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Introduction

This edition is an improvement of the first edition. In this edition, I
corrected some of the errors that appeared in the first edition. I added
the following sections that were not included in the first edition: Sim-
ple groups, Classification of finite Abelian groups, General question on
Groups, Euclidean domains, Gaussian Ring (Z[i]), Galois field and Cy-
clotomic fields, and General question on rings and fields. I hope that
students who use this book will obtain a solid understanding of the basic
concepts of abstract algebra through doing problems, the best way to un-
derstand this challenging subject. So often I have encountered students
who memorize a theorem without the ability to apply that theorem to a
given problem. Therefore, my goal is to provide students with an array
of the most typical problems in basic abstract algebra. At the beginning
of each chapter, I state many of the major results in Group and Ring
Theory, followed by problems and solutions. I do not claim that the so-
lutions in this book are the shortest or the easiest; instead each is based
on certain well-known results in the field of abstract algebra. If you wish
to comment on the contents of this book, please email your thoughts to
abadawi@aus.edu

I dedicate this book to my father Rateb who died when I was 9
years old. I wish to express my appreciation to my wife Rawya, my son
Nadeem, my friend Brian Russo, and Nova Science Inc. Publishers for
their superb assistance in this book. It was a pleasure working with them.

Ayman Badawi
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Chapter 1

Tools and Major Results of

Groups

1.1 Notations

1. e indicates the identity of a group G.

2. eH indicates the identity of a group H

3. Ord(a) indicates the order of a in a group.

4. gcd(n,m) indicates the greatest common divisor of n and m.

5. lcm(n,m) indicates the least common divisor of n and m.

6. H �G indicates that H is a normal subgroup of G.

7. Z(G) = {x ∈ G : xy = yx for each y ∈ G} indicates the center of a
group G.

8. Let H be a subgroup of a group G. Then C(H) = {g ∈ G : gh = hg
for each h ∈ H} indicates the centralizer of H in G.

9. Let a be an element in a group G. Then C(a) = {g ∈ G : ga = ag}
indicates the centralizer of a in G.

10. Let H be a subgroup of a group G. Then N(H) = {g ∈ G : g−1Hg =
H} indicates the normalizer of H in G.

11. Let H be a subgroup of a group G. Then [G : H] = number of all
distinct left(right) cosets of H in G.

1
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12. C indicates the set of all complex numbers.

13. Z indicates the set of all integers.

14. Zn = {m : 0 ≤ m < n} indicates the set of integers module n

15. Q indicates the set of all rational numbers.

16. U(n) = {a ∈ Zn : gcd(a, n) = 1} indicates the unit group of Zn

under multiplication module n.

17. If G is a group and a ∈ G, then (a) indicates the cyclic subgroup of
G generated by a.

18. If G is a group and a1, a2, ..., an ∈ G, then (a1, a2, ..., an) indicates
the subgroup of G generated by a1, a2, ..., an.

19. GL(m,Zn) indicates the group of all invertible m×m matrices with
entries from Zn under matrix-multiplication

20. If A is a square matrix, then det(A) indicates the determinant of
A.

21. Aut(G) indicates the set of all isomorphisms (automorphisms) from
G onto G.

22. Sn indicates the group of all permutations on a finite set with n
elements.

23. A ∼= B indicates that A is isomorphic to B.

24. a ∈ A \B indicates that a is an element of A but not an element of
B.

25. a | b indicates that a divides b.

1.2 Results

THEOREM 1.2.1 Let a be an element in a group G. If am = e , then
Ord(a) divides m.

THEOREM 1.2.2 Let p be a prime number and n, m be positive inte-
gers such that p divides nm. Then either p divides n or p divides m.
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THEOREM 1.2.3 Let n, m be positive integers. Then gcd(n,m) = 1 if
and only if am +bm = 1 for some integers a and b.

THEOREM 1.2.4 Let n and m be positive integers. If a = n/gcd(n,m)
and b = m/gcd(n,m), then gcd(a,b) = 1.

THEOREM 1.2.5 Let n, m, and c be positive integers. If gcd(c,m) =
1 and c divides nm, then c divides n.

THEOREM 1.2.6 Let n and m and c be positive integers such that
gcd(n,m) =1. If n divides c and m divides c, then nm divides c.

THEOREM 1.2.7 Let H be a subset of a group G. Then H is a subgroup
of G if and only if a−1b ∈ H for every a and b ∈ H.

THEOREM 1.2.8 Let H be a finite set of a group G. Then H is a
subgroup of G if and only if H is closed.

THEOREM 1.2.9 Let a be an element of a group G. If a has an infinite
order, then all distinct powers of a are distinct elements. If a has finite
order, say, n, then the cyclic group (a) = {e, a, a2, a3, ..., an−1} and ai =
aj if and only if n divides i− j.

THEOREM 1.2.10 Every subgroup of a cyclic group is cyclic.

THEOREM 1.2.11 If G = (a), a cyclic group generated by a, and
Ord(G) = n, then the order of any subgroup of G is a divisor of n.

THEOREM 1.2.12 Let G = (a) such that Ord(G) = n. Then for each
positive integer k divides n, the group G = (a) has exactly one subgroup
of order k namely (an/k).

THEOREM 1.2.13 Let n = Pα1

1 ...Pαk

k , where the Pi’s are distinct
prime numbers and each αi is a positive integer ≥ 1. Then φ(n) =
(P1 − 1)Pα1−1

1 ...(Pk − 1)Pαk−1
k , where φ(n) = number of all positive in-

tegers less than N and relatively prime to n.

THEOREM 1.2.14 Let G be a cyclic group of order n, and let d be
a divisor of n. Then number of elements of G of order d is φ(d). In
particular, number of elements of G of order n is φ(n).

THEOREM 1.2.15 Z is a cyclic group and each subgroup of Z is of
the form nZ for some n ∈ Z.
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THEOREM 1.2.16 Zn is a cyclic group and if k is a positive divisor
of n, then (n/k) is the unique subgroup of Zn of order k.

THEOREM 1.2.17 Let n be a positive integer, and write n = Pα1

1 Pα2

2 ...
Pαk

k where the Pi’s are distinct prime numbers and each αi is a positive
integer ≥ 1. Then number of all positive divisors of n ( including 1 and
n) is (α1 + 1)(α2 + 1)...(αk + 1).

THEOREM 1.2.18 Let n,m, k be positive integers. Then lcm(n,m)
=nm/gcd(n,m). If n divides k and m divides k, then lcm(n,m) divides k.

THEOREM 1.2.19 Let α = (a1, a2, ..., an) and β = (b1, b2, ..., bm) be
two cycles. If α and β have no common entries, then αβ = βα.

THEOREM 1.2.20 Let α be a permutation of a finite set. Then α can
be written as disjoint cycles and Ord(α) is the least common multiple of
the lengths of the disjoint cycles.

THEOREM 1.2.21 Every permutation in Sn(n > 1) is a product of
2-cycles.

THEOREM 1.2.22 Let α be a permutation. If α = B1B2...Bn and
α = A1A2...Am, where the Bi’s and the Ai’s are 2-cycles, then m and n
are both even or both odd.

THEOREM 1.2.23 Let α = (a1, a2, ..., an) ∈ Sm. Then α = (a1, an)
(a1, an−1)(a1, an−2)...(a1, a2).

THEOREM 1.2.24 The set of even permutations An is a subgroup of
Sn.

THEOREM 1.2.25 Let α = (a1, a2, ..., an) ∈ Sm. Then α−1 =
(an, an−1, ..., a2, a1).

THEOREM 1.2.26 Let H be a subgroup of G, and let a, b ∈ G. Then
aH = bH if and only if a−1b ∈ H. In particular, if gH = H for some
g ∈ G, then g ∈ H

THEOREM 1.2.27 Let G be a finite group and let H be a subgroup of
G. Then Ord(H) divides Ord(G).

THEOREM 1.2.28 Let G be a finite group and let H be a subgroup of
G. Then the number of distinct left(right) cosets of H in G is Ord(G)/Ord(H).
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THEOREM 1.2.29 Let G be a finite group and a ∈ G. Then Ord(a)
divides Ord(G).

THEOREM 1.2.30 Let G be a group of order n, and let a ∈ G. Then
an = e.

THEOREM 1.2.31 Let G be a finite group, and let p be a prime number
such that p divides Ord(G). Then G contains an element of order p.

THEOREM 1.2.32 Let H be a subgroup of a group G. Then H is
normal if and only if gHg−1 = H for each g ∈ G.

THEOREM 1.2.33 Let H be a normal subgroup of G. Then G/H =
{gH : g ∈ G} is a group under the operation aHbH = abH. Furthermore,
If [G : H] is finite, then Ord(G/H) = [G : H].

THEOREM 1.2.34 Let Φ be a group homomorphism from a group G
to a group H and let g ∈ G and D be a subgroup of G. Then :

1. Φ carries the identity of G to the identity of H.

2. Φ(gn) = (Φ(g))n.

3. Φ(D) is a subgroup of H.

4. If D is normal in G, then Φ(D) is normal in Φ(H).

5. If D is Abelian, then Φ(D) is Abelian.

6. If D is cyclic, then Φ(D) is cyclic. In particular, if G is cyclic and
D is normal in G, then G/D is cyclic.

THEOREM 1.2.35 Let Φ be a group homomorphism from a group G
to a group H. Then Ker(Φ) is a normal subgroup of G and G/Ker(Φ) ∼=
Φ(G) (the image of G under Φ).

THEOREM 1.2.36 Suppose that H1, H2, ..., Hn are finite groups. Let
D = H1 ⊕H2... ⊕Hn. Then D is cyclic if and only if each Hi is cyclic
and if i 6= j, then gcd(Ord(Hi), Ord(Hj) = 1.

THEOREM 1.2.37 Let H1, ..., Hn be finite groups, and let d =
(h1, h2, ..., hn) ∈ D = H1 ⊕ H2... ⊕ Hn. Then Ord(d) =
Ord((h1, h2, ..., hn)) = lcm(Ord(h1), Ord(h2), ..., Ord(hn)).
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THEOREM 1.2.38 Let n = m1m2...mk where gcd(mi,mj) = 1 for
i 6= j. Then U(n) = U(m1)⊕ U(m2)...⊕ U(mk).

THEOREM 1.2.39 Let H,K be normal subgroups of a group G such
that H ∩K = {e} and G = HK. Then G ∼= H ⊕K.

THEOREM 1.2.40 Let p be a prime number. Then U(p) ∼= Zp−1 is a
cyclic group. Furthermore, if p is an odd prime, then U(pn) ∼= Zφ(pn) =
Zpn−pn−1 = Z(p−1)pn−1 is a cyclic group. Furthermore, U(2n) ∼= Z2 ⊕
Z2n−2 is not cyclic for every n ≥ 3.

THEOREM 1.2.41 Aut(Zn) ∼= U(n).

THEOREM 1.2.42 Every group of order n is isomorphic to a subgroup
of Sn.

THEOREM 1.2.43 Let G be a finite group and let p be a prime. If pk

divides Ord(G), then G has a subgroup of order pk.

THEOREM 1.2.44 If H is a subgroup of a finite group G such that
Ord(H) is a power of prime p, then H is contained in some Sylow p-
subgroup of G.

THEOREM 1.2.45 Let n be the number of all Sylow p-subgroups of a
finite group G. Then n divides Ord(G) and p divides (n− 1).

THEOREM 1.2.46 A Sylow p-subgroup of a finite group G is a normal
subgroup of G if and only if it is the only Sylow p-subgroup of G.

THEOREM 1.2.47 Suppose that G is a group of order pn for some
prime number p and for some n ≥ 1. Then Ord(Z(G)) = pk for some
0 < k ≤ n.

THEOREM 1.2.48 Let H and K be finite subgroups of a group G.
Then Ord(HK) = Ord(H)Ord(K)/Ord(H ∩K).

THEOREM 1.2.49 Let G be a finite group. Then any two Sylow-p-
subgroups of G are conjugate, i.e., if H and K are Sylow-p-subgroups,
then H = g−1Kg for some g ∈ G.

THEOREM 1.2.50 Let G be a finite group, H be a normal subgroup
of G, and let K be a Sylow p-subgroup of H. Then G = HNG(K) and
[G : H] divides Ord(NG(K)), where NG(K) = {g ∈ G : g−1Kg = K}
(the normalizer of K in G).
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THEOREM 1.2.51 Let G be a finite group, np be the number of
Sylow-p-subgroups of G, and suppose that p2 does not divide np − 1.
Then there are two distinct Sylow-p-subgroups K and H of G such
that [K : H ∩K] = [H : H ∩K] = p. Furthermore, H ∩K is normal in
both K and H, and thus HK ⊂ N(H ∩K) and Ord(N(H ∩K)) >
Ord(HK) = Ord(H)ORD(K)/Ord(H ∩K).

THEOREM 1.2.52 Every finite Abelian group is a direct product of
cyclic groups of prime-power order. Moreover, the factorization is unique
except for rearrangement of the factors.

THEOREM 1.2.53 Let G be a finite Abelian group of order n. Then
for each positive divisor k of n, there is a subgroup of G of order k.

THEOREM 1.2.54 We say a is a conjugate of b in a group G
if g−1bg = a for some g ∈ G. The conjugacy class of a is denoted
by CL(a) = {b ∈ G : g−1ag = b for some g ∈ G}. Recall that
C(a) = {g ∈ G : ga = ag} is a subgroup of G and C(a) is called the
centralizer of a in G. Also, we say that two subgroups H, K of a group
G are conjugate if H = g−1Kg for some g ∈ G. The conjugacy class of
a subgroup H of a group G is denoted by CL(H) = {g−1Hg : g ∈ G}.
Let G be a finite group, a ∈ G, and let H be a subgroup of G. Then
Ord(CL(a)) = [G : C(a)] = Ord(G)/Ord(C(a)) and Ord(CL(H)) =
[G : N(H)], where N(H) = {g ∈ G : g−1Hg = H} the normalizer of H
in G.

We say that a group is simple if its only normal subgroups are the
identity subgroup and the group itself.

THEOREM 1.2.55 If Ord(G) = 2n, where n is an odd number
greater than 1, then G is not a simple group.

THEOREM 1.2.56 Let H be a subgroup of a finite group G and
let n = [G : H] (the index of H in G). Then there is a group
homomorphism, say Φ, from G into Sn (recall that Sn is the group
of all permutations on a set with n elements) such that Ker(Φ) is
contained in H. Moreover, if K is a normal subgroup of G and K
is contained in H, then K is contained in Ker(Φ).

THEOREM 1.2.57 Let H be a proper subgroup of a finite non-Abelian
simple group G and let n = [G : H] (the index of H in G). Then G
is isomorphic to a subgroup of An.
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THEOREM 1.2.58 For each n ≥ 5, An (the subgroup of all even
permutation of Sn) is a simple group.

THEOREM 1.2.59 Let G be a group of order pn, where n ≥ 1
and p is prime number. Then if H is a normal subgroup of G
and Ord(H) ≥ p, then Ord(H ∩ Z(G)) ≥ p, i.e., H ∩ Z(G) 6= {e}. In
particular, every normal subgroup of G of order p is contained in Z(G)
(the center of G).



Chapter 2

Problems in Group Theory

2.1 Elementary Properties of Groups

QUESTION 2.1.1 For any elements a, b in a group and any integer n,
prove that (a−1ba)n = a−1bna.

Solution: The claim is clear for n = 0. We assume n ≥ 1. We use
math. induction. The result is clear for n = 1. Hence, assume it is true
for n ≥ 1. We prove it for n+1. Now, (a−1ba)n+1 = (a−1ba)n(a−1ba) =
(a−1bna)(a−1ba) = a−1bn(aa−1)ba = a−1bn+1a, since aa−1 is the identity
in the group. Now, we assume n ≤ −1. Since−n ≥ 1, we have (a−1ba)n =
[(a−1ba)−1]−n = (a−1b−1a)−n = a−1(b−1)−na = a−1bna. (We assume
that the reader is aware of the fact that (b−1)−n = (b−n)−1 = bn .)

QUESTION 2.1.2 Let a and b be elements in a finite group G. Prove
that Ord(ab) = Ord(ba).

Solution: Let n = Ord(ab) and m = Ord(ba). Now, by the previous
Question, (ba)n = (a−1(ab)a)n = a−1(ab)na = e. Thus, m divides n by
Theorem 1.2.1. Also, (ab)m = (b−1(ba)b)m = b−1(ba)mb = e. Thus, n
divides m. Since n divides m and m divides n, we have n = m.

QUESTION 2.1.3 Let g and x be elements in a group. Prove that
Ord(x−1gx) = Ord(g).

Solution: Let a = x−1g and b = x. By the previous Question, Ord(ab)
= Ord(ba). But ba = g. Hence, Ord(x−1gx) = Ord(g).

QUESTION 2.1.4 Suppose that a is the only element of order 2 in a
group G. Prove that a ∈ Z(G)

9
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Solution: Deny. Then xa 6= ax for some x ∈ G. Hence,x−1ax 6= a.
Hence, by the previous question we have Ord(x−1ax) = Ord(a) = 2,a
contradiction, since a is the only element of order 2 in G. Thus, our
denial is invalid. Hence, a ∈ Z(G).

QUESTION 2.1.5 In a group, prove that (a−1)−1 = a.

Solution: Since aa−1 = e, we have(aa−1)−1 = e. But we know that
(aa−1)−1 = (a−1)−1a−1. Hence,(a−1)−1a−1 = e. Also by a similar argu-
ment as before, since a−1a = e, we conclude that a−1(a−1)−1 = e. Since
the inverse of a−1 is unique, we conclude that (a−1)−1 = a.

QUESTION 2.1.6 Prove that if (ab)2 = a2b2, then ab = ba.

Solution: (ab)2 = abab = a2b2. Hence, a−1(abab)b−1 = a−1(a2b2)b−1.
Thus, (a−1a)ba(bb−1) = (a−1a)ab(bb−1). Since a−1a = bb−1 = e, we have
ba = ab.

QUESTION 2.1.7 Let a be an element in a group. Prove that Ord(a)=
Ord(a−1).

Solution: Suppose that Ord(a) = n and Ord(a−1) = m. We may assume
that m < n. Hence, an(a−1)m = ana−m = an−m = e. Thus, by Theorem
1.2.1 Ord(a) = n divides n - m,which is impossible since n−m < n.

QUESTION 2.1.8 Let a be a non identity element in a group G such
that Ord(a) = p is a prime number. Prove that Ord(ai) = p for each
1 ≤ i < p.

Solution: Let 1 ≤ i < p. Since Ord(a) = p, (ai)p = api = e the
identity in G. Hence, we may assume that Ord(ai) = m < p. Thus,
(ai)m = aim = e. Thus, by Theorem 1.1 Ord(a) = p divides im. Thus, by
Theorem 1.2.2 either p divides i or p divides m. Since i < p and m < p,
neither p divides i nor p divides m. Hence, Ord(ai) = m = p.

QUESTION 2.1.9 Let G be a finite group. Prove that number of ele-
ments x of G such that x7 = e is odd.

Solution: Let x be a non identity element of G such that x7 = e. Since
7 is a prime number and x 6= e, Ord(x) = 7 by Theorem 1.2.1. Now, By
the previous question (xi)7 = e for each 1 ≤ i ≤ 6. Thus, number of non
identity elements x of G such that x7 = e is 6n for some positive integer
n. Also, Since e7 = e, number of elements x of G such that x7 = e is
6n+ 1 which is an odd number.
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QUESTION 2.1.10 Let a be an element in a group G such that an = e
for some positive integer n. If m is a positive integer such that gcd(n,m)
= 1, then prove that a = bm for some b in G.

Solution: Since gcd(n,m) = 1, cn + dm = 1 for some integers c and d
by Theorem 1.2.3. Hence, a = a1 = acn+dm = acnadm. Since an = e,
acn = e. Hence, a = adm. Thus, let b = ad. Hence, a = bm.

QUESTION 2.1.11 Let G be a group such that a2 = e for each a ∈ G.
Prove that G is Abelian.

Solution: Since a2 = e for each a in G, a = a−1 for each a in G. Now,
let a and b be elements in G. Then (ab)2 = abab = e. Hence, (abab)ba =
ba. But (abab)ba = aba(bb)a= aba(e)a = ab(aa) = ab(e) = ab. Thus,
ab = ba.

