
Exam 2 Hamid Sagban

May 19, 2009

(1) (a) For suppose not, then we would have |f(a)| = k for some k ∈ Z+. Now f(ak+1) = f(ak)¦f(a) =

(f(a))k ¦ f(a) = f(a), so that ak+1 = a since f is injective. Thus ak = e, a contradiction since |a| = ∞.

(b) Take c ∈ M2. Since f is bijective, there is a ∈ M1 such that f(a) = c. Now take j ∈ f(H), thus

j = f(h1) for some h1 ∈ H. We have c ¦ j = f(a) ¦ f(h1) = f(a ∗ h1) = f(h2 ∗ a) = f(h2) ¦ c, for some

h2 ∈ H. Since f(h2) ∈ f(H), the conclusion follows.

(c) Let y ∈ A = {a1, a2, . . . , ak} ⊆ M1. Then (f(y))m = f(ym) = f(b); distinctness of these solutions

follows from the injectivity of f . Now suppose dm = f(b), with d = f(a) for some a ∈ M1. Then

dm = f(b) =⇒ f(a)m ¦ (f(b))−1 = em2 =⇒ f(am) ¦ f(b−1) = em2 =⇒ f(am ∗ b−1) = f(em1), so that

am ∗ b−1 = em1 , and thus am = b. We know a ∈ A, and thus d ∈ f(A).

(2) We know U(Z9) = {1, 2, 4, 5, 7, 8} under ×9, and (Z3,+3)⊕ (Z2, +2) = {(0, 0), (0, 1), (1, 0), (1, 1),

(2, 0), (2, 1)}. Since |2| = 6, we have U(Z9) = 〈2〉, and thus (U(Z9),×9) ∼= (Z6,+6). Also, we have

(Z3, +3)⊕ (Z2,+2) = 〈(1, 1)〉, so we have (Z3, +3)⊕ (Z2, +2) ∼= (Z6, +6). Thus (U(Z9),×9) ∼= (Z3,+3)⊕
(Z2, +2). The possibilities for f(2) are (1, 1) and (2, 1).

(3) Let f : U(Z8) → U(Z12). Define f explicitly such that f(1) = 1, f(7) = 7, f(5) = 5, f(3) = 11.

Well-definition can be seen from the mapping. Clearly f is injective by construction. Also, for each

b ∈ U(Z12), we have an a ∈ U(Z8) such that f(a) = b. It remains to show homomorphism. Since the

function is defined explicitly, we show this explicitly:

f(1×8 1) = f(1) = 1 = f(1)×12 f(1)

f(1×8 3) = f(3) = 11 = f(1)×12 f(3)

f(1×8 5) = f(5) = 5 = f(1)×12 f(5)

f(1×8 7) = f(7) = 7 = f(1)×12 f(7)

f(3×8 3) = f(1) = 1 = f(3)×12 f(3)

f(3×8 5) = f(7) = 7 = f(3)×12 f(5)

f(3×8 7) = f(5) = 5 = f(3)×12 f(7)

f(5×8 5) = f(1) = 1 = f(5)×12 f(5)
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f(5×8 7) = f(3) = 11 = f(5)×12 f(7)

f(7×8 7) = f(1) = 1 = f(7)×12 f(7) and we are done.

(4) To show well definition, we have to show a = b implies f(a) = f(b) for all a, b ∈ M . We know

a = b, so we have a ∗ b−1 = e, thus (a ∗ b−1) ∗ (a ∗ b−1)n−1 = e ∗ (a ∗ b−1)n−1 =⇒ an ∗ b−n = e so an = bn

and we are done. To show one-to-one, we have to show f(a) = f(b) implies a = b for all a, b ∈ M . Thus

we have an = bn =⇒ an ∗ b−n = (a ∗ b−1)n = e. Suppose for some arbitrary k, we have kn = e. Thus

|k| | n, and we know |k| | m. But since gcd(n,m) = 1, |k| = 1, and we have k = e. So a∗b−1 = e, and thus

a = b. Onto follows since the mapping is from a set to itself. Now we have to show f(a ∗ b) = f(a) ∗ f(b)

for all a, b ∈ M . We have f(a ∗ b) = (a ∗ b)n = an ∗ bn = f(a) ∗ f(b) and we are done.

(5) We have 〈a10〉 ∩ 〈a21〉 = {a14, a28}. Thus H = 〈a14〉 and of order 2. Now 〈a〉/〈a14〉 = {{a, a15},
{a2, a16}, {a3, a17}, {a4, a18}, {a5, a19}, {a6, a20}, {a7, a21}, {a8, a22}, {a9, a23}, {a10, a24}, {a11, a25},
{a12, a26}, {a13, a27}, {a14, a28}}, the order of whose elements are 14, 7, 14, 7, 14, 7, 2, 7, 14, 7, 14, 7,

14, and 1, respectively. Since |〈a〉/〈a14〉| = 14 = 7 × 3, then by the exam question, 〈a〉/〈a14〉 is a cyclic

subgroup of order 14. Thus 〈a〉/〈a14〉 ∼= Zn for n = 14 by the theorem proved in class.

