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Abstract. Let R be a commutative ring with 1 6= 0, I a proper ideal

of R, and m and n positive integers. In this paper, we define I to be a
weakly (m,n)-closed ideal if 0 6= xm ∈ I for x ∈ R implies xn ∈ I, and

R to be an (m,n)-von Neumann regular ring if for every x ∈ R, there is
an r ∈ R such that xmr = xn. A number of results concerning weakly

(m,n)-closed ideals and (m,n)-von Neumann regular rings are given.

1. Introduction

Let R be a commutative ring with 1 6= 0, I a proper ideal of R, and n a
positive integer. As in [2], I is an n-absorbing (resp., strongly n-absorbing) ideal
of R if whenever x1 · · ·xn+1 ∈ I for x1, . . . , xn+1 ∈ R (resp., I1 · · · In+1 ⊆ I
for ideals I1, . . . , In+1 of R), then there are n of the xi’s (resp., n of the Ii’s)
whose product is in I. As in [4], I is a semi-n-absorbing ideal of R if xn+1 ∈ I
for x ∈ R implies xn ∈ I; and for positive integers m and n, I is an (m,n)-
closed ideal of R if xm ∈ I for x ∈ R implies xn ∈ I. And, as in [15], I is a
weakly n-absorbing (resp., strongly weakly n-absorbing) ideal of R if whenever
0 6= x1 · · ·xn+1 ∈ I for x1, . . . , xn+1 ∈ R (resp., 0 6= I1 · · · In+1 ⊆ I for ideals
I1, . . . , In+1 of R), then there are n of the xi’s (resp., n of the Ii’s) whose
product is in I.

In this paper, we define I to be a weakly semi-n-absorbing ideal of R if
0 6= xn+1 ∈ I for x ∈ R implies xn ∈ I. More generally, for positive integers
m and n, we define I to be a weakly (m,n)-closed ideal of R if 0 6= xm ∈ I
for x ∈ R implies xn ∈ I. Thus I is a weakly semi-n-absorbing ideal if and
only if I is a weakly (n + 1, n)-closed ideal. Moreover, an (m,n)-closed ideal
is a weakly (m,n)-closed ideal, and the two concepts agree when R is reduced.
Every proper ideal is weakly (m,n)-closed for m ≤ n; so we usually assume
that m > n.
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The above definitions all concern generalizations of prime ideals. A 1-
absorbing ideal is just a prime ideal, and a weakly 1-absorbing ideal is just a
weakly prime ideal (a proper ideal I of R is a weakly prime ideal if 0 6= xy ∈ I
for x, y ∈ R implies x ∈ I or y ∈ I). A proper ideal is a radical ideal if and only
if it is (2, 1)-closed. However, a weakly (2, 1)-closed ideal need not be a weakly
radical ideal (a proper ideal I of R is a weakly radical ideal if 0 6= xn ∈ I for
x ∈ R and n a positive integer implies x ∈ I) (see Example 2.3(b)).

Weakly prime ideals and weakly radical ideals were studied in [1], and weakly
radical (semiprime) ideals have been studied in more detail in [6]. The concept
of 2-absorbing ideals was introduced in [5] and then extended to n-absorbing
ideals in [2]. Related concepts include 2-absorbing primary ideals (see [9]),
weakly 2-absorbing ideals (see [11]), weakly 2-absorbing primary ideals (see
[10]), and (m,n)-closed ideals (see [4]). Other generalizations and related con-
cepts are investigated in [1], [6], [8], [11], [12], [13], and [15]. For a survey on
n-absorbing ideals, see [7].

Let R be a commutative ring and m and n positive integers. We define
R to be an (m,n)-von Neumann regular ring if for every x ∈ R, there is an
r ∈ R such that xmr = xn. Thus a (2, 1)-von Neumann regular ring is just
a von Neumann regular ring. In this paper, we study weakly (m,n)-closed
ideals, (m,n)-von Neumann regular rings, and the connections between the
two concepts.

