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Thanks for coming,(History and References)

INTRODUCTION

(1) J. R. Hedstrom and E. G. Houston, Pseudo-valuation domains.
Pacific J. Math. 4(1978), 551–567.
(2) J. R. Hedstrom and E. G. Houston, Pseudo-valuation domains,
II. Houston J. Math.4(1978), 199–207.
Pseudo valuation domains were introduced in 1978
(Hedtrom-Houston) : R is an integral domain with quotient field
K. If every prime ideal, say Q, of R satisfies the condition :
whenever xy ∈ Q for some x , y ∈ K, then x ∈ Q or y ∈ Q, then R
is called a pseudo-valuation domain. (Many authors studied this
class of domains including myself).
The concept of pseudo valuation domains is a generalization of the
concept of valuation domains: R is called an integral domain with
quotient field K, then R is called a valuation domain if x ∈ R or
x−1 ∈ R for every nonzero x ∈ K.
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INTRODUCTION

(3) D. D. Anderson and M. Zafrullah, Almost Bezout domains, J.
Algebra, 142(1991), 285–309.
Almost valuation domains were born in 1991 (D.D. Anderson and
Muhammad Zafrulla): R is an integral domain with quotient field
K, then R is called an almost valuation domain if for every nonzero
x ∈ K, there exists n (n depends on x) such that xn ∈ R or
x−n ∈ R. So every valuation domain is an almost valuation
domain.
For a recent article on almost valuation domains see
[4] N. Mahdou, A. Mimouni and M. Moutui, On almost valuation
and almost Bezout rings, Commun. Algebra, 43(2015), 297–308.

===================================================================
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INTRODUCTION (5)

A. Badawi, On pseudo-almost valuation domains, Commun.
Algebra 35(2007), 1167–1181.
Pseudo-almost valuation domain was introduced in 2007 (Ayman
Badawi): Let R be an integral domain with quotient field K. If
every prime ideal, say Q, of R satisfies the condition: For every
x ∈ K, there exists a positive integer n such that xn ∈ Q or
x−na ∈ Q, then R is called a pseudo-almost valuation domain (It
turns out that every almost valuation domain and pseudo-valuation
domain is a pseudo-almost valuation domain but not vice-versa).
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Definition

Let R be an integral domain with quotient field K, I be a proper
ideal of R and n ≥ 1 be a positive integer. We say that I is a
n-powerful ideal of R if whenever xnyn ∈ I for some x , y ∈ K, then
xn ∈ R or yn ∈ R. We say I is a n-powerful semiprimary ideal of R
if whenever xnyn ∈ I for some x , y ∈ K, then xn ∈ I or yn ∈ I .
The concept of powerful ideals was studied by Ayman Badawi and
Evan Houston ( Powerful ideals, strongly primary ideals, almost
pseudo-valuation domains, and conducive domains.
Communications in Algebra, 30(4) (2002) )

Definition

Let R be an integral domain with quotient field K and n ≥ 1 be a
positive integer. We say that R is an n-pseudo valuation domain
(n-PVD) if every prime ideal of R is a n-powerful semiprimary ideal
of R. Note that if n = 1, then a pseudo-valuation domain in the
sense of Houston-Hedstrom is a 1-PVD.

====================================================================================================================
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Example

Let R = Q + X 2C + X 4C [[X ]], where Q is the field of rational
numbers and C is the field of complex numbers. Then one can see
that R is neither a PAVD as in Badawi nor a PVD as in
Hedstrom-Houston nor an almost valuation domain as in
Anderson-Zafrulla. However, it is easily checked that R is a 4-PVD
with maximal ideal M = X 2C + X 4C [[X ]] and R = Q + XC [[X ]] is
a PVD with maximal ideal N = {x ∈ K | xn ∈ M} = XC [[X ]],
where Q is the algebraic closure of Q inside C, and K is the
quotient field of R. Note that R is not a valuation domain and R
is not an n-PVD for every 1 ≤ n ≤ 3.

