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Abstract. Let S be a (multiplicative) commutative semigroup with 0, Z(S)

the set of zero-divisors of S, and n a positive integer. The zero-divisor graph
of S is the (simple) graph Γ(S) with vertices Z(S)∗ = Z(S) \ {0}, and distinct

vertices x and y are adjacent if and only if xy = 0. In this paper, we introduce
and study the n-zero-divisor graph of S as the (simple) graph Γn(S) with

vertices Zn(S)∗ = {xn | x ∈ Z(S)} \ {0}, and distinct vertices x and y are

adjacent if and only if xy = 0. Thus each Γn(S) is an induced subgraph of
Γ(S) = Γ1(S). We pay particular attention to diam(Γn(S)), gr(Γn(S)), and

the case when S is a commutative ring with 1 6= 0. We also consider several

other types of “n-zero-divisor” graphs and commutative rings such that some
power of every element (or zero-divisor) is idempotent.

1. Introduction

Let R be a commutative ring with 1 6= 0 and Z(R) the set of zero-divisors of
R. As in [9], the zero-divisor graph of R is the (simple) graph Γ(R) with vertices
Z(R)∗ = Z(R) \ {0}, and distinct vertices x and y are adjacent if and only if
xy = 0. In [19], DeMeyer, McKenzie, and Schneider extended this concept to
commutative semigroups. Let S be a (multiplicative) commutative semigroup with
0 (i.e., 0x = 0 for every x ∈ S) and Z(S) = {x ∈ S | xy = 0 for some 0 6= y ∈ S}
the set of zero-divisors of S. Then the zero-divisor graph of S is the (simple) graph
Γ(S) with vertices Z(S)∗ = Z(S) \ {0}, and distinct vertices x and y are adjacent
if and only if xy = 0. Moreover, Γ(S) is connected with diam(Γ(S)) ∈ {0, 1, 2, 3}
and gr(Γ(S)) ∈ {3, 4,∞} ([19]). Note that Z(S) is a subsemigroup of S with 0 (if
S 6= {0}) and Γ(S) = Γ(Z(S)); and if R is a commutative ring, then Γ(R) = Γ(S),
where S is either R or Z(R) considered as a multiplicative semigroup.

For a commutative semigroup S with 0 and positive integer n, let Zn(S) = {xn |
x ∈ Z(S)}. Then Zn(S) is a commutative subsemigroup of Z(S) with 0 (if S 6= {0})
and Z1(S) = Z(S). In this paper, we introduce the n-zero-divisor graph of S to be
the (simple) graph Γn(S) with vertices Zn(S)∗ = Zn(S) \ {0}, and distinct vertices
x and y are adjacent if and only if xy = 0. Thus Γ1(S) = Γ(S) = Γ(Z(S)) is the
connected classical zero-divisor graph of S, Γn(S) is an induced subgraph of Γ(S)
for every positive integer n, and Γn(R) = Γn(Z(R)) for every positive integer n.

0Corresponding author: Ayman Badawi, abadawi@aus.edu
Date: March 15, 2022.
2010 Mathematics Subject Classification. Primary: 13A70; Secondary: 05C25, 05C99, 13A15,

13B99.
Key words and phrases. Idempotent elements, zero-divisors, commutative semigroup with zero,

commutative ring with identity, von Neumann regular ring, π-regular ring, zero-divisor graph,

annihilator graph, extended zero-divisor graph, congruence-based zero-divisor graph.

1



2 DAVID F. ANDERSON AND AYMAN BADAWI0

However, Γn(S) need not be connected for n ≥ 2 (see Example 2.1, Theorem 2.2,
Theorem 3.1, and Theorem 4.16).

In this paper, we study some graph-theoretic properties of Γn(S). We pay par-
ticular attention to diam(Γn(S)), gr(Γn(S)), and the case when S is a commu-
tative ring with 1 6= 0. In Section 2, we investigate the case when S is a re-
duced commutative semigroup with 0. In this case, Γn(S) = Γ(Zn(S)), and thus
Γn(S) is connected, for every positive integer n (Theorem 2.4). We concentrate on
the relationship between diam(Γn(S)) (resp., gr(Γn(S))) and diam(Γ(S)) (resp.,
gr(Γ(S))). In Section 3, we consider the case when S is not reduced. In this case,
Γn(S) need not be connected for n ≥ 2, and several other results from Section 2
need not hold. However, Γn(S) is connected for every positive integer n when
Z(S) = Nil(S) (Theorem 3.3). In Section 4, we study Γn(R) when R is a π-regular
(i.e., zero-dimensional) commutative ring, amd more specifically, when R is a von
Neumann regular (i.e., reduced and zero-dimensional) commutative ring. In this
case, Γn(R) is connected for every positive integer n (Theorem 4.1). Moreover,
in some cases the Γn(R)’s eventually repeat in blocks (Theorem 4.2, Theorem 4.9,
Theorem 4.11, and Theorem 4.15). Along the way, we also investigate commutative
rings such that some power of every element (or zero-divisor) is idempotent. In the
final section, Section 5, we discuss the n-zero-divisor analog for several other types
of zero-divisor graphs, namely, the extended zero-divisor graph Γ(S), the annihi-
lator graph AG(S), and the congruence-based zero-divisor graphs Γ∼(R), Γ∼(R),
and AG∼(R). Many examples are given throughout to illustrate the results.

Let R be a commutative ring with 1 6= 0. Then Z(R) is the set of zero-divisors
of R, Nil(R) the ideal of nilpotent elements of R, U(R) the group of units of R,
Id(R) the set of idempotents of R, and T (R) = RR\Z(R) the total quotient ring
of R. In like manner, we have Z(S), Nil(S), U(S), and Id(S) for a commutative
semigroup S with 0. The ring R (resp., semigroup S) is reduced if Nil(R) = {0}
(resp., Nil(S) = {0}), zero-dimensional if every prime ideal of R is maximal, and
local if it has a unique maximal ideal. For x ∈ Nil(S), let nx (index of nilpotency)
be the least positive integer m such that xm = 0; for an ideal I ⊆ Nil(R), let
nI = sup{nx | x ∈ I}. An r ∈ R \ Z(R) is called a regular element, and Reg(R) =
R\Z(R). Note that Nil(R)∩Id(R) = {0}, Reg(R)∩Id(R) = {1}, and a local ring
has only the trivial idempotents 0 and 1. If A is a set with 0 ∈ A, then A∗ = A\{0}.
Let Z, Zn, Q, R, C, and Fpn denote the ring of integers, integers modulo n, the
fields of rational, real, and complex numbers, and the finite field with pn elements,
respectively. All rings are commutative with 1 6= 0, and subrings have the same
identity element as the ring. All semigroups are commutative (usually with 0), and
subsemigroups have the same 0 as the semigroup. For any undefined ring-theoretic
concepts or notation, see [21] and [22].

For a graph G with vertices V (G), we will often write |G| rather than |V (G)|.
As usual, Km and Km,n denote the complete graph and complete bipartite graph
on m and m,n vertices, respectively (here, m and n may be infinite cardinals). We
will call K1,n a star graph and often just write K1,n = K1,∞ and Km,n = K∞,∞
when m and n are infinite cardinals. The graph with no vertices is called the
empty graph and is denoted by ∅, and the graph with n (≥ 2) vertices and no
edges is called the empty graph on n vertices and is denoted by Kn (for graph
complement). Note that Γ(R) = ∅ for a commutative ring R (resp., Γ(S) = ∅ for
a commutative semigroup S with 0) if and only if R is an integral domain (resp.,
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Z(S) ⊆ {0}, e.g., Z(S) = ∅ if S = {0}); so to avoid trivialities, we implicitly
assume (when necessary) that R is not an integral domain (resp., Z(S) 6⊆ {0},
e.g., S 6= {0}). For a positive integer n, let dn(x, y) be the distance between x
and y in Γn(S) (dn(x, x) = 0 and dn(x, y) = ∞ if there is no path from x to
y), diam(Γn(S)) = sup{dn(x, y) | x, y ∈ Zn(S)∗}, and gr(Γn(S)) the length of a
shortest cycle in Γn(S), where gr(Γn(S)) =∞ if Γn(S) has no cycles. If n = 1, then
we just use d(x, y), diam(Γ(S)), and gr(Γ(S)). For any undefined graph-theoretic
concepts or notation, see [17]. For additional information and references about
the zero-divisor graph of a commutative semigroup with 0 or associating graphs
to rings, see the survey article [5] or recent book [2]. We would like to thank the
referee for some helpful comments.

2. The n-zero-divisor graph of a reduced commutative semigroup

In this section, we study Γn(S) when S is a reduced commutative semigroup
with 0. We are particularly interested in diam(Γn(S)) and gr(Γn(S)), and their
relationship to diam(Γ(S)) and gr(Γ(S)), respectively.

For a commutative semigroup S with 0 and positive integer n, let Sn = {sn |
s ∈ S}. Then Sn is a commutative subsemigroup of S with 0. Thus Γ(Sn) is
connected, diam(Γ(Sn)) ∈ {0, 1, 2, 3}, and gr(Γ(Sn)) ∈ {3, 4,∞} by [19]. Note
that for x ∈ S, xn ∈ Zn(S) ⇔ x ∈ Z(S); Zn(S) is a subsemigroup of Sn with
Z(Zn(S)) ⊆ Z(Sn) ⊆ Zn(S) and Z(Sn) = Z(Zn(S)) ⊆ Zn(S) if Zn(S) 6= {0};
Zm(S)n = Zmn(S) = Zn(S)m for all positive integers m and n (in particular,
Z(S)n = Zn(S) and Zmn(S) is a subsemigroup of Zn(S) for all positive integers
m and n); Γmn(S) is an induced subgraph of Γn(S) for all positive integers m and
n; and Γ(Sn) = Γ(Zn(S)) is an induced subgraph of Γn(S). Hence Γ(Sn) = Γn(S)
(i.e., Γn(S) = Γ(Zn(S))) if and only if Z(Sn) = Zn(S) or Zn(S) = {0}. Note that if
S is reduced, then Sn, Zn(S), and Z(Sn) are also reduced for every positive integer
n.

We next give several examples of Γn(S). Parts (a) and (b) of Example 2.1
give commutative semigroups S with 0 such that Z(Sn) = Z(Zn(S)) ( Zn(S),
Γ(Sn) = Γ(Zn(S)) ( Γn(S), and thus Γn(S) is not connected by Theorem 2.2, for
every integer n ≥ 2.

Example 2.1. (a) Let R = Z2[X,Y ]/(X2, XY ) = Z2[x, y] = {a+bx+yf(y) | a, b ∈
Z2, f(T ) ∈ Z2[T ]} and S = Z(R) = {bx + yf(y) | b ∈ Z2, f(T ) ∈ Z2[T ]}. Then
Γ(R) = Γ(S) = K1,ℵ0 is a star graph with center x. Moreover, Sn = {ynf(y)n |
f(T ) ∈ Z2[T ]} for every integer n ≥ 2; so Z(Sn) = {0}, while Zn(S) = {ynf(y)n |
f(T ) ∈ Z2[T ]} = Sn, for every integer n ≥ 2. Thus the Γn(S)’s are all distinct and
{0} = Z(Sn) = Z(Zn(S)) ( Zn(S); so Γ(Sn) 6= Γn(S) and Γn(S) is not connected
for every integer n ≥ 2 by Theorem 2.2. Also, Z(Sn) = Z(Zn(S)) = {0} for
every integer n ≥ 2; so Γn(R) = Γn(S) = Kℵ0 is not connected (in fact, totally
disconnected) and Γ(Sn) = ∅ for every integer n ≥ 2.

(b) Let R = Z2[X,Y, V,W ]/(X2, XY, V W ) = Z2[x, y, v, w] and S = Z(R). Then
yn ∈ Zn(S), but yn 6∈ Z(Sn), for every integer n ≥ 2. Thus Z(Sn) = Z(Zn(S)) (
Zn(S); so Γ(Sn) 6= Γn(S) and Γn(S) is not connected for every integer n ≥ 2 by
Theorem 2.2. Note that vn, wn ∈ Zn(S)∗ are distinct adjacent vertices in Γn(S); so
Γn(S) is nonempty, not connected, but not totally disconnected, for every integer
n ≥ 2.
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(c) Let R be a Boolean ring (i.e., x2 = x for every x ∈ R). For example, let
R = Zm2 for an integer m ≥ 2. Then Zn(R)∗ = R \ {0, 1} = Id(R) \ {0, 1} for every
positive integer n, and thus Γn(R) = Γ(R) for every positive integer n. We could
also let S be any Boolean semigroup with 0. See [23] for some characterizations of
Γ(R) when R is a Boolean ring.