Let m and n be positive integers with m > n. Among the many results in
this paper, we show in Theorem 2.6 that if I is a weakly (m,n)-closed, but not
(m,n)-closed, ideal of R, then I ⊆ Nil(R). In Theorem 2.11, we determine
when a proper ideal of R1 ×R2 is weakly (m,n)-closed, but not (m,n)-closed;
and in Theorem 2.12, we investigate when a proper ideal of R(+)M is weakly
(m,n)-closed, but not (m,n)-closed. In Section 3, we introduce and investigate
(m,n)-von Neumann regular elements and (m,n)-von Neumann regular rings.
It is shown in Theorem 3.5 that every proper ideal of R is weakly (m,n)-closed
if and only if every non-nilpotent element of R is (m,n)-von Neumann regular
and wm = 0 for every w ∈ Nil(R). In Theorem 3.7, we show that every proper
ideal of R is (m,n)-closed if and only if R is (m,n)-von Neumann regular.
Finally, we define the concepts of n-regular and ω-regular commutative rings
as a way to measure how far a zero-dimensional commutative ring is from being
von Neumann regular.

We assume throughout this paper that all rings are commutative with 1 6= 0,
all R-modules are unitary, and f(1) = 1 for all ring homomorphisms f : R −→
T . For such a ring R, let Nil(R) be its ideal of nilpotent elements, Z(R) its set
of zero-divisors, U(R) its group of units, char(R) its characteristic, and dim(R)
its (Krull) dimension. Then R is reduced if Nil(R) = {0} and R is quasilocal if it
has exactly one maximal ideal. As usual, N, Z, and Zn will denote the positive
integers, integers, and integers modulo n, respectively. Several of our results
use the R(+)M construction as in [14]. Let R be a commutative ring and M an
R-module. Then R(+)M = R ×M is a commutative ring with identity (1, 0)
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under addition defined by (r,m) + (s, n) = (r + s,m + n) and multiplication
defined by (r,m)(s, n) = (rs, rn + sm). Note that ({0}(+)M)2 = {0}; so
{0}(+)M ⊆ Nil(R(+)M).

2. Properties of weakly (m,n)-closed ideals

In this section, we give some basic properties of weakly (m,n)-closed ideals
and investigate weakly (m,n)-closed ideals in several classes of commutative
rings. We start by recalling the definitions of weakly semi-n-absorbing and
weakly (m,n)-closed ideals.

Definition 2.1. Let R be a commutative ring, I a proper ideal of R, and m
and n positive integers.

(1) I is a weakly semi-n-absorbing ideal of R if 0 6= xn+1 ∈ I for x ∈ R
implies xn ∈ I.

(2) I is a weakly (m,n)-closed ideal of R if 0 6= xm ∈ I for x ∈ R implies
xn ∈ I.

The proof of the next result follows easily from the definitions, and thus will
be omitted.

Theorem 2.2. Let R be a commutative ring and m and n positive integers.

(1) If I is a weakly n-absorbing ideal of R, then I is weakly semi-n-absorb-
ing (i.e., weakly (n+ 1, n)-closed).

(2) If I is a weakly (m,n)-closed ideal of R, then I is weakly (m,n′)-closed
for every positive integer n′ ≥ n.

(3) If I is a weakly n-absorbing ideal of R, then I is weakly (m,n)-closed
for every positive integer m.

(4) An intersection of weakly (m,n)-closed ideals of R is weakly (m,n)-
closed.

While an (m,n)-closed ideal is always weakly (m,n)-closed, the converse
need not hold. If an ideal is (m,n)-closed, then it is also (m′, n′)-closed for all
positive integers m′ ≤ m and n′ ≥ n [4, Theorem 2.1(3)]. However, a weakly
(m,n)-closed ideal need not be weakly (m′, n)-closed for m′ < m. We next give
two examples to illustrate these differences.

Example 2.3. (a) Let R = Z8 and I = {0, 4}. Then I is weakly (3, 1)-closed
since x3 = 0 for every nonunit x in R. However, I is not (3, 1)-closed since
23 = 0 ∈ I and 2 /∈ I, and I is not weakly (2, 1)-closed since 0 6= 22 = 4 ∈ I
and 2 /∈ I.

(b) Let R = Z16 and I = {0, 8}. Then I is weakly (2, 1)-closed since 8 is not
a square in Z16. However, I is not (2, 1)-closed since 42 = 0 ∈ I and 4 /∈ I, and
I is not a weakly radical ideal (and thus not weakly prime) since 0 6= 23 = 8 ∈ I
and 2 /∈ I.

The following definition will be useful for studying weakly (m,n)-closed
ideals that are not (m,n)-closed (cf. [6, Definition 2.2]).
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Definition 2.4. Let R be a commutative ring, m and n positive integers, and
I a weakly (m,n)-closed ideal of R. Then a ∈ R is an (m,n)-unbreakable-zero
element of I if am = 0 and an /∈ I. (Thus I has an (m,n)-unbreakable-zero
element if and only if I is not (m,n)-closed.)