Theorem

Let n ≥ 1 and I be a prime ideal of an integral domain R with
quotient field K. Then I is a n-powerful semiprimary ideal of R if
and only if I is a n-powerful ideal of R.
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Theorem

Assume P ⊆ Q are prime ideals of an integral domain R. If Q is a
n-powerful semiprimary ideal of R for some positive integer n ≥ 1,
then P is a n-powerful semiprimary ideal of R.

Theorem

Let n ≥ 1 and a assume that R is an n-PVD. Then R is a
quasilocal domain.

Corollary

Let n ≥ 1 be a positive integer. Then an integral domain R is an
n-PVD if and only if a maximal ideal of R is an n-powerful
semiprimary ideal of R if and only if a maximal ideal of R is an
n-powerful ideal of R.
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Definition

Let R be a commutative ring with 1 6= 0 and n ≥ 1. A proper ideal
I of R is called an n-semiprimary ideal of R, if whenever xnyn ∈ I
for some x , y ∈ R, then xn ∈ I or yn ∈ I .

Theorem

Let R be a commutative ring with 1 6= 0, n ≥ 1, and I be a proper
ideal of R. If I is an n-semiprimary ideal of R, then I is an
m-semiprimary ideal of R for every m ≥ n.

COMMENTS

If I is an n-powerful semiprimary ideal, then I is an n-semiprimary
ideal. Thus I is also an m-semiprimary ideal for every integer
m ≥ n, but I need not be an m-poweful semiprimary ideal.
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Example

Let R = F [[X 2,X 5]] = F + FX 2 + X 4F [[X ]], where F is a field.
Then R is quasilocal with maximal ideal
M = (X 2,X 5) = FX 2 + X 4F [[X ]] and quotient field
K = F [[X ]][1/X ]. Clearly M is a 2-semiprimary ideal of R, but
not a 3-powerful semiprimary ideal of R since X 3X 3 = X 6 ∈ M,
but X 3 6∈ M. Moreover, M is a 2-powerful semiprimary ideal of
R if and only if char(F ) = 2, and M is an n-powerful
semiprimary ideal of R for every integer n ≥ 4. So, for
R = Z2[[X 2,X 5]], M is a 2-powerful semiprimary ideal, but not
a 3-powerful semiprimary ideal, Thus the “powerful” property
fails for M. Let I = X 4F [[X ]]. Then I is a 2-semiprimary ideal
of R, but not a 2-powerful semiprimary ideal of R since
X 2X 2 ∈ I , but X 2 6∈ I . So the “semiprimary” property fails for
I ⊆ J = M when char(F ) = 2.
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Definition

Let R be a commutative ring and n ≥ 1 be a positive integer. A
prime ideal P of R is called an n-divided prime ideal of R if xn | pn
(in R) for every x ∈ R \ P and for every p ∈ P. A commutative
ring R is called an n-divided ring if every prime ideal of R is an
n-divided prime ideal of R. Note that if n = 1, then a divided ring
in the sense of Dobbs-Badawi is a 1-divided ring.

Corollary

Assume that an integral domain R is an n-PVD for some positive
integer n ≥ 1. Then R is an n-divided domain and the set of all
prime ideals of R are linearly ordered by inclusion.

Theorem

Let n ≥ 1 and R be a root closed integral domain with quotient
field K. Then R is a PVD if and only if R is an n-PVD.
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Theorem

Let P be a prime ideal of an n-PVD R. Then R/P is an n-PVD.

COMMENTS

We recall from Anderson-Zafrulla that an integral domain R with
quotient filed K is called an almost valuation domain if for every
nonzero x ∈ K, there is an integer n ≥ 1 (n depends on x) such
that xn ∈ R or x−n ∈ R. We have the following definition.

