseteq Q$ are prime ideals of an integral domain R. If Q is a *n*-powerful semiprimary ideal of R for some positive integer $n \ge 1$, then P is a *n*-powerful semiprimary ideal of R.

Theorem

Let $n \ge 1$ and a assume that R is an n-PVD. Then R is a quasilocal domain.

Corollary

Let $n \ge 1$ be a positive integer. Then an integral domain R is an n-PVD if and only if a maximal ideal of R is an n-powerful semiprimary ideal of R if and only if a maximal ideal of R is an n-powerful ideal of R.

Definition

Let R be a commutative ring with $1 \neq 0$ and $n \geq 1$. A proper ideal I of R is called an n-semiprimary ideal of R, if whenever $x^n y^n \in I$ for some $x, y \in R$, then $x^n \in I$ or $y^n \in I$.

Theorem

Let R be a commutative ring with $1 \neq 0$, $n \geq 1$, and I be a proper ideal of R. If I is an n-semiprimary ideal of R, then I is an m-semiprimary ideal of R for every $m \geq n$.

COMMENTS

If I is an n-powerful semiprimary ideal, then I is an n-semiprimary ideal. Thus I is also an m-semiprimary ideal for every integer $m \ge n$, but I need not be an m-poweful semiprimary ideal.

Let $R = F[[X^2, X^5]] = F + FX^2 + X^4F[[X]]$, where F is a field. Then R is quasilocal with maximal ideal $M = (X^2, X^5) = FX^2 + X^4 F[[X]]$ and quotient field K = F[[X]][1/X]. Clearly M is a 2-semiprimary ideal of R, but not a 3-powerful semiprimary ideal of R since $X^3X^3 = X^6 \in M$, but $X^3 \notin M$. Moreover, M is a 2-powerful semiprimary ideal of R if and only if char(F) = 2, and M is an *n*-powerful semiprimary ideal of R for every integer n > 4. So, for $R = \mathbb{Z}_2[[X^2, X^5]], M$ is a 2-powerful semiprimary ideal, but not a 3-powerful semiprimary ideal, Thus the "powerful" property fails for M. Let $I = X^4 F[[X]]$. Then I is a 2-semiprimary ideal of R, but not a 2-powerful semiprimary ideal of R since $X^2 X^2 \in I$, but $X^2 \notin I$. So the "semiprimary" property fails for $I \subset J = M$ when char(F) = 2.

・ロ・ ・ 四・ ・ ヨ・ ・ ヨ・

Definition

Let R be a commutative ring and $n \ge 1$ be a positive integer. A prime ideal P of R is called an n-divided prime ideal of R if $x^n | p^n$ (in R) for every $x \in R \setminus P$ and for every $p \in P$. A commutative ring R is called an n-divided ring if every prime ideal of R is an n-divided prime ideal of R. Note that if n = 1, then a divided ring in the sense of Dobbs-Badawi is a 1-divided ring.

Corollary

Assume that an integral domain R is an n-PVD for some positive integer $n \ge 1$. Then R is an n-divided domain and the set of all prime ideals of R are linearly ordered by inclusion.

Theorem

Let $n \ge 1$ and R be a root closed integral domain with quotient field K. Then R is a PVD if and only if R is an n-PVD.

Let P be a prime ideal of an n-PVD R. Then R/P is an n-PVD.

COMMENTS

We recall from Anderson-Zafrulla that an integral domain R with quotient filed K is called an almost valuation domain if for every nonzero $x \in K$, there is an integer $n \ge 1$ (n depends on x) such that $x^n \in R$ or $x^{-n} \in R$. We have the following definition.

Definition

Let $n \ge 1$ be a positive integer and R be an integral domain with quotient filed K is called an n-valuation domain (n-VD) if for every nonzero $x \in K$, we have $x^n \in R$ or $x^{-n} \in R$.

COMMENTS

It is clear that an n-valuation domain is an almost valuation domain. Also, it is clear that an n-valuation domain (n-VD) is an n-PVD, but an n-PVD need not be an n-VD. Also, an almost valuation domain need not be an n-VD for any positive integer n.