(d) Let S = {0, x, y, z} be the commutative semigroup with 0 and multiplication
given by xz = yz = z2 = 0, xy = y, and x2 = y2 = x. Then Z(S) = S,
Sn = Zn(S) = {0, x} for every even integer n ≥ 2, and Sn = Zn(S) = {0, x, y}
for every odd integer n ≥ 3. Thus Γ(S) = K1,2 is a star graph with center z,

Γn(S) = K1 is connected for every even integer n ≥ 2, and Γn(S) = K2 is not
connected for every odd integer n ≥ 3. Moreover, Z(Sn) = Z(Zn(S)) = {0}, and
hence Γ(Sn) = ∅, for every integer n ≥ 2.

(e) Let R be a commutative ring with Z(R) = Nil(R) and m an integer with
m ≥ nx for every x ∈ Nil(R) (e.g., R = Zpm for a prime p). Then Zn(R) = {0},
and thus Γn(R) = ∅, for every integer n ≥ m. In particular, this holds when R is
an Artinian (e.g., finite) local commutative ring.

Let be S be a commutative semigroup with 0. We start with the following result
which gives criteria for Γn(S) to be connected when |Zn(S)∗| ≥ 2 (cf. Theorem 3.1
and Theorem 4.16). Note that for a commutative ring R, Id(R) \ {0, 1} ⊆ Zn(R)∗

for every positive integer n, and thus |Zn(R)∗| ≥ 2, and so Γn(R) 6= ∅, if R has
nontrivial idempotents. In particular, |Zn(R)∗| ≥ 2 and Γn(R) 6= ∅ for every
positive integer n when R is an Artinian (e.g., finite) nonlocal commutative ring.

If |Zn(S)∗| = 0, then Zn(S) ⊆ {0} (so Z(Sn) ⊆ {0}), and hence Γ(Sn) =
Γn(S) = ∅ is (vacuously) connected. If |Zn(S)∗| = 1, say Zn(S) = {0, x}, then
Γn(S) = K1 is connected, diam(Γn(S)) = 0, and gr(Γn(S)) = ∞. Note that
Zn(S)∗ = {x} with either x2 = 0 or x2 = x since Zn(S) = {0, x} is a subsemigroup
of S. If x2 = 0, then Z(Zn(S)) = Z(Sn) = {0, x}, and thus Γn(S) = Γ(Sn) =
Γ(Zn(S)). Moreover, if S is a commutative ring with Zn(S)∗ = {x}, then x2 = 0
(if x2 = x, then 1 − x ∈ Id(S)∗ ⊆ Zn(S)∗ and 1 − x 6= x, a contradiction).
Example 2.1(d) shows that we may have x2 = x, and hence x 6∈ Z(Zn(S)), when S is
not a commutative ring. In this case (i.e., when x2 = x), Z(Zn(S)) = Z(Sn) = {0};
so Γ(Sn) = ∅, and thus (1), but not (2)− (4), of Theorem 2.2 hold.

Theorem 2.2. Let S be a commutative semigroup with 0, n a positive integer, and
|Zn(S)∗| ≥ 2. Then the following statements are equivalent.

(1) Γn(S) is connected.
(2) For every x ∈ Zn(S)∗, there is a y ∈ Zn(S)∗ such that xy = 0, i.e.,

Z(Zn(S))∗ = Zn(S)∗.
(3) Z(Sn) = Z(Zn(S)) = Zn(S).
(4) Γ(Sn) = Γn(S) = Γ(Zn(S)).

Moreover, if Γn(S) is connected, then diam(Γn(S)) ∈ {1, 2, 3} and gr(Γn(S)) ∈
{3, 4,∞}. If S is a commutative ring, then (1)− (4) all hold when |Zn(S)∗| = 1.

Proof. (1) ⇒ (2) Suppose that Γn(S) is connected. Let x, z ∈ Zn(S)∗ be distinct.
Then there is a path x− y − · · · − z in Γn(S). Thus xy = 0 and x, y ∈ Zn(S)∗; so
x ∈ Z(Zn(S))∗. Hence Z(Zn(S))∗ = Zn(S)∗.

(2) ⇒ (3) By definition of Sn and Zn(S), it is clear that Z(Sn) = Z(Zn(S)) =
Zn(S) when Z(Zn(S))∗ = Zn(S)∗.

(3)⇒ (4) This is clear.
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(4)⇒ (1) This is clear since Γ(Sn) is connected by [19].
For the “moreover” statement, suppose that Γn(S) is connected. Then Γn(S) =

Γ(Sn) = Γ(Z(Sn)) by (1)⇒ (4), where Z(Sn) = Zn(S) is a commutative semigroup
with 0 and |Zn(S)∗| ≥ 2. Thus diam(Γn(S)) ∈ {1, 2, 3} by [19, Theorem 1.2] and
gr(Γn(S)) ∈ {3, 4,∞} by [19, Theorem 1.5]. The sentence about commutative rings
follows from the comments before this theorem. �

We now investigate diam(Γn(S)) when S is a reduced commutative semigroup
with 0. The following lemma will prove extremely useful.

Lemma 2.3. Let S be a commutative semigroup with 0, and x, y ∈ S such that
x 6∈ Nil(S) and xy = 0. Then xm 6= yn for all positive integers m and n. In
particular, if S is reduced, then x and y are distinct adjacent vertices in Γ(S) if
and only if xn and yn are distinct adjacent vertices in Γn(S).

Proof. Suppose that xm = yn for positive integers m and n. Then xm+1 = xxm =
xyn = 0 since xy = 0, a contradiction since x 6∈ Nil(S).

The “in particular” statement is clear. �

Theorem 2.4. Let S be a reduced commutative semigroup with 0 and n a positive
integer. Then Γn(S) is connected and Γn(S) = Γ(Sn) = Γ(Zn(S)). Moreover,
dn(xn, yn) = d(xn, yn) = d(x, y) for x, y ∈ Z(S)∗ with xn 6= yn. In particular,
diam(Γn(S)) ≤ diam(Γ(S)) ≤ 3 for every positive integer n.

Proof. We may assume that |Z(S)∗| ≥ 1. Since S is reduced, xn ∈ Zn(S)∗ for every
x ∈ Z(S)∗. Let xn ∈ Zn(S)∗ for x ∈ Z(S)∗. Then xy = 0 for some y ∈ Z(S)∗ \{x};
so yn ∈ Zn(S)∗ \ {xn} by Lemma 2.3 and xnyn = 0. Thus |Zn(S)∗| ≥ 2, and so
Γn(S) = Γ(Sn) = Γ(Zn(S)) is connected by Theorem 2.2.

Let xn, yn be distinct vertices in Zn(S)∗ for x, y ∈ Z(S)∗. Then d(x, y) ∈ {1, 2, 3}
by Theorem 2.2. First, suppose that d(x, y) = 1. Then dn(xn, yn) = 1⇔ d(x, y) =
1 by Lemma 2.3. So in this case, dn(xn, yn) = d(xn, yn) = d(x, y) = 1. (For this
case, we do not need to assume that xn 6= yn.) Next, suppose that d(x, y) = 2.
By Lemma 2.3, x − z − y is a path of length 2 in Γ(S) ⇔ xn − zn − yn is a
path of length 2 in Γn(S). Hence dn(xn, yn) = 2 ⇔ d(x, y) = 2. So in this case,
dn(xn, yn) = d(xn, yn) = d(x, y) = 2. Finally, let d(x, y) = 3. By the two previous
cases, we have dn(xn, yn) = 3 ⇔ d(x, y) = 3. If xn − z − yn is a path of length 2
in Γ(S), then xn − zn − yn is a path of length 2 is Γn(S) by Lemma 2.3 again, a
contradiction. Thus dn(xn, yn) = d(xn, yn) = d(x, y) = 3 in this case.

The “in particular” statement is now clear. �

Remark 2.5. Let S be a reduced commutative semigroup with 0 and |Z(S)∗| ≥ 1
(i.e., S 6= {0} and Z(S) 6= {0}). Then |Z(S)∗| ≥ 2, and thus |Zn(S)∗| ≥ 2 for
every positive integer n by Lemma 2.3. Moreover, if |Z(S)∗| = 2, then Γn(S) =
K2 = K1,1 for every positive integer n; and if |Z(S)∗| = 3, then either Γ(S) = K1,2

or Γ(S) = K3. If Γ(S) = K3, then it is easily shown that Γn(S) = K3 for every
positive integer n. However, for S = Z(Z6) = {0, 2, 3, 4}, we have Γn(S) = K1,2 for
every odd positive integer n and Γn(S) = K2 = K1,1 for every even positive integer
n. Thus, for |Z(S)∗| ≥ 3, we may have |Zm(S)∗| 6= |Zn(S)∗| for postive integers m
and n, also see Example 2.9 and Example 4.13.

For a reduced commutative semigroup S with 0 and x, y ∈ Z(S)∗, we have
d(x, y) = 1⇔ dn(xn, yn) = 1 by Lemma 2.3, and we next show that d(x, y) = 3⇔
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dn(xn, yn) = 3. However, Example 2.9 shows that we may have d(x, y) = 2 and
dn(xn, yn) = 0, i.e., xn = yn.

Theorem 2.6. Let S be a reduced commutative semigroup with 0, n a positive
integer, and x, y ∈ Z(S)∗ with d(x, y) = 3. Then xn, yn ∈ Zn(S)∗ are distinct and
dn(xn, yn) = d(x, y) = 3. Moreover, diam(Γn(S)) = diam(Γ(S)) = 3 for every
positive integer n.

Proof. Since d(x, y) = 3, there is a path x− z−w− y of length 3 in Γ(S) from x to
y. Since S is reduced, xn, zn, wn, yn ∈ Zn(S)∗ for every positive integer n. Suppose
that xn = yn for some positive integer n. Then zn and yn are distinct adjacent
vertices in Γn(S) by Lemma 2.3, and thus z and y are also distinct and adjacent
in Γ(S) by Lemma 2.3 again, a contradiction since d(x, y) = 3. Thus xn 6= yn, and
hence dn(xn, yn) = d(x, y) = 3 by Theorem 2.4.

The “moreover” statement is clear. �

We now study the relationship between diam(Γ(S)) and diam(Γn(S)) when S
is reduced. Example 2.1(c) and Example 2.9 show that both cases are possible in
parts (2) and (3) of the following theorem.

Theorem 2.7. Let S be a reduced commutative semigroup with 0.
(a) If diam(Γm(S)) = 3 for some integer m ≥ 2, then diam(Γn(S)) = diam(Γ(S)) =

3 for every positive integer n.
(b) If diam(Γm(S)) = 1 for some integer m ≥ 2, then diam(Γ(S)) ∈ {1, 2}.

Moreover, diam(Γn(S)) ∈ {1, 2} for every positive integer n.
(c) If diam(Γm(S)) = 2 for some integer m ≥ 2, then diam(Γ(S)) = 2. More-

over, diam(Γn(S)) ∈ {1, 2} for every positive integer n.
(d) diam(Γm(S)) = 0 for some integer m ≥ 2 if and only if Z(S) ⊆ {0} (i.e.,

Γ(S) = ∅), if and only if diam(Γn(S)) = 0 for every positive integer n.

Proof. (a) Suppose that diam(Γm(S)) = 3 for some integer m ≥ 2. Then 3 =
diam(Γm(S)) ≤ diam(Γ(S)) ≤ 3 by Theorem 2.4; so diam(Γn(S)) = diam(Γ(S)) =
3 for every positive integer n by Theorem 2.6.

(b) Suppose that diam(Γm(S)) = 1 for some integer m ≥ 2. Then diam(Γ(S)) 6=
3 by Theorem 2.6, and diam(Γn(S)) 6= 3 for every integer n ≥ 2 by (a). Thus
diam(Γn(S)) ∈ {1, 2} for every positive integer n. In particular, diam(Γ(S)) ∈
{1, 2}.

(c) Suppose that diam(Γm(S)) = 2 for some integerm ≥ 2. Since 2 ≤ diam(Γm(S)) ≤
diam(Γ(S)) ≤ 3 by Theorem 2.4 and Theorem 2.2, we have diam(Γ(S)) ∈ {2, 3}.
Since diam(Γm(S)) = 2 for some positive integer m, we have diam(Γ(S)) 6= 3 by
Theorem 2.6; so diam(Γ(S)) = 2. Since 1 ≤ diam(Γn(S)) ≤ diam(Γ(S)) = 2 for
every positive integer n by Theorem 2.4, we have diam(Γn(S)) ∈ {1, 2} for every
positive integer n.