Definition

Let n ≥ 1 be a positive integer and R be an integral domain with
quotient filed K is called an n-valuation domain (n-VD) if for every
nonzero x ∈ K, we have xn ∈ R or x−n ∈ R.
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COMMENTS

It is clear that an n-valuation domain is an almost valuation
domain. Also, it is clear that an n-valuation domain (n-VD) is an
n-PVD, but an n-PVD need not be an n-VD. Also, an almost
valuation domain need not be an n-VD for any positive integer n.
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Example

(a) Let R = Q + XR[[X ]]. Then R is a PVD with maximal ideal
XR[[X ]] and quotient field R[[X ]][1/X ], and thus R is an n-PVD
for every positive integer n. However, R is not an n-VD for any
positive integer n since πn, π−n /∈ R for every positive integer n.
(b) Let R = Zp + XF [[X ]], where p is a positive prime integer
and F = Zp is the algebraic closure of Zp. Then R is an almost
valuation domain with maximal ideal XF [[X ]] and quotient field
F [[X ]][1/X ], but not an n-VD for any positive integer n. This
follows from the fact that for every 0 6= a ∈ F , there is a positive
integer n such that an = 1; but for every positive integer n,
there is a b ∈ F such that bn /∈ Zp and b−n /∈ Zp. Note that R
is also a PVD, and thus an n-PVD for every positive integer n.
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Theorem

Let R be an n-PVD for some positive integer n ≥ 1 with maximal
ideal M. Suppose that V is an overring of R such that 1

s ∈ V for
some s ∈ M. Then V is an n-VD (and hence V is an almost
valuation domain).

Theorem

Let R be an n-PVD for some positive integer n ≥ 1 with maximal
ideal M. Suppose that P is a prime ideal of R such that P 6= M.
Then RP is an n-VD (and hence RP is an almost valuation
domain). Furthermore, xn ∈ R for every x ∈ PP , and hence
PP ⊂ R.
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Theorem

Suppose that an integral domain R with quotient field K admits a
principal prime ideal P of R that is an n-divided ideal of R for
some positive integer n ≥ 1, then P is a maximal ideal of R. In
particular, if P is an n-powerful semiprimary ideal of R for some
positive integer n ≥ 1, then P is a maximal ideal of R and R is an
n-VD.

Theorem

Let n ≥ 1, R be an integral domain with quotient field K and P be
a prime ideal of R . Assume that P is an n-powerful semiprimary
ideal of R. Then P is an mn-powerful semiprimary ideal of R for
every integer m ≥ 1. Furthermore, if xmn ∈ P for some integer
m ≥ 1 and x ∈ K, then xn ∈ P. In particular, if R is an n-PVD,
then R is an mn-PVD for every integer m ≥ 1.
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Theorem

Let n ≥ 1 be an integer and R be an n-PVD with maximal ideal M
and with quotient field K. Assume that B is overring of R that is
integral over R. Then B is an n-PVD with maximal ideal√
MB = {x ∈ B | xn ∈ M}.

Theorem

Let n ≥ 1 be an integer and R be a quasilocal domain with
maximal ideal M and with quotient field K. Then R is an n-PVD if
and only if R is a PVD with maximal ideal N = {x ∈ K | xn ∈ M}.
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Corollary

Let n ≥ 1 be an integer and R be a quasilocal domain with
maximal ideal M and with quotient field K. The following
statements are equivalent.

1 R is an n-PVD.

2 R is a PVD with maximal ideal N = {x ∈ K | xn ∈ M}.
3 N = {x ∈ K | xn ∈ M} is a maximal ideal of R such that

(N : N) is a valuation domain with maximal ideal N.

Corollary

Let P be a nonzero finitely generated prime ideal of an n-PVD R.
Then W = (P : P) is an n-PVD with maximal ideal√
MW = {x ∈W | xn ∈ M}. In particular, if R is a Noetherian

n-PVD with maximal ideal M, then (M : M) is an n-PVD.
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Theorem

Let n ≥ 1 be an integer and R be an n-PVD with maximal ideal M
and with quotient field K. Then every overring of R is an n-PVD if
and only if R is a valuation domain.