QUESTION 2.1.12 Let a be an element in a group such that Ord(a)
= n. If i is a positive integer, then prove that Ord(ai) = n/gcd(n, i).

Solution: Let k = n/gcd(n,i) and let m = Ord(ai). Then (ai)k =
(an)i/gcd(n,i) = e since an = e. Since (ai)k = e, m divides k by Theorem
1.2.1. Also, since Ord(ai) = m, we have (ai)m = aim = e. Hence, n di-
vides im (again by Theorem 1.2.1). Since n =[n/gcd(i,n)]gcd(i,n) divides
im = m[i/gcd(i,n)]gcd(i,n), we have k = n/gcd(n,i) divides m[i/gcd(i,n)].
Since gcd(k, i/gcd(n,i)) = 1 by Theorem 1.2.4 and k divides m[i/gcd(i,n)],
we have k divides m by Theorem 1.2.5. Since m divides k and k divides
m, m = k. Hence, Ord(ai) = k = n/gcd(i, n).

QUESTION 2.1.13 Let a be an element in a group such that Ord(a)
= 20. Find Ord(a6) and Ord(a13).

Solution: By the previous problem, Ord(a6) = 20/gcd(6, 20) = 20/2 =
10. Also, Ord(a13) = 20/gcd(13, 20) = 20/1 = 20.

QUESTION 2.1.14 Let a and b be elements in a group such that ab
= ba and Ord(a) = n and Ord(b) = m and gcd(n,m) = 1. Prove that
Ord(ab) = lcm(n,m) = nm.

Solution: Let c = Ord(ab). Since ab = ba, we have (ab)nm = anmbnm =
e. Hence, c divides nm by Theorem 1.2.1. Since c = Ord(ab) and ab=ba,
we have (ab)nc = ancbnc = (abc)n = e. Hence, since anc = e, we have



12 A. Badawi

bnc = e. Thus, m divides nc since m = Ord(b). Since gcd(n,m) = 1, we
have m divides c by Theorem 1.2.5. Also, we have (ab)mc = amcbmc =
(abc)m = e. Since bmc = e, we have amc = e. Hence, n divides mc. Once
again, since gcd(n,m) =1, we have n divides c. Since n divides c and
m divides c and gcd(n,m) = 1, we have nm divides c by Theorem 1.2.6.
Since c divides nm and nm divides c, we have nm = c = Ord(ab).

QUESTION 2.1.15 In view of the previous problem, find two elements
a and b in a group such that ab = ba and Ord(a) = n and Ord(b) = m
but Ord(ab) 6= lcm(n,m).

Solution: Let a be a non identity element in a group and let b = a−1.
Then Ord(a) = Ord(a−1) = n > 1 by Question 2.1.7 and ab = ba. But
Ord(ab) = Ord(e) = 1 6= lcm(n, n) = n.

QUESTION 2.1.16 Let x and y be elements in a group G such that
xy ∈ Z(G). Prove that xy = yx.

Solution: Since xy = x−1x(xy) and xy ∈ Z(G), we have xy = x−1x(xy) =
x−1(xy)x = (x−1x)yx = yx.

QUESTION 2.1.17 Let G be a group with exactly 4 elements. Prove
that G is Abelian.

Solution: Let a and b be non identity elements of G. Then e, a, b,ab,and
ba are elements of G. Since G has exactly 4 elements, ab = ba. Thus, G
is Abelian.

QUESTION 2.1.18 Let G be a group such that each non identity ele-
ment of G has prime order. If Z(G) 6= {e}, then prove that every non
identity element of G has the same order.

Solution: Let a ∈ Z(G) such that a 6= e. Assume there is an element
b ∈ G such that b 6= e and Ord(a) 6= Ord(b). Let n = Ord(a) and m =
Ord(b). Since n,m are prime numbers, gcd(n,m) = 1. Since a ∈ Z(G),
ab = ba. Hence, Ord(ab) = nm by Question 2.1.14. A contradiction since
nm is not prime. Thus, every non identity element of G has the same
order.

QUESTION 2.1.19 Let a be an element in a group. Prove that (an)−1 =
(a−1)n for each n ≥ 1.
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Solution: We use Math. induction on n. For n = 1, the claim is clearly
valid. Hence, assume that (an)−1 = (a−1)n. Now, we need to prove the
claim for n + 1. Thus, (an+1)−1 = (aan)−1 = (an)−1a−1 = (a−1)na−1 =
(a−1)n+1.

QUESTION 2.1.20 Let g ∈ G, where G is a group. Suppose that
gn = e for some positive integer n. Show that Ord(g) divides n.

Solution : Let m = Ord(g). It is clear that m ≤ n. Hence n = mq+ r
for some integers q, r where 0 ≤ r < m. Since gn = e, we have
e = gn = gmq+r = gmqgr = egr = gr. Since gr = e and r < Ord(g) = m,
we conclude that r = 0. Thus m = Ord(g) divides n.

2.2 Subgroups

QUESTION 2.2.1 Let H and D be two subgroups of a group such that
neither H ⊂ D nor D ⊂ H. Prove that H ∪D is never a group.

Solution: Deny. Let a ∈ H \ D and let b ∈ D \ H. Hence, ab ∈ H or
ab ∈ D. Suppose that ab = h ∈ H. Then b = a−1h ∈ H, a contradiction.
In a similar argument, if ab ∈ D, then we will reach a contradiction.
Thus, ab 6∈ H∪D. Hence, our denial is invalid. Therefore, H∪D is never
a group.

QUESTION 2.2.2 Give an example of a subset of a group that satisfies
all group-axioms except closure.

Solution: Let H = 3Z and D = 5Z. Then H and D are subgroups of Z.
Now, let C = H ∪D. Then by the previous question, C is never a group
since it is not closed.

QUESTION 2.2.3 Let H and D be subgroups of a group G. Prove that
C = H ∩D is a subgroup of G.

Solution: Let a and b be elements in C. Since a ∈ H and a ∈ D and
the inverse of a is unique and H, D are subgroups of G, a−1 ∈ H and
a−1 ∈ D. Now, Since a−1 ∈ C and b ∈ C and H, D are subgroups of G,
a−1b ∈ H and a−1b ∈ D. Thus, a−1b ∈ C. Hence, C is a subgroup of G
by Theorem 1.2.7.

QUESTION 2.2.4 Let H = {a ∈ Q : a = 3n8m for some n and m in
Z}. Prove that H under multiplication is a subgroup of Q \ {0}.
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Solution: Let a, b ∈ H. Then a = 3n18n2 and b = 3m18m2 for some
n1, n2,m1,m2 ∈ Z. Now, a−1b = 3m1−n18m2−n2 ∈ H. Thus, H is a
subgroup of Q \ {0} by Theorem 1.2.7.

QUESTION 2.2.5 Let D be the set of all elements of finite order in an
Abelian group G. Prove that D is a subgroup of G.

Solution: Let a and b be elements in D, and let n = Ord(a) and m
= Ord(b). Then Ord(a−1) = n by Question 2.1.7. Since G is Abelian,
(a−1b)nm = (a−1)nmbnm = e. Thus, Ord(a−1b) is a finite number ( in
fact Ord(a−1b) divides nm). Hence, a−1b ∈ D. Thus, D is a subgroup of
G by Theorem 1.2.7.

QUESTION 2.2.6 Let a, x be elements in a group G. Prove that ax =
xa if and only if a−1x = xa−1.

Solution: Suppose that ax = xa. Then a−1x = a−1xaa−1 = a−1axa−1 =
exa−1 = xa−1. Conversely, suppose that a−1x = xa−1. Then ax =
axa−1a = aa−1xa = exa = xa.

QUESTION 2.2.7 Let G be a group. Prove that Z(G) is a subgroup of
G.

Solution: Let a, b ∈ Z(G) and x ∈ G. Since ax = xa, we have a−1x =
xa−1 by the previous Question. Hence, a−1bx = a−1xb = xa−1b. Thus,
a−1b ∈ Z(G). Thus, Z(G) is a subgroup of G by Theorem 1.2.7.

QUESTION 2.2.8 Let a be an element of a group G. Prove that C(a)
is a subgroup of G.

Solution: Let x, y ∈ C(a). Since ax = xa, we have x−1a = ax−1 by
Question 2.2.6. Hence, x−1ya = x−1ay = ax−1y. Thus, x−1y ∈ C(a).
Hence, C(a) is a subgroup of G by Theorem 1.2.7.

Using a similar argument as in Questions 2.2.7 and 2.2.8, one can prove
the following:

QUESTION 2.2.9 Let H be a subgroup of a group G. Prove that N(H)
is a subgroup of G.
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QUESTION 2.2.10 Let H = {x ∈ C : x301 = 1}. Prove that H is a
subgroup of C \ {0} under multiplication.

Solution: First, observe that H is a finite set with exactly 301 elements.
Let a, b ∈ H. Then (ab)301 = a301b301 = 1. Hence, ab ∈ H. Thus, H is
closed. Hence, H is a subgroup of C \ {0} by Theorem 1.2.8.

QUESTION 2.2.11 Let H = {A ∈ GL(608, Z89) : det(A) = 1}. Prove
that H is a subgroup of GL(608, Z89).

Solution: First observe that H is a finite set. Let C,D ∈ H. Then
det(CD) = det(C)det(D) = 1. Thus, CD ∈ H. Hence, H is closed.
Thus, H is a subgroup of GL(608, Z89) by Theorem 1.2.8.

QUESTION 2.2.12 Suppose G is a group that has exactly 36 distinct
elements of order 7. How many distinct subgroups of order 7 does G
have?

Solution: Let x ∈ G such that Ord(x) = 7. Then, H = {e, x, x2, ..., x6}
is a subgroup of G and Ord(H) = 7. Now, by Question 2.1.8, Ord(xi) = 7
for each 1 ≤ i ≤ 6. Hence, each subgroup of G of order 7 contains exactly
6 distinct elements of order 7. Since G has exactly 36 elements of order
7, number of subgroups of G of order 7 is 36/6 = 6.

QUESTION 2.2.13 Let H = {x ∈ U(40) : 5 | x − 1}. Prove that H is
a subgroup of U(40).

Solution: Observe that H is a finite set. Let x, y ∈ H. xy − 1 =
xy − y + y − 1 = y(x − 1) + y − 1. Since 5 divides x − 1 and 5 divides
y− 1, we have 5 divides y(x− 1)+ y− 1 = xy− 1. Thus, xy ∈ H. Hence,
H is closed. Thus, H is a subgroup of G by Theorem 1.2.8

QUESTION 2.2.14 Let G be an Abelian group, and let H = {a ∈ G :
Ord(a) | 26}. Prove that H is a subgroup of G.

Solution: Let a, b ∈ H. Since a26 = e, Ord(a) divides 26 by Theorem
1.2.1. Since Ord(a) = Ord(a−1) and Ord(a) divides 26, Ord(a−1) divides
26. Thus, (a−1)26 = e. Hence, (a−1b)26 = (a−1)26b26 = e. Thus, H is a
subgroup of G by Theorem 1.2.7.

QUESTION 2.2.15 Let G be an Abelian group, and let H = {a ∈ G :
Ord(a) = 1 or Ord(a) = 13}. Prove that H is a subgroup of G.
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Solution: Let a, b ∈ H.If a = e or b = e, then it is clear that (a−1b) ∈ H.
Hence, assume that neither a = e nor b = e. Hence, Ord(a) = Ord(b)
= 13. Thus, Ord(a−1) = 13. Hence, (a−1b)13 = (a−1)13b13 = e. Thus,
Ord(a−1b) divides 13 by Theorem 1.2.1. Since 13 is prime, 1 and 13
are the only divisors of 13. Thus, Ord(a−1b) is either 1 or 13. Thus,
a−1b ∈ H. Thus, H is a subgroup of G by Theorem 1.2.7.

2.3 Cyclic Groups

QUESTION 2.3.1 Find all generators of Z22.

Solution: Since Ord(Z22) = 22, if a is a generator of Z22, then Ord(a)
must equal to 22. Now, let b be a generator of Z22, then b = 1b = b.
Since Ord(1) = 22, we have Ord(b) = Ord(1b) = 22/gcd(b, 22) = 22 by
Question 2.1.12. Hence, b is a generator of Z22 iff gcd(b,22) = 1. Thus,
1,3,5,7,9,11,13,15,17,19,21 are all generators of Z22.

QUESTION 2.3.2 Let G = (a), a cyclic group generated by a, such
that Ord(a) = 16. List all generators for the subgroup of order 8.

Solution: Let H be the subgroup of G of order 8. Then H = (a2) =
(a16/8) is the unique subgroup of G of order 8 by Theorem 1.2.12. Hence,
(a2)k is a generator of H iff gcd(k,8) = 1. Thus, (a2)1 = a2, (a2)3 =
a6, (a2)5 = a10, (a2)7 = a14.

QUESTION 2.3.3 Suppose that G is a cyclic group such that Ord(G)
= 48. How many subgroups does G have?

Solution: Since for each positive divisor k of 48 there is a unique
subgroup of order k by Theorem 1.2.12, number of all subgroups of G
equals to the number of all positive divisors of 48. Hence, Write 48 = 3123.
Hence, number of all positive divisors of 48 = (1+1)(3+1) = 8 by Theorem
1.2.17. If we do not count G as a subgroup of itself, then number of all
proper subgroups of G is 8− 1 = 7.

QUESTION 2.3.4 Let a be an element in a group,and let i, k be positive
integers. Prove that H = (ai) ∩ (ak) is a cyclic subgroup of (a) and
H = (alcm(i,k)).

Solution: Since (a) is cyclic and H is a subgroup of (a), H is cyclic by
Theorem 1.2.10. By Theorem 1.2.18 we know that lcm(i,k) = ik/gcd(i,k).
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Since k/gcd(i,k) is an integer, we have alcm(i,k) = (ai)k/gcd(i,k). Thus,
(alcm(i,k)) ⊂ (ai). Also, since k/gcd(i, k) is an integer, we have alcm(i,k) =
(ak)i/gcd(i,k). Thus, (alcm(i,k)) ⊂ (ak). Hence, (alcm(i,k)) ⊂ H. Now, let
h ∈ H. Then h = aj = (ai)m = (ak)n for some j,m, n ∈ Z. Thus, i
divides j and k divides j. Hence, lcm(i,k) divides j by Theorem 1.2.18.
Thus, h = aj = (alcm(i,k))c where j = lcm(i,k)c. Thus, h ∈ (alcm(i,k)).
Hence, H ⊂ (alcm(i,k)). Thus, H = (alcm(i,k)).

QUESTION 2.3.5 Let a be an element in a group. Describe the sub-
group H = (a12) ∩ (a18).

Solution: By the previous Question, H is cyclic and H = (alcm(12,18) =
(a36).

QUESTION 2.3.6 Describe the Subgroup 8Z ∩ 12Z.

Solution: Since Z = (1) is cyclic and 8Z = (18) = (8) and 12Z = (112) =
(12), 8Z ∩ 12Z = (1lcm(8,12)) = (lcm(8, 12)) = 24Z by Question 2.3.4

QUESTION 2.3.7 Let G be a group and a ∈ G. Prove (a) = (a−1).

Solution: Since (a) = {am : m ∈ Z}, a−1 ∈ (a). Hence, (a−1) ⊂ (a).
Also, since (a−1) = {(a−1)m : m ∈ Z} and (a−1)−1 = a, a ∈ (a−1).
Hence, (a) ⊂ (a−1). Thus, (a) = (a−1).

QUESTION 2.3.8 Let a be an element in a group such that a has in-
finite order. Prove that Ord(am) is infinite for each m ∈ Z.

Solution: Deny. Let m ∈ Z. Then, Ord(am) = n. Hence, (am)n) =
amn = e. Thus, Ord(a) divides nm by Theorem 1.2.1. Hence, Ord(a) is
finite, a contradiction. Hence, Our denial is invalid. Therefore, Ord(am)
is infinite.

QUESTION 2.3.9 Let G = (a), and let H be the smallest subgroup of
G that contains am and an. Prove that H = (agcd(n,m)).

Solution: Since G is cyclic, H is cyclic by Theorem 1.2.10. Hence, H =
(ak) for some positive integer k. Since an ∈ H and am ∈ H, k divides
both n and m. Hence, k divides gcd(n,m). Thus, agcd(n,m) ∈ H = (ak).
Hence, (agcd(n,m)) ⊂ H. Also, since gcd(n,m) divides both n and m,
an ∈ (agcd(n,m) and am ∈ (agcd(n,m)). Hence, Since H is the smallest
subgroup of G containing an and am and an, am ∈ (agcd(n,m)) ⊂ H, we
conclude that H = (agcd(n,m)).
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QUESTION 2.3.10 Let G = (a). Find the smallest subgroup of G
containing a8 and a12.

Solution: By the previous Question, the smallest subgroup of G con-
taining a8 and a12 is (agcd(8,12)) = (a4).

QUESTION 2.3.11 Find the smallest subgroup of Z containing 32 and
40.

Solution: Since Z = (1) is cyclic, once again by Question 2.3.4, the
smallest subgroup of Z containing 132 = 32 and 140 = 40 is (1gcd(32,40)) =
(8).

QUESTION 2.3.12 Let a ∈ G such that Ord(a) = n, and let 1 ≤ k ≤ n.
Prove that Ord(ak) = Ord(an−k).

Solution: Since akan−k = an = e, an−k is the inverse of ak. Hence,
Ord(ak) = Ord(an−k).

QUESTION 2.3.13 Let G be an infinite cyclic group. Prove that e is
the only element in G of finite order.

Solution: Since G is an infinite cyclic group, G = (a) for some a ∈ G
such that Ord(a) is infinite. Now, assume that there is an element b ∈ G
such that Ord(b) = m and b 6= e. Since G = (a), b = ak for some k ≥ 1.
Hence, e = bm = (ak)m = akm. Hence, Ord(a) divides km by Theorem
1.2.1, a contradiction since Ord(a) is infinite. Thus, e is the only element
in G of finite order.

QUESTION 2.3.14 Let G = (a) be a cyclic group. Suppose that G has
a finite subgroup H such that H 6= {e}. Prove that G is a finite group.

Solution: First, observe that H is cyclic by Theorem 1.2.10. Hence,
H = (an) for some positive integer n. Since H is finite and H = (an),
Ord(an) = Ord(H) = m is finite. Thus, (an)m = anm = e. Hence,
Ord(a) divides nm by Theorem 1.2.1. Thus, (a) = G is a finite group.

QUESTION 2.3.15 Let G be a group containing more than 12 elements
of order 13. Prove that G is never cyclic.

Solution: Deny. Then G is cyclic. Let a ∈ G such that Ord(a) =
13. Hence, (a) is a finite subgroup of G. Thus, G must be finite by the
previous Question. Hence, by Theorem 1.2.14 there is exactly φ(13) = 12
elements in G of order 13. A contradiction. Hence, G is never cyclic.
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QUESTION 2.3.16 Let G = (a) be an infinite cyclic group. Prove that
a and a−1 are the only generators of G.

solution: Deny. Then G = (b) for some b ∈ G such that neither b = a
nor b = a−1. Since b ∈ G = (a), b = am for some m ∈ Z such that neither
m = 1 nor m = −1. Thus, G = (b) = (am). Hence a = bk = (am)k = amk

for some k ∈ Z. Since a is of infinite order and a = amk, 1 = mk by
Theorem 1.2.9, a contradiction since neither m = 1 nor m = -1 and mk
= 1. Thus, our denial is invalid. Now, we show that G = (a−1). Since
G = (a), we need only to show that a ∈ (a−1). But this is clear since
a = (a−1)−1 by Question 2.1.5.

QUESTION 2.3.17 Find all generators of Z.

Solution: Since Z = (1) is an infinite cyclic group, 1 and -1 are the only
generators of Z by the previous Question.

QUESTION 2.3.18 Find an infinite group G such that G has a finite
subgroup H 6= e.

Solution: Let G = C \ {0} under multiplication, and let H = {x ∈ G :
x4 = 1}. Then H is a finite subgroup of G of order 4.

QUESTION 2.3.19 Give an example of a noncyclic Abelian group.

Solution: Take G = Q \ {0} under normal multiplication. It is easy to
see that G is a noncyclic Abelian group.