(d) This is clear by Remark 2.5. �

We next consider gr(Γn(S)) for a reduced commutative semigroup S with 0.
We show that if gr(Γ(S)) ∈ {3,∞}, then gr(Γn(S)) = gr(Γ(S)) for every positive
integer n. We first do the gr(Γ(S)) = 3 case, and then the gr(Γ(S)) = ∞ case in
Theorem 2.10.

Theorem 2.8. Let S be a reduced commutative semigroup with 0. Then the fol-
lowing statements are equivalent.
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(1) gr(Γ(S)) = 3.
(2) gr(Γn(S)) = 3 for every positive integer n.
(3) gr(Γn(S)) = 3 for some positive integer n.

Proof. (1)⇒ (2) Suppose that gr(Γ(S)) = 3. Let x− y− z−x be a cycle of length
3 in Γ(S). Then xn− yn− zn−xn is a cycle of length 3 in Γn(S) for every positive
integer n by Lemma 2.3; so gr(Γn(S)) = 3 for every positive integer n.

(2)⇒ (3) This is clear.
(3) ⇒ (1) Suppose that gr(Γn(S)) = 3 for some positive integer n. Let xn −

yn− zn−xn be a cycle of length 3 in Γn(S). Then x− y− z−x is a cycle of length
3 in Γ(S) by Lemma 2.3; so gr(Γ(S)) = 3. �

The following is an example of a reduced commutative semigroup (ring) S with 0
where diam(Γ2(S)) < diam(Γ(S)) and gr(Γ2(S)) 6= gr(Γ(S)). Thus the hypotheses
“d(x, y) = 3” and “gr(Γ(S)) = 3” are crucial in Theorem 2.6 and Theorem 2.8,
respectively.

Example 2.9. Let R = Z3 × Z3; so S = Z(R) = {(0, 0), (1, 0), (2, 0), (0, 1), (0, 2)}
is a reduced commutative semigroup with 0, and Γn(R) = Γn(S) for every positive
integer n. Then Γ(R) = K2,2; so diam(Γ(R)) = 2 and gr(Γ(R)) = 4. Note that
Zn(R)∗ = {(1, 0), (0, 1)} for every even positive integer n; so Γn(R) = K2 = K1,1,
and hence diam(Γn(R)) = 1 and gr(Γn(R)) = ∞, for every even positive integer
n. However, Zn(R)∗ = Z(R)∗ for every odd positive integer n, and thus Γn(R) =
Γ(R) = K2,2 for every odd positive integer n. For x = (1, 0), y = (2, 0), we have
d(x, y) = 2, but xn = yn = (1, 0); so dn(xn, yn) = 0 for n an even positive integer.

Next, we consider the case when gr(Γ(S)) ∈ {4,∞}. Example 2.9 shows that
both cases may occur in Theorem 2.10 (1) and (4) below.

Theorem 2.10. Let S be a reduced commutative semigroup with 0.
(a) If gr(Γ(S)) = 4, then gr(Γn(S)) ∈ {4,∞} for every positive integer n.
(b) If gr(Γ(S)) =∞, then gr(Γn(S)) =∞ for every positive integer n.
(c) If gr(Γm(S)) = 4 for some integer m ≥ 2, then gr(Γ(S)) = 4.
(d) If gr(Γm(S)) = ∞ for some integer m ≥ 2, then gr(Γn(S)) ∈ {4,∞} for

every positive integer n.

Proof. (a) Assume that gr(Γ(S)) = 4. Since gr(Γn(S)) ∈ {3, 4,∞} for every pos-
itive integer n by Theorem 2.2 and gr(Γn(S)) 6= 3 for every positive integer n by
Theorem 2.8, we have gr(Γn(S)) ∈ {4,∞} for every positive integer n.

(b) Assume that gr(Γ(S)) = ∞. Since Γn(S) is a subgraph of Γ(S) for every
positive integer n, we have gr(Γn(S)) =∞ for every positive integer n.

(c) Assume that gr(Γm(S)) = 4 for some integer m ≥ 2. Then gr(Γ(S)) 6= 3 by
Theorem 2.8; so gr(Γ((S)) ∈ {4,∞}. If gr(Γ(S)) = ∞, then gr(Γn(S)) = ∞ for
every positive integer n by (2), a contradiction. Thus gr(Γ(S)) = 4.

(d) Assume that gr(Γm(S)) = ∞ for some integer m ≥ 2. Then gr(Γ(S)) 6= 3
by Theorem 2.8; so gr(Γ(S)) ∈ {4,∞}. If gr(Γ(S)) =∞, then gr(Γn(S)) =∞ for
every positive integer n by (2). If gr(Γ(S)) = 4, then gr(Γn(S)) ∈ {4,∞} for every
positive integer n by (a). �

We have Γ(T (R)) ∼= Γ(R) for every commutative ring R by [10, Theorem 2.2]; so
diam(Γ(T (R))) = diam(Γ(R)) and gr(Γ(T (R))) = gr(Γ(R)). We next show that
these two equalities also hold for every Γn(R).
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Theorem 2.11. Let R be a commutative ring and n a positive integer. Then
Γn(T (R)) is connected if and only if Γn(R) is connected. Moreover, diam(Γn(T (R))) =
diam(Γn(R)) and gr(Γn(T (R))) = gr(Γn(R)).

Proof. Let S = R \ Z(R). Then T (R) = RS and Z(T (R)) = Z(R)S . Note that
Zn(T (R)) = {0} ⇔ Zn(R) = {0}; so we may assume that |Zn(T (R))∗|, |Zn(R)∗| ≥
1. Suppose that Γn(T (R)) is connected. Let y ∈ Zn(R)∗ ⊆ Zn(T (R))∗. Then
yz = 0 for some z ∈ Zn(T (R))∗, where z = bn/tn with b ∈ Z(R)∗ and t ∈ S, by
Theorem 2.2. Thus bn ∈ Zn(R)∗ and ybn = 0; so Γn(R) is connected by Theorem
2.2.

Conversely, suppose that Γn(R) is connected. Let x ∈ Zn(T (R))∗. Then x =
an/sn for some a ∈ Z(R)∗ and s ∈ S; so an ∈ Zn(R)∗. Since Γn(R) is connected
and an ∈ Zn(R)∗, there is a b ∈ Zn(R)∗ ⊆ Zn(T (R))∗ with ban = 0 by Theorem
2.2. Hence bx = 0; so Γn(T (R)) is connected by Theorem 2.2.

For the “moreover” statement, let x1, . . . , xk be distinct vertices in Zn(R)∗ for
some integer k ≥ 2 (k ≥ 3 for the “cycle” case). Then x1 − · · · − xk (resp.,
x1 − · · · − xk − x1) is a path (resp., cycle) of length k in Γn(R) if and only if
x1/s

n − · · · − xk/sn (resp., x1/s
n − · · · − xk/sn − x1/s

n) is a path (resp., cycle)
of length k in Γn(T (R)) for every s ∈ S, and every path (resp., cycle) of length k
in Γn(T (R)) is of the form y1/t

n − · · · − yk/tn (resp., y1/t
n − · · · − yk/tn − y1/t

n)
for distinct y1, . . . , yk ∈ Zn(R)∗ and t ∈ S. Thus diam(Γn(T (R))) = diam(Γn(R))
and gr(Γn(T (R))) = gr(Γn(R)). �

We recall the following two results which characterize the reduced commutative
rings R with gr(Γ(R)) ∈ {4,∞} in terms of T (R).

Theorem 2.12. ([12, Theorem 2.2], [26, Theorem 2.3]) Let R be a reduced com-
mutative ring. Then the following statements are equivalent.

(1) gr(Γ(R)) = 4.
(2) T (R) = K1 ×K2, where each Ki is a field with |Ki| ≥ 3.
(3) gr(Γ(R)) 6=∞ and R is a subring of the product of two integral domains.
(4) Γ(R) = Km,n with m,n ≥ 2.

Theorem 2.13. ([12, Theorem 2.4]) Let R be a reduced commutative ring. Then
the following statements are equivalent.

(1) Γ(R) is nonempty with gr(Γ(R)) =∞.
(2) T (R) = Z2 ×K, where K is a field.
(3) Γ(R) = K1,n for some n ≥ 1.

We now specialize to the case gr(Γ(R)) ∈ {4,∞} when R is a reduced commu-
tative ring. We will need the following lemma.

Lemma 2.14. Let R be a commutative ring and ex1, ex2 distinct elements of R,
where e ∈ Id(R)∗ and x1 ∈ R \ Z(R). If exn1 = exn2 for some integer n ≥ 2, then

exkn+1
1 6= exkn+1

2 for every positive integer k.

Proof. Suppose that exn1 = exn2 for some integer n ≥ 2, where e ∈ Id(R)∗ and
x1 ∈ R \ Z(R). Then exkn1 = exkn2 for every positive integer k. Now, suppose that

exkn+1
1 = exkn+1

2 for some positive integer k. Then (ex1)xkn1 = exkn+1
1 = exkn+1

2 =
(ex2)(exkn2 ) = (ex2)(exkn1 ) = (ex2)xkn1 , and thus ex1 = ex2 since xkn1 ∈ R \ Z(R),

a contradiction. Hence exkn+1
1 6= exkn+1

2 for every positive integer k. �
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We can improve Theorem 2.10 for reduced commutative rings.

Theorem 2.15. Let R be a reduced commutative ring. Then gr(Γ(R)) = 4 if
and only if gr(Γn(R)) = 4 for some integer n ≥ 2. Moreover, if gr(Γ(R)) = 4
and gr(Γn(R)) = ∞ for some integer n ≥ 2, then either gr(Γn+1(R)) = 4 or
gr(Γn(n+1)+1(R)) = 4.

Proof. Suppose that gr(Γn(R)) = 4 for some integer n ≥ 2. Then gr(Γ(R)) = 4 by
Theorem 2.10(3).

Conversely, assume that gr(Γ(R)) = 4. Then R is a subring of D1 ×D2, where
each Di is an integral domain, by Theorem 2.12. Thus Γ(R) has a cycle of length 4;
say (x1, 0)− (0, x2)− (x3, 0)− (0, x4)− (x1, 0) is a cycle of length 4 in Γ(R), where
x1, x3 ∈ D∗1 and x2, x4 ∈ D∗2 . Assume that gr(Γn(R)) 6= 4 for some integer n ≥ 2.
Then xn1 = xn3 or xn2 = xn4 . Without loss of generality, assume that xn1 = xn3 . If
xn+1

2 6= xn+1
4 , then (xn+1

1 , 0)− (0, xn+1
2 )− (xn+1

3 , 0)− (0, xn+1
4 )− (xn+1

1 , 0) is a cycle
of length 4 in Γn+1(R) by Lemma 2.14. If xn+1

2 = xn+1
4 , let m = n(n + 1). Then

(xm+1
1 , 0) − (0, xm+1

2 ) − (xm+1
3 , 0) − (0, xm+1

4 ) − (xm+1
1 , 0) is a cycle of length 4 in

Γm+1(R) by Lemma 2.14.
The “moreover” statement is now clear. �

For a reduced commutative ring R that is not an integral domain, it is well
known that Γ(R) is a complete bipartite graph if and only if gr(Γ(R)) ∈ {4,∞}
(Theorem 2.12 and Theorem 2.13). We next show that this also holds for every
Γn(R).

Theorem 2.16. Let R be a reduced commutative ring that is not an integral domain
and n a positive integer. Then gr(Γn(R)) ∈ {4,∞} if and only if Γn(R) is a
complete bipartite graph.

Proof. If Γn(R) is a complete bipartite graph for some integer n ≥ 2, then gr(Γn(R)) ∈
{4,∞}. Conversely, assume that gr(Γn(R)) ∈ {4,∞}. Thus gr(Γ(R)) 6= 3 by The-
orem 2.8; so gr(Γ(R)) ∈ {4,∞}. Hence R is a subring of D1 × D2, where each
Di is an integral domain, by Theorem 2.12 and Theorem 2.13. Let A = {(xn, 0) |
(x, 0) ∈ R∗} and B = {(0, yn) | (0, y) ∈ R∗}. Then Zn(R)∗ = A∪B with A,B 6= ∅;
so Γn(R) = K|A|,|B| is a complete bipartite graph. �

In view of Theorem 2.12, Theorem 2.15, and Theorem 2.16, we have the following
result. The proof is left to the reader.

Corollary 2.17. Let R be a reduced commutative ring. Then the following state-
ments are equivalent.

(1) There is an integer k ≥ 2 such that Γk(R) = Km,n with m,n ≥ 2.
(2) gr(Γk(R)) = 4 for some integer k ≥ 2.
(3) gr(Γ(R)) = 4.
(4) T (R) = K1 ×K2, where each Ki is a field with |Ki| ≥ 3.
(5) gr(Γ(R)) 6=∞ and R is a subring of the product of two integral domains.
(6) Γ(R) = Km,n with m,n ≥ 2.