For the latter part of the question, finding m amounts to finding the lcm(21, 15), which is 105. Thus

21Z ∩ 15Z = 105Z, and we are done.

(6) Since 10Z is group-isomorphic to Z, it suffices to construct a mapping f from (Q∗,×) to (Z, +) such

that image(f) = Z. First, let k(x) denote the number of all prime factors of x; suppose x = pq1
1 pq2

2 . . . pqn
n

for some primes p1, p2, . . . , pn. Then k(x) = q1 + q2 + . . . + qn. By default, let k(±1) = 0 since 1 has no

prime factors. Also, the fundamental theorem of arithmetic guarantees well-definition of k(x).

Now our mapping is defined as such: take a
b ∈ Q∗. Then f(a

b ) = k(a) − k(b). Take x, y ∈ Q∗, we

show f(xy) = f(x) + f(y). Since x, y ∈ Q∗, we have x = a
b and y = c

d , for some a, b, c, d ∈ Z∗. Thus

f(xy) = f(a
b × c

d ) = f(ac
bd ) = k(ac)−k(bd) = k(a)+k(c)−k(b)−k(d). Also, f(x)+f(y) = f(a

b )+f( c
d ) =

k(a)− k(b)+ k(c)− k(d), and thus we have a group homomorphism that is not trivial. For completeness,

we show well-definition of f . Suppose a
b = c

d , we have to show f(a
b ) = f( c

d ). From a
b = c

d , we have

ad = bc, so that k(ad) = k(bc). Hence k(a) + k(d) = k(b) + k(c). That is, k(a) − k(b) = k(c) − k(d),

and thus f(a
b ) = f( c

d ). We provide an example. Take 10
3 ∈ Q∗, then f( 10

1 × 1
3 ) = f( 10

1 ) + f( 1
3 ) =

k(10)− k(1) + k(1)− k(3) = 2− 0 + 0− 1 = 1, whereas f( 10
3 ) = k(10)− k(3) = 2− 1 = 1.
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(7) Solved by Ayman: Since H = {1,−1} is the only nontrivial finite subgroup of (Q∗,×) and

Z/2Z is group- isomorphic to H, we will construct a group homomorphism f from (Z, +) into (Q∗,×)

such that Ker(f) = 2Z. Define f : (Z, +) → (Q∗,×) such that f(even) = 1 (note 0 is an even number)

and f(odd) = −1 . It is easy to check that f is a group-homomorphism from Z into Q∗. Since H is the

only finite subgroup of (Q∗,×), we conclude that there are no other nontrivial group-homomorphisms

from Z into Q∗.

(8) |(1, 0)| = 1, |(1, 1)| = 2, |(5, 0)| = 2, |(5, 1)| = 2, |(7, 0)| = 2, |(7, 1)| = 2, |(11, 0)| = 2, |(11, 1)| = 2.

(9) We first prove an auxilary result: take a, b ∈ Z+ such that a 6= b, then 1
a + Z ∩ 1

b + Z = {}.
Suppose not, then there is a q such that q ∈ 1

a +Z and q ∈ 1
b +Z. Thus we have q = 1

a + c and q = 1
b +d,

for some c, d ∈ Z. We have 1
a + c = 1

b + d, so that 1
a = 1

b + (d − c) =⇒ 1
a ∈ 1

b + Z. The only element

between 0 and 1 in 1
b + Z is 1

b , so we must have 1
a = 1

b , a contradiction.

Now suppose there are finitely many elements in Q/Z, then we have [Q : Z] = m for some m ∈ Z+.

Take the following m number of elements:

1,
1
2
,
1
3
, . . . ,

1
m

each of which is a representative of distinct left cosets by the auxiliary result proved previously. But then

1
m+1 + Z is another distinct left coset, contradiction.

Take x ∈ Q−Z. Then x +Z is a left coset of Z. Now take the minimum of x +Z, and call it y. Then

y = a
b such that gcd(a, b) = 1. Thus we have |x + Z| = |y + Z| = |ab + Z| = b, since b is the least number

such that (a
b )b ∈ Z. Therefore, all elements of Q/Z are of finite order.

(10) We know M1/Ker(f) is isomorphic to Z6. Thus |M1/Ker(f)| = 6, so that |Ker(f)| = 5. Take

a 6= e ∈ Ker(f). Then |a| = 5. Since there is a b such that f(b) = 1, we have |1| | |b|, thus 6 | |b|.
Therefore, |b| is either 6 or 30. If it is 30, we are done. Otherwise assume |b| = 6. Then |a ∗ b| = 30, and

we are done.

3