QUESTION 2.3.20 Let a be an element in a group G such that Ord(a)
is infinite. Prove that (a), (a2), (a3), ... are all distinct subgroups of G,
and Hence, G has infinitely many proper subgroups.

Solution: Deny. Hence, (ai) = (ak) for some positive integers i, k such
that k > i. Thus, ai = (ak)m for some m ∈ Z. Hence, ai = akm. Thus,
ai−km = e. Since k > i, km 6= i and therefore i− km 6= 0. Thus, Ord(a)
divides i−km by Theorem 1.2.1. Hence, Ord(a) is finite, a contradiction.

QUESTION 2.3.21 Let G be an infinite group. Prove that G has in-
finitely many proper subgroups.
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Solution:Deny. ThenG has finitely many proper subgroups. Also, by the
previous Question, each element of G is of finite order. Let H1, H2, ..., Hn

be all proper subgroups of finite order of G, and let D = ∪n
i=1Hi . Since

G is infinite, there is an element b ∈ G \ D. Since Ord(b) is finite and
b ∈ G \D, (b) is a proper subgroup of finite order of G and (b) 6= Hi for
each 1 ≤ i ≤ n. A contradiction.

QUESTION 2.3.22 Let a, b be elements of a group such that Ord(a) =
n and Ord(b) = m and gcd(n,m) = 1. Prove that H = (a) ∩ (b) = {e}.

Solution: Let c ∈ H. Since (c) is a cyclic subgroup of (a), Ord(c) =
Ord((c)) divides n. Also, since (c) is a cyclic subgroup of (b), Ord(c) =
Ord((c)) divides m. Since gcd(n,m) and Ord(c) divides both n and m,
we conclude Ord(c) = 1. Hence, c =e. Thus, H = {e}.

QUESTION 2.3.23 Let a, b be two elements in a group G such that
Ord(a) = 8 and Ord(b) = 27. Prove that H = (a) ∩ (b) = {e}.

Solution: Since gcd(8,27) = 1, by the previous Question H = {e}.

QUESTION 2.3.24 Suppose that G is a cyclic group and 16 divides
Ord(G). How many elements of order 16 does G have?

Solution: Since 16 divides Ord(G), G is a finite group. Hence, by The-
orem 1.2.14, number of elements of order 16 is φ(16) = 8.

QUESTION 2.3.25 Let a be an element of a group such that Ord(a) =
n. Prove that for each m ≥ 1, we have (am) = (agcd(n,m))

Solution: First observe that gcd(n,m) = gcd(n, (n,m)). Since Ord(am) =
n/gcd(n,m) and Ord(agcd(n,m)) = n/gcd(n, gcd(n,m)) = n/gcd(n,m)
by Question 2.1.12 and (a) contains a unique subgroup of order n/gcd(n,m)
by Theorem 1.2.12, we have (am) = (agcd(n,m)).

2.4 Permutation Groups

QUESTION 2.4.1 Let α = (1, 3, 5, 6)(2, 4, 7, 8, 9, 12) ∈ S12. Find Ord(α).

Solution: Since α is a product of disjoint cycles, Ord(α) is the least
common divisor of the lengths of the disjoint cycles by Theorem 1.2.20.
Hence, Ord(α) = 12
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QUESTION 2.4.2 Determine whether α = (1, 2)(3, 6, 8)(4, 5, 7, 8) ∈ S9

is even or odd.

Solution: First write α as a product of 2-cycles. By Theorem 1.2.23
α = (1, 2)(3, 8)(3, 6)(4, 8)(4, 7)(4, 5) is a product of six 2-cycles. Hence, α
is even.

QUESTION 2.4.3 Let α = (1, 3, 7)(2, 5, 7, 8) ∈ S10. Find α−1.

Solution: Let A = (1, 3, 7) and B = (2, 5, 7, 8). Hence, α = AB. Thus,
α−1 = B−1A−1. Hence, By Theorem 1.2.25, α−1 = (8, 7, 5, 2)(7, 3, 1).

QUESTION 2.4.4 Prove that if α is a cycle of an odd order, then α is
an even cycle.

Solution: Let α = (a1, a2, ..., an). Since Ord(α) is odd, n is an odd
number by Theorem 1.2.20. Hence, α = (a1, an)(a1, an−1)...(a1, a2) is a
product of n − 1 2-cycles. Since n is odd, n − 1 is even. Thus, α is an
even cycle.

QUESTION 2.4.5 Prove that α = (3, 6, 7, 9, 12, 14) ∈ S16 is not a prod-
uct of 3-cycles.

Solution: Since α = (3, 14)(3, 12)...(3, 6) is a product of five 2-cycles,
α is an odd cycle. Since each 3-cycle is an even cycle by the previous
problem, a permutation that is a product of 3-cycles must be an even
permutation. Thus, α is never a product of 3-cycles.

QUESTION 2.4.6 Find two elements, say,a and b, in a group such
that Ord(a) = Ord(b) = 2, and Ord(ab)=3.

Solution: Let a = (1, 2), b = (1, 3). Then ab = (1, 2)(1, 3) = (1, 3, 2).
Hence, Ord(a) = Ord(b) = 2, and Ord(ab) = 3.

QUESTION 2.4.7 Let α = (1, 2, 3)(1, 2, 5, 6) ∈ S6. Find Ord(α), then
find α35.

Solution: First write α as a product of disjoint cycles. Hence, α =
(1, 3)(2, 5, 6). Thus, Ord(α) = 6 by Theorem 1.2.20. Now, sinceOrd(α) =
6, α35α = α36 = e. Hence, α35 = α−1. Thus, α−1 = (6, 5, 2)(3, 1) =
(6, 5, 2, 1)(3, 2, 1).
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QUESTION 2.4.8 Let 1 ≤ n ≤ m. Prove that Sm contains a subgroup
of order n.

Solution: Since 1 ≤ n ≤ m, α = (1, 2, 3, 4, ..., n) ∈ Sm. By Theorem
1.2.20, Ord(α) = n. Hence, the cyclic group (α) generated by α is a
subgroup of Sm of order n.

QUESTION 2.4.9 Give an example of two elements, say, a and b, such
that Ord(a)=2, Ord(b)=3 and Ord(ab) 6= lcm(2, 3) = 6.

Solution: Let a = (1, 2), b = (1, 2, 3). Then ab = (2, 3). Hence, Ord(a)
= 2, Ord(b) = 3, and Ord(ab) = 2 6= lcm(2, 3) = 6.

QUESTION 2.4.10 Find two elements a, b in a group such that Ord(a)
= 5, Ord(b) = 7, and Ord(ab) = 7.

Solution: Let G = S7, a = (1,2,3,4,5), and
b = (1,2,3,4,5,6,7). Then ab = (1, 3, 5, 6, 7, 2, 4). Hence, Ord(a) = 5,
Ord(b) = 7, and Ord(ab) = 7.

QUESTION 2.4.11 Find two elements a, b in a group such that Ord(a)
= 4, Ord(b) = 6, and Ord(ab) = 4.

Solution: Let G = S6, a = (1,2,3,4), b = (1,2,3,4,5,6). Then ab =
(1,3)(2,4,5,6). By Theorem 1.2.20, Ord(ab) = 4.

QUESTION 2.4.12 Find two elements a, b in a group such that Ord(a)
= Ord(b) = 3, and Ord(ab) = 5.

Solution: Let a = (1,2,3), b = (1,4,5) ∈ S5. Then ab = (1,4,5,2,3).
Hence, Ord(a) = Ord(b) = 3, and Ord(ab) = 5.

QUESTION 2.4.13 Find two elements a, b in a group such that Ord(a)
= Ord(b) = 4, and Ord(ab) = 7.

Solution: Let a = (1,2,3,4), b = (1,5,6,7) ∈ S7. Then ab = (1,5,6,7,2,3,4).
Hence, Ord(a) = Ord(b) = 4, and Ord(ab) = 7.

QUESTION 2.4.14 Let 2 ≤ m ≤ n, and let a be a cycle of order m in
Sn. Prove that a 6∈ Z(Sn).
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Solution: Let a = (a1, a2, ..., am), and let
b = (a1, a2, a3, ..., am, bm+1). Suppose that m is an odd number and
m < n. Then
ab = (a1, a3, a5, ..., am, bm+1, a2, a4, am−1). Hence, Ord(ab) = m + 1.
Now, assume that a ∈ Z(Sn). Since Ord(a) = m and Ord(b) = m+1
and gcd(m,m+1) = 1 and ab = ba, we have Ord(ab) = m(m+1) by
Question 2.1.14. A contradiction since ord(ab) = m+1. Thus, a 6∈
Z(Sn). Now, assume that m is an even number and m < n. Then ab =
(a1, a3, a5, ..., am−1)(a2, a4, a6, ..., am, bm+1). Hence, Ord(ab) =
((m-1)/2))((m-1)/2 + 1) by Theorem 1.2.20. Assume a ∈ Z(Sn). Since
Ord(a) = m and Ord(b) = m+1 and gcd(m,m+1) = 1 and ab = ba,
Ord(ab) = m(m+1) by Question 2.1.14. A contradiction since Ord(ab) =
((m − 1)/2)((m − 1)/2 + 1) 6= m(m + 1). Thus, a 6∈ Z(Sn). Now,
assume m = n. Then a = (1, 2, 3, 4, ..., n). Let c = (1, 2). Then
ac = (1, 3, 4, 5, 6, ..., n) and ca = (2, 3, 4, 5, ..., n). Hence, ac 6= ca. Thus,
a 6∈ Z(Sn).

QUESTION 2.4.15 Let H = {α ∈ Sn : α(1) = 1} (n > 1). Prove that
H is a subgroup of Sn.

Solution: Let α and β ∈ H. Since α(1) = 1 and β(1) = 1, αβ(1) =
α(β(1) = 1. Hence, αβ ∈ H. Since H is a finite set (being a subset of
Sn) and closed, H is a subgroup of Sn by Theorem 1.2.8.

QUESTION 2.4.16 Let n > 1. Prove that Sn contains a subgroup of
order (n− 1)!.

Solution: Let H be the subgroup of Sn described in the previous
Question. It is clear that Ord(H) = (n− 1)!.

QUESTION 2.4.17 Let a ∈ A5 such that Ord(a) = 2. Show that
a = (a1, a2)(a3, a4), where a1, a2, a3, a4 are distinct elements.

Solution: Since Ord(a) = 2, we conclude by Theorem 1.2.20 that we
can write a as disjoint 2-cycles. Since the permutation is on a set of 5
elements, it is clear now that a = (a1, a2)(a3, a4), where a1, a2, a3, a4 are
distinct elements.

QUESTION 2.4.18 Let α ∈ S5 be a 5-cycle, i.e., Ord(α) = 5 (and
hence α ∈ A5), and let β = (b1, b2) ∈ S5 be a 2-cycle. If α(b1) = b2
or α(b2) = b1, then shhow that Ord(αβ) = 4. If α(b1) 6= b2 and
α(b2) 6= b1, then show that Ord(αβ) = 6.
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Solution : Let β = (b1, b2). We consider two cases: first assume that
α(b2) = b1. Then α(b1) 6= b2 because α is a 5-cycle. Hence αβ =
(b1)(b2, b3, b4, b5) where b1, b2, b3, b4, b5 are distinct. Thus Ord(αβ) = 4
by Theorem 1.2.20. Also, if α(b1) = b2, then α(b2) 6= b1 again because
α is a 5-cycle. Hence αβ = (b1, b3, b4, b5)(b2). Thus Ord(αβ) = 4
again by Theorem 1.2.20. Second case, assume that neither α(b1) = b2
nor α(b2) = b1. Hence αβ(b1) = b3 6= b2. Suppose that αβ(b3) = b1.
Then α = (b3, b1, b4, b5, b2) and thus αβ = (b1, b3)(b2, b4, b5) has order
6. Observe that αβ(b3) 6= b2 because αβ(b1) = α(b2) = b3 and
αβ(b3) = α(b3) and α is a 5-cycle. Hence assume that αβ(b3) = b4,
where b4 6= b1 and b4 6= b2. Then since α(b1) 6= b2 and α(b2) 6= b1, we
conclude that αβ = (b1, b3, b4)(b2, b5) has order 6.

QUESTION 2.4.19 Let α ∈ S5 be a 5-cycle, β ∈ S5 be 2-cycle, and
suppose that Ord(αβ) = 4. Show that Ord(α2β) = 6.

Solution : Since Ord(α) = 5, Ord(α2) = 5, and hence α2 is a 5-cycle.
Let β = (b1, b2). Since Ord(αβ) = 4, we conclude α(b1) = b2 or
α(b2) = b1 by Question 2.4.18. Suppose that α(b1) = b2. Then α has
the form (..., b1, b2, ...) and α(b2) 6= b1 because α is 5-cycle. Thus
α2(b1) 6= b2 and α2(b2) 6= b1. Thus by Question 2.4.18 we conclude that
Ord(α2β) = 6.

2.5 Cosets and Lagrange’s Theorem

QUESTION 2.5.1 Let H = 4Z is a subgroup of Z. Find all left cosets
of H in G.

Solution: H, 1 + H = {...,−11,−7,−3, 1, 5, 9, 13, 17, ....}, 2 + H =
{...,−14,−10,−6,−2, 2, 6, 10, 14, 18, ...}, 3 + H = {...,−13,−9,−5,−1,
3, 7, 11, 15, 19, ...}.

QUESTION 2.5.2 Let H = {1, 15} is a subgroup of G = U(16). Find
all left cosets of H in G.

Solution: Since Ord(G) = φ(16) = 8 and Ord(H) = 2, [G:H] = number
of all left cosets of H in G = Ord(G)/Ord(H) = 8/2 = 4 by Theorem
1.2.28. Hence, left cosets of H in G are : H, 3H = {3, 13}, 5H = {5, 11},
7H = {7, 9}.
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QUESTION 2.5.3 Let a be an element of a group such that Ord(a) =
22. Find all left cosets of (a4) in (a).

Solution: First, observe that (a) = {e, a, a2, a3, ..., a21}. Also, Since
Ord(a2) = Ord(a4) by Question 2.3.25, we have (a4) = (a2) =
{e, a2, a4, a6, a8, a10, a12, a14, a16, a18, a20}Hence, by Theorem 1.2.28, num-
ber of all left cosets of (a4) in (a) is 22/11 = 2. Thus, the left cosets of
(a4) in (a) are : (a4), and a(a4) = {a, a3, a5, a7, a9, ..., a21}.

QUESTION 2.5.4 Let G be a group of order 24. What are the possible
orders for the subgroups of G.

Solution: Write 24 as product of distinct primes. Hence, 24 = (3)(23).
By Theorem 1.2.27, the order of a subgroup of G must divide the order
of G. Hence, We need only to find all divisors of 24. By Theorem 1.2.17,
number of all divisors of 24 is (1 + 1)(3 + 1) = 8. Hence, possible orders
for the subgroups of G are : 1,3,2,4,8,6,12,24.

QUESTION 2.5.5 Let G be a group such that Ord(G) = pq, where p
and q are prime. Prove that every proper subgroup of G is cyclic.

Solution: Let H be a proper subgroup of G. Then Ord(H) must divide
pq by Theorem 1.2.27. Since H is proper, the possible orders for H are : 1,
p,q. Suppose Ord(H) = 1, then H = {e} is cyclic. Suppose Ord(H) = p.
Let h ∈ H such that h 6= e. Then Ord(h) divide Ord(H) by Theorem
1.2.29. Since h 6= e and Ord(h) divides p, Ord(h) = p. Thus, H = (h) is
cyclic. Suppose Ord(H) = q. Then by a similar argument as before, we
conclude that H is cyclic. Hence, every proper subgroup of G is cyclic.

QUESTION 2.5.6 Let G be a group such that Ord(G) = 77. Prove
that every proper subgroup of G is cyclic.

Solution: Since Ord(G) = 77 = (7)(11) is a product of two primes, every
proper subgroup of G is cyclic by the previous Question.

QUESTION 2.5.7 Let n ≥ 2, and let a ∈ U(n). Prove that aφ(n) = 1
in U(n).

Solution : Since Ord(U(n)) = φ(n) and a ∈ U(n), aφ(n) = 1 in U(n) by
Theorem 1.2.30.

QUESTION 2.5.8 Let 3 ∈ U(16). Find 319 in U(16).
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Solution: Since Ord(U(16)) = φ(16) = 8, 38 = 1 by the previous Ques-
tion. Hence,38k = 1 for each k ≥ 1. Thus, 319 = 319mod8 = 33 =
27(mod16) = 11 in U(16).

QUESTION 2.5.9 Let H,K be subgroups of a group. If Ord(H) = 24
and Ord(K) = 55, find the order of H ∩K.

Solution: Since H ∩ K is a subgroup of both H and K, Ord(H ∩ K)
divides both Ord(H) and Ord(K) by Theorem 1.2.27. Since gcd(24, 55) =
1 and Ord(H ∩ K) divides both numbers 24 and 55, we conclude that
Ord(H ∩K) = 1. Thus, H ∩K = {e}.

QUESTION 2.5.10 Let G be a group with an odd number of elements.
Prove that a2 6= e for each non identity a ∈ G.

Solution: Deny. Hence, for some non identity element a ∈ G, we have
a2 = e. Thus,{e, a} is a subgroup of G of order 2. Hence, 2 divides
Ord(G) by Theorem 1.2.27. A contradiction since 2 is an even integer
and Ord(G) is an odd integer.

QUESTION 2.5.11 Let G be an Abelian group with an odd number of
elements. Prove that the product of all elements of G is the identity.

Solution: By the previous Question, G does not have a non identity
element that is the inverse of itself,i.e. a2 6= e for each non identity a ∈ G.
Hence, the elements of G are of the following form : e, a1, a

−1
1 , a2, a

−1
2 , ...,

am, a−1
m . Hence, e, a1a

−

a 1a2a
−1
2 a3a

−1
3 ...ama−1

m = e(a1a
−1
1 )(a2a

−1
2 )(a3a

−1
3 )

...(ama−1
m ) = e(e)(e)(e)...(e) = e

QUESTION 2.5.12 Let G be a group with an odd number of elements.
Prove that for each a ∈ G, the equation x2 = a has a unique solution.

Solution: First, we show that for each a ∈ G, the equation x2 = a
has a solution. Let a ∈ G, and let m = Ord(a). By Theorem 1.2.29,
m must divide Ord(G). Since Ord(G) is an odd number and Ord(a) di-
vides Ord(G), m is an odd number. Hence, let x = a(m+1)/2. Then,
(a(m+1)/2)2 = am+1 = aam = a(e) = a is a solution to the equation
x2 = a. Now, we show that a(Ord(a)+1)/2 is the only solution to the equa-
tion x2 = a for each a ∈ G. Hence, let a ∈ G. Assume there is a b ∈ G
such that b2 = a. Hence, (b2)Ord(a) = aOrd(a) = e. Thus, Ord(b) divides
2Ord(a). Since Ord(b) must be an odd number and hence gcd(2,Ord(b))
= 1, we conclude that Ord(b) must divide Ord(a) by Theorem 1.2.5.
Thus, bOrd(a) = e. Now, b = bbOrd(a) = b1+Ord(a) = (b2)Ord(a)+1 =
aOrd(a)+1.
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QUESTION 2.5.13 Let a, b be elements of a group such that b 6∈ (a)
and Ord(a) = Ord(b) = p is a prime number. Prove that (bi)∩(aj) = {e}
for each 1 ≤ i < p and for each 1 ≤ j < p.

Solution: Let 1 ≤ i < p and 1 ≤ j < p, and let H = (bi) ∩ (aj). Since
Ord(a) = Ord(b) = p is a prime number and H is a subgroup of both
(bi) and (aj), Ord(H) divides p by Theorem 1.2.27. Hence, Ord(H) = 1
or Ord(H) = p. Suppose that Ord(H) = p. Then (bi) = (aj). But since
Ord(bi) = Ord(b) and Ord(a) = Ord(aj), we have (b) = (bi) = (aj) =
(a). Hence, b ∈ (a) which is a contradiction. Thus, Ord(H) =1. Hence,
H = {e}.

QUESTION 2.5.14 Let G be a non-Abelian group of order 2p for some
prime p 6= 2. Prove that G contains exactly p−1 elements of order p and
it contains exactly p elements of order 2.