Next, we consider the case when both gr(Γm(R)) =∞ and gr(Γn(R)) = 4.

Theorem 2.18. Let R be a reduced commutative ring. Then the following state-
ments are equivalent.

(1) There are integers m,n ≥ 2 such that gr(Γm(R)) =∞ and gr(Γn(R)) = 4.
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(2) T (R) = K1 ×K2, where each Ki is a field with |Ki| ≥ 3 and either K1 or
K2 is finite.

Proof. (1)⇒ (2) Assume there are integers m,n ≥ 2 such that gr(Γm(R)) =∞ and
gr(Γn(R)) = 4. Then gr(Γ(R)) = 4 and T (R) = K1 ×K2, where each Ki is a field
with |Ki| ≥ 3, by Corollary 2.17. We may assume that K2 is infinite. We show that
K1 is finite. Assume, by way of contradiction, that K1 is infinite. Let x ∈ K∗1 and
w ∈ K∗2 . For every integer n ≥ 2, let An(x) = {y ∈ K1 | yn = xn, i.e., (yx−1)n = 1}
and Bn(w) = {a ∈ K2 | an = wn, i.e., (aw−1)n = 1}. Since the equation hn−1 = 0
has at most n solutions in K1, K2, we have 1 ≤ |An(x)|, |Bn(w)| ≤ n. Since K1

and K2 are infinite fields, there are c ∈ K∗1 \ An(x) and d ∈ K∗2 \ Bn(w). Thus
(xn, 0) − (0, wn) − (cn, 0) − (0, dn) − (xn, 0) is a cycle of length 4 in Γn(T (R)); so
gr(Γn(R))) = gr(Γn(T (R))) = 4 for every positive integer n by Theorem 2.11, a
contradiction. Hence either K1 or K2 is finite.

(2)⇒ (1) Assume that T (R) = K1 ×K2, where each Ki is a field with |Ki| ≥ 3
and either K1 or K2 is finite. Then gr(Γm(R)) = 4 for some integer m ≥ 2 by
Corollary 2.17. We may assume that |K1| = n+1 <∞, where n ≥ 2 by hypothesis.
Thus Zn(T (R))∗ = {(1, 0)} ∪ {(0, yn) | y ∈ K∗2}; so Γn(T (R)) is a star graph with
center (1, 0). Hence gr(Γn(R)) = gr(Γn(T (R))) =∞ by Theorem 2.11. �

In light of the proof of Theorem 2.18, we have the following result. Its proof is
left to the reader.

Corollary 2.19. Let R be a reduced commutative ring. Then the following state-
ments are equivalent.

(1) gr(Γn(R)) = 4 for every positive integer n.
(2) T (R) = K1 ×K2, where each Ki is an infinite field.

In view of Theorem 2.18 and Corollary 2.17, we have the following result. Its
proof is left to the reader.

Corollary 2.20. Let R be a reduced commutative ring. Then the following state-
ments are equivalent.

(1) There are integers m,n ≥ 2 such that gr(Γm(R)) =∞ and gr(Γn(R)) = 4.
(2) There are integers m,n ≥ 2 such that Γm(R) = K1,a with a ≥ 1 and

Γn(R) = Kb,c with b, c ≥ 2 and b <∞ or c <∞.
(3) gr(Γ(R)) = 4 and gr(Γn(R)) =∞ for some integer n ≥ 2.
(4) T (R) = K1 ×K2, where each Ki is a field with |Ki| ≥ 3 and either K1 or

K2 is finite.
(5) gr(Γ(R)) 6= ∞ and R is a subring of the product of two integral domains

D1 and D2 such that D1 or D2 is a finite field.
(6) Γ(R) = Kb,c with b, c ≥ 2 and b <∞ or c <∞.

In light of Theorem 2.18 and Corollary 2.19, we have the following result. Its
proof is left to the reader.

Corollary 2.21. Let R be a reduced commutative ring. Then the following state-
ments are equivalent.

(1) gr(Γn(R)) = 4 for every positive integer n. In particular, gr(Γ(R)) = 4.
(2) Γn(R) = K∞,∞ for every positive integer n.
(3) T (R) = K1 ×K2, where each Ki is an infinite field.
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(4) gr(Γ(R)) 6= ∞ and R is a subring of the product of two infinite integral
domains.

(5) Γ(R) = K∞,∞.

In view of Theorem 2.13 and Theorem 2.10(2), we have the following result. Its
proof is left to the reader.

Corollary 2.22. Let R be a reduced commutative ring that is not an integral do-
main. Then the following statements are equivalent.

(1) gr(Γn(R)) =∞ for every positive integer n. In particular, gr(Γ(R)) =∞.
(2) Γn(R) = K1,∞ for every positive integer n.
(3) T (R) = Z2 ×K, where K is an infinite field.
(4) R is a subring of Z2 ×D for an infinite integral domain D.
(5) Γ(R) = K1,∞.

3. The n-zero-divisor graph of a nonreduced commutative semigroup

In this section, we study Γn(S) when the commutative semigroup S is not re-
duced. In this case, Γn(S) need not be connected for n ≥ 2, i.e., Γn(S) is a proper
subgraph of Γ(Zn(S)) (see Example 2.1). First, we give another criterion for Γn(S)
to be connected (cf. Theorem 2.2).

For a commutative semigroup S with 0, x ∈ Z(S)∗, and n a positive integer, let
Niln(S) = {y ∈ S | yn = 0} ⊆ Nil(S) and niln(x) = {y ∈ S | (xy)n = 0}.

Theorem 3.1. Let S be a (nonreduced) commutative semigroup S with 0 and n ≥ 2
an integer such that |Zn(S)∗| ≥ 2. Then Γn(S) is not connected if and only if there
is an x ∈ Z(S)∗ such that xn ∈ Zn(S)∗ and niln(x) ⊆ Niln(S).

Proof. Assume that Γn(S) is not connected. Then there is an x ∈ Z(S)∗ such that
xn ∈ Zn(S)∗ and xnz 6= 0 for every z ∈ Zn(S)∗ by Theorem 2.2. Let y ∈ niln(x).
Then xnyn = (xy)n = 0; so yn 6∈ Zn(S)∗. Thus yn = 0; so y ∈ Niln(S). Hence
niln(x) ⊆ Niln(S).

Conversely, assume there is an x ∈ Z(S)∗ such that xn ∈ Zn(S)∗ and niln(x) ⊆
Niln(S). We show that yxn 6= 0 for every y ∈ Zn(S)∗. Assume that yxn = 0
for some y ∈ Zn(S)∗. Then y = zn for some z ∈ Z(S)∗ and (zx)n = znxn =
yxn = 0; so z ∈ niln(x) ⊆ Niln(S). Thus y = zn = 0, and hence y 6∈ Zn(S)∗,
a contradiction. Thus yxn 6= 0 for every y ∈ Zn(S)∗, and hence Γn(S) is not
connected by Theorem 2.2. �

Although Γn(S) need not be connected when the commutative semigroup S is not
reduced, we next show that Γn(S) is connected in the “extreme” nonreduced case,
i.e., when Z(S) = Nil(S). Note that diam(Γ(S)) ∈ {0, 1, 2} when Z(S) = Nil(S)
([18, Theorem 5]), and gr(Γ(R)) ∈ {3,∞} when Z(R) = Nil(R) for a commutative
ring R ([3, Theorem 2.11]). First, a lemma.

Lemma 3.2. Let S be a commutative semigroup with 0, x ∈ Nil(S), and n a
positive integer. If xn 6= 0, then xn ∈ Z(Zn(S)).

Proof. Let y = xn 6= 0 and m = ny − 1 (m ≥ 1 since y 6= 0). Then y ∈ Zn(S)
since x ∈ Nil(S) ⊆ Z(S), and 0 6= ym ∈ Zn(S) since Zn(S) is a subsemigroup of
S. Thus yym = yny = 0; so xn = y ∈ Z(Zn(S)). �
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Theorem 3.3. Let S be a commutative semigroup with 0, Z(S) = Nil(S) 6= {0},
and m a positive integer. Then Z(Zm(S)) = Zm(S) if Zm(S) 6= {0}, and thus
Γn(S) = Γ(Sn) = Γ(Zn(S)) is connected for every positive integer n. Moreover, let
N = sup{nx | x ∈ Nil(S)}. If N < ∞, then Γn(S) = ∅ for every integer n ≥ N .
Otherwise, Γn(S) 6= ∅ for every positive integer n.

Proof. Let 0 6= x ∈ Z(S) = Nil(S). If m ≥ nx, then xm = 0. If m < nx, then
0 6= xm ∈ Z(Zm(S)) by Lemma 3.2. Thus Z(Zm(S)) = Zm(S) if Zm(S) 6= {0};
so Γm(S) = Γ(Sm) = Γ(Zm(S)) is connected by Theorem 2.2 and the comments
before that theorem. If Zm(S) = {0}, then Γm(S) = Γ(Sm) = Γ(Zm(S)) = ∅ is
(vacuously) connected. Hence Γn(S) = Γ(Sn) = Γ(Zn(S)) is connected for every
positive integer n.

The “moreover” statement is clear. �

The following is an example of a commutative semigroup (ring) S with 0 such
that Z(S) = Nil(S) and all the Γn(S)’s are distinct.

Example 3.4. Let R = Z2[{Xn}∞n=1]/({Xn+1
n }∞n=1) = Z2[{xn}∞n=1] and S =

Z(R) = Nil(R) = ({xn}∞n=1). Then S = Z(S) = Nil(S) and xnn ∈ Zn(S)∗ \
Zn+1(S)∗ for every positive integer n. Thus the Γn(S)’s are all distinct and
nonempty, and every Γn(S) is connected by Theorem 3.3. Moreover, it is easily
checked that diam(Γn(S)) = 2 and gr(Γn(S)) = 3 for every positive integer n.

The following is an example of a nonreduced semigroup (ring) S with 0 such
that diam(Γ2(S)) = diam(Γ(S)) = 2, gr(Γ2(S)) =∞, and gr(Γ(S)) = 3. Thus the
“reduced” hypothesis in Theorem 2.8 is crucial. Also, see Example 3.11(d).

Example 3.5. Let R = Z2[X]/(X6) = Z2[x] and S = Z(R) = Nil(R). Then
R and S are not reduced, and x3 − x4 − x5 − x3 is a cycle of length 3 in Γ(S);
so gr(Γ(S)) = 3. Since x5 is adjacent to every y ∈ Z(S)∗ = Z(R)∗ = S∗ and
Γ(S) is not a complete graph, we have diam(Γ(S)) = 2. Note that Z2(S)∗ =
{x2, x4, x2 +x4} and Γ2(S) = K1,2 is a star graph with center x4; so gr(Γ2(S)) =∞
and diam(Γ2(S)) = 2. Moreover, Γn(S) = Γ(Sn) is connected for every positive
integer n and Γn(S) = ∅ for every integer n ≥ 6.

The following is an example of a nonreduced commutative semigroup (ring) S
with 0 such that diam(Γ2(S)) = 3, diam(Γ(S)) = 2, and gr(Γ2(S)) = gr(Γ(S)) = 3.
Thus the “reduced” hypothesis in Theorem 2.4 and Theorem 2.7(1) is crucial.

Example 3.6. LetR = Z2[X,Y, Z,W, V ]/(X2, XY,XZ,XW,XV,WY, V Z,WV ) =
Z2[x, y, z, w, v] and S = Z(R). Then R and S are not reduced, and x− w − v − x
is a cycle of length 3 in Γ(S); so gr(Γ(S)) = 3. Since x is adjacent to every
vertex in Z(S)∗ = Z(R)∗ = S∗ and Γ(S) is not a complete graph, we have
diam(Γ(S)) = 2. Note that x2 6∈ Z2(S)∗. Since nil2(d) 6⊆ Nil2(S) for every
d ∈ Z(S)∗ with d2 ∈ Z2(S)∗, we have Γ2(S) is connected by Theorem 3.1. Since
w2 − v2 − y2z2 − w2 is a cycle of length 3 in Γ2(S), we have gr(Γ2(S)) = 3. Since
y2−w2− v2− z2 is a shortest path in Γ2(S) from y2 to z2, we have d2(y2, z2) = 3.
Thus diam(Γ2(S)) = 3.

Let S be as in Example 3.6. Then diam(Γ2(S)) = 3, gr(Γ2(S)) = 3, diam(Γ(S)) =
2, and gr(Γ(S)) = 3. In view of Example 3.6, we have the following result.