Definition

Let n ≥ 1 and An(M) = {xn | x ∈ K and xn ∈ M}

Theorem

Let n ≥ 1 and R be a quasilocal integral domain with maximal
ideal M, quotient field K, and I = (An(M)). Then the following
statements are equivalent.

1 R is an n-PVD.

2 V = (I : I ) is an n-VD with maximal ideal√
MV = {x ∈ V | xn ∈ M}, and if x ∈ K is a nonunit of R,

then xn ∈ M.
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COMMENTS

We end this talk with several examples.
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Example

(a) Let R = Z2[[X 2,X 3]] = Z2 + X 2Z2[[X ]]. Then R is
quasilocal with maximal ideal M = (X 2,X 3) = X 2Z2[[X ]] and
quotient field K = Z2[[X ]][1/X ]. It is easily checked that R is an
n-PVD if and only if n ≥ 2 and an n-VD if and only if n is even.
First, suppose that n is even. Then
I = (An(M)) = Z2X

n + X n+2Z2[[X ]] ( M and V = (I : I ) = R
has maximal ideal MV = M. Also,
MV = {x ∈ V | xn ∈ M} ( {x ∈ K | xn ∈ M} = XZ2[[X ]]. Next,
suppose that n ≥ 3 is odd. Then I = (An(M)) = X nZ2[[X ] ( M
and V = (I : I ) = Z2[[X ]] has maximal ideal
MV = XZ2[[X ]] = {x ∈ K | xn ∈ M}.
(b) Let R = F [[X 2,X 3]] = F + X 2F [[X ]], where F is a field.
Then R is quasilocal with maximal ideal
M = (X 2,X 3) = X 2F [[X ]] and quotient field F [[X ]][1/X ], and R
is an n-PVD if and only if n ≥ 2. If char(F ) = 2, then
(An(M)) ( M for every integer n ≥ 2. However, M = (A2(M)) if
char(F ) 6= 2.
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Example

(c) Let R = Zp + ZpX + X 2F [[X ]], where F = Zp is the algebraic
closure of Zp. Then R is quasilocal with maximal ideal
M = ZpX + X 2F [[X ]] and quotient field K = F [[X ]][1/X ].
Moreover, R is an n-PVD if and only if n ≥ 2 since R = F [[X ]] is a
PVD (in fact, a valuation domain). However,
V = (M : M) = Zp + XF [[X ]] is an almost valuation domain with
maximal ideal XF [[X ]] = {x ∈ K | xn ∈ M}, but V is not an n-VD
for any positive integer n. Note that V is a PVD, and thus an
n-PVD for every positive integer n
(d) Let F be a field and N a positive integer. Then
RN = F + XNF [[X ]] is a quasilocal integral domain with maximal
ideal MN = XNF [[X ]], quotient field F [[X ]][1/X ], and integral
closure RN = F [[X ]]. Note that VN = (MN : MN) = F [[X ]] is a
valuation domain with maximal ideal
XF [[X ]] = {x ∈ VN | xN ∈ MN} =

√
MNVN , and thus VN is an

n-VD for every positive integer n. However, RN is an n-PVD if and
only if n ≥ N, and RN satisfies condition (if x ∈ K is a nonunit
element of R, then xn ∈ M) if and only if n ≥ N.
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Example

(e) Let R = Z3 + Z3X
9 + X 12Z3[[X ]]. Then R is a quasilocal

integral domain with maximal ideal M = Z3X
9 + X 12Z3[[X ]],

quotient field Z3[[X ]][1/X ], and integral closure R = Z3[[X ]].
Note that V = (M : M) = Z3 + X 3Z3[[X ]] is a 3-VD with
maximal ideal X 3Z3[[X ]] =

√
MV = {x ∈ V | x3 ∈ M}. However,

R is not a 3-PVD since (X 2)3(X 2)3 ∈ M, but X 6 /∈ M, and R
does not satisfy condition (if x ∈ K is a nonunit element of R,
then xn ∈ M) since X 3 /∈ M.

COMMENTS

To get the full paper check :
https://www.ayman-badawi.com/Publication.html
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