Solution:Since p divides the order of G, G contains an element a of
order p by Theorem 1.2.31. Hence, H = (a) is a subgroup of G of order
p. Hence, [G : H] = 2p/p = 2. Let b ∈ G \ H. Hence, H and bH are
the only left cosets of H in G. Now, We show that b2 6∈ bH. Suppose
that b2 ∈ bH. Hence, b2 = bh for some h ∈ H. Thus, b = h ∈ H. A
contradiction since b 6∈ H. Since G = H ∪ bH and b2 6∈ bH, we conclude
that b2 ∈ H. Since Ord(H) = p is a prime number and b2 ∈ H, Ord(b2)
must be 1 or p by Theorem 1.2.29. Suppose that Ord(b2) = p. Then
b2p = e. Hence, Ord(b) = p or Ord(b) = 2p. Suppose that Ord(b) = 2p.
Then G = (b) is a cyclic group. Hence, G is Abelian. A contradiction.
Thus, assume that Ord(b) = p. Then Ord(b) = Ord(b2) = p. Since
Ord(H) = p and Ord(b2) = Ord(b) = p and b2 ∈ H, we conclude that
(b) = (b2) = H. Hence, b ∈ H. A contradiction. Thus, Ord(b2) must be
1. Hence, b2 = e. Thus, each element of G that lies outside H is of order
2. Since Ord(H) = p and Ord(G) = 2p, we conclude that G contains
exactly p elements of order p. Hence, if c ∈ G and Ord(c) = p, then
c ∈ H. Thus, G contains exactly p− 1 elements of order p.

QUESTION 2.5.15 Let G be a non-Abelian group of order 26. Prove
that G contains exactly 13 elements of order 2.

Solution. Since 26 = (2)(13), by the previous Question G contains
exactly 13 elements of order 2.

QUESTION 2.5.16 Let G be an Abelian group of order pq for some
prime numbers p and q such that p 6= q. Prove that G is cyclic.
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Solution: Since p divides Ord(G) and q divides Ord(G), G contains an
element, say, a, of order p and it contains an element, say,b, of order
q. Since ab = ba and gcd(p,q) = 1, Ord(ab) = pq by Question 2.1.14.
Hence, G = (ab) is a cyclic group.

QUESTION 2.5.17 Let G be an Abelian group of order 39. Prove that
G is cyclic.

Solution: Since 39 = (3)(13), G is cyclic by the previous Question.

QUESTION 2.5.18 Find an example of a non-cyclic group,say, G,
such that Ord(G) = pq for some prime numbers p and q and p 6= q.

Solution: Let G = S3. Then Ord(G) = 6 = (2)(3). But we know that
S3 is not Abelian and hence it is not cyclic.

QUESTION 2.5.19 Let G be a finite group such that Ord(G) = p is a
prime number. Prove that G is cyclic.

Solution: Let a ∈ G such that a 6= e. Then Ord(a) = p by Theorem
1.2.29. Hence, G = (a) is cyclic.

QUESTION 2.5.20 Find an example of a non-Abelian group, say, G,
such that every proper subgroup of G is cyclic.

Solution: Let G = S3. Then G is a non-Abelian group of order 6. Let
H be a proper subgroup of G. Then Ord(H) = 1 or 2 or 3 by Theorem
1.2.27. Hence, by the previous Question H is cyclic.

QUESTION 2.5.21 Let G be a group such that H = {e} is the only
proper subgroup of G. Prove that Ord(G) is a prime number.

Solution: Ord(G) can not be infinite by Question 2.3.21. Hence, G is
a finite group. Let Ord(G) = m. Suppose that m is not prime. Hence,
there is a prime number q such that q divides m. Thus, G contains an
element, say,a, of of order q by Theorem 1.2.31. Thus, (a) is a proper
subgroup of G of order q. A contradiction. Hence, Ord(G) = m is a
prime number.

QUESTION 2.5.22 Let G be a finite group with an odd number of el-
ements, and suppose that H be a proper subgroup of G such that Ord(H)
= p is a prime number. If a ∈ G \H, then prove that aH 6= a−1H.
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Solution: Since Ord(H) divides Ord(G) and Ord(G) is odd, we conclude
that p 6= 2. Let a ∈ G \H. Suppose that aH = a−1H. Then a2 = h ∈ H
for some h ∈ H by Theorem 1.2.26. Hence, a2p = hp = e. Thus, Ord(a)
divides 2p by Theorem 1.2.1. Since Ord(G) is odd and by Theorem 1.2.29
Ord(a) divides Ord(G), Ord(a) is an odd number. Since Ord(a) is odd
and Ord(a) divides 2p and p 6= 2 and a 6∈ H, we conclude Ord(a) = p.
Hence,Ord(a2) = p and therefore (a) = (a2). Since Ord(H) = p and
a2 ∈ H and Ord(a) = p, (a) = (a2) = H. Thus, a ∈ H. A contradiction.
Thus, aH 6= a−1H for each a ∈ G \H.

QUESTION 2.5.23 Suppose that H,K are subgroups a group G such
that D = H ∩K 6= {e}. Suppose Ord(H) = 14 and Ord(K) = 35. Find
Ord(D).

Solution: Since D is a subgroup of both H and K, Ord(D) divides both
14 and 35 by Theorem 1.2.27. Since 1 and 7 are the only numbers that
divide both 14 and 35 and H ∩K 6= {e}, Ord(D) 6= 1. Hence, Ord(D) =
7.

QUESTION 2.5.24 Let a, b be elements in a group such that ab = ba
and Ord(a) = 25 and Ord(b) = 49. Prove that G contains an element of
order 35.

Solution: Since ab = ba and gcd(25,49) = 1, Ord(ab) = (25)(49) by
Question 2.1.14. Hence, let x = (ab)35. Then, by Question 2.1.12,
Ord(x) = Ord(ab35) =
ord(ab)/gcd(35, Ord(ab)) = (25)(49)/gcd(35, (25)(49)) = 35. Hence, G
contains an element of order 35.

QUESTION 2.5.25 Let H be a subgroup of Sn. Show that either
H ⊂ An or exactly half of the elements of H are even permutation.

Solution : Suppose that H 6⊂ An. Let K be the set of all even
permutations of H. Then K is not empty since e ∈ K (e is the
identity). It is clear that K is a subgroup of H. Let β be an odd
permutation of H. Then the each element of the left coset βK is
an odd permutation (recall that a product of odd with even gives an odd
permutation). Now let α be an odd permutation H. Since H is a group,
there is an element k ∈ H such that α = βk. Since α and β are odd,
we conclude that k is even, and hence k ∈ K. Thus α ∈ βK. Hence
βK contains all odd permutation of H. Since Ord(βK) = Ord(K)
(because βK is a left coset of K), we conclude that exactly half of the
elements of H are even permutation.
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2.6 Normal Subgroups and Factor Groups

QUESTION 2.6.1 Let H be a subgroup of a group G such that [G:H]
= 2. Prove that H is a normal subgroup of G.

Solution: Let a ∈ G \ H. Since [G:H] = 2, H and aH are the left
cosets of H in G ,and H and Ha are the right cosets of H in G. Since
G = H ∪ aH = H ∪Ha, and H ∩ aH = φ, and H ∩Ha = φ, we conclude
that aH = Ha. Hence,aHa−1 = H. Thus, H is a normal subgroup of G
by Theorem 1.2.32.

QUESTION 2.6.2 Prove that An is a normal subgroup of Sn.

Solution: Since [Sn : An] = Ord(Sn)/Ord(An) by Theorem 1.2.28, we
conclude that [Sn : An] = 2. Hence, An is a normal subgroup of Sn by
the previous Question.

QUESTION 2.6.3 Let a be an element of a group G such that Ord(a)
is finite. If H is a normal subgroup of G, then prove that Ord(aH) divides
Ord(a).

Solution: Let m = Ord(a). Hence, (aH)m = amH = eH = H. Thus,
Ord(aH) divides m = Ord(a) by Theorem 1.2.1.

QUESTION 2.6.4 Let H be a normal subgroup of a group G and let
a ∈ G. If Ord(aH) = 5 and Ord(H) = 4, then what are the possibilities
for the order of a.

Solution: Since Ord(aH) = 5, (aH)5 = a5H = H. Hence, a5 ∈ H
by Theorem 1.2.26. Thus, a5 = h for some h ∈ H. Thus, (a5)4 =
h4 = e. Thus, a20 = e. Hence, Ord(a) divides 20 by Theorem 1.2.1.
Since Ord(aH) | Ord(a) by the previous Question and Ord(a) | 20, we
conclude that all possibilities for the order of a are : 5, 10, 20.

QUESTION 2.6.5 Prove that Z(G) is a normal subgroup of a group
G.

Solution: Let a ∈ G, and let z ∈ Z(G). Then aza−1 = aa−1z = ez = z.
Thus, aZ(G)a−1 = Z(G) for each a ∈ G. Hence, Z(G) is normal by
Theorem 1.2.32.
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QUESTION 2.6.6 Let G be a group and let L be a subgroup of Z(G)
(note that we may allow L = Z(G)), and suppose that G/L is cyclic.
Prove that G is Abelian.

Solution: Since G/L is cyclic, G/Z(G) = (wL) for some w ∈ G. Let
a, b ∈ G. Since G/L = (wL), aL = wnL and bL = wmL for some
integers n,m. Hence, a = wnz1 and b = wmz2 for some z1, z2 ∈ L by
Theorem 1.2.26. Since z1, z2 ∈ L ⊂ Z(G) and wnwm = wmwn, we have
ab = wnz1w

mz2 = wmz2w
nz1 = ba. Thus, G is Abelian.

QUESTION 2.6.7 Let G be a group such that Ord(G) = pq for some
prime numbers p, q. Prove that either Ord(Z(G)) = 1 or G is Abelian.

Solution: Deny. Hence 1 < Ord(Z(G)) < pq. Since Z(G) is a sub-
group of G, Ord(Z(G)) divides Ord(G) = pq by Theorem 1.2.27. Hence,
Ord(Z(G)) is either p or q. We may assume that Ord(Z(G)) = p. Hence,
Ord(G/Z(G)) = [G:Z(G)] = Ord(G)/Ord(Z(G)) = q is prime. Thus,
G/Z(G) is cyclic by Question 2.5.19. Hence, by the previous Question, G
is Abelian, A contradiction. Thus, our denial is invalid. Therefore, either
Ord(Z(G)) = 1 or Ord(Z(G)) = pq,i.e. G is Abelian.

QUESTION 2.6.8 Give an example of a non-Abelian group, say,G,
such that G has a normal subgroup H and G/H is cyclic.

Solution: Let G = S3, and let a = (1, 2, 3) ∈ G. Then Ord(a) = 3. Let
H = (a). Then Ord(H) = Ord(a) = 3. Since [G:H] = 2, H is a normal
subgroup of G by Question 2.6.1. Thus, G/H is a group and Ord(G/H)
= 2. Hence, G/H is cyclic by Question 2.5.19. But we know that G = S3

is not Abelian group.

QUESTION 2.6.9 Prove that every subgroup of an Abelian group is
normal.

Solution: Let H be a subgroup of an Abelian group G. Let g ∈ G. Then
gHg−1 = gg−1H = eH = H. Hence, H is normal by Theorem 1.2.32.

QUESTION 2.6.10 Let Q+ be the set of all positive rational numbers,
and let Q∗ be the set of all nonzero rational numbers. We know that
Q+ under multiplication is a (normal) subgroup of Q∗. Prove that [Q∗ :
Q+] = 2.
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Solution: Since −1 ∈ Q∗ \Q+, −1Q+ is a left coset of Q+ in Q∗. Since
Q+ ∩ −1Q+ = {0} and Q+ ∪ −1Q+ = Q∗, we conclude that Q+ and
−1Q+ are the only left cosets of Q+ in Q∗. Hence, [Q∗ : Q+] = 2.

QUESTION 2.6.11 Prove that Q ( the set of all rational numbers)
under addition, has no proper subgroup of finite index.

Solution : Deny. Hence Q under addition, has a proper subgroup, say,
H, such that [Q : H] = n is a finite number. Since Q is Abelian, H is
a normal subgroup of Q by Question 2.6.9. Thus, Q/H is a group and
Ord(Q/H) = [Q : H] = n. Now, let q ∈ Q. Hence, by Theorem 1.2.30,
(qH)n = qnH = H. Thus, qn = h ∈ H by Theorem 1.2.26. Since
addition is the operation on Q, qn means nq. Thus, qn = nq ∈ H for
each q ∈ Q. Since ny ∈ H for each y ∈ Q and q/n ∈ Q, we conclude
that q = n(q/n) ∈ H. Thus, Q ⊂ H. A contradiction since H is a proper
subgroup of Q. Hence, our denial is invalid. Thus, Q has no proper
subgroup of finite index.

QUESTION 2.6.12 Prove that R∗ (the set of all nonzero real numbers)
under multiplication, has a proper subgroup of finite index.

Solution: Let H = R+(the set of all nonzero positive real numbers).
Then, it is clear that H is a (normal) subgroup of R∗. Since R = R+ ∪
−1R+ and R+ ∩ −1R+ = {0}, we conclude that R+ and −1R+ are the
only left cosets of R+ in R∗. Hence, [R∗ : R+] = 2.

QUESTION 2.6.13 Prove that R+ ( the set of all nonzero positive real
numbers) under multiplication, has no proper subgroup of finite index.

Solution: Deny. Hence, R+ has a proper subgroup, say, H, such that
[R+ : H] = n is a finite number. Let r ∈ R+. Since rH ∈ R+/H and
Ord(R+/H) = n, we conclude that (rH)n = rnH = H by Theorem
1.2.30. Thus, rn ∈ H for each r ∈ R+. In particular, r = ( n

√
r)n ∈ H.

Thus, R+ ⊂ H. A contradiction since H is a proper subgroup of R+.
Hence, R+ has no proper subgroups of finite index.

QUESTION 2.6.14 Prove that C∗( the set of all nonzero complex num-
bers) under multiplication, has no proper subgroup of finite index.

Solution : Just use similar argument as in the previous Question.
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QUESTION 2.6.15 Prove that R+( the set of all positive nonzero real
numbers) is the only proper subgroup of R∗(the set of all nonzero real
numbers) of finite index.

Solution: Deny. Then R∗ has a proper subgroup H 6= R+ such that
[R∗ : H] = n is finite. Since Ord(R∗/H) = [R∗ : H] = n, we have
(xH)n = xnH = H for each x ∈ R∗ by Theorem 1.2.30. Thus,xn ∈ H for
each x ∈ R∗. Now, let x ∈ R+. Then x = ( n

√
x)n ∈ H. Thus, R+ ⊂ H.

Since H 6= R+ and R+ ⊂ H, we conclude that H must contain a negative
number, say, -y, for some y ∈ R+. Since 1/y ∈ R+ ⊂ H and −y ∈ H and
H is closed, we conclude that −y(1/y) = −1 ∈ H. Since H is closed and
R+ ⊂ H and −1 ∈ H, −R+(the set of all nonzero negative real numbers)
⊂ H. Since R+ ⊂ H and −R+ ⊂ H, we conclude that H = R∗. A
contradiction since H is a proper subgroup of R∗. Hence,R+ is the only
proper subgroup of R∗ of finite index.

QUESTION 2.6.16 Let N be a normal subgroup of a group G. If H is
a subgroup of G, then prove that NH = {nh : n ∈ N and h ∈ H} is a
subgroup of G.

Solution: Let x, y ∈ NH. By Theorem 1.2.7 We need only to show that
x−1y ∈ NH. Since x, y ∈ NH, x = n1h1 and y = n2h2 for some n1, n2 ∈
N and for some h1, h2 ∈ H. Hence, we need to show that (n1h1)

−1n2h2 =
h−1
1 n−1

1 n2h2 ∈ NH. Since N is normal, we have h−1
1 n−1

1 n2h1 = n3 ∈ N .
Hence, h−1

1 n−1
1 n2h2 = (h−1

1 n−1
1 n2h1)h

−1
1 h2 = n3h

−1
1 h2 ∈ NH. Thus, NH

is a subgroup of G.

QUESTION 2.6.17 Let N,H be normal subgroups of a group G. Prove
that NH = {nh : n ∈ N and h ∈ H} is a normal subgroup of G.

Solution: Let g ∈ G. Then g−1NHg = g−1Ngg−1Hg = (g−1Ng)
(g−1Hg) = NH.

QUESTION 2.6.18 Let N be a normal cyclic subgroup of a group G.
If H is a subgroup of N , then prove that H is a normal subgroup of G.

Solution: Since N is cyclic, N = (a) for some a ∈ N . Since H is a
subgroup of N and every subgroup of a cyclic group is cyclic and N = (a),
we have H = (am) for some integer m. Let g ∈ G, and let b ∈ H = (am).
Then b = amk for some integer k. Since N =(a) is normal in G, we have
g−1ag = an ∈ N for some integer n. Since g−1ag = an and by Question
2.1.1 (g−1amkg) = (g−1ag)mk, we have g−1bg = g−1amkg = (g−1ag)mk =
(an)mk = amkn ∈ H = (am)
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QUESTION 2.6.19 Let G be a finite group and H be a subgroup of
G with an odd number of elements such that [G:H] = 2. Prove that the
product of all elements of G(taken in any order) does not belong to H.

Solution: Since [G:H] = 2, by Question 2.6.1 we conclude that H is
normal in G. Let g ∈ G \ H. Since [G:H] = 2, H and gH are the only
elements of the group G/H. Since [G:H] = Ord(G)/Ord(H) = 2, Ord(G)
= 2Ord(H). Since Ord(H) = m is odd and Ord(G) = 2Ord(H) = 2m, we
conclude that there are exactly m elements that are in G but not in H.
Now, say, x1, x2, x3, ..., x2m are the elements of G. Since xiH = gH for
each xi ∈ G\H and xiH = H for each xi ∈ H and G/H is Abelian(cyclic),
we have x1x2x3...x2mH = x1Hx2H...x2mH = gmHH = gmH. Since m
is odd and Ord(gH) = 2 in G/H and 2 divides m − 1, we have
gm−1H = H and hence gmH = gm−1HgH = HgH = gH 6= H. Since
x1x2x3...x2mH 6= H, the product x1x2x3...x2m does not belong to H by
Theorem 1.2.26.

QUESTION 2.6.20 Let H be a normal subgroup of a group G such that
Ord(H) = 2. Prove that H ⊂ Z(R).

Solution: Since Ord(H) = 2, we have H = {e, a}. Let g ∈ G and g 6= a.
Since g−1Hg = H, we conclude that g−1ag = a. Hence, ag = ga. Thus,
a ∈ Z(R). Thus, H ⊂ Z(R).

QUESTION 2.6.21 Let G be a finite group and H be a normal subgroup
of G. Suppose that Ord(aH) = n in G/H for some a ∈ G. Prove that G
contains an element of order n.

Solution: Since Ord(aH) = n, Ord(aH) divides Ord(a) by Question 2.6.3.
Hence, Ord(a) = nm for some positive integer m. Thus, by Question
2.1.12, we have Ord(am) = Ord(a)/gcd(m,nm) = nm/m = n. Hence,
am ∈ G and Ord(am) = n.

QUESTION 2.6.22 Find an example of an infinite group, say, G, such
that G contains a normal subgroup H and Ord(aH) = n in G/H but G
does not contain an element of order n.

Solution: Let G = Z under normal addition, and n = 3, and H = 3Z.
Then H is normal in Z and Ord(1+3Z) = 3, but Z does not contain an
element of order 3.
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QUESTION 2.6.23 Let H,N be finite subgroups of a group G, say,
Ord(H) = k and Ord(N) = m such that gcd(k,m) = 1. Prove that HN =
{hn : h ∈ H and n ∈ N} has exactly km elements.

Solution: Suppose that h1n1 = h2n2 for some n1, n2 ∈ N and for some
h1, h2 ∈ H. We will show that h1 = h2 and n1 = n2. Hence, n1n

−1
2 =

h−1
1 h2. Since Ord(N) = m, we have e = (n1n

−1
2 )m = (h−1

1 h2)
m. Thus,

Ord(h1h
−1
2 ) divides m. Since gcd(k,m) = 1 and Ord(h1h

−1
2 ) divides both

k and m, we conclude that Ord(h−1
1 h2) = 1. Hence, h−1

1 h2 = e. Thus,
h2 = h1. Also, since Ord(H) = k, we have e = (h−1

1 h2)
k = (n1n

−1
2 )k.