Theorem 3.7. Let S be a commutative semigroup with 0. Assume that Γn(S) is
connected for a positive integer n. If diam(Γn(S)) = 3 and x − y − z − w is a
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shortest path in Γn(S) from x to w with y2 6= 0 and z2 6= 0 (e.g., if S is reduced),
then gr(Γn(S)) = 3.

Proof. Since y(xw) = z(xw) = 0, y2 6= 0, and z2 6= 0, we have y 6= xw, z 6= xw, and
xw 6= 0. Thus xw−y−z−xw is a cycle of length 3 in Γn(S); so gr(Γn(S)) = 3. �

We next give the analog of Theorem 2.10 for nonreduced commutative rings.

Theorem 3.8. Let R be a nonreduced commutative ring with gr(Γ(R)) = 4. Then
Γn(R) is connected and gr(Γn(R)) ∈ {4,∞} for every integer n ≥ 2. Moreover,
there are integers m,n ≥ 2 such that gr(Γm(R)) = 4 and gr(Γn(R)) =∞.

Proof. Suppose that R is not reduced and gr(Γ(R)) = 4. Then R ∼= D × B,
where D is an integral domain with |D| ≥ 3 and B = Z4 or Z2[X]/(X2) = Z2[x]
by [12, Theorem 2.3]; so assume that R = D × B. It is easily checked that
Zn(R)∗ = {(dn, 0), (0, 1) | d ∈ D∗} for n an even positive integer and Zn(R)∗ =
{(dn, 0), (0, 1), (0, b) | d ∈ D∗} for n ≥ 3 an odd integer (here, b = 3 if B = Z4, and
b = 1 + x if B = Z2[X]/(X2)). Let n ≥ 2. Then for every z ∈ Zn(R)∗, there is a
y ∈ Zn(R)∗ such that zy = 0. Thus Γn(R) is connected by Theorem 2.2.

Let |{(dn, 0) | d ∈ D∗}| = α. Then Γn(R) = K1,α has girth ∞ for n even, and
Γn(R) = K2,α has girth 4 or ∞ for n ≥ 3 odd. Since |D| ≥ 3, we have α ≥ 2 for
some odd integer n ≥ 3. Hence there are integers m,n ≥ 2 such that gr(Γm(R)) = 4
and gr(Γn(R)) =∞.

�

Remark 3.9. Let R = D × B, where D is an integral domain with |D| ≥ 3 and
B = Z4 or Z2[X]/(X2) as in the proof of Theorem 3.8 above. Then Γ(R) = Km,3

with m = |D| − 1 ≥ 2, where Km,3 is the graph obtained by joining the complete
bipartite graph G1 = Km,3(= A ∪ C with |A| = m and |C| = 3) to the star graph
G2 = K1,m by identifying the center of G2 to a point of C ([12, Theorem 2.3]). Let
|{(dn, 0) | d ∈ D∗}| = α. As in the proof of Theorem 3.8, we have Γn(R) = K1,α for
n an even positive integer and Γn(R) = K2,α for n ≥ 3 an odd integer. Note that
α depends on D. If D is infinite, then clearly α is an infinite cardinal. Let D be a
finite integral domain; so D is a field with D∗ cyclic. Thus α = 1 if n = k(|D| − 1)
for any positive integer k, and α ≥ 2 otherwise. Hence Γn(R) can have girth 4 or
∞ when D is finite, depending on n.

In view of Theorem 3.8, we have the following result.

Corollary 3.10. Let R be a nonreduced commutative ring such that Γn(R) is not
connected for some integer n ≥ 2. Then gr(Γ(R)) ∈ {3,∞}.

The converses of Theorem 3.8 and Corollary 3.10 need not be true. We have the
following examples.

Example 3.11. (a) Let R = Z9 × Z9; so R is not reduced. Then (3, 3)− (0, 3)−
(3, 0) − (3, 3) is a cycle of length 3 in Γ(R); so gr(Γ(R)) = 3. It is clear that
Zn(R)∗ ⊆ {(x, 0), (0, y) | x, y ∈ U(Z9)} for every integer n ≥ 2; so Γn(R) is a
complete bipartite graph. Thus Γn(R) is connected with gr(Γn(R)) ∈ {4,∞} for
every integer n ≥ 2. Hence the converses of Theorem 3.8 and Corollary 3.10 do not
hold.

(b) Let R = Z4 × Z4; so R is not reduced. Then (2, 2)− (0, 2)− (2, 0)− (2, 2) is
a cycle of length 3 in Γ(R); so gr(Γ(R)) = 3. For every even positive integer n, we
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have Zn(R)∗ = {(1, 0), (01)}; so Γn(R) = K2 = K1,1 is connected with gr(Γn(R)) =
∞. For every odd integer n ≥ 3, we have Zn(R)∗ = {(1, 0), (3, 0), (0, 1), (0, 3)}; so
Γn(R) = K2,2 is connected with gr(Γn(R)) = 4. Thus the converses of Theorem 3.8
and Corollary 3.10 do not hold.

(c) Let R = Z2[X,Y, Z]/(X2, XZ,XY ) = Z2[x, y, z] (cf. Example 2.1(a)); so R
is not reduced. Then Γ(R) = K1,∞ with center x; so gr(Γ(R)) = ∞. For every
integer n ≥ 2, Γn(R) is not connected by Theorem 3.1 since niln(y) ⊆ Niln(R).
Note that Γn(R) = Kℵ0 for every integer n ≥ 2.

(d) Let R = Z2[X,Y, Z]/(X2, XZ, Y Z) = Z2[x, y, z]; so R is not reduced. Then
Z(R) = {ax + yf(y) + zg(z) + xyh(y) | a ∈ Z2, f(T ), g(T ), h(T ) ∈ Z2[T ]}, and
gr(Γ(R)) = 3 since z − x− xy − z is a cycle in Γ(R) of length 3. For every integer
n ≥ 2, Zn(R) ⊆ {yf(y) + zg(z) + xyh(y) | f(T ), g(T ), h(T ) ∈ Z2[T ]}; so Γn(R) =
Kℵ0,ℵ0 . Thus Γn(R) is connected with gr(Γn(R)) = 4 and yn− zn− y2n− z2n− yn
is a 4-cycle in Γn(R) for every integer n ≥ 2. Hence the “reduced” hypothesis is
needed in Theorem 2.8.

We may also have Γm(S) connected and Γn(S) not connected for some integers
m,n ≥ 2. In this case, diam(Γm(S)) ∈ {0, 1, 2, 3}, but diam(Γn(S)) = ∞ by
definition. See Example 2.1(d) for a “non-ring” example.

Example 3.12. Let R = Z2[X,Y ]/(X3, XY ) = Z2[x, y] = {a+ bx+ cx2 + yf(y) |
a, b, c ∈ Z2, f ∈ Z2[T ]} and S = Z(R) = {bx + cx2 + yf(y) | b, c ∈ Z2, f ∈ Z2[T ]}.
Note that gr(Γ(R)) = 3 since x − y − x2 − x is a 3-cycle. We have S2 = Z2(R) =
{bx2 + y2f(y2) | b ∈ Z2, f ∈ Z2[T ]}; so Γ(S2) = Γ2(R) = Γ2(S) = K1,ℵ0 is a star
graph with center x2, and thus gr(Γ2(R)) = ∞. Moreover, Sn = {ynf(y)n | f ∈
Z2[T ]}; so Z(Sn) = {0}, while Zn(S) = {ynf(y)n | f ∈ Z2[T ]} = Sn, for every
integer n ≥ 3. Thus the Γn(S)’s are all distinct. Also, {0} = Z(Sn) = Z(Zn(S)) (
Zn(S) for every integer n ≥ 3; so Γ(Sn) 6= Γn(S) and Γn(S) is not connected for
every integer n ≥ 3 by Theorem 2.2. Moreover, Γn(R) = Γn(S) = Kℵ0 is not
connected (in fact, totally disconnected) and Γ(Sn) = ∅ for every integer n ≥ 3.

We can replace X3 by Xm for any integer m ≥ 4 in the definition of the ring R
to get that Γn(R) is connected for 1 ≤ n ≤ m − 1 and Γn(R) is not connected for
every integer n ≥ m. Details are left to the reader.

4. Γn(R) when R is π-regular

In this section, we study Γn(R) when R is a π-regular (i.e., zero-dimensional) or
von Neumann regular (i.e., reduced and zero-dimensional) commutative ring. We
show that the Γn(R)’s are all connected, and in certain nice cases, the Γn(R)’s
eventually repeat in blocks. We also consider commutative rings such that some
power of every element (or zero-divisor) is idempotent.

Recall that a (not necessarily commutative) ring R is strongly π-regular if for
every x ∈ R, there is a positive integer n and y ∈ R such that xn+1y = xn and
xy = yx; and R is π-regular if for every x ∈ R, there is a positive integer n and
y ∈ R such that x2ny = xn. If R is a commutative ring, then R is strongly π-regular
if and only if R is π-regular, if and only if R is zero-dimensional ([22, Theorem 3.1]).

The following theorem gives another case when Γn(R) is connected for every
positive integer n, when R is zero-dimensional (e.g., finite). Example 2.1(a) shows
that the Γn(R)’s need not be connected when R is not zero-dimensional.
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Theorem 4.1. Let R be a π-regular (i.e., zero-dimensional) commutative ring.
Then Γn(R) is connected for every positive integer n. In particular, Γn(R) is con-
nected for every positive integer n when R is a finite commutative ring.

Proof. We may assume that n ≥ 2 and Zn(R)∗ 6= ∅. We show that for every
x ∈ Zn(R)∗, there is a y ∈ Zn(R)∗ such that xy = 0. Let x ∈ Zn(R)∗. Then
x = eu+w for an e ∈ Id(R), u ∈ U(R), and w ∈ Nil(R) by [13, Corollary 1]. Since
x ∈ Zn(R)∗, e 6= 1. First, assume that w = 0. Then e 6= 0, 1 since x ∈ Zn(R)∗.
Thus y = 1−e ∈ Z(R)∗ is idempotent; so y = yn ∈ Zn(R)∗ and xy = eu(1−e) = 0.
Next, assume that e = 0. Then 0 6= x = w ∈ Nil(R). Let m ≥ 2 be the least
positive integer such that xm = wm = 0. Since Zn(R) is a semigroup with 0 and
x ∈ Zn(R)∗, we have y = xm−1 = wm−1 ∈ Zn(R)∗ and xy = 0 (cf. Lemma 3.2).
Now, assume that e 6= 0 (note that e 6= 1) and w 6= 0. Since w ∈ Nil(R), let
k be the least positive integer such that [(1 − e)w]k = (1 − e)wk = 0. Note that
(1 − e)x = (1 − e)(eu + w) = (1 − e)w. So, if k = 1, then y = 1 − e ∈ Zn(R)∗

and xy = (1 − e)x = (1 − e)w = 0. Hence we may assume that k ≥ 2. Then
y = (1−e)wk−1 = [(1−e)w]k−1 = [(1−e)x]k−1 ∈ Zn(R)∗ since Zn(R) is a semigroup
and 1 − e, x ∈ Zn(R)∗, and xy = x[(1 − e)xk−1] = [(1 − e)x]k = [(1 − e)w]k = 0.
Thus for every x ∈ Zn(R)∗, there is a y ∈ Zn(R)∗ such that xy = 0; so Γn(R) is
connected by Theorem 2.2.

The “in particular” statement is clear. �

We next give a particular case when the Γm(R)’s eventually repeat in blocks of
length n, when Zn(R)∗ = Id(R) \ {0, 1} for some positive integer n. However, this
may happen even when Zn(R)∗ 6= Id(R) \ {0, 1} (see Example 4.13(b)).

Theorem 4.2. Let R be a commutative ring and n a positive integer. Then the
following statements are equivalent.

(1) xn ∈ Id(R) for every x ∈ Z(R).
(2) Zn(R)∗ = Id(R) \ {0, 1}.

Moreover, if either of the above holds, then Zkn+j(R)∗ = Zn+j(R)∗ for every
positive integer k and integer j with 0 ≤ j < n, and thus Γkn+j(R) = Γn+j(R)
for every positive integer k and integer j with 0 ≤ j < n, i.e., Γr(R) = Γs(R) for
integers r, s ≥ n if r ≡ s(mod n).

Proof. The equivalence of statements (1) and (2) is clear since Id(R) \ {0, 1} ⊆
Zm(R)∗ for every positive integer m.

