
PROBLEM SET 7

HAMID SAGBAN

Exercise 1. Find all subgroups of (Z∗13,×13).

Solution. We know |(Z∗13,×13)| = ϕ(13) = 12. Also, the factors of 12 are 1, 2, 3, 4, 6, and 12. We now form

the 6 cyclic subgroups of Z∗13. For the factors 1 and 12, we have 12 = 12×1, and thus < 2̄12 >= {1̄}, and

< 2̄1 >= Z∗13. Now for the factors 6 and 2, we have 12 = 6×2, and thus < 2̄2 >= {2̄2, 2̄4, 2̄6, 2̄8, 2̄10, 2̄12} =

{4̄, 3̄, 1̄2, 9̄, 1̄0, 1̄}, and < 2̄6 >= {2̄6, 2̄12} = {1̄2, 1̄}. Finally, for the factors 4 and 3, we have 12 = 4× 3,

and thus < 2̄3 >= {2̄3, 2̄6, 2̄9, 2̄12} = {8̄, 1̄2, 5̄, 1̄}, and < 2̄4 >= {2̄4, 2̄8, 2̄12} = {3̄, 9̄, 1̄}. ¤

Exercise 2. Let n ≥ 3. Show that [n− 1] ∈ (U(Zn),×n) is an element of order 2.

Proof. To show that [n − 1] ∈ U(Zn), it suffices to show that gcd(n, n − 1) = 1. Let k be a divisor

of n. Then n = mk for some positive integer m. Thus n − 1 = mk − 1, and hence k cannot be a

divisor of n − 1, for otherwise n − 1 = rk for some r ∈ Z+, so that n = rk + 1, contradiction. Thus

gcd(n, n − 1) = 1. Since n ≥ 3, we know [n − 1] 6= [1]. So we compute (n − 1)2 mod n; we have

(n − 1)(n − 1) = (n(n − 2) + 1) ≡ 1 mod n, since n(n − 2) ≡ 0 mod n. Thus [n − 1]2 = [1], and

|[n− 1]| = 2. ¤

Exercise 3. Show that (U(Z35),×35) is not a cyclic group. (Hint: find elements in U(Z35) that have

order 2)

Proof. We know by (3) that there is an element of order 2 in U(Z35), namely [35− 1] = [34]. Therefore,

we can form a cyclic subgroup of order 2; that is, < 3̄4 >= {3̄4, 1̄}. If U(Z35) is cyclic, then there is

exactly one cyclic subgroup of order 2. But it turns out that the order of 6̄ = 2; so < 6 >= {6̄, 1̄}. We

have found two distinct cyclic subgroups of order 2 in U(Z35), thus U(Z35) cannot be cyclic. ¤

Exercise 4. We know that (Z∗47,×47) is a cyclic group. Show that there are as many elements of order

23 as there are elements of order 46.
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Proof. We know there exist cyclic subgroups of orders 1,2,23, and 46. Let b be an element of order 46.

Then for all k < 46 such that gcd(46, k) = 1, |bk| = 46
gcd(k,46) = 46. There are ϕ(46) = 22 such k’s and

thus 22 elements of order 46. Now let a be an element of order 23. We know |an| = 23
gcd(n,23) = 23 for all

n < 23; there are ϕ(23) = 22 such n’s and thus 22 elements of order 23.

¤

Exercise 5. Let α ∈ S99 such that |α| = 99. Show that α66 is either a 3-cycle or the composition of

disjoint 3-cycles.

Proof. |α66| = 99
gcd(66,99) = 3. Permutations of order 3 can be obtained by 3-cycles, since the order of a

3-cycle is 3. One can also get cycles of order 3 by setting lcm(a, b, . . . , n) = 3, where a, b, . . . , n are orders

of some disjoint cycles (6= (1)) whose composition equate to α. Thus a, b, . . . , n must all be 3 for this to

be satisfied since 3 is a prime number. ¤

Exercise 6. Let S =






a b

0 c


 | a, b, c ∈ Z23



. It is easy to see that (S,×23) is a monoid. Note that

×23 is the normal multiplication of matricies modulo 23. Let U(S) be the set of all invertible elements of

S under ×23. Thus we know (U(S),×23) is a group. Find |U(S)|, and explain whether U(S) is an abelian

or a non-abelian group.

Solution. All arithmetic operations are modulo 23, so the subscripts indicating this are absent. We begin

by showing that S is a monoid; we first show closure. Take two elements α, β ∈ S. Then α =


a b

0 c




and β =


x y

0 z


, for a, b, c and x, y, z ∈ Z23. Computing αβ, we get αβ =


ax ay + bz

0 cz


, with

ax, ay + bz, cz ∈ Z23. Thus αβ ∈ S. We claim that e =


1 0

0 1


. This can easily be seen by taking

α ∈ S, and computing αe and eα. Therefore, S is a monoid. Now, we describe the group U(S); that is,

U(S) =






a b

0 c


 | gcd(a, 23) = gcd(b, 23) = 1, a, b, c ∈ Z23



. Note that a, c cannot be [0] by the gcd

criterion. Take α ∈ U(S), thus α =


a b

0 c


 for a, b, c ∈ Z23, and with gcd(a, 23) = gcd(c, 23) = 1. a−1
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can be easily verified to be




1
a − b

ac

0 1
c


, and invertibility of a and c is guaranteed since a, c are relatively

prime to 23. The order of U(S) is thus ϕ(23)×ϕ(23)× 23 = 22× 22× 23. U(S) is clearly nonabelian for

take α =


1 2

0 1


 and β =


1 2

0 3


. Then αβ =


1 8

0 3


 and βα =


1 4

0 3


. ¤

Exercise 7. Let a =


2 18

0 7


. Then a ∈ S. Is a ∈ U(S)? If yes, then find a−1. Note that S and U(S)

are as defined previously.

Solution. a ∈ U(S) since gcd(2, 23) = gcd(7, 23) = 1. We can use the form described above for the

inverse to find a−1, which is


12 2

0 10


. ¤

Exercise 8. Let M =






a b

0 c


 | a, b, c ∈ Z



. It is easy to see that (M,×) is a monoid. Note that ×

is the normal multiplication of matricies. Let U(M) be the set of all invertible elements of S under ×.

Thus we know (U(M),×) is a group. Is U(M) an abelian or a nonabelian group? If α ∈ U(M), find a

general form of α. Let a =


2 18

0 7


. Then a ∈ M . Is a ∈ U(M)? If yes, then find a−1.

Solution. U(M) is not abelian, for take α =


1 5

0 −1


 and β =


1 4

0 1


. Then αβ =


1 9

0 −1


 and

βα =


1 1

0 −1


. Now a general form of α is


±1 b

0 ±1


 with b ∈ Z. Thus clearly, a as given in the last

part of the question does not belong to U(M). ¤