Thus, by a similar argument as before, we conclude that n1 = n2. Hence,
HN has exactly km elements.

QUESTION 2.6.24 Let N be a normal subgroup of a finite group G
such that Ord(N) = 7 and ord(aN) = 4 in G/N for some a ∈ G. Prove
that G has a subgroup of order 28.

Solution: Since G/N has an element of order 4 and G is finite, G has
an element, say, b, of order 4 by Question 2.6.21. Thus, H = (b) is a
cyclic subgroup of G of order 4. Since N is normal, we have NH is a
subgroup of G by Question 2.6.16. Since gcd(7,4) = 1, Ord(NH) = 28 by
the previous Question.

QUESTION 2.6.25 Let G be a finite group such that Ord(G) = pnm
for some prime number p and positive integers n,m and gcd(p,m) = 1.
Suppose that N is a normal subgroup of G of order pn. Prove that if H
is a subgroup of G of order pk, then H ⊂ N .

Solution: Let H be a subgroup of G of order pk, and let x ∈ H. Then
xN ∈ G/N . Since Ord(G/N) = [G:N] = m, we have xmN = N by Theo-
rem 1.2.30. Since x ∈ H and Ord(H) = pk, we conclude that Ord(x) = pj .
Thus, xp

j

N = N . Since xmN = xp
j

N = N , we conclude that Ord(xN)
divides both m and pj . Hence, since gcd(p,m) = gcd(pj ,m) = 1, we have
Ord(xN) = 1. Thus, xN = N. Hence, x ∈ N by Theorem 1.2.26.

QUESTION 2.6.26 Let H be a subgroup of a group G, and let g ∈ G.
Prove that D = g−1Hg is a subgroup of G. Furthermore, if Ord(H) =
n,then Ord(g−1Hg) = Ord(H) = n.

Solution: Let x, y ∈ D. Then x = g−1h1g and y = g−1h2g for some
h1, h2 ∈ H. Hence, x−1y = (g−1h−1

1 g)(g−1h2g) = g−1h−1
1 h2g ∈ g−1Hg
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since h−1
1 h2 ∈ H. Thus, D = g−1Hg is a subgroup of G by Theorem

1.2.7. Now, suppose that Ord(H) = n. Let g ∈ G. We will show that
Ord(g−1Hg) = n. Suppose that g−1h1g = g−1h2g. Since G is a group
and hence it satisfies left-cancelation and right-cancelation, we conclude
that h1 = h2. Thus, Ord(g−1Hg) = Ord(H) = n.

QUESTION 2.6.27 Suppose that a group G has a subgroup, say, H, of
order n such that H is not normal in G. Prove that G has at least two
subgroups of order n.

Solution: Since H is not normal in G, we have g−1Hg 6= H for some
g ∈ G. Thus, by Question 2.6.26, g−1Hg is another subgroup of G of
order n.

QUESTION 2.6.28 Let n be a positive integer and G be a group such
that G has exactly two subgroups, say, H and D, of order n. Prove that
if H is normal in G, then D is normal in G.

Solution: Suppose that H is normal in G and D is not normal in G.
Since D is not normal in G, we have g−1Dg 6= D for some g ∈ G. Since
g−1Dg is a subgroup of G of order n by Question 2.6.26 and g−1Dg 6= D
and D,H are the only subgroups of G of order n, We conclude that
g−1Dg = H. Hence, D = gHg−1. But, since H is normal in G, we have
g−1Hg = H = gHg−1 = D. A contradiction. Thus,g−1Dg = D for each
g ∈ G. Hence, D is normal in G.

QUESTION 2.6.29 Let H be a subgroup of a group G. Prove that H
is normal in G if and only if g−1Hg ⊂ H for each g ∈ G.

Solution: We only need to prove the converse. Since g−1Hg ⊂ H for
each g ∈ G, we need only to show that H ⊂ g−1Hg for each g ∈ G.
Hence, let h ∈ H and g ∈ G. Since gHg−1 ⊂ H, we have ghg−1 ∈ H.
Since g−1Hg ⊂ H and ghg−1 ∈ H, we conclude that g−1(ghg−1)g = h ∈
g−1Hg. Thus, H ⊂ g−1Hg for each g ∈ G. Hence, g−1Hg = H for each
g ∈ G. Thus, H is normal in G.

QUESTION 2.6.30 Suppose that a group G has a subgroup of order n.
Prove that the intersection of all subgroups of G of order n is a normal
subgroup of G.
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Solution: Let D be the intersection of all subgroups of G of order n.
Let g ∈ G. If g−1Dg is a subset of each subgroup of G of order n, then
g−1Dg is a subset of the intersection of all subgroups of G of order n.
Hence, g−1Dg ⊂ D for each g ∈ G and therefore D is normal in G.
Hence, assume that g−1Dg is not contained in a subgroup, say, H, of G
of order n for some g ∈ G. Thus D is not contained in gHg−1, for if
D is contained in gHg−1, then g−1Dg is contained in H which is a
contradiction. But gHg−1 is a subgroup of G of order n by Question
2.6.26, and Hence D ⊂ gHg−1, a contradiction. Thus, g−1Dg = D for
each g ∈ G. Hence, D is normal in G.

QUESTION 2.6.31 Suppose that H and K are Abelian normal sub-
groups of a group G such that H ∩ K = {e}. Prove that HK is an
Abelian normal subgroup of G.

Solution: Let h ∈ H and k ∈ K. Since hkh−1k−1 = (hkh−1)k−1

and K is normal, hkh−1 ∈ K. Thus, (hkh−1)k−1 ∈ K. Also, since
hkh−1k−1 = h(kh−1k−1) and H is normal, we have kh−1k−1 ∈ H. Thus,
h(kh−1k−1) ∈ H. Since H ∩K = {e}, we conclude that hkh−1k−1 = e.
Thus, hk = kh. Hence, HK is Abelian. Now, HK is normal by Question
2.6.17.

2.7 Group Homomorphisms and Direct Product

Observe that when we say that a map Φ from G ONTO H, then we
mean that Φ(G) = H, i.e., φ is surjective.

QUESTION 2.7.1 Let Φ be a group homomorphism from a group G to
a group H. Let D be a subgroup of G of order n. Prove that Ord(Φ(D))
divides n.

Solution: Define a new group homomorphis, say α : D −→ Φ(D) such
that α(d) = Φ(d) for each d ∈ D. Clearly, α is a group homomor-
phism from D ONTO α(D) = Φ(D). Hence, by Theorem 1.2.35, we have
D/Ker(α) ∼= α(D) = Φ(D). Thus, Ord(D)/Ord(Ker(α)) = Ord(Φ(D)).
Hence, n = Ord(ker(α))Ord(Φ(D)). Thus, Ord(D) divides n.

QUESTION 2.7.2 Let Φ be a group homomorphism from a group G
ONTO a group H. Prove that G ∼= H if and only if Ker(Φ) = {e}.



38 A. Badawi

Solution: Suppose that G ∼= H. Hence, Φ(x) = eH( the identity in H)
iff x = e ( the identity of G). Hence, Ker(Φ) = {e}. Conversely, suppose
that Ker(Φ) = {e}. Hence, by Theorem 1.2.35, we have G/Ker(Φ) =
G/{e} = G ∼= Φ(G) = H.

QUESTION 2.7.3 Let Φ be a group homomorphism from a group G to
a group H. Let K be a subgroup of H. Prove that Φ−1(K) = {x ∈ G :
Φ(x) ∈ K} is a subgroup of G.

Solution: Let x, y ∈ Φ−1(K). Then Φ(x) = k ∈ K. Hence, by The-
orem 1.2.34(2), Φ(x−1) = (Φ(x))−1 = k−1 ∈ K. Thus, x−1 ∈ Φ−1(K).
Since Φ(x−1y) = Φ(x−1)Φ(y) = k−1Φ(y) ∈ K, we have x−1y ∈ Φ−1(K).
Hence, Φ−1(K) is a subgroup of G by Theorem 1.2.7.

QUESTION 2.7.4 Let Φ be a group homomorphism from a group G to
a group H, and let K be a normal subgroup of H. Prove that D = Φ−1(K)
is a normal subgroup of G.

Solution: Let g ∈ G. Then Φ(g−1Dg) = (Φ(g))−1Φ(D)Φ(g) =
(Φ(g))−1KΦ(g) = K. Since Φ(g−1Dg) = K for each g ∈ G, we con-
clude that g−1Dg ⊂ D for each g ∈ G. Thus, D is normal in G by
Question 2.6.29.

QUESTION 2.7.5 Let Φ be a ring homomorphism from a group G to
a group H. Suppose that D is a subgroup of G and K is a subgroup of H
such that Φ(D) = K. Prove that Φ−1(K) = Ker(Φ)D.

Solution: Let x ∈ Ker(Φ)D. Then x = zd for some z ∈ Ker(Φ) and for
some d ∈ D. Hence, Φ(x) = Φ(zd) = Φ(z)Φ(d) = eHΦ(d) = Φ(d) ∈ K.
Thus, Ker(Φ)D ⊂ Φ−1(K). Now, let y ∈ Φ−1(K). Then Φ(w) = y for
some w ∈ G. Since Φ(D) = K, we have Φ(d) = y for some d ∈ D. Since G
is group, we have w = ad for some a ∈ G. Now, we show that a ∈ Ker(Φ).
Hence, y = Φ(w) = Φ(ad) = Φ(a)Φ(d) = Φ(a)y. Thus, Φ(a)y = y.
Hence, Φ(a) = eH . Thus, a ∈ Ker(Φ). Hence, w = ad ∈ Ker(Φ)D.
Thus, Φ−1(K) ⊂ Ker(Φ)D. Hence, Φ−1(K) = Ker(Φ)D.

QUESTION 2.7.6 Let Φ be a group homomorphism from a group G
to a group H. Suppose that Φ(g) = h for some g ∈ G and for some
h ∈ H. Prove that Φ−1(h) = {x ∈ G : Φ(x) = h} = Ker(Φ)g. Further-
more, if Ord(Ker(Φ)) = n and Φ(g) = h, then Ord(Φ−1(h)) = n, i.e.,
There are exactly n elements in G that map to h ∈ H. Hence, if Φ is
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onto and Ord(Ker(Φ)) = n and D is a subgroup of H of order m, then
Ord(Φ−1(D)) = nm. In particular, if N is a normal subgroup of G of
order n and G/N has a subgroup of order m, then Φ−1(D) is a subgroup
of G of order nm.

Solution: We just use a similar argument as in the previous Question.
Now, suppose that Ord(Ker(Φ)) = n and Φ(g) = h. Since Φ−1(h) =
gKer(Φ), we conclude that Ord(Φ−1(h)) = Ord(gKer(Φ)) = n.

QUESTION 2.7.7 Let H be an infinite cyclic group. Prove that H is
isomorphic to Z.

Solution: SinceH is cyclic, H = (a) for some a ∈ H. Define Φ : H −→ Z
such that Φ(an) = n for each n ∈ Z. It is easy to check that Φ is onto.
Also, Φ(anam) = Φ(an+m) = n + m = Φ(an)Φ(am). Hence, Φ is a
group homomorphism. Now, we show that Φ is one to one. Suppose that
Φ(an) = Φ(am). Then n = m. Thus, Φ is one to one. Hence, Φ is an
isomorphism. Thus, H ∼= Z.

QUESTION 2.7.8 Let G be a finite cyclic group of order n. Prove that
G ∼= Zn.

Solution: Since G is a finite cyclic group of order n, we have G = (a) =
{a0 = e, a1, a2, a3, ..., an−1} for some a ∈ G. Define Φ : G −→ Zn such
that Φ(ai) = i. By a similar argument as in the previous Question, we
conclude that G ∼= Zn.

QUESTION 2.7.9 Let k, n be positive integers such that k divides n.
Prove that Zn/(k) ∼= Zk.

Solution: Since Zn is cyclic, we have Zn/(k) is cyclic by Theorem
1.2.34(6). Since Ord((k)) = n/k, we have order(Zn/(k)) = k. Since
Zn/(k) is a cyclic group of order k, Zn/(k) ∼= Zk by the previous Ques-
tion.

QUESTION 2.7.10 Prove that Z under addition is not isomorphic to
Q under addition.

Solution: Since Z is cyclic and Q is not cyclic, we conclude that Z is
not isomorphic to Q.
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QUESTION 2.7.11 Let Φ be a group homomorphism from a group G
to a group H. Prove that Φ is one to one if and only if Ker(Φ) = {e}.

Solution: Suppose that Φ is one to one. Hence, Φ(x) = eH iff x = eG
the identity in G. Hence, Ker(Φ) = {e}. Now, suppose that Ker(Φ) =
{e}. Let x, y ∈ G such that Φ(x) = Φ(y). Hence, Φ(x)[Φ(y)]−1 =
Φ(x)Φ(y−1) = Φ(xy−1) = eH . Since Ker(Φ) = {e}, we conclude that
xy−1 = eG the identity in G. Hence, x = y. Thus, Φ is one to one.

QUESTION 2.7.12 Suppose that G is a finite Abelian group of order
n and m is a positive integer such that gcd(n,m) = 1. Prove that Φ :
G −→ G such that Φ(g) = gm is an automorphism (group isomorphism)
from G onto G.

Solution: Let g1, g2 ∈ G. Then Φ(g1g2) = (g1g2)
m = gm1 gm2 since G

is Abelian. Hence, Φ(g1g2) = gm1 gm2 = Φ(g1)Φ(g2). Thus, Φ is a group
homomorphism. Now, let b ∈ G. Since bn = e and gcd(n,m) = 1 , By
Question 2.1.10 we have b = gm for some g ∈ G. Hence, Φ(g) = b.
Thus, Φ is Onto. Now, we show that Φ is one to one. By the previous
Question, it suffices to show that Ker(Φ) = {e}. Let g ∈ Ker(Φ). Then
Φ(g) = gm = e. Thus, Ord(g) divides m. Since Ord(g) divides m
and Ord(g) divides n and gcd(n,m) = 1, we conclude that Ord(g) = 1.
Hence, g = e. Thus, Ker(Φ) = {e}. Hence, Φ is an isomorphism from G
Onto G.

QUESTION 2.7.13 Suppose that G is a finite Abelian group such that
G has no elements of order 2. Prove that Φ : G −→ G such that Φ(g) = g2

is a group isomorphism (an automorphism) from G onto G.

Solution: Since G has no elements of order 2 and 2 is prime, we conclude
that 2 does not divide n by Theorem 1.2.31. Hence, n is an odd number.
Thus, since gcd(2, n) = 1, we conclude that Φ is an isomorphism by the
previous Question.

QUESTION 2.7.14 Let n = m1m2 such that gcd(m1,m2) = 1. Prove
that H = Zm1

⊕ Zm2

∼= Zn.

Solution: Since Zm1
and Zm2

are cyclic and gcd(m1,m2) = 1, By The-
orem 1.2.36 we conclude that H is a cyclic group of order n = m1m2.
Hence, H ∼= Zn by Question 2.7.8.
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QUESTION 2.7.15 Is there a nontrivial group homomorphism from
Z24 onto Z6 ⊕ Z2?

Solution: No. For suppose that Φ is a group homomorphism from Z24

onto Z6 ⊕ Z2. Then by Theorem 1.2.35 we have Z24/Ker(Φ) ∼= Z6 ⊕ Z2.
A contradiction since Z24/Ker(Φ) is cyclic by Theorem 1.2.34(6) and by
Theorem 1.2.36 Z6 ⊕ Z2 is not cyclic (observe that gcd(2, 6) = 2 6= 1).

QUESTION 2.7.16 Let G be a group of order n > 1. Prove that H =
Z ⊕G is never cyclic.

Solution: Deny. Then H is cyclic. Since Z = (1) and Ord(G) > 1, we
have H = ((1,g)) for some g ∈ G such that g 6= e. Since (1, e) ∈ H, we
have (1, g)n = (1, e) for some n ∈ Z. Thus, (n, gn) = (1, e). Hence, n = 1.
Thus, g = e. A contradiction since g 6= e. Hence, H is never cyclic.

QUESTION 2.7.17 Suppose That G = H ⊕ K is cyclic such that
Ord(K) > 1 and Ord(H) > 1. Prove that H and K are finite groups.

Solution: Since G is cyclic, we have H and K are cyclic. We may assume
that H is infinite. By Question 2.7.7, H ∼= Z. Hence, Z ⊕ K is cyclic,
which is a contradiction by the previous Question.

QUESTION 2.7.18 Let G = Zn ⊕ Zm and d = pk for some prime
number p such that d divides both n and m. Prove that G has exactly
dφ(d) + [d− φ(d)]φ(d) elements of order d.

Solution: Since Zn is cyclic, by Theorem 1.2.14 we have exactly φ(d)
elements of order d in Zn. Hence, let g = (z1, z2) ∈ G such that Ord(g)
= d. Since d = pk and p is prime and by Theorem 1.2.37 Ord(g) =
lcm(Ord(z1), Ord(z2)) = pk = d, we conclude that either Ord(z1) = d
and dz2 = 0 or Ord(z2) = d and dz1 = 0. Hence, if Ord(z1) = d and
dz2 = 1, then Ord(g) = d. Thus, there are exactly dφ(d) elements in
D of this kind. If Ord(z2) = d and dz1 = 0, then Ord(g) = d. Hence,
we have exactly dφ(d) elements in G of this kind. If Ord(z1) = d and
Ord(z2) = d, then there are exactly φ(d)φ(d) elements of this kind, but
this kind of elements has been included twice in the first calculation and
in the second calculation. Hence, number of all elements in G of order d
is dφ(d) + dφ(d)− φ(d)φ(d) = dφ(d) + [d− φ(d)]φ(d)

QUESTION 2.7.19 How many elements of order 4 does G = Z4 ⊕ Z4

have ?
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Solution: Since 4 = 22, By the previous Question, number of elements
of order 4 in G is 4φ(4) + [4− φ(4)]φ(4) = [4]2 + [2]2 = 8 + 4 = 12.

QUESTION 2.7.20 How many elements of order 6 does the group G =
Z6 ⊕ Z6 have?

Solution: Let g = (z1, z2) ∈ G such that Ord(g) = 6. Since Ord(g) =
lcm(Ord(z1), Ord(z2)) = 6, we conclude that Ord(z1) = 6 and 6z2 = 0 or
Ord(z2) = 6 and 6z1 = 0 or Ord(z1) = 2 and Ord(z2) = 3 or Ord(z1) = 3
and Ord(z2) = 2. Hence, number of elements in G of order 6 is (6φ(6) +
6φ(6) − φ(6)φ(6)) + (φ(2)φ(3)) + (φ(3)φ(2)) = (12 + 12 − 4) + 2 + 2 =
20 + 2 + 2 = 24.

QUESTION 2.7.21 How many elements of order 6 does G = Z12⊕Z2

have?

Solution: Let g = (z1, z2) ∈ G. Since Ord(g) = lcm(Ord(z1),
Ord(z2)) = 6, we conclude that Ord(z1) = 6 and 6z2 = 2z2 = 0
or Ord(z1) = 3 and Ord(z22) = 2. Hence number of elements of order 6
in G is 2φ(6) + φ(3)φ(2) = 4 + 2 = 6.

QUESTION 2.7.22 Find the order of g = (6, 4) ∈ G = Z24 ⊕ Z16.

Solution: Ord(g) = lcm(Ord(6), Ord(4)) = lcm(4, 4) = 4.

QUESTION 2.7.23 Prove that H = Z8 ⊕ Z2 6∼= G = Z4 ⊕ Z4.

Solution: We just observe that G has no elements of order 8, but the
element (1, 0) ∈ H has order equal to 8. Thus, H 6∼= G.

QUESTION 2.7.24 Let Φ be a group homomorphism from Z13 to a
group G such that Φ is not one to one. Prove that Φ(x) = e for each
x ∈ Z13.

Solution: Since Φ is not one to one, we have Ord(Ker(Φ)) > 1. Since
Ord(Ker(Φ)) > 1 and it must divide 13 and 13 is prime, we conclude
that Ord(Ker(Φ)) = 13. Hence, Φ(x) = e for each x ∈ Z13.

