ON CHAINED OVERRINGS OF PSEUDO-VALUATION RINGS

Ayman Badawi
Department of Mathematics
Birzeit University, Box 14
Birzeit, WestBank, Palestine, via Israel

ABSTRACT. A prime ideal P of a commutative ring R with identity is called strongly prime if aP and bR are comparable for every a, b in R. If every prime ideal of R is strongly prime, then R is called a pseudo-valuation ring. It is well-known that a (valuation) chained overring of a Prüfer domain R is of the form R_p for some prime ideal P of R. In this paper, we show that this statement is valid for a certain class of chained overrings of a pseudo-valuation ring.

1. INTRODUCTION

Throughout this paper, all rings are commutative with identity and if R is a ring, then $Z(R)$ denotes the set of zero-divisors of R and T denotes the total quotient ring of R. We say a ring A is an overring of a ring R if A is between R and T. Recall that a ring R is called a chained ring if the principal ideals of R are linearly ordered, that is, if for every $a, b \in R$ either $a | b$ or $b | a$. It is well-known that a chained overring of a Prüfer domain R
is of the form R_π (see [9, Theorem 65]) for some prime ideal P of R. In this paper, we show that this statement is still valid for a certain class of chained overrings of a pseudo-valuation ring. Recall from [5] that a prime ideal P of a ring R is called a strongly prime ideal if aP and bR are comparable for all $a, b \in R$. If R is an integral domain, this is equivalent to the original definition of strongly prime introduced by Hedstrom and Houston in [8]. If every prime ideal of a ring R is strongly prime, we say that R is a pseudo-valuation ring, abbreviated a PVR. It is easy to see that a PVR is quasilocal, see [5, Lemma 1].

2. RESULTS

We start with the following lemma.

Lemma 1. Let R be a PVR and let $a, b \in R$. If $a \in Z(R)$ and b is a nonzerodivisor of R, then $b|a$. In particular, if $c/d \in T \setminus R$ for some $c, d \in R$, then c is a nonzerodivisor of R and therefore $d/c \in T$.

Proof. Deny. Let M be the maximal ideal of R. Since M is strongly prime and b does not divide a, we must have $bM \subset aR$. Hence, $b^2 = ac$ for some c in R, which is impossible since b^2 is a nonzerodivisor of R and $a \in Z(R)$. Thus, our denial is invalid and $b|a$.

The following lemma is trivial, but it is needed in the proof of our main result.
Lemma 2. Let R be a PVR and let A be an overring of R. Then $Z(R) = Z(A)$.

Proof. This is clear by Lemma 1.

Theorem 3. Let R be a PVR with maximal ideal M, and let V be a chained overring of R with the maximal ideal N. If $P = N \cap R$ is different from M, then $V = R_p$.

Proof. By Lemma 2, $Z(R) \subseteq P$. Hence, if $s \in R \setminus P$, then s is a nonzerodivisor of R and $s^{-1} = 1/s \in T$. Now, for any $s \in R \setminus P$, we must have $s^{-1} \in V$, for otherwise $s \in N$ and so $s \in P$. Thus, $R_p \subseteq V$. Now, we show that $V \subseteq R_p$. Since P is a nonmaximal prime ideal of R, we note that R_p is a chained ring by [5, Theorem 12]. Suppose that there is a $v \in V$ and v is not in R_p. Write $v = a/s$ for some $a, s \in R$. Since v is not in R_p, $v \in T \setminus R$. Hence, a is a nonzerodivisor of R by Lemma 1 and $v^{-1} \in T$.

Since R_p is a chained ring and v is not in R_p, we must have $v^{-1} = s/a \in R_p$. Thus, we may assume $a \in P$. Since $v^{-1} \in R_p$ and v is not in R_p, we must have $s \in P$, for otherwise, $v^{-1} = s/a$ would be a unit in R_p and $v \in R_p$, which we assumed is not the case. Since $s \in P$, we must have $s \in N$ and $sv \in N$. But $a = sv \in P$, a contradiction. Thus, $V \subseteq R_p$. Hence, $V = R_p$.

It was shown in [5, Lemma 20] that if R is a PVR with maximal ideal M and B is an overring of R containing an element of the form $1/s$ for some nonzerodivisor s of M, then B is a chained ring. In view of Theorem 3, now we can show that
such an overring of \(\mathcal{R} \) is of the form \(\mathcal{R}_p \) for some prime ideal \(P \) of \(\mathcal{R} \).

Corollary 4. Let \(\mathcal{R} \) be a PVR with maximal ideal \(M \), and \(B \) be an overring of \(\mathcal{R} \) containing an element of the form \(1/s \) for some nonzerodivisor \(s \) of \(M \). Then \(B \) is a chained ring of the form \(\mathcal{R}_p \) for some prime ideal \(P \) of \(\mathcal{R} \).

Proof. By [5, Lemma 20] \(B \) is a chained ring. Let \(N \) be the maximal ideal of \(B \). Since \(B \) contains an element of the form \(1/s \) for some nonzerodivisor \(s \) of \(M \), \(s \) is not in \(N \). Hence, \(N \cap \mathcal{R} \) is different from the maximal ideal of \(\mathcal{R} \). Thus, \(B = \mathcal{R}_p \) where \(P = N \cap \mathcal{R} \) by Theorem 3. \(\blacksquare \)