Theorem 2.5 (cf. [6, Theorem 2.3]). Let R be a commutative ring, m and n
positive integers, and I a weakly (m,n)-closed ideal of R. If a is an (m,n)-
unbreakable-zero element of I, then (a+ i)m = 0 for every i ∈ I.

Proof. Let i ∈ I. Then

(a+ i)m = am +

m∑
k=1

(
m

k

)
am−kik = 0 +

m∑
k=1

(
m

k

)
am−kik ∈ I,

and similarly, (a + i)n /∈ I since an /∈ I. Thus (a + i)m = 0 since I is weakly
(m,n)-closed. �

Theorem 2.6 (cf. [1, p. 839] and [6, Theorems 2.4 and 2.5]). Let R be a
commutative ring, m and n positive integers, and I a weakly (m,n)-closed
ideal of R. If I is not (m,n)-closed, then I ⊆ Nil(R). Moreover, if I is not
(m,n)-closed and char(R) = m is prime, then im = 0 for every i ∈ I.

Proof. Since I is a weakly (m,n)-closed ideal of R that is not (m,n)-closed,
I has an (m,n)-unbreakable-zero element a. Let i ∈ I. Then am = 0, and
(a+i)m = 0 by Theorem 2.5; so a, a+i ∈ Nil(R). Thus i = (a+i)−a ∈ Nil(R);
so I ⊆ Nil(R).

The “moreover” statement is clear since 0 = (a+ i)m = am + im = im when
char(R) = m is prime. �

The next two theorems are the analogs of the results for (m,n)-closed ideals
in [4, Theorem 2.8] and [4, Theorem 2.10], respectively. Their proofs are similar,
and thus will be omitted.

Theorem 2.7. Let R be a commutative ring, I a proper ideal of R, S ⊆ R\{0}
a multiplicative set, and m and n positive integers. If I is a weakly (m,n)-closed
ideal of R, then IS is a weakly (m,n)-closed ideal of RS.

Theorem 2.8. Let f : R −→ T be a homomorphism of commutative rings and
m and n positive integers.

(1) If f is injective and J is a weakly (m,n)-closed ideal of T , then f−1(J)
is a weakly (m,n)-closed ideal of R. In particular, if R is a subring of
T and J is a weakly (m,n)-closed ideal of T , then J ∩ R is a weakly
(m,n)-closed ideal of R.

(2) If f is surjective and I is a weakly (m,n)-closed ideal of R containing
kerf , then f(I) is a weakly (m,n)-closed ideal of T . In particular, if I
is a weakly (m,n)-closed ideal of R and J ⊆ I is an ideal of R, then
I/J is a weakly (m,n)-closed ideal of R/J .
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In the following theorems, we determine when an ideal of R1×R2 is weakly
(m,n)-closed, but not (m,n)-closed. (Recall that an ideal of R1 × R2 has the
form I1 × I2 for ideals I1 of R1 and I2 of R2.) It is easy to determine when an
ideal of R1 ×R2 is (m,n)-closed.

Theorem 2.9 (cf. [4, Theorem 2.12]). Let R = R1 × R2, where R1 and R2

are commutative rings, J a proper ideal of R, and m and n positive integers.
Then the following statements are equivalent.

(1) J is an (m,n)-closed ideal of R.
(2) J = I1 × R2, R1 × I2, or I1 × I2 for (m,n)-closed ideals I1 of R1 and

I2 of R2.

Proof. This follows directly from the definitions. �

The analog of (1) ⇒ (2) of Theorem 2.9 clearly holds for weakly (m,n)-
closed ideals by Theorem 2.8(2), but our next theorem shows that the analog
of (2)⇒ (1) does not hold for weakly (m,n)-closed ideals.

Theorem 2.10. Let R = R1 × R2, where R1 and R2 are commutative rings,
I1 a proper ideal of R1, and m and n positive integers. Then the following
statements are equivalent.

(1) I1 ×R2 is a weakly (m,n)-closed ideal of R.
(2) I1 is an (m,n)-closed ideal of R1.
(3) I1 ×R2 is an (m,n)-closed ideal of R.

A similar result holds for R1 × I2 when I2 is a proper ideal of R2.

Proof. (1) ⇒ (2) I1 is a weakly (m,n)-closed ideal of R1 by Theorem 2.8(2).
If I1 is not an (m,n)-closed ideal of R1, then I1 has an (m,n)-unbreakable-
zero element a. Thus (0, 0) 6= (a, 1)m ∈ I1 × R2, but (a, 1)n 6∈ I1 × R2, a
contradiction. Hence I1 is an (m,n)-closed ideal of R1.