QUESTION 2.7.25 Let Φ be a group homomorphism from Z24 onto
Z8. Find Ker(Φ).
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Solution: Since Z24/Ker(Φ) ∼= Z8 by Theorem 1.2.35 and Ord(Z8) = 8
and Ord(Z24) = 24, we conclude that Ord(Ker(Φ)) = 3. Since Z24 is
cyclic, by Theorem 1.2.12 Z24 has a unique subgroup of order 3. Since
Ker(Φ) is a subgroup of Z24 and Ord(Ker(Φ)) = 3, Ker(Φ) is the only
subgroup of Z24 of order 3. Hence, we conclude that Ker(Φ) = {0, 8, 16}.

QUESTION 2.7.26 Is there a group homomorphism from Z28 onto Z6?

Solution: NO. For let Φ be a group homomorphism from Z28 onto Z6.
Then by Question 2.7.1 we conclude that 6 divides 28. A Contradiction.
Hence, there is no group homomorphism from Z28 onto Z6.

QUESTION 2.7.27 Let Φ be a group homomorphism from Z20 to Z8

such that Ker(Φ) = {0, 4, 8, 12, 16} and Φ(1) = 2. Find all elements of
Z20 that map to 2, i.e., find Φ−1(2).

Solution: Since Φ(1) = 2, By Question 2.7.6 we have Φ−1(2) = Ker(Φ)+
1 = {1, 5, 9, 13, 17}.

QUESTION 2.7.28 Let Φ be a group homomorphism from Z28 to Z16

such that Φ(1) = 12. Find Ker(Φ).

Solution: Since Z28 is cyclic and Z28 = (1) and Φ(1) = 12, we conclude
that Φ(Z28) = (Φ(1)) = (12). Hence, Ord(Φ(Z28)) = Ord(Φ(1)) =
Ord(12) = 4. Since Z28/Ker(Φ) ∼= Φ(Z28) by Theorem 1.2.35 and
Ord(Φ(Z28) = 4, we conclude that Ord(Ker(Φ)) = 7. Since Z28 is
cyclic, Z28 has a unique subgroup of order 7 by Theorem 1.2.12. Hence,
Ker(Φ) = {0, 4, 8, 12, 16, 20, 24}.

QUESTION 2.7.29 Let Φ be a group homomorphism from Z36 to Z20.
Is it possible that Φ(1) = 2?

Solution: NO. because Ord(Φ(1)) = Ord(2) must divide Ord(1) by
Theorem 1.2.34. But since 1 ∈ Z36 and Φ(1) = 2 ∈ Z20, Ord(1) = 36 and
Ord(2) = 5. Hence, 5 does not divide 36.

QUESTION 2.7.30 Find all group homomorphism from Z8 to Z6.

Solution: Since Z8 is cyclic and Z8 = (1), a group homomorphism,
say,Φ, from Z8 to Z6 is determined by Φ(1). Now, by Theorem 1.2.34
Ord(Φ(1) ∈ Z6) must divide Ord(1 ∈ Z8). Also, since Φ(1) ∈ Z6,
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Ord(Φ(1)) must divide 6. Hence, Ord(Φ(1) ∈ Z6) must divide both
numbers 8 and 6. Hence, Ord(Φ(1)) = 1 or 2. Since 0 ∈ Z6 has order 1
and 3 ∈ Z6 is the only element in Z6 has order 2, we conclude that the
following are all group homomorphisms from Z8 to Z6 : (1) Φ(1) = 0. (2)
Φ(1) = 3.

QUESTION 2.7.31 Find all group homomorphism from Z30 to Z20.

Solution: Once again, since Z30 = (1) is cyclic, a group homomorphism
Φ from Z30 to Z20 is determined by Φ(1). Now, since Φ(1) divides both
numbers 20 and 30, we conclude that the following are all possibilities for
Ord(Φ(1)) : 1, 2, 5, 10. By Theorem there are exactly φ(1) = 1 element
in Z20 of order 1 and φ(2) = 1 element in Z20 of order 2 and φ(5) = 4
elements in Z20 of order 5 and φ(10) = 4 elements in Z20 of order 10. Now,
0 is of order 1, 10 is the only element in Z20 of order 2, each element in
{4, 8, 12, 16} is of order 5, and each element in {2, 6, 14, 18} is of order
10. Thus, the following are all group homomorphisms from Z30 to Z20 :
(1) Φ(1) = 0. (2) Φ(1) = 10. (3)Φ(1) = 4. (4)Φ(1) = 8. (5)Φ(1) = 12.
(6)Φ(1) = 16. (7)Φ(1) = 2. (8)Φ(1) = 6. (9)Φ(1) = 14. (10) Φ(1) = 18.
Hence, there are exactly 10 group homomorphisms from Z30 to Z20.

QUESTION 2.7.32 Let m1, m2, m3,...,mk be all positive integers that
divide both numbers n and m. Prove that number of all group homomor-
phisms from Zn to Zm is φ(m1)+φ(m2)+φ(m3)+...+φ(mk) = gcd(n,m).

Solution: As we have seen in the previous two Questions, a homomor-
phism Φ from Zn to Zm is determined by Φ(1). Since Ord(Φ(1)) must
divide both numbers n and m, we conclude that Ord(Φ(1)) must be m1

or m2, or...or mk. Since Zm has exactly φ(m1) elements of order m1

and φ(m2) elements of order m2 and...and φ(mk) elements of order mk,
we conclude that number of all group homomorphisms from Zn to Zm is
φ(m1) + φ(m2) + ...+ φ(mk) = gcd(n,m).

QUESTION 2.7.33 Let Φ be a group homomorphism from Z30 to Z6

such that Ker(Φ) = {0, 6, 12, 18, 24}. Prove that Φ is onto. Also, find all
possibilities for Φ(1).

Solution: Since Z30/Ker(Φ) ∼= Φ(Z30) ⊂ Z6 by Theorem 1.2.35 and
Ord(Ker(Φ)) = 5, we conclude that Ord(Z30/Ker(Φ)) = Ord(Φ(Z30) =
30/5 = 6. Hence, Φ(Z30) = Z6. Thus, Φ is onto. Now, since Z30 = (1) is
cyclic and a group homomorphism from Z30 to Z6 is determined by Φ(1)
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and Φ is onto, we conclude Ord(Φ(1)) = 6. Hence, there are φ(6) = 2
elements in Z6 of order 6, namely, 1 and 5. Thus, all possibilities for Φ(1)
are : (1) Φ(1) = 1. (2)Φ(1) = 5.

QUESTION 2.7.34 Let Φ be a group homomorphism from G onto H,
and suppose that H contains a normal subgroup K such that [H : K] = n.
Prove that G has a normal subgroup D such that [G:D] = n.

Solution: Since α : H −→ H/K such that α(h) = hK is a group
homomorphism from H onto H/K, we conclude that α ◦ Φ is a group
homomorphism from G onto H/K. Thus, by Theorem 1.2.35 G/Ker(α ◦
Φ) ∼= H/K. Since n = [H : K] = Ord(H/K), we conclude that
Ord(G/Ker(α ◦ Φ)) = [G : Ker(α ◦ Φ] = n. Thus, let D = Ker(α ◦ Φ).
Then [G : D] = n and D is a normal subgroup of G by Theorem 1.2.35.

QUESTION 2.7.35 Let Φ be a group homomorphism from G onto Z15.
Prove that G has normal subgroups of index 3 and 5.

Solution: Since Z15 is cyclic and both numbers 3, 5 divide 15, Z15 has
a subgroup, say, H, of order 3 and it has a subgroup, say, K, of order
5. Since Z15 is Abelian, H and K are normal subgroups of Z15. Since
[Z15 : H] = 5, by the previous Question we conclude that G has a normal
subgroup of index 5. Also, since [Z15 : K] = 3, once again by the previous
Question we conclude that G has a normal subgroup of index 3.

QUESTION 2.7.36 Let H be a subgroup of G and N be a subgroup of
K. Prove that H ⊕N is a subgroup of G⊕K.

Solution: Let (h1, n1), (h2, n2) ∈ H ⊕N . Then
(h1, n1)

−1(h2, n2) = (h−1
1 , n−1

1 )(h2, n2) = (h−1
1 h2, n

−1
1 n2) ∈ H⊕N . Hence,

by Theorem 1.2.7 H ⊕N is a subgroup of G⊕K.

QUESTION 2.7.37 Let H be a normal subgroup of G and N be a nor-
mal subgroup of K. Prove that H ⊕N is a normal subgroup of G⊕K.

Solution: Let (g, k) ∈ G ⊕ K. Then (g, k)−1[H ⊕ N ](g1, k1) =
(g−1, k−1)[H ⊕ N ](g, k) = g−1Hg ⊕ k−1Nk = H ⊕ N since g−1Hg = H
andk−1Nk = N . Thus, H ⊕N is a normal subgroup of G⊕K.

QUESTION 2.7.38 Let H be a normal subgroup of G such that [G :
H] = n and N be a normal subgroup of K such that [K : N ] = m. Prove
that H ⊕N is a normal subgroup of G⊕K of index nm.
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Solution: Let Φ : G⊕K −→ G/H⊕K/N such that Φ(g, k) = (gH, kN).
Then clearly that Φ is a group homomorphism from G⊕K onto G/H ⊕
K/N and Ker(Φ) = H ⊕ N . Hence, by Theorem 1.2.35 we have G ⊕
K/Ker(Φ) = G⊕K/H ⊕N ∼= G/H ⊕K/N . Since [G : H] = n and [K :
N] = m, Ord(G/H) = n and Ord(K/N) = m. Hence, Ord(G/H⊕K/N) =
nm. Thus, Ord(G⊕K/H ⊕N) = nm. Hence, [G⊕K : H ⊕N ] = nm.

QUESTION 2.7.39 Prove that Z4⊕Z8 has a normal subgroup of index
16.

Solution: Let H = {0} ⊂ Z4, and let N = {0, 4} ⊂ Z8. Then H is a
normal subgroup of Z4 of index 4 and N is a normal subgroup of Z8 of
index 4. Hence, by the previous Question H ⊕ N is a normal subgroup
of G⊕K of index 16.

QUESTION 2.7.40 Let Φ be a group homomorphism from G onto Z8⊕
Z6 such that Ord(Ker(Φ)) = 3. Prove that G has a normal subgroup of
order 36.

Solution: Let H be a normal subgroup of Z8 of order 4 and let N be
a normal subgroup of Z6 of order 3. Then H ⊕N is a normal subgroup
of Z8 ⊕ Z6 of order 12. Now, let a ∈ H ⊕ N . Then Ord(Φ−1(a)) =
Ord(Ker(Φ)) = 3 by Question 2.7.6. Hence, since Ord(Φ−1(a)) = 3 for
each a ∈ H ⊕N and Ord(H ⊕N) = 12, we conclude that Ord(Φ−1(H ⊕
N)) = (12)(3) = 36. Now, by Question 2.7.4 D = Φ−1(H ⊕ N) is a
normal subgroup of G. ( by a similar argument, one can prove that G
has normal subgroups of order 6, 9, 12, 18, 24.)

QUESTION 2.7.41 Let G be a group of order pq for some prime num-
bers p, q, p 6= q such that G has a normal subgroup H of order p and a
normal subgroup K of order q. Prove that G is cyclic and hence G ∼= Zpq.

Solution: Since gcd(p,q) = 1, by Question 2.6.23 we have Ord(HK) = pq.
Thus, HK = G. Also, since gcd(p,q) = 1, we conclude that H ∩K = {e}.
Hence, by Theorem 1.2.39 G ∼= H ⊕K. Since Ord(H) = p and Ord(K)
= q, H and K are cyclic groups. Hence, since H and K are cyclic groups
and gcd(p,q) = 1, by Theorem 1.2.36 we conclude that G ∼= H ⊕ K is
cyclic. Hence, G ∼= Zpq by Question 2.7.8.

QUESTION 2.7.42 Let G be a group of order 77 such that G has a
normal subgroup of order 11 and a normal subgroup of order 7. Prove
that G is cyclic and hence G ∼= Z77.
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Solution: Since Ord(G) = 77 is a product of two distinct prime numbers,
the result is clear by the previous Question.

QUESTION 2.7.43 Prove that Aut(Z125) is a cyclic group.

Solution: Since Aut(Z125) ∼= U(125) = U(53) by Theorem 1.2.41 and
U(53) is cyclic by Theorem 1.2.40, we conclude that Aut(Z125) is cyclic.

QUESTION 2.7.44 Let p be an odd prime number and n be a positive
integer. Then prove that U(2pn) is a cyclic group.

Solution: By Theorem 1.2.38, we have U(2pn) ∼= U(2) ⊕ U(pn). Since
U(2) and U(pn) are cyclic groups by Theorem 1.2.40 and gcd(Ord(U(2)),
Ord(U(pn))) = gcd(1, (p − 1)pn−1) = 1, we conclude that U(2pn) ∼=
U(2)⊕ U(pn) is cyclic by Theorem 1.2.36.

QUESTION 2.7.45 Prove that U(54) is a cyclic group.

Solution: Since 54 = 2(33), U(54) is cyclic by the previous Question.

QUESTION 2.7.46 Let p and q be two distinct odd prime numbers and
n, m be positive integers. Prove that U(pnqm) is never a cyclic group.

Solution: By Theorem 1.2.38, we have U(pnqm) ∼= U(pn) ⊕ U(pm) ∼=
Z(p−1)pn−1 ⊕ Z(q−1)qm−1 by Theorem 1.2.40. Since (p − 1)pn−1 and (q −
1)qm−1 are even numbers, we conclude that gcd((p−1)pn−1, (q−1)qm−1) 6=
1. Hence, by Theorem 1.2.36 U(pnqm) is not cyclic.

QUESTION 2.7.47 Let n be a positive integer. Prove that up to iso-
morphism there are finitely many groups of order n.

Solution : Let G be a group of order n. By Theorem 1.2.42, G is
isomorphic to a subgroup of Sn. Hence, number of groups of order n up
to isomorphism equal number of all subgroups of Sn of order n. Since Sn

is a finite group, Sn has finitely many subgroups of order n.

QUESTION 2.7.48 Let p be a prime number in Z. Suppose that H
is a subgroup of Q∗ under multiplication such that p ∈ H. Prove that
there is no group homomorphism from Q under addition onto H. Hence,
Q 6∼= H.
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Solution: Deny. Then there is a group homomorphism Φ from Q onto
H. Since p ∈ H, there is an element x ∈ Q such that Φ(x) = p. Hence,
p = Φ(x) = Φ(x/2+x/2) = Φ(x/2)Φ(x/2) = (Φ(x/2))2. Since Φ(x/2)2 =
p, we conclude Φ(x/2) =

√
p. A contradiction, since p is prime and

Φ(x/2) ∈ H ⊂ Q∗ and
√
p 6∈ Q.

QUESTION 2.7.49 Prove that Q under addition is not isomorphic to
Q∗ under multiplication.

Solution: This result is now clear by the previous Question.

QUESTION 2.7.50 Let H be a subgroup of C∗ under multiplication,
and let Φ be a group homomorphism from Q under addition to H. Then
prove that there is a positive real number a ∈ H such that Φ(n/m) = an/m

for each n/m ∈ Q, n and m are integers.

Solution: Now Φ(1) = a ∈ H. Let n be a positive integer. Then
Φ(n) = Φ(1 + 1 + ... + 1) = Φ(1)Φ(1)...Φ(1) = Φ(1)n = an. Also, a =
Φ(1) = Φ(n(1/n)) = Φ(1/n+1/n+ ...+1/n) = Φ(1/n)Φ(1/n)...Φ(1/n) =
Φ(1/n)n. Since Φ(1/n)n = a, we have Φ(1/n) = n

√
a. Now, if n is a

negative number, then since 1 = Φ(0) = Φ(n − n) and Φ(−n) = a−n we
have Φ(n) = an. Also, if n is negative, then Φ(1/n) = a1/n. Hence, if n
and m are integers and m 6= 0, then Φ(n/m) = an/m. Since Φ(1/2) =

√
a,

we conclude that a is a positive real number.

QUESTION 2.7.51 Prove that Q under addition is not isomorphic to
R∗ under multiplication.

Solution : By the previous Question, a group homomorphism Φ from
Q to R∗ is of the form Φ(x) = ax for each x ∈ Q for some positive real
number a. Since ax ≥ 0 for each x ∈ Q, There is no element in Q maps
to −1. Hence, Q 6∼= R∗.

QUESTION 2.7.52 Prove that Q under addition is not isomorphic to
R+ (the set of all nonzero positive real numbers) under multiplication.

Solution: Deny. Then Φ is an isomorphism from Q onto R+. Hence,
by Question 2.7.50 there is a positive real number a such that Φ(n/m) =
an/m. Now, suppose that a = π. Then there is no x ∈ Q such that
ax = πx = 2. Thus, Φ is not onto. Hence, assume that a 6= π. Then
there is no x ∈ Q such that ax = π. Thus, once again, Φ is not onto.
Hence, Q 6∼= R+.



Problems in Group Theory 49

QUESTION 2.7.53 Give an example of a non-Abelian group of order
48.

Solution: Let G = S4 ⊕ Z2. Then Ord(G) = 48. Since S4 is a non-
Abelian group, G is non-Abelian.

QUESTION 2.7.54 Let Φ be a group homomorphism from a group G
into a group H. If D is a subgroup of H, then Ker(Φ) is a subgroup
of Φ−1(D). In particular, if K is a normal subgroup of G and D is a
subgroup of G/K, then K is a subgroup of Φ−1(D) where Φ : G −→ G/K
given by Φ(g) = gK.

Solution : Let D be a subgroup of H. Since eH ∈ D, we have Φ(b) = eH
for each b ∈ Ker(Φ). Thus, Ker(Φ) ⊂ Φ−1(D). The remaining part is
now clear.

QUESTION 2.7.55 Let G be a group and H be a cyclic group and Φ
be a group homomorphism from G onto H. Is Φ−1(H) = G an Abelian
group?

Solution: No. Let G = S4, and K = A4. Now, H = G/K is a cyclic
group of order 2 and Φ from G into H given by Φ(g) = gK is a group
homomorphism from G onto H. Now, Φ−1(H) = G = S4 is not Abelian.

QUESTION 2.7.56 Let H be a subgroup of a finite group G. Prove
that C(H) is a normal subgroup of N(H) and Ord(N(H)/C(H)) divides
Ord(Aut(H)). In particular, prove that if H is a normal subgroup of G,
then Ord(G/C(H)) divides Ord(Aut(H)).

Solution : We know that C(H) is a subgroup of G. By the definitions
C(H) ⊂ N(H). Now, let g ∈ N(H). We need to show that g−1C(H)g ⊂
C(H). Let c ∈ C(H). We need to show that g−1cg ∈ C(H). Hence, let
h ∈ H. We show that (g−1cg)h = h(g−1cg). Now, since H is normal in
N(H), we have gh = fg for some f ∈ H. Hence, g−1f = hg−1. Since
gh = fh and g−1f = hg−1 and cf = fc, we have g−1cgh = g−1cfg =
g−1fcg = hg−1cg. Thus, g−1cg ∈ C(H). Hence, C(H) is normal in
N(H). Let α be a map from N(H) to Aut(H) such that α(x) = Φx for
each x ∈ N(H), where Φx is an automorphism from H onto H such that
Φx(h) = x−1hx for each h ∈ H. It is easy to check that α is a group
homomorphism from N(H) to Aut(H). Now, Ker(α) = {y ∈ N(H) :
Φy = Φe}. But Φy = Φe iff y−1hy = e for each h ∈ H iff hy = yh
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for each h ∈ H. Thus, Ker(α) = C(H). Hence, by Theorem 1.2.35 we
have N(H)/C(H) ∼= Image(α). But Image(α) is a subgroup of Aut(H).
Thus, Ord(Image(α)) divides Ord(Aut(H)). So, since N(H)/C(H) ∼=
Image(α), we have Ord(N(H)/C(H)) divides Ord(Aut(H)). For the
remaining part, just observe that if H is normal in G, then N(H) = G.

QUESTION 2.7.57 Let p be a prime number > 3. We know that Z∗

p

under multiplication modulo p is a cyclic group of order p− 1. Let H =
{a2 : a ∈ Z∗

p}. Prove that H is a subgroup of Z∗

p such that [Z∗

p : H] = 2.