For the “moreover” statement, let x ∈ Z(R). Then xkn+j = (xn)kxj = xnxj =
xn+j since xn ∈ Id(R). Thus Zkn+j(R)∗ = Zn+j(R)∗ for every positive integer k
and integer j with 0 ≤ j < n. �

In view of the above theorem, it is important to know when there is a positive
integer n such that xn is idempotent for every x ∈ Z(R). As in [15], R is a Euler
ring if for every x ∈ R, there is a positive integer n such that xn is idempotent;
and R is an exact-Euler ring if there is a positive integer n such that xn is idem-
potent for every x ∈ R. We define a commutative ring R to be a Z-Euler ring if
for every x ∈ Z(R), there is a positive integer n such that xn is idempotent; and
R is a Z-exact-Euler ring if there is a positive integer n such that xn is idempotent
for every x ∈ Z(R). An exact-Euler (resp., Z-exact-Euler) ring is certainly a Eu-
ler (resp., Z-Euler) ring, but the converse need not hold, see Example 4.8(c) and
Example 4.13(c)(resp., Example 3.4).
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For a commutative ring R, let γ(R) (resp., γZ(R)) be the least positive integer
n such that xn is idempotent for every x ∈ R (resp., x ∈ Z(R)); if no such n exists,
set γ(R) = ∞ (resp., γZ(R) = ∞). Clearly, γZ(R) ≤ γ(R). Example 4.8 shows
that the inequaliy may be strict.

We have the following characterization of exact-Euler commutative rings. Note
that a finite commutative ring is always an exact-Euler ring.

Theorem 4.3. ([15, Theorem 4.1 and Proposition 4.2]) Let R be commutative ring.
Then the following statements are equivalent.

(1) R is an exact-Euler ring.
(2) R is π-regular (i.e., zero-dimensional), and there are positive integers m

and n such that xm = 0 for every x ∈ Nil(R) and un = 1 for every
u ∈ U(R). Moreover, in this case, xmn is idempotent for every x ∈ R.

In particular, a finite commutative ring is an exact-Euler ring.

Corollary 4.4. Let R be a finite commutative ring. Then there is a positive integer
n such that Γkn+j(R) = Γn+j(R) for every positive integer k and integer j with
0 ≤ j < n, i.e., Γr(R) = Γs(R) for integers r, s ≥ n if r ≡ s(mod n). Moreover,
either Γk(R) = ∅ for every integer k ≥ n or |Γk(R)| ≥ 2 for every positive integer
k.

Proof. Since R is finite, there is a positive integer n such that xn ∈ Id(R) for
every x ∈ R by Theorem 4.3. If Z(R) = Nil(R), then Zk(R) = {0} for k ≥ n.
If Z(R) 6= Nil(R), then Zn(R)∗ = Id(R) \ {0, 1} 6= ∅. If Zk(R) = {0}, then
Γk(R) = ∅. Otherwise, |Zk(R)∗| ≥ |Id(R)\{0, 1}| ≥ 2. The proof now follows from
Theorem 4.2. �

Remark 4.5. (a) Let R be a π-regular (i.e., zero-dimensional) commutative ring.
If there are positive integers m and n such that xm = 0 for every x ∈ Nil(R)
and un = 1 for every u ∈ U(R), then γ(R) ≤ mn by Theorem 4.3. However,
we may have γ(R) < mn. For example, let R = Z3 × Z4. Then m = n = 2 in
Theorem 4.3, but x2 is idempotent for every x ∈ R; so γ(R) = 2 < 4 = 2 · 2
(cf. Example 4.14(b)). As another example, let T = Z8. Then m = 3, n = 2 in
Theorem 4.3, but x4 ∈ Id(T ) for every x ∈ T and 33 = 3 6∈ Id(T ); so γ(T ) = 4 <
6 = 3 · 2 (cf. Example 4.14(a)).

(b) Let R be a local ring with maximal ideal M . If R is Euler (resp., exact-
Euler), then M = Nil(R) (resp., the index of nilpotency nM < ∞). If R is finite
with n the least positive integer such that un = 1 for every u ∈ U(R) and m = nM ,
then γZ(R) = m and γ(R) = min{kn | kn ≥ m, k a positive integer} since uj = 1
for every u ∈ U(R) if and only if n|j by a standard “division algorithm” argument.

In some cases, to show that R is an exact-Euler ring, we only need to check the
elements of Z(R) (i.e., show that R is a Z-exact-Euler ring). To prove this, we will
need the following lemma.

Lemma 4.6. Let R be a commutative ring, e ∈ R a nontrivial idempotent, and
n a positive integer. If f = (ex)n is idempotent for x ∈ R \ Z(R), then f = e.
Moreover, if in addition, (1− e)xn = 1− e, then xn = 1.

Proof. Assume that f = (ex)n = exn is idempotent. Then (1−e)f = (1−e)exn = 0
and (1− f)exn = (1− f)f = 0. Thus f = ef , and (1− f)e = 0 since x ∈ R \Z(R).
Hence ef = e; so f = ef = e.
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Fot the “moreover” statement, assume that (1−e)xn = 1−e. Then exn = f = e
and (1− e)xn = 1− e; so xn = exn + (1− e)xn = e+ (1− e) = 1. �

Theorem 4.7. Let R be a commutative ring with Z(R) 6= Nil(R) and n a positive
integer. Then the following statements are equivalent.

(1) xn is idempotent for every x ∈ R, i.e., R is an exact-Euler ring..
(2) xn is idempotent for every x ∈ Z(R), i.e., R is a Z-exact-Euler ring.

In particular, γ(R) = γZ(R) when Z(R) 6= Nil(R).

Proof. (1)⇒ (2) This is clear.
(2)⇒ (1) Since Z(R) 6= Nil(R) and xn is idempotent for every x ∈ Z(R), there

is an idempotent e ∈ Z(R)∗. Now, let y ∈ R \ Z(R). Then ey, (1− e)y ∈ Z(R); so
(ey)n = eyn and [(1−e)y]n = (1−e)yn are idempotent by hypothesis. Thus yn = 1
by Lemma 4.6; so yn is idempotent. Hence xn is idempotent for every x ∈ R.

The “in particular” statement is clear. �

The following three examples show that the hypothesis “Z(R) 6= Nil(R)” is
crucial in Theorem 4.7. Note that if Z(R) = Nil(R), then (2) of Theorem 4.7 holds
(i.e., R is a Z-exact-Euler ring) if and only if nx ≤ n for every x ∈ Nil(R). Recall
that the idealization R(+)M of an R-module M is the commutative ring R ×M
with (a,m)+(b, n) = (a+b,m+n), (a,m)(b, n) = (ab, am+bn), and identity (1, 0).
Note that ({0}(+)M)2 = {(0, 0)}.
Example 4.8. (a) Let R be an integral domain. Then Z(R) = Nil(R) = {0}; so
R is clearly Z-Euler and exact-Z-Euler with γZ(R) = 1. However, it is easy to show
that R is Euler (resp., exact Euler) if and only if R is a field which is an algebraic
extension of a finite field (resp., a finite field). For R = Fpn , we have γ(R) = pn−1
(since R∗ is cyclic) and γZ(R) = 1.

(b) Let R = Z(+)Z. Then Z(R) = Nil(R) = {0}(+)Z and x2 = 0 for every
x ∈ Z(R); so x2 is idempotent for every x ∈ Z(R). However, (2, 0)2 = (4, 0); so x2

is not idempotent for some x ∈ R. Thus the “(2)⇒ (1)” implication of Theorem 4.7
fails. In fact, (2, 0)n = (2n, 0) is not idempotent for any positive integer n; so R is
not even a Euler ring. Note that γZ(R) = 2, γ(R) =∞, and R is neither local nor
zero-dimensional.

(c) For a zero-dimensional local example, let R = K[X]/(X2) = K[x] = {a+bx |
a, b ∈ K}, where K is a field. Then Z(R) = Nil(R) = (x), U(R) = {a + bx | a ∈
K∗, b ∈ K}, and y2 = 0 is idempotent for every y ∈ (x); so γZ(R) = 2. If K
is finite, then yn = 1 is idempotent for every y ∈ K∗ and n a positive integral
multiple of |K| − 1 since the multiplicative group K∗ is cyclic. Thus (a + bx)n =
an + nan−1bx = 1 when a 6= 0, char(K)|n, and (|K| − 1)|n. However, if K is
infinite, then there is no positive integer n such that yn is idempotent for every
y ∈ K; so γ(R) = ∞ when K is infinite. Hence, as in (a) above, R is a Euler
(resp., exact-Euler) ring if and only if K is an algebraic extension of a finite field
(resp., a finite field). For K = Fpn , we have γ(R) = lcm(pn − 1, p) = p(pn − 1) and
γZ(R) = 2.

We next show that the Zn(R)’s, and thus the Γn(R)’s, are eventually repeating
in blocks for certain nice zero-dimensional commutative rings R. The “Z(R) =
Nil(R)” case was handled in Theorem 3.3.

Theorem 4.9. Let R be a commutative ring with Z(R) 6= Nil(R). Then the
following statements are equivalent.
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(1) R is an exact-Euler ring.
(2) R is π-regular (i.e., zero-dimensional), and xmn is idempotent for every

x ∈ R, where m and n are positive integers such that xm = 0 for every
x ∈ Nil(R) and un = 1 for every u ∈ U(R).

(3) Zkmn(R)∗ = Zmn(R)∗ = Id(R) \ {0, 1} 6= ∅ for every positive integer k,
where m and n are positive integers such that xm = 0 for every x ∈ Nil(R)
and un = 1 for every u ∈ U(R).

Moreover, if the above hold, then Zkmn+j(R)∗ = Zmn+j(R)∗, and thus Γkmn+j(R) =
Γmn+j(R) and |Γk(R)| ≥ 2, for every positve integer k and integer j with 0 ≤ j <
mn, i.e., Γr(R) = Γs(R) for integers r, s ≥ mn if r ≡ s(mod mn).

Proof. (1)⇒ (2) This is clear by Theorem 4.3.
(2)⇒ (3) This follows directly from Theorem 4.2 and Theorem 4.3.
(3) ⇒ (1) Since xmn ∈ Id(R) for every x ∈ Z(R) and Z(R) 6= Nil(R), we have

xmn ∈ Id(R) for every x ∈ R by Theorem 4.7. Thus R is an exact-Euler ring.
The first part of the “moreover” statement, also follows from Theorem 4.2. In

addition, |Γk(R)| ≥ 2 for every positive integer k since ∅ 6= Id(R)\{0, 1} ⊆ Zk(R)∗

for every positive integer k. �

A commutative ring R is von Neumann regular if for every x ∈ R, there is a
y ∈ R such that x2y = x. Recall that a commutative ring R is von Neumann
regular if and only if R is reduced and zero-dimensional ([22, Theorem 3.1]), if and
only if for every x ∈ R, there is an e ∈ Id(R) and u ∈ U(R) such that x = eu ([22,
Corollary 3.3]). Thus a commutative von Neumann regular ring is just a reduced
π-regular ring. For a recent article on von Neumann regular rings, see [4]. The
zero-divisor graph Γ(R) for a commutative von Neumann regular ring R has been
studied in [24] and [10].

If R is a commutative von Neumann regular ring, but not a field, then Z(R) 6=
Nil(R), and thus γ(R) = γZ(R) by Theorem 4.7. The next result shows that, in
this case, γ(R) is the least positive integer m such that um = 1 for every u ∈ U(R).
Moreover, if un = 1 for every u ∈ U(R), then γ(R)|n.

Theorem 4.10. Let R be a commutative von Neumann regular ring that is not a
field and n a positive integer. Then the following statements are equivalent.

(1) xn ∈ Id(R) for every x ∈ R, i.e., R is an exact-Euler ring.
(2) xn ∈ Id(R) for every x ∈ Z(R), i.e., R is a Z-exact-Euler ring.
(3) un = 1 for every u ∈ U(R).
(4) γ(R)|n.

Moreover, γ(R) = γZ(R) is the least positive integer m such that um = 1 for
every u ∈ U(R). If no such m exists, then γ(R) = γZ(R) =∞.

Proof. (1)⇔ (2) This is clear by Theorem 4.7.
(1)⇒ (3) This is clear since Id(R) ∩ U(R) = {1}.
(3) ⇒ (1) Let x ∈ R. Then x = eu for some e ∈ Id(R) and u ∈ U(R) since R

is von Neumann regular. Thus xn = (eu)n = enun = e ∈ Id(R) since un = 1 by
hypothesis.

(3)⇒ (4) Let γ(R) = m; so m is the least positive integer such that um = 1 for
every u ∈ U(R) by (1) ⇔ (3) above. A standard “division algorithm” argument
then shows that m|n.

