1 INTRODUCTION

Throughout this paper, all rings are commutative with identity and if R is a ring, then $Z(R)$ denotes the set of zerodivisors of R and $\text{Nil}(R)$ denotes the set of nilpotent elements of R. Our main purpose is to provide another generalization of pseudo-valuation domains (as introduced in [10]) to the context of arbitrary rings (with $Z(R)$ possibly nonzero). Recall from [10] that an integral domain R with quotient field K is called a pseudo-valuation domain (PVD) in case each prime ideal P of R is strongly prime (or a strong prime), in the sense that $xy \in P$, $x \in K$, $y \in K$ implies that either $x \in P$ or $y \in P$. Anderson, Dobbs, and the author in [7] generalized the study of pseudo-valuation domains to the context of arbitrary rings. Recall from [7] that a prime ideal P of a ring R is said to be strongly prime (or a strong prime) if aP and bR are comparable for all $a, b \in R$. If R is an integral domain this is equivalent to the original definition of strongly prime as introduced by Hedstrom and Houston in [10] (cf. [1, Proposition 3.1], [2 Proposition 4.2], and [5, Proposition 3]). If each prime ideal of R is strongly prime, then R is called a pseudo-valuation ring (PVR).
First, recall from [6] and [8] that a prime ideal of R is called divided if it is comparable to every principal ideal of R; equivalently, if it is comparable to every ideal of R. If every prime ideal of R is divided, then R is called a divided ring.

In the following proposition, we show that if a ring R admits a strongly prime ideal, then $\text{Nil}(R)$ is a strongly prime ideal and thus $\text{Nil}(R)$ is a divided prime. This result justifies our focus in studying pseudo-valuation rings to be restricted to rings R where $\text{Nil}(R)$ is a divided prime.

PROPOSITION 0 Let P be a strongly prime ideal of a ring R. Then the prime ideals of R contained in P are strongly prime and are linearly ordered. In particular, $\text{Nil}(R)$ is strongly prime and therefore it is a divided prime.

Proof: Let Q be a prime ideal of R contained in P. By applying the same argument as in the proof of [7, Theorem 2], we conclude that Q is strongly prime. By [7, Lemma 1], P is comparable to every prime ideal of R and the prime ideals of R contained in P are linearly ordered. Hence, $\text{Nil}(R)$ is prime and therefore it is strongly prime and divided.

Now we state our definition of ϕ-pseudo-valuation rings.

DEFINITION Let R be a ring such that $\text{Nil}(R)$ is a divided prime, let S be the set of nonzerodivisors of R, let $T = R$, be the total quotient ring of R, and let $K = \mathbb{R}_{\text{Nil}(R)}$. Define $\phi : T \to K$ by $\phi(a/b) = a/b$ for every $a \in R$ and $b \in S$. Then ϕ is a ring homomorphism from T into K, and ϕ restricted to R is also a ring homomorphism from R into K given by $\phi(x) = x/1$ for every $x \in R$. Also, observe that $\phi(R)$ is a subring of K with identity. A prime ideal Q of $\phi(R)$ is called K-strongly prime if $xy \in Q$, $x \in K$, $y \in K$ implies that either $x \in Q$ or $y \in Q$. If each prime ideal of $\phi(R)$ is K-strongly prime, then $\phi(R)$ is called a K-pseudo-valuation ring (K-PVR). A prime ideal P of R is called ϕ-strongly prime, if $\phi(P)$ is a K-strongly prime ideal of $\phi(R)$. If each prime ideal of R is ϕ-strongly prime then R is called a ϕ-pseudo-valuation ring (ϕ-PVR). Observe that Q is a prime ideal of $\phi(R)$ if and only if $Q = \phi(P)$ for some prime ideal P of R, and R is a ϕ-PVR if and only if $\phi(R)$ is a K-PVR.
Throughout this section, R denotes a commutative ring with identity such that $\text{Nil}(R)$ is a divided prime. Given a ring R, let $K = R_{\text{Nil}(R)}$ and $T = R_S$, where S is the set of nonzerodivisors of R.

Observe that an integral domain R is a PVD if and only if it is a ϕ-PVR. In fact, in Corollary 7, we show that a PVR (in the sense of [7]) is always a ϕ-PVR. Also, observe that a quasi-local zero-dimensional ring is a ϕ-PVR. The following is an example of a zero-dimensional ϕ-PVR that is not a PVR.