Solution : Let Φ : Z∗

p −→ Z∗

p such that Φ(a) = a2. It is trivial to check
that Φ is a group homomorphism. Clearly Φ(Z∗

p) = H. Thus, H is a
subgroup of Z∗

p . Now, Ker(Φ) = {a ∈ Z∗

p : a2 = 1}. Since 2 | p − 1
and Z∗

p is cyclic, there are exactly two elements, namely 1 and p − 1 in
Z∗

p whose square is 1. Thus Ker(Φ) = {1, p − 1}. Hence, by Theorem
1.2.35 Z∗

p/Ker(Φ) ∼= Φ(Z∗

p) = H. Thus, Ord(H) = (p − 1)/2. Hence,
[Z∗

p : H] = 2

QUESTION 2.7.58 Let p be a prime number > 3, and let H = {a2 :
a ∈ Z∗

p}. Suppose that p−1 6∈ H. Prove that if a ∈ Z∗

p , then either a ∈ H
or p− a ∈ H.

Solution : By the previous Question, since H is a subgroup of G = Z∗

p

and [G : H] = 2 , we conclude that the group G/H has exactly two
elements. Since p− 1 6∈ H, we conclude that H and (p− 1)H = −H are
the elements of G/H. Now, let a ∈ Z∗

p and suppose that a 6∈ H. Hence,
aH 6= H. Thus,aH = (p− 1)H = −H. Hence, H = −H −H = −aH =
(p− a)H. Thus, p− a ∈ H.

2.8 Sylow Theorems

QUESTION 2.8.1 Let H be a Sylow p-subgroup of a finite group G. We
know that ( the normalizer of H in G) N(H) = {x ∈ G : x−1Hx = H}
is a subgroup of G. Prove that H is the only Sylow p-subgroup of G
contained in N(H).

Solution: Let h ∈ H. Then h−1Hh = H. Hence, h ∈ N(H). Thus,
H ⊂ N(H). Now, we show that H is the only Sylow p-subgroup of G
contained in N(H). By the definition of N(H), we observe that H is a
normal subgroup of N(H). Hence, H is a normal Sylow p-subgroup of
N(H). Thus, by Theorem 1.2.46, we conclude that H is the only Sylow
p-subgroup of G contained in N(H).
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QUESTION 2.8.2 Let H be a Sylow p-subgroup of a finite group G.
Let x ∈ N(H) such that Ord(x) = pn for some positive integer n. Prove
that x ∈ H.

Solution: Since Ord(x) = pn, Ord((x)) = pn. Since N(H) is a group
(subgroup of G) and x ∈ N(H) and Ord((x)) = pn, by Theorem 1.2.44
(x) is contained in a Sylow p-subgroup of N(H). By the previous Question
H is the only Sylow p-subgroup of G contained in N(H). Hence, x ∈ H.

QUESTION 2.8.3 Let G be a group of order p2 . Prove that G is
Abelian.

Solution: Since Ord(G) = p2, by Theorem 1.2.47 we have Ord(Z(G)) =
p or p2. If Ord(Z(G)) = p2, then G is Abelian. Thus, assume that
Ord(Z(G)) = p. Hence, Ord(G/Z(G)) = p. Thus, G/Z(G) is cyclic.
Hence, G is Abelian by Question 2.6.6.

QUESTION 2.8.4 Let G be a non-Abelian group of order 36. Prove
that G has more than one Sylow 2-subgroup or more than one Sylow 3-
subgroup.

Solution: Deny. Since 36 = 2232, G has exactly one Sylow 3-subgroup,
say, H, and it has exactly one Sylow 2-subgroup, say, K. Thus, H and K
are normal subgroups of G by Theorem 1.2.46. Since Ord(H) = 32 = 9
and Ord(K) = 22 = 4 and gcd(4,9) = 1, we have H ∩ K = {e} and
Ord(HK) = 36 = Ord(G) by Question 2.6.23. Hence, HK = G and
by Theorem 1.2.39 we have G ∼= H ⊕ K. Since Ord(H) = 32 = 9 and
Ord(K) = 22 = 4, we conclude that H and K are Abelian groups by the
previous Question. Thus, G ∼= H ⊕K is Abelian. A contradiction since
G is a non-Abelian group by the hypothesis.

QUESTION 2.8.5 Let G be a group of order 100. Prove that G has a
normal subgroup of order 25.

Solution: Since Ord(G) = 100 = 2252, we conclude that G has a Sylow
5-subgroup, say, H. Then Ord(H) = 25. Let n be the number of all
Sylow 5-subgroups. Then 5 divides (n-1) and n divides Ord(G) = 100 by
Theorem 1.2.45. Hence, n = 1. Thus, H is the only Sylow 5-subgroup of
G. Hence, H is normal by Theorem 1.2.46.

QUESTION 2.8.6 Let G be a group of order 100. Prove that G has a
normal subgroup of order 50.
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Solution:Since 2 divides 100, G has a subgroup, say, K, of order 2 by
Theorem 1.2.43. By the previous Question, G has a normal subgroup of
order 25, say, H. Hence, HK is a subgroup of G by Question 2.6.16. Since
gcd(2,25) = 1, Ord(HK) = 50 by Question 2.6.23. Thus, [G : HK] = 2.
Hence, HK is normal by Question 2.6.1.

QUESTION 2.8.7 Let G be a group such that Ord(G) = pq for some
primes p < q and p does not divide q − 1. Prove that G ∼= Zpq is cyclic.

Solution: Let n be the number of all Sylow q-subgroups and let m be
the number of all Sylow p-subgroups. Then n divides pq and q divides
n−1 and m divides pq and p divides m−1. Since p < q, we conclude that
n = 1. Also, since p does not divide q − 1, m = 1. Hence, G has exactly
one Sylow q-subgroup, say, H and it has exactly one Sylow p-subgroup,
say, K. Thus, H and K are normal subgroups of G by Theorem 1.2.46.
Since gcd(p,q) = 1, Ord(HK) = pq = Ord(G) and H ∩ K = {e} by
Question 2.6.23. Thus, G ∼= H ⊕ K by Theorem 1.2.39. Since Ord(H)
= q and Ord(K) = p, we conclude that H and K are cyclic and hence
G ∼= H ⊕K is cyclic. Since G is a cyclic group of order pq, we conclude
that G ∼= Zpq is cyclic by Question 2.7.8.

QUESTION 2.8.8 Let G be a group of order 35. Prove that G is a
cyclic group and G ∼= Z35.

Solution: Let p = 5 and q = 7. Then Ord(G) = pq such that p < q
and p does not divide q − 1. Hence, G ∼= Z35 is cyclic by the previous
Question.

QUESTION 2.8.9 Let G be a noncyclic group of order 57. Prove that
G has exactly 38 elements of order 3.

Solution: Since 57 = (3)(19) and 19 does not divide 3− 1, by Theorem
1.2.45 G has exactly one Sylow 19-subgroup, say, H. Let a ∈ G such that
a 6= e. Since Ord(a) divides Ord(G) = 57 = (3)(19) and G is not cyclic
and a 6= e, we conclude that the possibilities for Ord(a) are : 3, 19. Since
H is the only Sylow 19-subgroup of order 19, we have exactly 18 elements
in G of order 19. Hence, there are exactly 38 elements in G of order 3.

QUESTION 2.8.10 Let G be a group of order 56. Prove that H has a
proper normal subgroup, say, H, such that H 6= {e}.
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Solution: Since 56 = 723, we conclude that G has a Sylow 7-subgroup,
say, H, and it has a Sylow 2-subgroup, say, K, by Theorem 1.2.43. If H
is the only Sylow 7-subgroup of G, then by Theorem 1.2.46 we conclude
that H is normal and we are done. Hence, let n be the number of all
Sylow 7-subgroups of G such that n > 1. Since n divides 56 and 7 divides
n−1 and n > 1, we conclude that n = 8. Since each non identity element
in a Sylow 7-subgroup of G has order 7, we conclude that there are (8)(6)
= 48 elements in G of order 7. Since there are exactly 48 elements in G
of order 7 and K is a Sylow 2-subgroup of order 8, we conclude that K is
the only Sylow 2-subgroup of G. Thus, K is normal by Theorem 1.2.46.

QUESTION 2.8.11 Let G be a group of order 105. Prove that it is
impossible that Ord(Z(G)) = 7.

Solution: Deny. Hence, Ord(Z(G)) = 7. Then Ord(G/Z(G)) = 15.
Since 15 = (3)(5) and 3 does not divide 5− 1 = 4, by Question 2.8.7 we
conclude that G/Z(G) is cyclic. Hence, G is Abelian by Question 2.6.6.
Hence, Z(G) = G, a contradiction. Thus, it is impossible that Ord(Z(G))
= 7.

QUESTION 2.8.12 Let G be a group of order 30. Prove that G has an
element of order 15.

Solution: Since 30 = (2)(3)(5), by Theorem 1.2.43 there is a subgroup
of order 2 and a subgroup of order 3 and a subgroup of order 5. Let n be
the number of all subgroups of G of order 3. Then by Theorem 1.2.45 we
conclude that either n = 1 or n = 10. Suppose that n = 1. Let H be the
subgroup of G of order 3. Then H is normal by Theorem 1.2.46. Since
Ord(G/H) = 10 = (2)(5), by Theorem 1.2.45 we conclude that G/H has
exactly one subgroup of order 5. Hence, by Question 2.7.6 , we conclude
that G has a subgroup, say, D, of order 15. Since 15 = (3)(5) and 3 does
not divide 5− 1, by Question 2.8.7 we conclude that D is cyclic. Hence,
there is an element in G of order 15. Now, assume that n = 10. Let
m be the number of all subgroups of G of order 5. Then by Theorem
1.2.45 we conclude that either m = 1 or m = 6. Since n = 10, there are
exactly (10)(2) = 20 elements of order 3. Hence, m = 1, for if m = 6,
then there are exactly (6)(4) = 24 elements of order 5, which is impossible
since Ord(G) = 30 and there are 20 elements of order 3. Let K be the
subgroup of G of order 5. Then by Theorem 1.2.46 we conclude that K
is normal. Since Ord(G/K) = 6, by Theorem 1.2.45 we conclude that
G/K has a subgroup of order 3. Hence, by Question 2.7.6 we conclude
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that G has a subgroup, say, L, of order 15. Thus, as mentioned earlier in
the solution G has an element of order 15.

QUESTION 2.8.13 Let G be a group of order 30. Prove that G has
exactly one subgroup of order 3 and exactly one subgroup of order 5.

Solution: Since 30 = (2)(3)(5), by Theorem 1.2.43 G has a subgroup of
order 2 and a subgroup of order 3 and a subgroup of order 5. Let n be
the number of all subgroups of G of order 3, and let m be the number of
all subgroups of G of order 5. By Theorem 1.2.45 we conclude that either
n = 1 or n = 10 and either m = 1 or m = 6. Suppose that n = 10. Then
G has exactly (10)(2) = 20 elements of order 3. Since by the previous
Question G has an element of order 15, we conclude by Theorem 1.2.14
that G has at least φ(15) = 8 elements of order 15. Since Ord(G) =
30 and there are 20 elements of order 3 and 8 elements of order 15, we
conclude that there are no subgroups of G of order 5, a contradiction.
Hence, n = 1. Now, suppose that m = 6. By an argument similar to the
one just given, we will reach to a contradiction. Hence, we conclude that
m = 1.

QUESTION 2.8.14 Let G be a group of order 30. Prove that G has a
normal subgroup of order 3 and a normal subgroup of order 5.

Solution: By the previous Question there are exactly one Sylow 3-
subgroup of G ,say, H, and exactly one Sylow 5-subgroup of G,say, K.
Hence, by Theorem 1.2.46 we conclude that H and K are normal in G.

QUESTION 2.8.15 Let G be a group of order 60 such that G has a
normal subgroup of order 2. Prove that G has a normal subgroup of order
6 and a normal subgroup of order 10 and a normal subgroup of order 30.

Solution: Let H be a normal subgroup of G of order 2. Then G/H is a
group of order 30. Hence, by the previous Question G/H has a normal
subgroup of order 3, say , K. Thus, by Question 2.7.6 G has a normal
subgroup of order 6. Since G/H has a normal subgroup of order 5, by an
argument similar to the one just given we conclude that G has a normal
subgroup of order 10. Also, by the previous Question G/H has a normal
subgroup of order 5, say, D. Hence, by Question 2.7.6 KD is a normal
subgroup of G/H. Since gcd(3,5) = 1, we conclude that Ord(KD) = 15.
Thus, by Question 2.7.6 we conclude that G has a normal subgroup of
order 30.
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QUESTION 2.8.16 Let G be a group of order 60 such that G has a
normal subgroup of order 2. Prove that G has a subgroup of order 20 and
a subgroup of order 12.

Solution: By the previous Question G has a normal subgroup of order
10, say, H. Hence, Ord(G/H) = 6. Since 6 = (2)(3), by Theorem 1.
2.43 G/H has a subgroup of order 2. Hence, by Question 2.7.6 G has
a subgroup of order 20. Also, by the previous Question G has a normal
subgroup of order 6, say, K. Since Ord(G/K) = 10 and 10 = (2)(5), by
Theorem 1.2.43 G/K has a subgroup of order 2. Thus, by Question 2.7.6
we conclude that G has a subgroup of order 12.

QUESTION 2.8.17 Let G be a group of order 60 such that G has a
normal subgroup of order 2. Prove that G has a cyclic subgroup of order
30, that is, show that G has an element of order 30.

Solution: Let K be a normal subgroup of G of order 2. Set H = G/K.
Since Ord(H) = 30, By Question 2.8.12 H has an element a of order 15.
Hence, D = (a) is a subgroup of H of order 15. Thus, by Question 2.7.6
G has a subgroup, V , of order 30 and by Question 2.7.54 K ⊂ V . By
Question 2.8.12 V has an element m of order 15. Thus, M = (m) is a
subgroup of V of order 15. Since [V : M] = 2, by Question 2.6.1 M is
a normal subgroup of V . Since K is normal in G and K ⊂ V , K is a
normal subgroup of V . Since gcd(2,15) = 1, K ∩M = {e}. Since K,M
are Abelian normal subgroups of V and K∩M = {e}, by Question 2.6.31
KM is an Abelian group. Hence, let k ∈ K such that Ord(k) = 2. Since
K = (k) and M = (m) and KM is Abelian, we have km = mk. Since mk
= km and gcd(2,15) = 1, by Question 2.1.14 Ord(km) = 30. Thus, G has
a cyclic subgroup of order 30, namely (km).

QUESTION 2.8.18 Let G be a group of order 345. Prove that G is
cyclic.

Solution : Since 345 = (3)(5)(23), by Theorem 1.2.43 there are sub-
groups of G of order 3 and 5 and 23. Let H be a subgroup of G of order
23. By Theorem 1.2.45, we conclude that H is the only subgroup of G of
order 23. Thus, by Theorem 1.2.46, H is normal in G. Hence, by Question
2.7.56 we have Ord(G/C(H)) divides Ord(Aut(H)). By Theorem 1.2.41
we have Ord(Aut(H)) = Ord(U(23)) = 22. Thus, Ord(G/C(H)) divides
22. Since Ord(G/C(H)) divides both numbers 365 and 22, we conclude
that Ord(G/C(H)) = 1. Hence, C(H) = G. Hence, by the definition
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of C(H) we conclude that C(H) = G means that every element in H
commute with every element in G. Hence, H ⊂ Z(G). Thus, Ord(Z(G))
≥ 23. Hence, Ord(G/Z(G)) = 1 or 3 or 5 or 15. In each case, we con-
clude that G/Z(G) is cyclic. Thus, by Question 2.6.6, G must be Abelian.
Now, since G has subgroups of order 3 and 5 and 23, G has an element
a of order 3 and an element of b of order 5 and an element c of order 23.
Since a, b, c commute with each other , by Question 2.1.14 Ord(abc) =
Ord(a(bc)) = Ord((ab)c) = (3)(5)(23) = 345. Thus, G = (abc) is cyclic.

QUESTION 2.8.19 let H, K be two distinct Sylow p-subgroups of a
finite group G. Prove that HK is never a subgroup of G.

Solution: Since H and K are Sylow p-subgroups of G, we conclude
Ord(H) = Ord(K) = pn such that pn+1 does not divide Ord(G). Since
H and K are distinct, Ord(H ∩K) = pm such that 0 ≤ m < n. Hence,
by Theorem 1.2.48 we conclude Ord(HK) = pnpn/pm = p2n−m > pn.
Since order of any subgroup of G must divide Ord(G) and p2n−m does
not divide Ord(G), HK is not a subgroup of G.

QUESTION 2.8.20 Let H be a subgroup of order p (prime) of a finite
group G such that p2 > Ord(G). Prove that H is the only subgroup of G
of order p and hence it is normal in G.

Solution: Suppose that there is another subgroup, say, K, of G of order
p. Hence, H ∩K = {e}. By Theorem 1.2.48, Ord(HK) = p2/1 = p2 >
Ord(G) which is impossible since HK ⊂ G. Thus, H is the only subgroup
of order p of G. Since p2 > Ord(G), we conclude that p2 does not divide
Ord(G). Thus, H is a Sylow p-subgroup of G. Hence, by Theorem 1.2.46,
we conclude that H is normal in G.

QUESTION 2.8.21 Let G be a group of order 46 such that G has a
normal subgroup of order 2. Prove that G is cyclic, that is, G ∼= Z46.

Solution: Since 46 = (2)(23). By Theorem 1.2.43, G has a Sylow 23-
subgroup ,H, of G. By Theorem 1.2.45, we conclude that H is the only
subgroup of G of order 23. By Theorem 1.2.46, H is normal in G. By
hypothesis, let K be a normal subgroup of G of order 2. Hence, H ∩K =
{e}. By Theorem 1.2.48 we have HK = G. Since H ∩ K = {e} and
HK = G and H,K are normal in G, by Theorem 1.2.39, G ∼= H ⊕ K.
But K ∼= Z2 and H ∼= Z23. Hence, G ∼= Z2 ⊕ Z23. Thus, by Theorem
1.2.36, G is a cyclic group of order 46. Hence, by Question 2.7.8 we have
G ∼= Z46.
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QUESTION 2.8.22 Let G be a group of order pn for some prime num-
ber p such that for each 0 ≤ m ≤ n there is exactly one subgroup of G of
order pm. Prove that G is cyclic.

Solution: Let x ∈ G of maximal order. Then Ord(x) = pk for some
1 ≤ k ≤ n. Now, let y ∈ G. Then Ord(y) = pi for some i ≤ k.
Since Ord((y)) = pi and G has exactly one subgroup of order pi and the
subgroup (x) of G, being cyclic, has a subgroup of order pi, we conclude
that (y) ⊂ (x). Hence, y ∈ (x). Thus, G ⊂ (x). Hence, G = (x) is cyclic.

QUESTION 2.8.23 Let G be a finite Abelian group. Show that A
Sylow-p-subgroup of G is unique.

Solution: Let H be a Sylow-p-subgroup of G. Since G is Abelian,
we conclude that H is normal. Hence H is the only Sylow-p-subgroup
of G by Theorem 1.2.46

QUESTION 2.8.24 Let G be a group of order p2q, where p and q
are distinct prime numbers, p does not divide q − 1, and q does not
divide p2 − 1. Show that G is Abelian.

Solution : Let np be the number of Sylow-p-subgroups and nq be the
number of Sylow-q-subgroups. Then since q does not divide p2−1 and
p does not divide q−1, by Theorem 1.2.45 we conclude that np = nq = 1.
Let H be a Sylow-p-subgroup and K be a Sylow-q-subgroup. Then H
and K are both normal in G by Theorem 1.2.46. Since H ∩K = {e}
and Ord(G) = p2q, we conclude that G ∼= H ⊕K. Since q is prime, K
is cyclic and hence Abelian. Also, since p is prime and Ord(H) = p2,
we conclude that H is Abelian by Question 2.8.3.

2.9 Simple Groups

QUESTION 2.9.1 Prove that there is no simple groups of order 300 =
(22)(3)(52).