(4)⇒ (1) This is clear by definition.
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The “moreover” statement is clear . �

The next theorem shows that the Zk(R)∗’s, and thus the Γk(R)’s, repeat in
blocks of length n when R is a commutative von Neumann regular ring in which the
elements of U(R) have bounded order n (this is the “m = 1” case for Theorem 4.9).
Example 4.13(b) shows that the Γk(R)’s can all be equal, all distinct, or repeat in
blocks when R is a commutative von Neumann regular ring with γ(R) =∞ .

Theorem 4.11. Let R be a commutative von Neumann regular ring that is not a
field such that there is a positive integer n such that un = 1 for every u ∈ U(R).
Then Zkn(R)∗ = Zn(R)∗ = Id(R) \ {0, 1} 6= ∅ and Zkn+j(R)∗ = Zj(R)∗ for every
positive integer k and integer j with 1 ≤ j ≤ n. Thus Γkn+j(R) = Γj(R) for every
positive integer k and integer j with 1 ≤ j ≤ n, i.e., Γr(R) = Γs(R) for positive
integers r, s if r ≡ s(mod n). In particular, Γkn+1(R) = Γ(R) and |Γk(R)| ≥ 2 for
every positive integer k.

Proof. Let x ∈ Z(R). Then x = eu for some e ∈ Id(R) \ {1} and u ∈ U(R)
since R is von Neumann regular. Since un = 1 for every u ∈ U(R), we have
xn = (eu)n = enun = e ∈ Zn(R). Thus Zkn(R)∗ = Zn(R)∗ = Id(R) \ {0, 1} for
every positive integer k. Let k be a positive integer and j an integer with 1 ≤ j ≤ n.
Then xkn+j = xknxj = (xn)kxj = ek(eu)j = e(euj) = euj = (eu)j = xj ; so
Zkn+j(R)∗ = Zj(R)∗, and hence Γkn+j(R) = Γj(R).

The “in particular” statement is clear since Id(R) \ {0, 1} ⊆ Zk(R)∗ for every
positive integer k and |Id(R) \ {0, 1}| ≥ 2 since R is reduced and not a field. �

Corollary 4.12. (cf. Example 4.14(c)) Let R be a reduced finite commutative ring
that is not a field. Then there is a positive integer n such that Γkn+j(R) = Γj(R)
for every positive integer k and integer j with 1 ≤ j ≤ n, i.e., Γr(R) = Γs(R) for
positive integers r, s if r ≡ s(mod n). Moreover, |Γk(R)| ≥ 2 for every positive
integer k.

Proof. Since R is a reduced finite commutative ring, R is von Neumann regular
and there is a positive integer n such that un = 1 for every u ∈ U(R). The result
now follows by Theorem 4.11. �

We next give several examples to illustate Theorem 4.11. We use the easily
proved fact that γ(R1 × R2) = γZ(R1 × R2) = lcm(γ(R1), γ(R2)) for any two
integral domains R1 and R2. Moreover, γ(R1 × R2) = γZ(R1 × R2) for any two
commutative rings R1 and R2 by Theorem 4.7 since Z(R1 ×R2) 6= Nil(R1 ×R2).
However, γ(Z8) = 4 and γ(Z9) = 6, but γ(Z8 × Z9) = 6 < 12 = lcm(4, 6) (cf.
Example 4.14(b)).

Example 4.13. (a) (cf. Example 2.1(c)) Let R be a Boolean ring that is not a field.
Then Nil(R) = {0} and U(R) = {1}; so we may choose n = 1 in Theorem 4.11
(or m = n = 1 in Theorem 4.9). Thus Zk(R)∗ = Z(R)∗ = Id(R) \ {0, 1} 6= ∅, and
hence Γk(R) = Γ(R) 6= ∅, for every positive integer k.

(b) Let R =
∏
α∈ΛKα, where every Kα is a field and |Λ| ≥ 2. Then R is a

commutative von Neumann regular ring that is not a field, U(R) = {(xα) ∈ R |
xα 6= 0 for every α ∈ Λ}, Z(R) = R \ U(R) = {(xα) ∈ R | xα = 0 for some α ∈ Λ},
and Id(R) = {(xα) ∈ R | xα = 0 or 1 for every α ∈ Λ}. Note that the elements of
U(R) have bounded order if and only if every Kα is finite and {|Kα|}α∈Λ is finite.
We consider several cases when Kα = K for every α ∈ Λ.
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(1) Let K = C. In this case, Zn(R)∗ = Z(R)∗ for every positive integer n; so
Γn(R) = Γ(R) for every positive integer n, and γ(R) = γZ(R) =∞.

(2) Let K = R. In this case, Zn(R)∗ = Z(R)∗ for every odd positive integer n,
and Zn(R) = {(xα) ∈ Z(R) | xα ≥ 0} for every even positive integer n. So
Γn(R) = Γ(R) for every odd positive integer n, Γn(R) = Γ2(R) for every
even positive integer n, and Γ2(R) ( Γ(R). Also, γ(R) = γZ(R) =∞.

(3) Let K = Q. In this case, the Zn(R)∗’s, and thus the Γn(R)’s, are all distinct
and nonempty since (2m, 0, . . .) ∈ Zm(R)∗ \Zn(R)∗ when m < n. However,
Γn(R) ⊆ Γm(R) when m|n, and γ(R) = γZ(R) =∞.

(4) Let K = Fpm . In this case, n = pm − 1 in Theorem 4.11 since U(K) = K∗

is cyclic, and thus γ(R) = γZ(R) = pm − 1 by Theorem 4.10. Hence
Zkn+j(R)∗ = Zj(R)∗, and thus Γkn+j(R) = Γj(R) for every positive integer
k and integer j with 1 ≤ j ≤ n, i.e., Γr(R) = Γs(R) for positive integers
r, s if r ≡ s(mod n).

(c) Let R =
∏∞
i=1 Z2 + ⊕∞i=1F2i ( T =

∏∞
i=1 F2i . Then R and T are both

commutative von Neumann regular rings, and every u ∈ U(R) has finite order, but
the orders are not bounded. Thus R is a Euler ring, but not an exact-Euler ring;
so γ(R) = γZ(R) =∞. The Zn(R)∗’s are all distinct, and thus the Γn(R)’s are all
distinct. Also, T is not a Euler ring, γ(T ) = γZ(T ) = ∞, and the Zn(T )∗’s and
Γn(T )’s are all distinct.

In the next example, we compute γ(R) and γZ(R) when R is either Zn or a finite
commutative von Neumann regular ring.

Example 4.14. (a) We first consider R = Zpm for a prime p and integer m ≥ 1. If
p is odd, then U(Zpm) is cyclic of order pm−1(p−1) and its maximal ideal pZpm has
index of nilpotence npZpm

= m. Thus γZ(Zpm) = m, and γ(Zpm) = pm−1(p − 1)

since pm−1(p−1) ≥ m for everym ≥ 1. If p = 2, then U(Z2m) is cyclic of order 1 and

2 for m = 1, 2, respectively, and isomorphic to Z2×Z2m−2 for m ≥ 3; so u2m−2

= 1
for every u ∈ U(Z2m) when m ≥ 3. Since 2Z2m has index of nilpotency n2Z2m

= m,
we have γZ(Z2m) = m, γ(Z2m) = 2m−1 when m = 1, 2, 3 (cf. Remark 4.5(b) for
m = 3), and γZ(Z2m) = m,γ(Z2m) = 2m−2 when m ≥ 4 since 2m−2 ≥ m for every
m ≥ 4.

(b) Let R = Zpn1
1
×· · ·×Zpnk

k
, where k ≥ 2, the pi are primes with p1 ≤ · · · ≤ pk,

and the ni are positive integers. When the primes pi are all distinct, we have
R = Zn for n = pn1

1 · · · p
nk

k . Since Z(R) 6= Nil(R), we have γ(R) = γZ(R) = m by
Theorem 4.9. We consider three case to compute m.

(1) Let p1 = · · · = pk = 2 and n1 ≤ · · · ≤ nk. Then γ(R) = γZ(R) = γ(Z2nk ) =
2nk−1 when nk = 1, 2, 3, and 2nk−2 when nk ≥ 4, by part (a) above.

(2) Let p1 = · · · = pi = 2 for i with 1 ≤ i < k, n1 ≤ · · · ≤ ni, and pi+1 > 2.

Then γ(R) = γZ(R) = lcm(p
ni+1−1
i+1 (pi+1−1), . . . , pnk−1

k (pk−1)) for ni ≤ 2

since pi+1− 1 ≥ 2 is even, and γ(R) = γZ(R) = lcm(2ni−2, p
ni+1−1
i+1 (pni+1

−
1), . . . , pnk−1

k (pk − 1)) for ni ≥ 4. For ni = 3, γ(R) = γZ(R) = 4 if
pi+1 = · · · = pk = 3 and ni+1 = · · · = nk = 1, and γ(R) = γZ(R) =

lcm(p
ni+1−1
i+1 (pi+1 − 1), . . . , pnk−1

k (pk − 1)) otherwise (i.e., some nj ≥ 2 or

pj ≥ 5 for i + 1 ≤ j ≤ k) since then either p
nj+1−1
j+1 ≥ 3 or pj+1 − 1 ≥ 4 is

even (cf. Remark 4.5(b)).

(3) Let p1 > 2. Then γ(R) = γZ(R) = lcm(pn1−1
1 (p1 − 1), . . . , pnk−1

k (pk − 1)).
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In a similar manner, one can compute γ(R) and γZ(R) when R is any Artinian
commutative ring.

(c) Let R be a finite commutative von Neumann regular ring that is not a field.
Then R = Fpn1

1
×· · ·×Fpnk

k
, where the pi are primes, ni positive integers, and k ≥ 2.

Since every U(Fpni
i

) is cyclic of order pni
i −1, we have m = lcm(pn1

1 −1, . . . , pnk

k −1)

is the least positive integer such that um = 1 for every u ∈ U(R). Thus γ(R) =
γZ(R) = lcm(pn1

1 − 1, . . . , pnk

k − 1) by Theorem 4.10. For R = Fpn1
1

, we have

γ(R) = pn1
1 − 1 and γZ(R) = 1.

Recall that a commutative ring R is a p.p. ring if every principal ideal of R is
projective, equivalently, if every element of R is the product of an idempotent and
a regular element of R ([20] and [25, Proposition 15]). Thus a commutative p.p.
ring that is not an integral domain has nontrivial idempotents. For example, a
commutative von Neumann regular ring is a p.p. ring, and Z×Z is a p.p. ring that
is not von Neumann regular. Also, note that a finite commutative ring is a p.p.
ring if and only if it is von Neumann regular, if and only if it is a finite product of
finite fields.

The nextl result gives a characterization of certain p.p. rings.

Theorem 4.15. Let R be a reduced commutative ring that is not an integral domain
and n a positive integer. Then the following statements are equivalent.

(1) R is a p.p. ring and xn is idempotent for every x ∈ Z(R).
(2) R is a p.p. ring and xn is idempotent for every x ∈ R.
(3) R is a von Neumann regular ring and xn is idempotent for every x ∈ R.
(4) R is a von Neumann regular ring and xn is idempotent for every x ∈ Z(R).
(5) R is a von Neumann regular ring and un = 1 for every u ∈ U(R).
(6) Zn(R)∗ = Id(R) \ {0, 1} 6= ∅.

Moreover, if any of the above hold, then Γkn+j(R) = Γj(R) 6= ∅ for every positive
integer k and integer j with 1 ≤ j ≤ n, i.e., Γr(R) = Γs(R) for positive integers
r, s if r ≡ s(mod n).

Proof. (1) ⇒ (2) Z(R) 6= Nil(R) since R is reduced and not an integral domain;
so xn ∈ Id(R) for every x ∈ R by Theorem 4.7.

(2) ⇒ (3) Since xn ∈ Id(R) for every x ∈ R, every regular element of R is a
unit. Let y ∈ R. Then y = eu for some e ∈ Id(R) and u ∈ U(R) since R is a p.p.
ring and every regular element of R is a unit; so R is von Neumann regular.

(3)⇒ (4) This is clear.
(4)⇒ (5) This follows from Theorem 4.10.
(5)⇒ (6) This follows from Theorem 4.11.
(6) ⇒ (1) We have Z(R) 6= Nil(R) as in (1) ⇒ (2) above. Thus xn ∈ Id(R)

for every x ∈ R by Theorem 4.7. Hence R is an exact-Euler ring, and thus R is π-
regular by Theorem 4.3. Since R is reduced and π-regular, R is also von Neumann
regular. Hence R is a p.p. ring and xn ∈ Id(R) for every x ∈ Z(R).