It was shown in [2, Proposition 4.3] that if \(\mathcal{P} \) is a nonmaximal strongly prime ideal of an integral domain \(\mathcal{R} \), then \(\mathcal{P} : \mathcal{P} \) is valuation domain. Since \(\mathcal{P} \) is divided (comparable to every principal ideal of \(\mathcal{R} \)) by [5, Lemma 1(a)] and nonmaximal, \(\mathcal{P} : \mathcal{P} = \{ x \in \mathcal{T} : x\mathcal{P} \subset \mathcal{P} \} \) contains an element of the form \(1/s \) for some nonunit \(s \in M \setminus \mathcal{P} \). Hence, by Corollary 4, \(\mathcal{P} : \mathcal{P} = \mathcal{R}_p \). Thus, we have:

Corollary 5. Let \(\mathcal{P} \) be a nonmaximal strongly prime ideal of an integral domain \(\mathcal{R} \). Then \(\mathcal{P} : \mathcal{P} = \mathcal{R}_p \) is a valuation domain. \(\blacksquare \)

Recall that an ideal of \(\mathcal{R} \) is called regular if it contains a nonzerodivisor of \(\mathcal{R} \). If every regular ideal of \(\mathcal{R} \) is generated by its
set of nonzerodivisors, then \(R \) is called a Marot ring. We have the following result.

Proposition 6. Let \(R \) be a PVR. Then:

1. \(R \) is a Marot ring.
2. \(Z(R) \) is a prime ideal of \(R \) and \(T = R_{Z(R)} \).
3. If \(R \neq T \), then \(T \) is a chained ring.

Proof. (1). This is clear by Lemma 1. (2). Since the prime ideals of \(R \) are linearly ordered by [5, Lemma 1(a)] and \(Z(R) \) is a union of prime ideals of \(R \), \(Z(R) \) is a prime ideal of \(R \) and hence \(T = R_{Z(R)} \). If \(R \neq T \), then \(Z(R) \) is a nonmaximal ideal of \(R \). Hence, \(T = R_{Z(R)} \) is a chained ring by [5, Theorem 12].

We say an overring \(B \) of \(R \) is a valuation overring of \(R \) if there is an ideal \(J \) of \(B \) such that for each \(t \in T \setminus B \) there is an element \(r \in J \) such that \(rt \in B \setminus J \). See [9] for more information.

Proposition 7. Let \(R \) be a PVR which is not its own total quotient ring, and let \(B \) be an overring of \(R \). Then the following are equivalent:

1. \(B \) is a chained overring of \(R \).
2. \(B \) is a valuation overring of \(R \).

Proof. There is nothing to prove if \(R = T \), so we may assume that \(R \neq T \). (1) \(\implies \) (2). This is clear by [9, Theorem 5.1]. (2) \(\implies \) (1). Since \(T \) is a chained ring by Proposition 6(3) and \(Z(R) = Z(T) \subset B \) by Lemma 2, \(B \) is a chained overring of \(R \) by [9, Theorem 23.2].
Now, we state the main result in this paper.

Theorem 8. Let R be a PVR with maximal ideal M. Then the following are equivalent:

1. Every overring of R is a PVR.
2. Every chained overring of R other than $M : M$ is of the form R_p for some nonmaximal prime ideal P of R.
3. $M : M$ is the integral closure of R in T.

Proof. There is nothing to prove if $R = T$, so we may assume $R \neq T$. Since $M : M = \{ x \in T : xM \subseteq M \}$ is a chained ring with maximal ideal M by [5, Theorem 8], it is the only valuation overring of R that has maximal ideal M (see [9, Theorem 5.1]). Hence $M : M$ is the only chained overring of R that has maximal ideal M by Proposition 7. $(1) \iff (3)$. This is clear by [5, Theorem 21].

$(1) \implies (2)$. Since every subring of $M : M$ containing R is a PVR with maximal ideal M by [7, Corollary 18] and $M : M$ is the only chained overring of R that can have M as a maximal ideal, each chained overring of R other than $M : M$ contains an element of the form $1/s$ where s is a nonzerodivisor of M and thus each is of the form R_p for some prime ideal P of R by Corollary 4.

$(2) \implies (3)$. First, R is a Marot ring by Proposition 6. Thus, by [8, Theorem 9.3], the integral closure of R in T is the intersection of the valuation overrings of R. By Proposition 7, each valuation overring of R is chained, so except possibly for $M : M$, each is of the form R_p for some prime ideal P of R. All such rings contain $M : M$. Therefore, the integral closure of R in T is $M : M$. \[\square\]
An immediate consequence of the above theorem is the following corollary.

Corollary 9. Let R be a PVR with maximal ideal M and integral closure R' such that $R' \neq M : M$. Then there exists a chained overring W of R such that $R' \subset W \subset M : M$, and W is not of the form R_p for some prime ideal P of R.

Example 10. David F. Anderson provided us with a concrete example of a PVR R that has a valuation overring which is not of the form R_p for some prime ideal P of R. Let \mathbb{R} be the set of real numbers and \mathbb{C} be the set of complex numbers. Set $V = \mathbb{C}[t] + XC(t)[[X]]$ is a valuation (chained) domain with maximal ideal $M = XC(t)[[X]]$, and $R = \mathbb{R} + XC(t)[[X]]$ is a PVR with maximal ideal M. Then $W = \mathbb{C}[t][0] + XC(t)[[X]]$ is a valuation (chained) overring of R which is not of the form of R_p for some prime ideal P of R. Observe that $R' = \mathbb{C} + XC(t)[[X]] \subset W \subset M : M = V$.

ACKNOWLEDGEMENT

My sincere gratitude goes to the referee for his many corrections, in particular, for his remark that (2) implies (3) in Theorem 8. I would like to thank the Department of Mathematics at Vrije University for their hospitality, especially Professor E. J. Ditters for his many helpful communications. Also, I am very grateful to Professor David F. Anderson for providing us with Example 10.
REFERENCES

Received: March 1998

Revised: May 1999