EXAMPLE 1 ([7, Remark 15]) Let K be a field, $X,Y,$ and Z be indeterminates, and $R = K[X,Y,Z] / (X^2, Y^2, Z^2) = K[x,y,z]$. Then R is quasi-local zero-dimensional with maximal ideal $\text{Nil}(R) = (X,Y,Z) / (X^2, Y^2, Z^2) = (x,y,z)$; hence R is a ϕ-PVR. However, R is not a PVR since $xz \notin yR$ and $y \notin x\text{Nil}(R)$.

PROPOSITION 2 For a ring R, we have the following:
1. $\text{Ker}(\phi)$ is contained in $\text{Nil}(R)$.
2. $\phi(R)$ is an integral domain if and only if for every nonzero $w \in \text{Nil}(R)$ there exists a $z \in Z(R) \setminus \text{Nil}(R)$ such that $zw = 0$ in R.

Proof:
(1). Let $x \in \text{Ker}(\phi)$. Then $x = a/b$ for some $a \in R$ and $b \in S$ such that $\phi(a/b) = a/b = 0/1$ in K. Hence, $za = 0$ in R for some $z \in Z(R) \setminus \text{Nil}(R)$. Thus, $a \in \text{Nil}(R)$ since $\text{Nil}(R)$ is prime. Hence, $x = a/b = w \in \text{Nil}(R)$ since $b \in S$ and $\text{Nil}(R)$ is divided. (2). Suppose that $\phi(R)$ is an integral domain. Since $R/\text{Ker}(\phi) = \phi(R)$ and $\text{Ker}(\phi) \subset \text{Nil}(R)$, we have $\text{Ker}(\phi) = \text{Nil}(R)$, and the claim is now clear. Conversely, since for every nonzero $w \in \text{Nil}(R)$ there is a $z \in Z(R) \setminus \text{Nil}(R)$ such that $zw = 0$ in R, we have $\text{Ker}(\phi) = \text{Nil}(R)$. Since $\text{Nil}(R)$ is prime and $R/\text{Nil} = \phi(R)$, $\phi(R)$ is an integral domain.

PROPOSITION 3 For a ring R, we have the following:
1. $\text{Nil}(T) = \text{Nil}(R)$ and $\text{Nil}(K) = \text{Nil}(\phi(R)) = \phi(\text{Nil}(R))$.
2. Let $x \in \text{Nil}(K)$ and write $x = a/b$ for some $a \in R$ and $b \in R \setminus \text{Nil}(R)$. Then $a \in \text{Nil}(R)$ and $x = a/b = w/1$ in K for some $w \in \text{Nil}(R)$.
(3). Let \(x \in K \) and write \(x = a/b \) for some \(a \in R \) and
\(b \in R \setminus \text{Nil}(R) \). If \(a/b = i/1 \) in \(K \) for some \(i \in R \), then \(b | a \) in \(R \); in particular, \(a = (i+w)b \) in \(R \) for some \(w \in \text{Nil}(R) \), and therefore \(a \) is contained in every prime ideal of \(R \) which
contains \(i \).

(4). Let \(x \in R \) and \(y \in R \setminus \text{Nil}(R) \). If \(x/1 = y/1 \) in \(K \), then \(x
= uy \) in \(R \) for some unit \(u \) of \(R \); in particular, \((x) = (y) \) in \(R \).

Proof: (1). Note that \(\text{Nil}(T) = \text{Nil}(R) \) since \(\text{Nil}(R) \) is a
divided prime ideal of \(R \). For the second equality, we only
need show that \(\text{Nil}(K) = \text{Nil}(\phi(R)) \). Let \(x \in \text{Nil}(K) \) and write
\(x = a/b \) for some \(a \in R \) and \(b \in R \setminus \text{Nil}(R) \). Since \(\text{Nil}(R) \) is
prime, it follows that \(a \in \text{Nil}(R) \). Since \(\text{Nil}(R) \) is a divided
prime and \(a \in \text{Nil}(R) \) and \(b \in R \setminus \text{Nil}(R) \), \(x = a/b = w/1 \) for some
\(w \in \text{Nil}(R) \). Thus, \(x \in \text{Nil}(\phi(R)) \). (2). Clear by the proof of
(1). (3). Since \(a/b = i/1 \) in \(K \), \(z(a-bi) = 0 \) in \(R \) for some
\(z \in R \setminus \text{Nil}(R) \). Thus, \(a-bi = c \in \text{Nil}(R) \) since \(\text{Nil}(R) \) is prime.
Since \(b \in R \setminus \text{Nil}(R) \) and \(\text{Nil}(R) \) is a divided prime, \(c = wb \) for some
\(w \in \text{Nil}(R) \). Hence, \(a-bi = c = wb \). Thus, \(a = (i+w)b \).