(2)⇒ (3) This is clear (cf. [4, Theorem 2.12]).
(3)⇒ (1) This is clear by definition. �

Theorem 2.11. Let R = R1 × R2, where R1 and R2 are commutative rings,
J a proper ideal of R, and m and n positive integers. Then the following
statements are equivalent.

(1) J is a weakly (m,n)-closed ideal of R that is not (m,n)-closed.
(2) J = I1 × I2 for proper ideals I1 of R1 and I2 of R2 such that either

(a) I1 is a weakly (m,n)-closed ideal of R1 that is not (m,n)-closed,
ym = 0 whenever ym ∈ I2 for y ∈ R2 (in particular, im = 0 for
every i ∈ I2), and if 0 6= xm ∈ I1 for some x ∈ R1, then I2 is an
(m,n)-closed ideal of R2, or

(b) I2 is a weakly (m,n)-closed ideal of R2 that is not (m,n)-closed,
ym = 0 whenever ym ∈ I1 for y ∈ R1 (in particular, im = 0 for
every i ∈ I1), and if 0 6= xm ∈ I2 for some x ∈ R2, then I1 is an
(m,n)-closed ideal of R1.
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Proof. (1)⇒ (2) Since J is not an (m,n)-closed ideal of R, by Theorem 2.10 we
have J = I1×I2, where I1 is a proper ideal of R1 and I2 is a proper ideal of R2.
Since J is not an (m,n)-closed ideal of R, either I1 is a weakly (m,n)-closed
ideal of R1 that is not (m,n)-closed or I2 is a weakly (m,n)-closed ideal of R2

that is not (m,n)-closed. Assume that I1 is a weakly (m,n)-closed ideal of R1

that is not (m,n)-closed. Thus I1 has an (m,n)-unbreakable-zero element a.
Assume that ym ∈ I2 for y ∈ R2. Since a is an (m,n)-unbreakable-zero element
of I1 and (a, y)m ∈ J , we have (a, y)m = (0, 0). Hence ym = 0 (in particular,
im = 0 for every i ∈ I2). Now assume that 0 6= xm ∈ I1 for some x ∈ R1. Let
y ∈ R2 such that ym ∈ I2. Then (0, 0) 6= (x, y)m ∈ J . Thus yn ∈ I2, and hence
I2 is an (m,n)-closed ideal of R2. Similarly, if I2 is a weakly (m,n)-closed ideal
of R2 that is not (m,n)-closed, then ym = 0 whenever ym ∈ I1 for y ∈ R1 (in
particular, im = 0 for every i ∈ I1), and if 0 6= xm ∈ I2 for some x ∈ R2, then
I1 is an (m,n)-closed ideal of R1.

(2)⇒ (1) Suppose that I1 is a weakly (m,n)-closed proper ideal of R1 that
is not (m,n)-closed, ym = 0 whenever ym ∈ I2 for y ∈ R2 (in particular,
im = 0 for every i ∈ I2), and if 0 6= xm ∈ I1 for some x ∈ R1, then I2 is
an (m,n)-closed ideal of R2. Let a be an (m,n)-unbreakable-zero element of
I1. Then (a, 0) is an (m,n)-unbreakable-zero element of J . Thus J is not an
(m,n)-closed ideal of R. Now assume that (0, 0) 6= (x, y)m = (xm, ym) ∈ J for
x ∈ R1 and y ∈ R2. Then (0, 0) 6= (x, y)m = (xm, 0) ∈ J and 0 6= xm ∈ I1.
Since I1 is a weakly (m,n)-closed ideal of R1 and I2 is an (m,n)-closed ideal
of R2, we have (x, y)n ∈ J . Similarly, assume that I2 is a weakly (m,n)-closed
ideal of R2 that is not (m,n)-closed, ym = 0 whenever ym ∈ I1 for y ∈ R1 (in
particular, im = 0 for every i ∈ I1), and if 0 6= xm ∈ I2 for some x ∈ R2, then
I1 is an (m,n)-closed ideal of R1. Then again, J is a weakly (m,n)-closed ideal
of R that is not (m,n)-closed. �

We next consider when certain ideals of R(+)M are weakly (m,n)-closed.

Theorem 2.12. Let R be a commutative ring, I a proper ideal of R, M an
R-module, and m and n positive integers. Then the following statements are
equivalent.