(a) Let $R = \mathbb{Q} + X\mathbb{R}[[X]]$. Then R is a PVD with maximal ideal $X \mathbb{R}[[X]]$ and quotient field $\mathbb{R}[[X]][1/X]$, and thus R is an n-PVD for every positive integer n. However, R is not an n-VD for any positive integer *n* since $\pi^n, \pi^{-n} \notin R$ for every positive integer *n*. (b) Let $R = \mathbb{Z}_p + XF[[X]]$, where p is a positive prime integer and $F = \overline{\mathbb{Z}_p}$ is the algebraic closure of \mathbb{Z}_p . Then R is an almost valuation domain with maximal ideal XF[[X]] and quotient field F[[X]][1/X], but not an *n*-VD for any positive integer *n*. This follows from the fact that for every $0 \neq a \in F$, there is a positive integer n such that $a^n = 1$; but for every positive integer n, there is a $b \in F$ such that $b^n \notin \mathbb{Z}_p$ and $b^{-n} \notin \mathbb{Z}_p$. Note that R is also a PVD, and thus an n-PVD for every positive integer n.

・ロト ・回ト ・ヨト ・ヨト

Let R be an n-PVD for some positive integer $n \ge 1$ with maximal ideal M. Suppose that V is an overring of R such that $\frac{1}{s} \in V$ for some $s \in M$. Then V is an n-VD (and hence V is an almost valuation domain).

Theorem

Let R be an n-PVD for some positive integer $n \ge 1$ with maximal ideal M. Suppose that P is a prime ideal of R such that $P \ne M$. Then R_P is an n-VD (and hence R_P is an almost valuation domain). Furthermore, $x^n \in R$ for every $x \in P_P$, and hence $P_P \subset \overline{R}$.

Suppose that an integral domain R with quotient field K admits a principal prime ideal P of R that is an n-divided ideal of R for some positive integer $n \ge 1$, then P is a maximal ideal of R. In particular, if P is an n-powerful semiprimary ideal of R for some positive integer $n \ge 1$, then P is a maximal ideal of R and R is an n-VD.

Theorem

Let $n \ge 1$, R be an integral domain with quotient field K and P be a prime ideal of R. Assume that P is an n-powerful semiprimary ideal of R. Then P is an mn-powerful semiprimary ideal of R for every integer $m \ge 1$. Furthermore, if $x^{mn} \in P$ for some integer $m \ge 1$ and $x \in K$, then $x^n \in P$. In particular, if R is an n-PVD, then R is an mn-PVD for every integer $m \ge 1$.

Let $n \ge 1$ be an integer and R be an n-PVD with maximal ideal Mand with quotient field K. Assume that B is overring of R that is integral over R. Then B is an n-PVD with maximal ideal $\sqrt{MB} = \{x \in B \mid x^n \in M\}.$

Theorem

Let $n \ge 1$ be an integer and R be a quasilocal domain with maximal ideal M and with quotient field K. Then R is an n-PVD if and only if \overline{R} is a PVD with maximal ideal $N = \{x \in K \mid x^n \in M\}$.

Corollary

Let $n \ge 1$ be an integer and R be a quasilocal domain with maximal ideal M and with quotient field K. The following statements are equivalent.

R is an n-PVD.

2 \overline{R} is a PVD with maximal ideal $N = \{x \in K \mid x^n \in M\}$.

N = {x ∈ K | xⁿ ∈ M} is a maximal ideal of R such that (N : N) is a valuation domain with maximal ideal N.

Corollary

Let P be a nonzero finitely generated prime ideal of an n-PVD R. Then W = (P : P) is an n-PVD with maximal ideal $\sqrt{MW} = \{x \in W \mid x^n \in M\}$. In particular, if R is a Noetherian n-PVD with maximal ideal M, then (M : M) is an n-PVD.

Let $n \ge 1$ be an integer and R be an n-PVD with maximal ideal M and with quotient field K. Then every overring of R is an n-PVD if and only if \overline{R} is a valuation domain.

Definition

Let
$$n \ge 1$$
 and $A_n(M) = \{x^n \mid x \in K \text{ and } x^n \in M\}$

Theorem

Let $n \ge 1$ and R be a quasilocal integral domain with maximal ideal M, quotient field K, and $I = (A_n(M))$. Then the following statements are equivalent.

②
$$V = (I : I)$$
 is an n-VD with maximal ideal
 $\sqrt{MV} = \{x \in V \mid x^n \in M\}$, and if $x \in K$ is a nonunit of \overline{R} ,
then $x^n \in M$.

COMMENTS

We end this talk with several examples.