(4). Since \(x/1 = y/1 \) in \(K \), \(z(x-y) = 0 \) in \(R \) for some
\(z \in R \setminus \text{Nil}(R) \). Thus, \(x-y = w \in \text{Nil}(R) \). Once again, since \(y
\in R \setminus \text{Nil}(R) \), \(w = dy \) for some \(d \in \text{Nil}(R) \). Hence, \(x-y = w = dy \).
Thus, \(x = (1+d)y \). Since \(1+d \) is a unit of \(R \), the claim is
clear.

In light of the above proposition, observe that \(K \) is
quasilocal, zero-dimensional, and a \(K \)-PVR with maximal ideal
\(\text{Nil}(\phi(R)) \). In general, let \(A \) be a divided ring and \(I \) be an
ideal of \(A \), and let \(R = A/I \). Then \(K \) is a \(K \)-PVR with maximal
ideal \(\text{Nil}(\phi(\text{Rad}(I))/I) \), where \(\text{Rad}(I) \) is the radical ideal of
\(I \) in \(A \).

The following result is an analogue of [10, Corollary
1.3] and [7, Lemma 1], also see [4, Proposition 1].

PROPOSITION 4 Let \(P \) be a \(\phi \)-strongly prime ideal of \(R \). Then
\(P \) (resp., \(\phi(P) \)) is a divided prime. In particular, if \(R \) is a
\(\phi \)-PVR, then \(R \) (resp., \(\phi(R) \)) is a divided ring and hence is
quasilocal.

Proof: Deny. Then for some ideal \(I \) of \(R \), there is an \(i \in
I \setminus P \) and a \(p \in P \setminus I \). Since \(\text{Nil}(R) \subset P \), \(i \in R \setminus \text{Nil}(R) \). Hence,
\[(p/1)(i/1) = p/1 \in \phi(P).\] Since \(i/1 \in \phi(P)\) by Proposition 3(4), \(p/1 \in \phi(P)\). Hence, \(i \mid p\) in \(R\) by Proposition 3(3). Thus, \(p \in I\) which is a contradiction.

The following result is an analogue of [10, Theorem 1.4], [2, Proposition 4.8], [4, Proposition 2], and [7, Theorem 2].

PROPOSITION 5 1. Let \(P\) be a \(\phi\)-strongly prime ideal of \(R\) and suppose that \(Q\) is a prime ideal of \(R\) contained in \(P\). Then \(Q\) is \(\phi\)-strongly prime. In particular, \(R\) is a \(\phi\)-PVR if and only if some maximal ideal of \(R\) is \(\phi\)-strongly prime.

2. Let \(P\) be a \(K\)-strongly prime ideal of \(\phi(R)\). If \(Q\) is a prime ideal of \(\phi(R)\) contained in \(P\), then \(Q\) is \(K\)-strongly prime. In particular, \(\phi(R)\) is a \(K\)-PVR if and only if some maximal ideal of \(\phi(R)\) is \(K\)-strongly prime.

Proof: (1). Suppose that \(xy \in \phi(Q)\) for some \(x \in K\) and \(y \in K\). If \(xy \in \text{Nil}(\phi(R))\), then either \(x \in \text{Nil}(\phi(R)) \subset \phi(Q)\) or \(y \in \text{Nil}(\phi(R)) \subset \phi(Q)\) since \(K\) is a \(K\)-PVR with maximal ideal \(\text{Nil}(\phi(R))\). Hence, we may assume that \(xy \in \text{Nil}(\phi(R))\) and \(x \in K\setminus\phi(R)\). Since \(xy \in \phi(P)\) and \(x \in K\setminus\phi(R)\), we must have \(y \in \phi(P)\). Since \(x(y^2/xy) = y \in \phi(P)\) and \(x \in K\setminus\phi(R)\), we must have \(y^2/xy = p/1 \in \phi(P)\) for some \(p \in P\). Thus, \(y^2 = (xy)(p/1)\) in \(K\). Since \(xy \in \phi(Q)\), \(y^2 \in \phi(Q)\). Thus, \(y \in \phi(Q)\). (2). Since every prime ideal of \(\phi(R)\) is of the form \(\phi(G)\) for some prime ideal \(G\) of \(R\), the claim is clear.