The “morever” statement follows from Theorem 4.11. �

We end this section with a short discussion summarizing when Γn(R) is con-
nected (cf. Theorem 2.2). We say that a commutative ring R (or commutative semi-
group S with 0) satisfies property (∗n) for a positive integer n if either Zn(R) = {0}
or x ∈ Z(R) ⇒ xn ∈ Z(Zn(R)), i.e., either Zn(R) = {0} or Z(Zn(R)) = Zn(R);
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and that R satisfies property (∗) if it satisfies (∗n) for every positive integer n.
Every commutative ring clearly satisfies (∗1).

Theorem 4.16. Let R be a commutative ring and n a positive integer.
(a) R satisfies (∗n) if and only if Γn(R) is connected.
(b) R satisfies (∗n) if and only if Γn(R) = Γ(Zn(R)).
(c) T (R) satisfies (∗n) if and only if R satisfies (∗n).
(d) Let {Rα}α∈Λ be a family of commutative rings. Then R =

∏
α∈ΛRα satisfies

(∗n) if and only if Rα satisfies (∗n) for every α ∈ Λ.
(e) If R is reduced, zero-dimensional, or Z(R) = Nil(R), then R satisfies (∗).
(f) If R is Artinian, then R satisfies (∗).
(g) If R is local with maximal ideal Nil(R), then R satisfies (∗).

Proof. (a) This follows from Theorem 2.2.
(b) This also follows from Theorem 2.2.
(c) This follows from Theorem 2.11 and (a).
(d) Let R =

∏
α∈ΛRα. The result is clear if |Λ| = 1; so assume that |Λ| ≥ 2.

In this case, Zn(R) 6= {0} since R has nontrivial idempotents. First, suppose
that R satisfies (∗n), and let α ∈ Λ. For 0 6= xα ∈ Z(Rα), let 0 6= x =
(1, . . . , 1, xα, 1, . . .) ∈ Z(R). Then 0 6= xn ∈ Z(Zn(R)) by hypothesis; so there
is a 0 6= yn = (0, . . . , 0, ynα, 0, . . .) ∈ Zn(R) with xnyn = 0. Thus 0 6= ynα ∈ Zn(Rα)
and xnαy

n
α = 0. Hence xnα ∈ Z(Zn(Rα)); so Rα satisfies (∗n).

Conversely, suppose that Rα satisfies (∗n) for every α ∈ Λ. Note that Zn(R) 6=
{0}. Let 0 6= x = (xα) ∈ Z(R). First, suppose that xβ = 0 for some β ∈ Λ.
Let y = (0, . . . , 0, 1β , 0, . . .) ∈ Z(R). Then 0 6= y = yn ∈ Zn(R) and xnyn = 0.
Thus xn ∈ Z(Zn(R)). So we may assume that xα 6= 0 for every α ∈ Λ. Hence
0 6= xβ ∈ Z(Rβ) for some β ∈ Λ. By a similar argument, we may assume that
xnβ 6= 0. SinceRβ satisfies (∗n) by hypothesis and xnβ 6= 0, there is a yβ ∈ Z(Rβ) with

xnβy
n
β = 0 and ynβ 6= 0. Let y = (0, . . . , 0, yβ , 0, . . .) ∈ Z(R). Then 0 6= yn ∈ Zn(R)

and xnyn = 0. Thus xn ∈ Z(Zn(R)); so R satisfies (∗n).
(e) The reduced (resp., zero-dimensional, Z(R) = Nil(R)) case follows from

Theorem 2.4 (resp., Theorem 4.1, Theorem 3.3) and (a).
(f) This is a special case of (e) since an Artinian commutative ring is zero-

dimensional.
(g) This is a special case of (e) since, in this case, Z(R) = Nil(R). �

Example 2.1(a) shows that, unlike the Artinian case, a Noetherian ring R need
not satisfy (∗). Example 3.12 shows that for every integer n ≥ 2, there is a com-
mutative ring Rn that satisfies (∗m) if and only if m < n.

5. Additional n-divisor graphs

In this final section, we consider the n-zero-divisor graph analog for several other
related zero-divisor graphs, namely, the extended zero-divisor graph, annihilator
graph, and congruence-based zero-divisor graphs. Let S be a commutative semi-
group S with 0.

The extended zero-divisor graph of S is the (simple) graph Γ(S) with vertices
Z(S)∗, and distinct vertices x and y are adjacent if and only if xmyn = 0 for
positive integers m and n with xm 6= 0 and yn 6= 0; and the annihilator graph of S
is the (simple) graph AG(S) with vertices Z(S)∗, and distinct vertices x and y are
adjacent if and only if annS(x) ∪ annS(y) 6= annS(xy) (i.e., annS(x) ∪ annS(y) (
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annS(xy)). All three graphs Γ(S),Γ(S), and AG(S) have the same set of vertices
Z(S)∗. The graphs Γ(S) and AG(S) were first defined when S is a commutative
ring in [16] and [14], repectively, and then extended to commutative semigroups
with 0 in [11] and [1], respectively. For a unified treatment of these three graphs,
see [11].

We always have Γ(S) ⊆ Γ(S) and Γ(S) = Γ(Z(S)). If S 6= Z(S) (e.g., S has an
identity element), then we also have Γ(S) ⊆ AG(S) (cf. [1, Theorem 3.1] and [11]).
So we often assume that S = R. In this case, all four possible inclusions (i.e., each
⊆ is either ( or =) for Γ(R) ⊆ Γ(R) ⊆ AG(R) are possible ([11, Example 2.3]).
However, we need not have AG(S) = AG(Z(S)).

The following example shows that we may have Γ(S) = Γ(S) 6⊆ AG(S) when
S 6= Z(S) and AG(T ) 6= AG(Z(T )) even if T has an identity element.

Example 5.1. Let X be a set with |X| = α ≥ 1. Define S = X ∪ {0} to be a
commutative semigoup with 0 by defining xy = 0 for every x, y ∈ S; so S = Z(S).
Then Γ(S) = Γ(S) = Kα and AG(S) = Kα since annS(x) = S for every x ∈ S.
Thus Γ(S) = Γ(S) = Kα 6⊆ Kα = AG(S). Now define T = S ∪ {1} to be the
commutative semigroup with {0} obtained by adjoining an identity element 1 to
S. Then Z(T ) = S and AG(T ) = Kα since annT (x) = S for every 0 6= x ∈ S and
annT (0) = T . Hence AG(T ) = Kα 6= Kα = AG(Z(T )).

In a similar manner as to Γn(S), we define Γn(S) and AGn(S) to be the in-
duced subgraphs of Γ(S) and AG(S), respectively, with vertices Zn(S)∗. Note
that Γn(S) ⊆ Γn(S), and thus Γn(S) is connected when Γn(S) is connected, for
every integer n ≥ 2. If S 6= Z(S) (e.g., S has an identity element), then also
Γn(S) ⊆ AGn(S), and hence AGn(S) is connected when Γn(S) is connected, for ev-
ery integer n ≥ 2. Moreover, if Γn(S) is connected, then Γn(S) = Γ(Sn) = Γ(Zn(S))
when |Zn(S)∗| ≥ 2.

Clearly Γ(S) = Γ(S) when S is reduced, and Γn(S) = Γn(S) when Zn(S) is
reduced. We next consider some cases when Γn(S) = Γn(S).

Theorem 5.2. Let S be a commutative semigroup with 0.
(a) If S is reduced, then Γn(S) = Γn(S) for every positive integer n.
(b) Let N = sup{nx | x ∈ Nil(S)}. If N < ∞, then Γn(S) = Γn(S) for every

integer n ≥ N . In particular, if S is finite, then Γn(S) = Γn(S) for all large n.
(c) If Γn(S) = Γn(S), then Γkn(S) = Γkn(S) for every positive integer k. In

particular, if Γ(S) = Γ(S), then Γn(S) = Γn(S) for every positive integer n.

Proof. (a) Suppose that (xn)i(yn)j = 0 for x, y ∈ Z(S)∗ and positive integers n, i, j
with (xn)i, (yn)j 6= 0. Then xy ∈ Nil(S) = {0}; so xnyn = 0. Thus Γn(S) = Γn(S).

(b) Note that Zn(S) is reduced for n ≥ N . The proof is then similar to that in
part (a) above.

(c) Suppose that Γn(S) = Γn(S) and (xkn)i(ykn)j = 0 for positive integers
n, k, i, j with (xkn)i, (ykn)j 6= 0. Then (xn)ki(yn)kj = 0 with (xn)ki, (yn)kj 6= 0; so
xnyn = 0. Thus xknykn = 0, and hence Γkn(S) = Γkn(S). �

The following is an example where Γn(R) ( Γn(R) ( AGn(R) for every positive
integer n.

Example 5.3. (a) LetR = Z2[{Xn, Yn}∞n=1]/({X3n
n , Y 3n

n , X2n
n Y 2n

n }∞n=1) = Z2[{xn, yn}∞n=1].
Then R is a zero-dimensional commutative local ring with maximal ideal Z(R) =
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Nil(R) = ({xn, yn}∞n=1). Thus Γn(R), and hence Γn(R) and AGn(R), are con-
nected for every positive integer n by Theorem 3.3 or Theorem 4.1. Clearly
Zm(R) 6= Zn(R) for positive integers m < n since xmm ∈ Zm(R) \ Zn(R). Note
that Γn(R) ( Γn(R) since (xn)2(yn)2 = 0 with (xn)2, (yn)2 6= 0, but xnyn 6= 0.

(b) Let R = A × B, where A = Z2[{xn, yn}∞n=1] as in part (a) above and B =
Z2×Z2×Z2. Then R is a zero-dimensional commutative ring and Γn(R), and thus
Γn(R) and AGn(R), are connected for every positive integer n by Theorem 4.1.
It is easily checked that Zm(R) 6= Zn(R) for all positive integers m < n and
Γn(R) ( Γn(R) ( AGn(R) for every positive integer n.

(c) We may have Γ(R) ( Γ(R) ( AG(R) for a commutative ring R and Γn(R) =
Γn(R) = AGn(R) for some positive integer n. Let R = Z2 × Z8. Then it is easily
checked that Γ(R) ( Γ(R) ( AG(R) and Γ4(R) = Γ4(R) = AG4(R) = K2 = K1,1.

Let R be a commutative ring with 1 6= 0 and ∼ a multiplicative congruence
relation on R, i.e., ∼ is an equivalence relation and x ∼ y ⇒ xz ∼ yz for every
x, y, z ∈ R. Let R/∼ = {[x] | x ∈ R} be the set of congruence classes of ∼.
Then S = R/∼ is a commutative monoid under the multiplication [x][y] = [xy]
with zero element [0] and identity element [1]. As in [8], let Γ∼(R) = Γ(R/∼) be
the ∼-zero-divisor graph of R. We then define Γ∼(R) = Γ(R/∼) and AG∼(R) =
AG(R/∼) as in [11]. All three graphs have the same set of vertices Z(R/∼)∗,
and Γ∼(R) ⊆ Γ∼(R) ⊆ AG∼(R) ([11, Theorem 3.1(a)]). Note that I = [0] is a
semigroup ideal of R, and [x] and [y] are adjacent in Γ∼(R) (resp., Γ∼(R), AG∼(R))
if and only if xy ∈ I (resp., xmyn ∈ I for positive integers m and n with xm, yn 6∈ I,
(I : x) ∪ (I : y) 6= (I : xy)).

For a positive integer n, we define Γn∼(R) = Γn(R/∼), Γn∼(R) = Γn(R/∼),
and AGn∼(R) = AGn(R/∼) with vertices Zn(R/∼)∗. Thus Γn∼(R) ⊆ Γn∼(R) ⊆
AGn∼(R) for every positive integer n.

When ∼ is defined by x ∼ y ⇔ annR(x) = annR(y), then Γ∼(R) = ΓE(R)
is the compressed zero-divisor graph (see [6] and [7]) and [x][y] = [0] ⇔ xy = 0.
Moreover, RE = R/∼ is a Boolean monoid when R is reduced; so Γn∼(R) =
Γ∼(R) = Γ∼(R) = Γn∼(R) for every positive integer n when R is reduced.

Let I be an ideal of R. When ∼ is defined by x ∼ y ⇔ x = y or x, y ∈ I, then
R/∼ is the Rees semigroup of R with respect to I and Z(R/∼) = ZI(R) = {x ∈
R \ I | xy ∈ I for some y ∈ R \ I}. Then Γ∼(R), Γ∼(R), and AG∼(R) are the
usual ideal-based graphs ΓI(R), ΓI(R), and AGI(R), respectively, and x and y are
adjacent in ΓI(R) (resp., ΓI(R), AGI(R)) if and only if xy ∈ I (resp., xmyn ∈ I for
positive integers m and n with xm, yn 6∈ I, (I : x) ∪ (I : y) 6= (I : xy)).

We leave a more detailed study of these graphs to a later time and place.
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