イロン イヨン イヨン イヨン

臣

(a) Let $R = \mathbb{Z}_2[[X^2, X^3]] = \mathbb{Z}_2 + X^2 \mathbb{Z}_2[[X]]$. Then R is quasilocal with maximal ideal $M = (X^2, X^3) = X^2 \mathbb{Z}_2[[X]]$ and quotient field $K = \mathbb{Z}_2[[X]][1/X]$. It is easily checked that R is an *n*-PVD if and only if $n \ge 2$ and an *n*-VD if and only if *n* is even. First, suppose that n is even. Then $I = (A_n(M)) = \mathbb{Z}_2 X^n + X^{n+2} \mathbb{Z}_2[[X]] \subseteq M \text{ and } V = (I:I) = R$ has maximal ideal $M_V = M$. Also, $M_V = \{x \in V \mid x^n \in M\} \subset \{x \in K \mid x^n \in M\} = X\mathbb{Z}_2[[X]].$ Next, suppose that $n \geq 3$ is odd. Then $I = (A_n(M)) = X^n \mathbb{Z}_2[[X] \subseteq M$ and $V = (I : I) = \mathbb{Z}_2[[X]]$ has maximal ideal $M_V = X\mathbb{Z}_2[[X]] = \{x \in K \mid x^n \in M\}.$ (b) Let $R = F[[X^2, X^3]] = F + X^2 F[[X]]$, where F is a field. Then R is quasilocal with maximal ideal $M = (X^2, X^3) = X^2 F[[X]]$ and quotient field F[[X]][1/X], and R is an *n*-PVD if and only if $n \ge 2$. If char(F) = 2, then $(A_n(M)) \subseteq M$ for every integer $n \geq 2$. However, $M = (A_2(M))$ if char(F) $\neq 2$.

(c) Let $R = \mathbb{Z}_p + \mathbb{Z}_p X + X^2 F[[X]]$, where $F = \overline{\mathbb{Z}_p}$ is the algebraic closure of \mathbb{Z}_p . Then R is quasilocal with maximal ideal $M = \mathbb{Z}_{p}X + X^{2}F[[X]]$ and quotient field K = F[[X]][1/X]. Moreover, R is an n-PVD if and only if $n \ge 2$ since $\overline{R} = F[[X]]$ is a PVD (in fact, a valuation domain). However, $V = (M : M) = \mathbb{Z}_{p} + XF[[X]]$ is an almost valuation domain with maximal ideal $XF[[X]] = \{x \in K \mid x^n \in M\}$, but V is not an n-VD for any positive integer n. Note that V is a PVD, and thus an n-PVD for every positive integer n (d) Let F be a field and N a positive integer. Then $R_N = F + X^N F[[X]]$ is a quasilocal integral domain with maximal ideal $M_N = X^N F[[X]]$, quotient field F[[X]][1/X], and integral closure $\overline{R_N} = F[[X]]$. Note that $V_N = (M_N : M_N) = F[[X]]$ is a valuation domain with maximal ideal $XF[[X]] = \{x \in V_N \mid x^N \in M_N\} = \sqrt{M_N V_N}$, and thus V_N is an n-VD for every positive integer n. However, R_N is an n-PVD if and only if $n \ge N$, and R_N satisfies condition (if $x \in K$ is a nonunit element of R, then $x^n \in M$ if and only if n > N. Ayman Badawi American University of Sharjah, Sharjah, UAE On *n*-pseudo valuation domains (*n*-PVD)

(e) Let $R = \mathbb{Z}_3 + \mathbb{Z}_3 X^9 + X^{12}\mathbb{Z}_3[[X]]$. Then R is a quasilocal integral domain with maximal ideal $M = \mathbb{Z}_3 X^9 + X^{12}\mathbb{Z}_3[[X]]$, quotient field $\mathbb{Z}_3[[X]][1/X]$, and integral closure $\overline{R} = \mathbb{Z}_3[[X]]$. Note that $V = (M : M) = \mathbb{Z}_3 + X^3\mathbb{Z}_3[[X]]$ is a 3-VD with maximal ideal $X^3\mathbb{Z}_3[[X]] = \sqrt{MV} = \{x \in V \mid x^3 \in M\}$. However, R is not a 3-PVD since $(X^2)^3(X^2)^3 \in M$, but $X^6 \notin M$, and Rdoes not satisfy condition (if $x \in K$ is a nonunit element of \overline{R} , then $x^n \in M$) since $X^3 \notin M$.

COMMENTS

To get the full paper check : https://www.ayman-badawi.com/Publication.html

▲冊 ▶ ▲ 臣 ▶ ▲ 臣 ▶