(1) I(+)M is a weakly (m,n)-closed ideal of R(+)M that is not (m,n)-
closed.

(2) I is a weakly (m,n)-closed ideal of R that is not (m,n)-closed and
m(am−1M) = 0 for every (m,n)-unbreakable-zero element a of I.

Proof. (1) ⇒ (2) Let J = I(+)M . Assume that 0 6= rm ∈ I for r ∈ R. Thus
(0, 0) 6= (r, 0)m = (rm, 0) ∈ J . Hence (r, 0)n = (rn, 0) ∈ J ; so rn ∈ I. Thus
I is a weakly (m,n)-closed ideal of R. Since J is not (m,n)-closed, J , and
hence I, has an (m,n)-unbreakable-zero element; so I is not (m,n)-closed. Let
a be an (m,n)-unbreakable-zero element of I and x ∈ M . Then (a, x)m =
(am,m(am−1x)) ∈ J . Since an 6∈ I, we have (a, x)m = (am,m(am−1x)) =
(0, 0). Thus m(am−1M) = 0.
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(2) ⇒ (1) Since I is a weakly (m,n)-closed ideal of R that is not (m,n)-
closed, I has an (m,n)-unbreakable-zero element a. Hence (a, 0) is an (m,n)-
unbreakable-zero element of J = I(+)M . Thus J is not an (m,n)-closed ideal
of A. Suppose that (0, 0) 6= (r, y)m = (rm,m(rm−1y)) ∈ J . Then r is not an
(m,n)-unbreakable-zero element of I by hypothesis. Hence (rn, n(rn−1y)) =
(r, y)n ∈ J ; so J is a weakly (m,n)-closed ideal of A that is not (m,n)-closed.

�

We end this section with another way to construct weakly (m,n)-closed
ideals that are not (m,n)-closed. See [4, Theorems 3.1 and 3.8] for similar
results for (m,n)-closed ideals.

Theorem 2.13. Let R be an integral domain and I = pkR a principal ideal
of R, where p is a prime element of R and k a positive integer. Let m be a
positive integer such that m < k, and write k = mq + r for integers q, r, where
q ≥ 1 and 0 ≤ r < m. Then J = I/pcR is a weakly (m,n)-closed ideal of
R/pcR that is not (m,n)-closed for positive integers n < m and c ≥ k + 1 if
and only if r 6= 0, k + 1 ≤ c ≤ m(q + 1), and n(q + 1) < k.

Proof. Suppose that J is a weakly (m,n)-closed ideal of R/pcR that is not
(m,n)-closed for positive integers n < m and c ≥ k + 1. It is clear that r 6= 0,
for if r = 0, then 0 6= (pq)m + pcR ∈ J , but (pq)n + pcR 6∈ J . Since q + 1
is the smallest positive integer such that (p(q+1))m + pcR ∈ J and J is not
(m,n) closed, we have 0 = (p(q+1))m+ pcR ∈ J and (p(q+1))n+ pcR 6∈ J . Thus
n(q + 1) < k and k + 1 ≤ c ≤ (q + 1)m.

Conversely, assume that r 6= 0, k + 1 ≤ c ≤ m(q + 1), and n(q + 1) < k.
Let x ∈ R/pcR such that xm ∈ J . Then x = piy + pcR for some y ∈ R such
that p(i+1) - y in R. Since xm = (pi)m + pcR ∈ J , we have i ≥ q + 1. Thus by
hypothesis, xm = 0 in R/pcR. Since 0 = (p(q+1))m+pcR ∈ J and n(q+1) < k,
we have (p(q+1))n + pcR 6∈ J . Hence J is not (m,n)-closed. �

Example 2.14. (a) Let R = Z, I = 212Z, and J = I/213Z. Then by Theo-
rem 2.13, J is a weakly (5, 3)-closed ideal of Z/213Z that is not (5, 3)-closed.

(b) Let R, I, and J be as in part (a) above. Then J(+)J is a weakly
(5, 3)-closed ideal of Z/213Z(+)J that is not (5, 3)-closed by Theorem 2.12.

3. (m,n)-von Neumann regular rings

In this section, we introduce the concepts of (m,n)-von Neumann regular
elements and (m,n)-von Neumann regular rings and use them to determine
when every proper ideal of R is (m,n)-closed or weakly (m,n)-closed. We
also define the related concepts of n-regular and ω-regular commutative rings.
First, we handle the case for ideals contained in Nil(R).