The following lemma is an analogue of [10, Proposition 1.2]. Since the proof is exactly the same as in [10], we leave the proof to the reader.

LEMMA 6 A prime ideal \(P\) of \(R\) is \(\phi\)-strongly prime if and only if \(x^{-1}\phi(P) \subset \phi(P)\) for every \(x \in K\setminus\phi(R)\).

COROLLARY 7 (1). A prime ideal \(P\) of \(R\) is \(\phi\)-strongly prime if and only if for every \(a, b \in R \setminus \text{Nil}(R)\), either \(a \mid b\) in \(R\) or \(aP \subset bP\).

(2). A ring \(R\) is a \(\phi\)-PVR if and only if for every \(a, b \in R \setminus \text{Nil}(R)\), either \(a \mid b\) in \(R\) or \(b \mid ac\) in \(R\) for every nonunit \(c\) of \(R\).

(3). If \(R\) is a PVR, then \(R\) is a \(\phi\)-PVR.
Proof: (1). Suppose that P is ϕ-strongly prime and $a, b \in R \setminus \text{Nil}(R)$ such that $a \mid b$ in R. Then $b/a \in K \setminus \Phi(R)$ by Proposition 3(3). Let $p \in P$. Then $(a/b)(p/1) = q/l$ in K for some $q \in P$ by Lemma 6. Thus, $ap = (q+w)b$ in R for some $w \in \text{Nil}(R)$ by Proposition 3(3). Hence, $ap \in bP$ in R. Thus, $ap \in bP$ in R. Conversely, suppose that for every $a, b \in R \setminus \text{Nil}(R)$ either $a \mid b$ or $aP \subset bP$. Let $x \in K \setminus \Phi(R)$. Then $x = b/a$ for some $a, b \in R \setminus \text{Nil}(R)$ (observe that $b \not\in \text{Nil}(R)$ since $\text{Nil}(R)$ is divided). Hence, a/b in R by Proposition 3(3). Thus, $aP \subset bP$ in R. Hence, $(a/b) \Phi(P) \subset \Phi(P)$. Thus, P is ϕ-strongly prime by Lemma 6. (2). If R is a ϕ-PVR with maximal ideal M, then the claim is clear by (1). Conversely, since for every $a, b \in R$ either $a \mid b^n$ or $b \mid a^n$ for some $n, m \geq 1$, the prime ideals of R are linearly ordered by [5, Theorem 1]. Hence R is quasilocal with maximal ideal M. Once again, the claim is clear by (1). (3). This is clear by [7, Theorem 5].

REMARK 8 It was shown in [7, Theorem 5] that a ring R is a PVR if and only for every $a, b \in R$, either $a \mid b$ or $b \mid ac$ for every nonunit c of R. Thus, Corollary 7(2) gives a clear difference between a PVR and a ϕ-PVR.

The first part of the following proposition follows easily since the prime ideals of a divided ring R are linearly ordered and $Z(R)$ is a union of prime ideals of R.

PROPOSITION 9 Let R be a divided ring. Then

(1). $Z(R)$ is a prime ideal of R.

(2). If $x \in T \setminus R$, then $x^{-1} \in T$.

Proof: (2). Let $x = a/b \in T \setminus R$ for some $a \in R$ and $b \in S$. Then $a \in S$ since R is divided. Hence, $x^{-1} = b/a \in T$.

Given an ideal I of R, then $I:I = \{x \in T : xI \subset I\}$ and $\Phi(I) : \Phi(I) = \{x \in K : x\Phi(I) \subset \Phi(I)\}$

PROPOSITION 10 Let R be a quasilocal ring with maximal ideal M. Then

(1). R is a ϕ-PVR if and only if $M:M$ is a ϕ-PVR with maximal ideal M.