Theorem 3.1. Let R be a commutative ring and m and n positive integers
with m > n. Then every ideal of R contained in Nil(R) is weakly (m,n)-closed
if and only if wm = 0 for every w ∈ Nil(R).
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Proof. Suppose that every ideal of R contained in Nil(R) is weakly (m,n)-
closed, but wm 6= 0 for some w ∈ Nil(R). Let J = wmR ⊆ Nil(R). Then
J is weakly (m,n)-closed and 0 6= wm ∈ J ; so wn ∈ J and wn 6= 0 since
n < m. Thus wn = wma for some a ∈ R, and hence wn(1−wm−na) = 0. Then
1− wm−na ∈ U(R) since wm−na ∈ Nil(R)); so wn = 0, a contradiction. Thus
wm = 0 for every w ∈ Nil(R).

Conversely, suppose that wm = 0 for every w ∈ Nil(R). Then every ideal
of R contained in Nil(R) is weakly (m,n)-closed by definition. �

Recall that x ∈ R is a von Neumann regular element of R if x2r = x for
some r ∈ R. Similarly, x ∈ R is a π-regular element of R if x2nr = xn for some
r ∈ R and positive integer n. Thus R is a von Neumann regular ring (resp.,
π-regular ring) if and only if every element of R is von Neumann regular (resp.,
π-regular). It is well known that R is π-regular (resp., von Neumann regular)
if and only if dim(R) = 0 (resp., R is reduced and dim(R) = 0) [14, Theorem
3.1, p. 10]. A ring R is a strongly π-regular ring if there is a positive integer n
such that for every x ∈ R, we have x2nr = xn for some r ∈ R. For a recent
article on von Neumann regular and related elements of a commutative ring,
see [3]. These concepts are generalized in the next definition.

Definition 3.2. Let R be a commutative ring and m and n positive integers.
Then x ∈ R is an (m,n)-von Neumann regular element of R (or (m,n)-vnr for
short) if xmr = xn for some r ∈ R. If every element of R is (m,n)-vnr, then R
is an (m,n)-von Neumann regular ring.

Thus a commutative ring R is von Neumann regular if and only if it is (2, 1)-
von Neumann regular, and R is strongly π-regular if and only if it is (2n, n)-von
Neumann regular for some positive integer n. The next theorem gives some
basic facts about (m,n)-vnr elements.

Theorem 3.3. Let R be a commutative ring, x ∈ R, and m and n positive
integers.

(1) x is (m,n)-vnr for m ≤ n (so we usually assume that m > n).
(2) If x is (m,n)-vnr, then x is (m′, n′)-vnr for all positive integers m′ ≤ m

and n′ ≥ n.
(3) If x ∈ U(R) or x = 0, then x is (m,n)-vnr for all positive integers m

and n.
(4) If x ∈ R \ (Z(R) ∪ U(R)), then x is (m,n)-vnr if and only if m ≤ n.
(5) If xn = 0, then x is (m,n)-vnr for every positive integer m.
(6) If xk = 0 and xk−1 6= 0 for an integer k ≥ 2, then x is (m,n)-vnr if

and only if m ≤ n or n ≥ k.
(7) If x is (m,n)-vnr with m > n, then x is (m + 1, n)-vnr. Moreover,

in this case, x is (m′, n′)-vnr for all positive integers m′ and n′ ≥ n.
Thus R is von Neumann regular if and only if R is (m,n)-von Neumann
regular for all positive integers m and n.
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Proof. The proofs of (1)-(3) and (5) are clear.
(4) By (1), x is (m,n)-vnr for m ≤ n. If m > n, then xmr = xn for r ∈ R

implies xm−nr = 1. Thus x ∈ U(R), a contradiction.
(6) Suppose that xmr = xn for r ∈ R, but m > n and n < k. Then

xk−1 = xn(xk−n−1) = (xmr)(xk−n−1) = xk(xm−n−1r) = 0, a contradiction.
Thus m ≤ n or n ≥ k. The converse is clear.

(7) Let x be (m,n)-vnr with m > n. Then xmr = xn for r ∈ R implies xn =
xmr = xn(xm−nr) = (xmr)(xm−nr) = xm+1(xm−n−1r2) with xm−n−1r2 ∈ R.
Thus x is (m+ 1, n)-vnr. The “moreover” statement follows by induction and
(2). �

Corollary 3.4. Let R be a commutative ring and m and n positive integers
with m > n. Then R is (m,n)-von Neumann regular if and only if R is (m′, n′)-
von Neumann regular for all positive integers m′ and n′ ≥ n. In particular,
if R is (m,n)-von Neumann regular, then R is strongly π-regular, and thus
dim(R) = 0.

We next determine when every proper ideal of R is weakly (m,n)-closed.

Theorem 3.5. Let R be a commutative ring and m and n positive integers
with m > n. Then the following statements are equivalent.

(1) Every proper ideal of R is weakly (m,n)-closed.
(2) Every non-nilpotent element of R is (m,n)-vnr and wm = 0 for every

w ∈ Nil(R).

Proof. (1) ⇒ (2) Since every ideal of R contained in Nil(R) is weakly (m,n)-
closed, wm = 0 for every w ∈ Nil(R) by Theorem 3.1. Let x ∈ R \Nil(R). If
x ∈ U(R), then x is (m,n)-vnr by Theorem 3.3(3). If x /∈ U(R), then I = xmR
is weakly (m,n)-closed and 0 6= xm ∈ I; so xn ∈ I. Thus xn = xmr for some
r ∈ R, and hence x is (m,n)-vnr.

(2)⇒ (1) Let I be a proper ideal of R and 0 6= xm ∈ I for x ∈ R. Then x /∈
Nil(R); so x is (m,n)-vnr. Thus xmr = xn for some r ∈ R; so xn = xmr ∈ I.
Hence I is weakly (m,n)-closed. �

In view of Theorem 3.5, we have the following result.

Corollary 3.6. Let R be a reduced commutative ring and m and n positive
integers. Then the following statements are equivalent.

(1) Every proper ideal of R is weakly (m,n)-closed.
(2) Every proper ideal of R is (m,n)-closed.
(3) R is (m,n)-von Neumann regular.

The following result is the analog of Theorem 3.5 for (m,n)-closed ideals.

Theorem 3.7. Let R be a commutative ring and m and n positive integers.
Then the following statements are equivalent.

(1) Every proper ideal of R is (m,n)-closed.
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(2) R is (m,n)-von Neumann regular.

Proof. (1) ⇒ (2) Let x ∈ R. If x ∈ U(R), then x is (m,n)-vnr by Theo-
rem 3.3(3). If x /∈ U(R), then I = xmR is (m,n)-closed and xm ∈ I. Thus
xn ∈ I; so xn = xmr for some r ∈ R. Hence x is (m,n)-vnr, and thus R is
(m,n)-von Neumann regular.

(2) ⇒ (1) Let I be a proper ideal of R and xm ∈ I for x ∈ R. Since
x is (m,n)-vnr, xmr = xn for some r ∈ R. Thus xn = xmr ∈ I; so I is
(m,n)-closed. �

Of course, we are mainly interested in the case when m > n. The next
theorem incorporates Theorem 3.7 with another characterization ([4, Theorem
2.14]) of when every proper ideal is (m,n)-closed. Note that in Theorem 3.8(3)
below, there are no conditions on m other than m > n.

Theorem 3.8. Let R be a commutative ring and m and n positive integers
with m > n. Then the following statements are equivalent.

(1) Every proper ideal of R is (m,n)-closed.
(2) R is (m,n)-von Neumann regular.
(3) dim(R) = 0 and wn = 0 for every w ∈ Nil(R).

Proof. (1)⇔ (2) is Theorem 3.7 and (1)⇔ (3) is [4, Theorem 2.14]. �

Theorem 3.8 gives a nice ring-theoretic characterization of (m,n)-von Neu-
mann regular rings (form > n). This can now be used to give a characterization
of strongly π-regular commutative rings which strengthens Corollary 3.4.

Theorem 3.9. Let R be a commutative ring. Then the following statements
are equivalent.

(1) R is strongly π-regular.
(2) There are positive integers m and n with m > n such that R is (m,n)-

von Neumann regular.
(3) There is a positive integer n such that R is (m,n)-von Neumann regular

for every positive integer m.
(4) dim(R) = 0 and there is a positive integer n such that wn = 0 for every

w ∈ Nil(R).

Proof. (1) ⇒ (2) A strongly π-regular ring is (2n, n)-von Neuman regular for
some positive integer n.

(2)⇒ (3) This follows from Corollary 3.4.
(3)⇒ (1) In particular, R is (2n, n)-von Neumann regular, and thus strongly

π-regular.
(2)⇔ (4) This is just (2)⇔ (3) of Theorem 3.8. �

We next investigate in more detail the pairs (m,n) for which a commutative
ring R or an x ∈ R is (m,n)-von Neumann regular.
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Definition 3.10. Let R be a commutative ring, x ∈ R, and k a positive
integer.