(2). $\Phi(R)$ is a K-PVR if and only if $\Phi(M) : \Phi(M)$ is a K-PVR with maximal ideal $\Phi(M)$.
Proof: (1). Suppose that R is a ϕ-PVR. Let $x \in M:M \backslash R$. Then $\phi(x) \in K \backslash \phi(R)$ by Proposition 3(3). Since x is a unit of T by Proposition 9(2), $\phi(x^{-1}) \phi(M) = \phi(x^{-1}) \phi(M) \subset \phi(M)$ by Lemma 6. Thus, $x^{-1} \in M:M$. Thus, x is a unit of $M:M$. Hence, M is the maximal ideal of $M:M$. Thus, $M:M$ is a ϕ-PVR since $\phi(M)$ is K-strongly prime. The converse is clear. (2). This follows by a similar argument to that in (1).

Recall that a ring B is called an overring of R (resp., $\phi(R)$) if $R \subset B \subset T$ (resp., $\phi(R) \subset B \subset K$).

Proposition 11 Suppose that R is a ϕ-PVR with maximal ideal M.

(1). If B is an overring of $\phi(R)$ which contains an element of the form $1/s$ for some nonunit $s \in R \backslash \text{Nil}(R)$, then $x^{-1} \in B$ for every $x \in K \backslash \phi(R)$. Furthermore, B is a K-PVR.

(2). If B is an overring of R which contains an element of the form $1/s$ for some nonunit $s \in S$, then $x^{-1} \in B$ for every $x \in T \backslash R$. Furthermore B is a ϕ-PVR.

Proof: (1). Suppose that B is an overring of $\phi(R)$ which contains an element of the form $1/s$ for some nonunit $s \in R \backslash \text{Nil}(R)$. Let $x \in K \backslash \phi(R)$. Then $x^{-1}(s/1) \in \phi(M) \subset \phi(R)$ by Lemma 6. Hence, $x^{-1} = (x^{-1}s)/s \in B$ since $s^{-1} \in B$. Now, let N be a maximal ideal of B and $xy \in N$ for some $x, y \in K$ with $x \in K \backslash \phi(R)$. Then $y = x^{-1}(xy) \in N$ since $x^{-1} \in B$. Thus, N is K-strongly prime. Hence, B is a K-PVR. (2). Suppose that B is an overring of R which contains an element of the form $1/s$ for some nonunit $s \in S$. Then $1/s \in \phi(B)$. Hence, $\phi(B)$ is a K-PVR by (1) and therefore B is a ϕ-PVR. Let $x = a/b \in T \backslash R$ for some $a \in R$ and $b \in S$. Then $x^{-1} = b/a \in T$ by Proposition 9(2). Since $b/a \in R$, $a|b \in R$ by Corollary 7(2). Hence, $sb = ga$ in R for some $g \in R$. Thus, $x^{-1} = b/a = g/s \in B$ since $s^{-1} \in B$.

Corollary 12 Let R be a ϕ-PVR with maximal ideal M. Then

(1). For every prime ideal P of R, $P:P$ is a ϕ-PVR.

(2). For every prime ideal P of $\phi(R)$, $P:P$ is a K-PVR.

(3). For every prime ideal P of $\phi(R)$, $\phi(P)$ is a K-PVR.

Proof: (1). If P is maximal, then the claim follows by Proposition 10. Hence, assume that P is nonmaximal. Since P is divided, $P:P$ either contains an element of the form $1/s$
for some nonunit \(s \in S \), and in this case \(P/P \) is a \(\phi \)-PVR by Proposition 11; or \(P/P \) does not contain such an element, and in this case it is a \(\phi \)-PVR since it equals \(R \). (2). This follows by a similar argument to that in (1). (3). Once again, if \(P \) is maximal, then \(\phi(R) = \phi(R) \) is a \(K \)-PVR. If \(P \) is nonmaximal, then \(\phi(R) \), contains an element of the form \(1/s \) for some nonunit \(s \in R \setminus \text{Nil}(R) \) and therefore it is a \(K \)-PVR by Proposition 11.

Recall that a ring \(B \) is called a chained ring if the principal ideals of \(B \) are linearly ordered.

PROPOSITION 13 Let \(R \) be a \(\phi \)-PVR and let \(B \) be an overring of \(R \) (resp., \(\phi(R) \)) which contains an element of the form \(1/s \) for some nonunit \(s \in S \) (resp., \(s \in R \setminus \text{Nil}(R) \)). Then \(B \) is a chained ring if and only if for every \(a, b \in \text{Nil}(R) \) (resp., \(\text{Nil}(\phi(R)) \)) either \(a \mid b \) in \(B \) or \(b \mid a \) in \(B \).

Proof: We only need prove the converse. Suppose that \(B \) is an overring of \(\phi(R) \). Let \(x, y \in B \) such that neither \(x \in \text{Nil}(\phi(R)) \) nor \(y \in \text{Nil}(\phi(R)) \) and \(x/y \) in \(B \). Then \(d = x^{-1}y \in K \setminus \phi(R) \). Hence, \(d^{-1} = xy^{-1} \in B \) by Proposition 11. Thus, \(x = (xy^{-1})y \) in \(B \). Next, suppose that \(B \) is an overring of \(R \). Let \(x, y \in B \) such that neither \(x \in \text{Nil}(R) \) nor \(y \in \text{Nil}(R) \) and \(y/x \) in \(B \). Since each \(d \in B \setminus R \) is a unit of \(B \) by Proposition 11, we may assume that \(x, y \in R \). Since \(y/x \) in \(B \), \(y/x \) in \(R \), and therefore \(x \mid ys \) in \(R \) by Corollary 7(2). Hence, \(ys = cx \) for some \(c \in R \). Hence, \(y = (c/s)x \). Thus, \(x \mid y \) in \(B \) since \(c/s \in B \).

Given a ring \(R \), then \(R' \) denotes the integral closure of \(R \) in \(T \), and \(\phi(R)' \) denotes the integral closure of \(\phi(R) \) in \(K \). The following result is an analogue of [7, Lemma 17 and Theorem 19].

PROPOSITION 14 Let \(R \) be a \(\phi \)-PVR with maximal ideal \(M \). Then \(\phi(R)' \) is a \(\phi \)-PVR with maximal ideal \(\phi(M) \).

Proof: (1). Let \(x \in R' \setminus R \). Then \(x^{-1} \in R \). For, if \(x^{-1} \in R \), then \(x = 1/s \) for some nonunit \(s \in S \) which is impossible by [12,
Theorem 15. Since \(x^{-1} \in R \), \(\phi(x^{-1}) \in \phi(R) \) by Proposition 3(3), and hence \(\phi(x)\phi(M) \subset \phi(M) \) by Lemma 6. Thus, \(xM \subset M \). Hence, \(x \in M:M \) and \(M \) is a prime ideal of \(R' \) (observe that if \(zw \in M \) for some \(z, w \in T \), then either \(z \in M \) or \(w \in M \) since \(M \) is \(\phi \)-strongly prime). Since \(R \subset R' \) satisfies the INC condition by [12, Theorem 47], \(M \) is the maximal ideal of \(R \). Hence, \(R' \) is a \(\phi \)-PVR. (2). Apply a similar argument as in (1).

Our final result is an analogue of [11, Proposition 2.7], [9, Proposition 4.2], and [7, Theorem 21].

PROPOSITION 15 Let \(R \) be a \(\phi \)-PVR with maximal ideal \(M \). Then
(1). Every overring of \(R \) is a \(\phi \)-PVR if and only if \(R' = M:M \).
(2). Every overring of \(\phi(R) \) is a \(\phi \)-PVR if and only if
\(\phi(R)' = \phi(M):\phi(M) \).

Proof: (1). Let \(C \) be an overring of \(R \) that does not contain
an element of the form \(1/s \) for some nonunit \(s \in S \). Then
observe that \(C \subset M:M \), and use a similar argument as in [7,
Theorem 21]. (2). Once again, let \(C \) be an overring of \(\phi(R) \)
that does not contain an element of the form \(1/s \) for some
nonunit \(s \in R \setminus \text{Nil}(R) \). Then observe that \(C \subset \phi(M):\phi(M) \), and
use a similar argument as in the proof of [7, Theorem 21].

ACKNOWLEDGMENT

I am very grateful to the referee for his many corrections.

REFERENCES

[2] D.F. Anderson, When the dual of an ideal is a ring,
[3] D.F. Anderson and D.E. Dobbs, Pairs of rings with the
domains, in Commutative Ring Theory, Lecture Notes in Pure