(1) V(R, x) = {(m,n) ∈ N× N | x is (m,n)-vnr}.
(2) V(R) = {(m,n) ∈ N× N | R is (m,n)-von Neumann regular}.
(3) Bk = {(m,n) ∈ N× N | m ≤ n or n ≥ k}.
(4) Bω = {(m,n) ∈ N× N | m ≤ n}.

Then V(R) =
⋂
x∈R V(R, x) and

N× N = B1 ) B2 ) · · · ) Bω.

Theorem 3.11. Let R be a commutative ring and x ∈ R.
(1) V(R, x) = Bk, where k is the smallest positive integer such that (i, k) ∈
V(R, x) for some i > k. (Thus k is the smallest positive integer such
that x is (m, k)-vnr for every positive integer m.) If no such k exists,
then V(R, x) = Bω.

(2) V(R) = Bk, where k is the smallest positive integer such that (i, k) ∈
V(R, x) for some i > k and every x ∈ R. (Thus k is the smallest
positive integer such that x is (m, k)-vnr for every x ∈ R and positive
integer m.) If no such k exists, then V(R) = Bω.

Proof. (1) follows directly from Theorem 3.3(7). Thus (2) holds by definition.
�

These ideas can also be used to classify zero-dimensional commutative rings.

Definition 3.12. Let R be a commutative ring and n a positive integer.

(1) R is n-regular if V(R) = Bn, i.e., n is the smallest positive integer such
that for every x ∈ R and positive integer m, xn = xmrm for some
rm ∈ R.

(2) R is ω-regular if for every x ∈ R, V(R, x) = Bnx
for some positive

integer nx, but V(R) = Bω.

A commutative ring R is von Neumann regular if and only if it is 1-regular,
and R is strongly π-regular if and only if it is n-regular for some positive integer
n. Note that R is π-regular if and only if every x ∈ R is (m,n)-vnr for some
positive integers m and n with m > n, but a π-regular ring may be ω-regular
(see Example 3.13(d)). Thus R is α-regular for α a positive integer or ω if
and only if R is π-regular, if and only if dim(R) = 0. So, in some sense, this
concept measures how far a zero-dimensional commutative ring is from being
von Neumann regular.

We next give several examples. In particular, we show that if α is any
positive integer or ω, there is a quasilocal commutative ring Rα that is α-
regular.

Example 3.13. Let R be a commutative ring.
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(a) Suppose that there is an x ∈ R \ (Z(R) ∪ U(R)) (so dim(R) > 0). Then
V(R) = V(R, x) = Bω by Theorem 3.3(4). Thus R is not ω-regular or n-regular
for any positive integer n.

(b) Suppose that R is quasilocal with maximal ideal M = (x) with xk = 0
and xk−1 6= 0 for an integer k ≥ 2. Then V(R) = Bk by Theorem 3.3(3),(6); so
R is k-regular. This also holds for k = 1 since a field is von Neumann regular.
In particular, for a prime p and any positive integer k, V(Zpk) = Bk, and thus
Zpk is k-regular.

(c) Let R1 and R2 be commutative rings. Then x = (x1, x2) ∈ R1 × R2 is
(m,n)-vnr if and only if x1 and x2 are (m,n)-vnr in R1 and R2, respectively.
Thus V(R1×R2) = Bk, where V(R1) = Bk1 , V(R2) = Bk2 , and k =max{k1, k2};
so R1 × R2 is max{k1, k2}-regular when R1 and R2 are k1-regular and k2-
regular, respectively. In particular, for distinct primes p1, . . . , pr, positive inte-
gers k1, . . . , kr, and k = max{k1, . . . , kr}, V(Z

p
k1
1
×· · ·×Zpkr

r
) = Bk, and hence

Z
p
k1
1
× · · · × Zpkr

r
is k-regular.

(d) Let R = Z2[{Xn}n∈N]/({Xn+1
n }n∈N) = Z2[{xn}n∈N]. Then R is a

zero-dimensional quasilocal commutative ring with maximal ideal Nil(R) =
({xn}n∈N); so R is π-regular. Thus every x ∈ R has V(R, x) = Bk for some
positive integer k and V(R, xn) = Bn+1 by Theorem 3.3(3),(6); so V(R) = Bω.
Hence R is ω-regular.
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