Solution : Let G be a group of order 300. Let n5 be the number of
Sylow-5-subgroups of G. Then by Theorem 1.2.45 we have n5 = 1 or
n5 = 6. If n5 = 1, then a Sylow-5-subgroup of G is normal in G by
Theorem 1.2.46, and hence G is not simple. Hence assume that n5 = 6.
Since 25 does not divide n5 − 1, by Theorem 1.2.51 we conclude that
there are two distinct Sylow-5-subgroups H and K of G, such that
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Ord(H ∩K) = 5 and HK ⊂ N(H ∩K). Again by Theorem 1.2.51 we
have Ord(N(H ∩ K)) > Ord(HK) = Ord(H)Ord(K)/Ord(H ∩ K) =
(25)(25)/5 = 125. So, let m = Ord(N(H ∩K)). Since m > 125 and m
divides 300, we conclude that m = 150 or m = 300. If m = 300, then
H ∩K is normal in G, and since Ord(H ∩K) = 5, we conclude that G
is not simple. Thus assume that m = 150. Hence [G : N(H ∩K)] = 2.
Since n5 6= 1, we conclude that G is non-Abelian (see Question 2.8.23)
and hence if G is simple, then G is isomorphic to a subgroup of A2

by Theorem 1.2.57 which is clearly impossible because Ord(G) = 300
where Ord(A2) = 1.

QUESTION 2.9.2 Prove that there is no simple groups of order 500.

Solution : Since 500 = 2(125) and 125 is an odd number, we conclude
that there is no simple groups of order 500 by Theorem 1.2.55.

QUESTION 2.9.3 Show that there is no simple groups of order 396 =
(22)(32)(11).

Solution : Let G be a group of order 396. Let n11 be the number
of Sylow-11-subgroups. Then by Theorem 1.2.45 we have n11 = 1 or
n11 = 12. If n11 = 1, then a Sylow-11-subgroup of G is normal in
G by Theorem 1.2.46, and hence G is not simple. Thus assume that
n11 = 12. Let H be a Sylow-11-subgroup of G. Then by Theorems
1.2.49 and 1.2.54 we conclude that 12 = n11 = [G : N(H)]. Thus
Ord(N(H)) = Ord(G)/12 = 33. Hence N(H) is cyclic by Question
2.8.7. Thus G has an element of order 33. Now since n11 6= 1, we
conclude that G is non-Abelian. Since N(H) is a subgroup of G and
[G : N(H)] = 12, if G is simple, then we conclude that G is isomorphic
to a subgroup of A12 by Theorem 1.2.57. But A12 does not have an
element of order 33, for if β ∈ A12 of order 33, then by Theorem 1.2.22,
β is a product of DISJOINT cycles of length 11 and 3, which is clearly
impossible.

QUESTION 2.9.4 Show that there is no simple groups of order 525 =
(3)(52)(7).

Solution : Let G be a group of order 525. Let n7 be the number
of Sylow-7-subgroups of G. Then by Theorem 1.2.45 we have n7 = 1
or n7 = 15. If n7 = 1, then a Sylow-7-subgroup of G is normal in
G by Theorem 1.2.46, and hence G is not simple. Hence assume that
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n7 = 15. Let H be a Sylow-7-subgroup of G. Thus by Theorems
1.2.54 and 1.2.49, we conclude that 15 = n7 = [G : N(H)]. Hence
N(H) = Ord(G)/15 = 35. Thus N(H) is cyclic (and hence Abelian)
by Question 2.8.7. Now let K be a subgroup of N(H) of order 5.
Since N(H) is Abelian, N(H) ⊂ N(K). Also, since K is a 5-subgroup
of G, K is contained in a Sylow-5-subgroup of G by Theorem 1.2.44.
Hence there is a Sylow-5-subgroup, say D, such that K ⊂ D. Since
Ord(D) = 52, we conclude that D is Abelian by Question 2.8.3. Thus
D ⊂ N(K). Since N(H) ⊂ N(K) and D ⊂ N(K), we conclude that
Ord(N(K)) ≥ (5)(35) = 175. Thus m = [G : N(K)] ≤ 3. Hence if G is
simple, then G is isomorphic to a subgroup of Am, which is impossible
because m ≤ 3 and Ord(G) > 3!/2 = Ord(A3).

QUESTION 2.9.5 Let G be a finite simple group and suppose that G
has two subgroups K and H such that [G : H] = q and [G : K] = p
where q, p are prime numbers. Show that Ord(H) = Ord(K).

Solution : Since G is finite, we need only to show that p = q. Hence
assume that p > q. By Theorem 1.2.56 there is a group homomorphism
Φ from G into Sq such that Ker(Φ) = {e} (because G is simple).
Hence G is isomrphic to a subgroup of Sq, which is impossible since
p > q, p divides Ord(G) and p does not divide q!. Thus p = q, and
hence Ord(H) = Ord(K).

QUESTION 2.9.6 Show that A5 cannot contain subgroups of order
30 or 20 or 15.

Solution : Suppose that A5 has a subgroup H of order 30 20 or 15.
Then [G : H] = 2 or 3 or 4. Since A5 is non-Abelian simple group
(see Theorem ??), by Theorem 1.2.57 we conclude that A5 is isomorphic
to a subgroup of A2 or A3 or A4, which is impossible since G has
more elements than A2 or A3 or A4.

QUESTION 2.9.7 Show that a simple group of order 60 has a sub-
group of order 10 and a subgroup of order 6.

Solution : Let G be a simple group of order 60. Write 60 = (22)(3)(5).
Let n5 be the number of Sylow-5-subgroups, n3 be the number of Sylow-
3-subgroups. By Theorem 1.2.45 we conclude that n5 = 6. Let H be
a Sylow-5-subgroup. Then by Theorems 1.2.49 and 1.2.54, we conclude
that 6 = n5 = [G : N(H)]. Hence Ord(N(H)) = 60/6 = 10. Thus
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G has a subgroup of order 10. Now by Theorem 1.2.45 we conclude
that n3 = 4 or 10. Let K be a Sylow-3-subgroup. Then again by
Theorems 1.2.49 and 1.2.54 n3 = 4 = [G : N(K)] or 10 = n3 = [G :
N(K)]. If n3 = 4 = [G : N(K)], then by Theorem 1.2.57 we conclude
that G is isomorphic to a subgroup of A4 which is impossible since
Ord(G) = 60 where Ord(A4) = 12. Thus 10 = n3 = [G : N(K)]. Hence
Ord(N(K)) = 60/10 = 6. Thus G has a subgroup of order 6.

QUESTION 2.9.8 Show that a simple group G of order 60 is iso-
morphic to A5.

Solution : Write Ord(G) = (22)(3)(5). Let n2 be the number of
Sylow-2-subgroups of G. Then either n2 = 5 or n2 = 15 or n2 = 3
by Theorem 1.2.49. By Theorem 1.2.57 it is impossible that n2 = 3.
Let K be a Sylow-2-subgroup. If n2 = 5, then 5 = [G : N(K)]
by Theorem 1.2.49 and 1.2.54, and hence G ∼= A5 by Theorem 1.2.57.
Thus assume that n2 = 15. Since 4 does not divide 14 = n2 − 1, by
Theorem 1.2.51 we conclude that there are two distinct Sylow-2-subgroup
H and K such that Ord(H ∩K) = 2 Ord(N(H ∩K)) > Ord(HK) =
Ord(H)Ord(K)/2 = 8. Since Ord(N(H∩K)) > 8 and Ord(N(H∩K))
divides 60, we conclude that m = [G : N(H ∩ K)] ≤ 5. Thus G is
isomorphic to a subgroup of Am by Theorem 1.2.57. Since Ord(G) = 60
and Ord(Am) < 60 if m < 5, we conclude that m = 5. Since G is
isomorphic to a subgroup of A5 and Ord(G) = Ord(A5) = 60, we
conclude that G is isomorphic to A5.

QUESTION 2.9.9 Let H be a subgroup of S5 that contains a 5-cycle
and a 2-cycle. Show that H = S5.

Solution : Let alpha be a 5-cycle in H, and let β = (b1, b2) be a
2-cycle. By Question 2.4.18 we conclude that Ord(αβ) = 4 OR 6. If
Ord(αβ) = 4, then Ord(αβ) = 6 by Question 2.4.19. Thus H contains
an element of order 6. Since H contains an element of order 5 and
an element of order 6 and gcd(5, 6) = 1, we conclude that 30 divides
Ord(H). Let D = H ∩ A5 and m = [A5 : D]. By Question 2.5.25 we
conclude that Ord(D) ≥ 15. If D 6= A5, then 1 < m ≤ 4, and thus
A5

∼= Am by Theorem 1.2.57 which is impossible. Thus D = A5. Since
D is exactly half of H by Question 2.5.25, we conclude that H = S5.

QUESTION 2.9.10 Let H be a subgroup of A5 that contains a 5-
cycle and a 3-cycle. Show that either H = A5 or H = S5.
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Solution : Let D = H ∩A5, α be a 5-cycle of H, and β be a 3-cycle
of H. Since β and α are even permutation, we conclude that α ∈ D
and β ∈ D. Thus 15 divides Ord(D). Hence Ord(D) ≥ 15. Suppose
that D 6= A5, and let m = [A5 : D]. Then 1 < m ≤ 4. Thus A5

∼= Am

by Theorem 1.2.57 which is impossible. Thus D = A5. If H 6= A5, then
H = S5 because D = A5 contains exactly half of the elements of H
by Question 2.5.25.

QUESTION 2.9.11 Show that S5 contains exactly one subgroup of
order 60.

Solution : Clearly A5 is a subgroup of S5 of order 60. Let H
be a subgroup of S5 of order 60. We will show that H = A5. Let
D = H ∩ A5. Suppose that H 6= A5. Hence D is a proper subgroup
of A5. By Question 2.5.25 we conclude that Ord(D) = 30. Since
[A5 : D] = 2, we conclude that D is normal in A5 by Question 2.6.1,
a contradiction since A5 is simple.

QUESTION 2.9.12 Let G be a group of order pn where p is prime
and n ≥ 2. Show that G is not simple.

Solution : If G is Abelian, then every subgroup of G of order p is
normal in G, and thus G is not simple. Thus assume that G is not
Abelian. Then By Theorem 1.2.47 Ord(Z(G)) ≥ p, and since G is not
Abelian Z(G) 6= G. Thus Z(G) is normal in G. Since Z(G) 6= {e}
and Z(G) 6= G, we conclude that G is not simple.

QUESTION 2.9.13 Let G be a group of order pqr such that p >
q > r and p, q, r are prime numbers. Show that G is not simple.

Solution : Deny. Hence G is simple. Let np be the number of Sylow-
p-subgroups of G, nq be the number of Sylow-q-subgroups of G, and
nr be the number of Sylow-r-subgroups of G. Since G is simple, by
Theorem 1.2.46 we conclude that np 6= 1, nq 6= 1, and nr 6= 1. Since
p > q > r, we conclude that np = qr by Theorem 1.2.45. Hence there are
Np = (p− 1)qr = pqr− qr elements of order p. Since q > r and p > q,
we conclude that the minimum value of nq = p and the minimum value
of nr = q. Hence there are at least Nq = (q − 1)p = pq − p elements of
order q and at least Nr = (r− 1)q = qr− q elements of order r. Now
Np+Nq+Nr ≥ pqr−qr+pq−p+qr−q = pqr+pq−(p+q) > pqr = Ord(G)
(because p > q we have pq > (p+ q)), a contradiction. Thus G is not
simple.
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QUESTION 2.9.14 Let G be a group of order p2q, where p and q
are distinct prime numbers. Show that G is not simple.

Solution : Deny. Hence G is simple. Let np be the number of Sylow-
p-subgroups of G, nq be the number of Sylow-q-subgroups of G. Since
G is simple, by Theorem 1.2.46 we conclude that np 6= 1 and nq 6= 1.
Thus np = q by Theorem 1.2.45. Thus p < q. Hence nq = p2 again
by Theorem 1.2.45. Thus p2 does not divide np − 1 = q − 1. Hence by
Theorem 1.2.51 there are two distinct Sylow-p-subgroups H and K such
that Ord(H ∩K) = p and Ord(N(H ∩K)) > Ord(HK) = p2p2/p =
p3. Since Ord(N(H ∩ K) > p3 and Ord(N(H ∩ K)) must divide
Ord(G) = p2q, we conclude that Ord(N(H ∩ K)) = p2q = Ord(G).
Hence N(H∩K) = G, and thus H∩K is normal in G a contradiction.
Hence G is not simple.

2.10 Classification of Finite Abelian Groups

QUESTION 2.10.1 What is the smallest positive integer n such that
there are exactly 3 nonisomorphic Abelian group of order n.

Solution : Let n = 8. Then a group of order 8 is isomorphic to one of
the following three nonisomorphic groups: Z8, Z2⊕Z2⊕Z2, and Z2⊕Z4.

QUESTION 2.10.2 How many elements of order 2 in Z8⊕Z2? How
many elements of order 2 in Z4 ⊕ Z2 ⊕ Z2?

Solution : In Z8 ⊕Z2, there are exactly 3 elements of order 2, namely:
(4, 0), (4, 1), (0, 1). In Z4 ⊕ Z2 ⊕ Z2, there are exactly 6 elements of
order 2, namely: (2, 0, 0), (2, 1, 0), (2, 0, 1), (0, 1, 0), (0, 1, 1), (0, 0, 1).

QUESTION 2.10.3 Show that an (Abelian) group G of order 45
contains an element of order 15.

By Theorem 1.2.52, G is isomorphic to one of the following : Z45
∼=

Z5 ⊕ Z9, or Z5 ⊕ Z3 ⊕ Z3. In the first case, since Z45 is cyclic and 15
divides 45, we conclude that G contains an element of order 15. In
the second case, let a = (1, 1, 1). Then by Theorem 1.2.37 Ord(a) =
lcm[Ord(1), Ord(1), Ord(1)] = lcm[5, 3, 3] = 15.

QUESTION 2.10.4 Show that an Abelian group of order pn for some
prime p and some n ≥ 1 is cyclic if and only if G has exactly one
subgroup of order p.
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Solution : Suppose that G is cyclic. Then G has exactly subgroup of
order p by Theorem 1.2.12. Conversely, suppose that G has exactly one
subgroup of order p. Then G must be isomorphic to Zpn by Theorem
1.2.52, for if by Theorem 1.2.52 G is isomorphic to Zpk ⊕ Zpi ⊕ ... for
some k, i ≥ 1, then G would have at least two subgroups of order p.

QUESTION 2.10.5 Show that there are exactly two Abelian groups of
order 108 that have exactly one subgroup of order 3.

Solution : First 108 = (3)(36) = (22)(33). For G to have exactly
one subgroup of order 3, G must have a cyclic a subgroup of order 27
(see Question 2.10.4.) Let G1 = Z4 ⊕ Z33 and G2 = Z2 ⊕ Z2 ⊕ Z33 .
Then clearly that G1 and G2 are nonisomorphic. The subgroup of
G1 generated by (0, 9) is cyclic of order 3, and the subgroup of G2

generated by (0, 0, 9) is also cyclic of order 3.

QUESTION 2.10.6 Suppose that G is an Abelian group of order 120
such that G has exactly three elements of order 2. Classify G up to
isomorphism.

Solution : Write 120 = (23)(3)(5). Since G has exactly 3 elements of
order 2. G can not have a cyclic subgroup of order 8. Thus by Theorem
1.2.52 G is isomorphic to G1 = Z2 ⊕ Z4 ⊕ Z15 (observe that Z15 is
isomorphic to Z3⊕Z5) or G is isomorphic to G2 = Z2⊕Z2⊕Z2⊕Z15.
In the first case, G1 has the following elements of order 2, namely :
(1, 2, 0), (1, 0, 0), (0, 2, 0). In the second case G2 has the following
elements of order 2, namely : (1, 1, 0), (1, 0, 0), (0, 1, 0).

QUESTION 2.10.7 Suppose that the order of a finite Abelian group G
is divisible by 10. Show that G has an element of order 10.

Solution : Since 2 divides Ord(G), G has an element, say a, of order
2 by Theorem 1.2.31. Also, since 5 divides Ord(G), G has an element,
say b, of order 5 again by Theorem 1.2.31. Since gcd(2, 5) = 1 and
ab = ba, we conclude that Ord(ab) = 10 by Question 2.1.14.

QUESTION 2.10.8 Find an example of a finite Abelian group such that
Ord(G) is divisible by 4 but G has no elements of order 4.

Solution : Let G = Z2 ⊕Z2 ⊕Z2. Then G is a group of order 8 and
hence Ord(G) is divisible by 4, but each nonidentity element of G is
of order 2.
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QUESTION 2.10.9 What is the isomorphism class of U(20), i.e.,
U(20) = {a : 1 ≤ a < 20 and gcd(a, 20) = 1)} is a group under
multiplication module 20.

Solution : First Ord(U(20)) = φ(20) = 8 (see Theorem 1.2.13) by
Theorem 1.2.14. Since U(20) is not cyclic, by Theorem 1.2.52 we conclude
that U(20) is isomorphic to G1 = Z2⊕Z4 or G2 = Z2⊕Z2⊕Z2. Since
3 ∈ U(20) and Ord(3) = 4, we conclude that U(20) is not isomorphic
to G2 (because every nonidentity element of G2 is of order 2). Thus
U(20) is isomorphic to Z2⊕Z4. Another Solution : Write 20 = (4)(5).
Since gcd(4, 5) = 1, we conclude that U(20) ∼= U(4)⊕U(5) by Theorem
1.2.38. But U(4) is isomorphic to Z2 by Theorem 1.2.40 and U(5) is
isomorphic to Z4 again by Theorem 1.2.40. Thus U(20) ∼= Z2 ⊕ Z4.

QUESTION 2.10.10 What is the isomorphism class of U(100). How
many elements of order 20 does U(100) have?

Solution : First 100 = (22)(52). By Theorems 1.2.38 and 1.2.40 we
conclude that U(100) = U(22) ⊕ U(52) = Z2 ⊕ Z20. If b ∈ Z20 such
that Ord(b) = 20, then 20(a, b) = (0, 0) for every a ∈ Z2. By Theorem
1.2.14, there are φ(20) = 8 elements in Z20 of order 20. Since (a, b)
has order 20 if and only if b has order 20 and a has two choices,
namely: 0, 1, we conclude that there 8× 2 = 16 elements in Z2 ⊕ Z20

of order 20. Since U(100) ∼= Z2 ⊕ Z20, we conclude that U(100) has
exactly 16 elements of order 20.

QUESTION 2.10.11 Let G be a finite Abelian group and b ∈ G has
maximal order. Show that if a ∈ G, then Ord(a) divides Ord(b).

Solution : Let n = Ord(b) and let a ∈ G such that m = Ord(a).
We need to show that m divides n. Let k = gcd(m,n). Then 1 =
gcd(m,n/k). Since Ord(b) = n, we conclude that Ord(bk) = n/k. Since
G is Abelian and gcd(m,n/k) = 1, we conclude that Ord(abk) = mn/k
by Question 2.1.14. Now since k = gcd(m,n), we conclude that nm/k ≥
n. Since Ord(b) = n is of maximal order, we conclude that mn/k = n.
Since k divides m and mn/k = n, we conclude that k = m. Since
k = m = gcd(m,n), we conclude that m divides n.

QUESTION 2.10.12 Let G be a finite Abelian group of order 2n.
Show that G has an odd number of elements of order 2.
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Solution : If G is cyclic, then G ∼= Z2n , and hence G has exactly one
element of order 2 because G has exactly one subgroup of order 2. Thus
suppose that G is not cyclic. Then by Theorem 1.2.52 we conclude that
G ∼= G1 = Z2m1 ⊕Z2m2 ⊕Z2m3 ⊕· · ·⊕Z2mi where m1+m2+· · ·+mi = n,
and 1 ≤ mk < n. Let a = (a1, a2, ..., ai) ∈ G1 of order 2. Then not all
ak’s are zeros, and for each ak we have either ak = 0 or Ord(ak) = 2.
Since each Z2mk has exactly one subgroup of order 2, we conclude that
there are exactly 2i − 1 elements of order 2. Since 2i − 1 is an odd
number, the proof is completed.

QUESTION 2.10.13 Let G be a finite Abelian group such that for
each divisor k of Ord(G) there is exactly one subgroup of G of order
k. Show that G is cyclic.

Solution : Write Ord(G) = (pn1

1 )(pn2

2 ) · · · (pnm
m ) where the pi’s are

distinct prime numbers and each ni ≥ 1. We need to show that G ∼=
G1 = Zp

n1

1

⊕ · · ·Zpnm
m

. Deny. Then by Theorem 1.2.52 and Theorem
1.2.53 there is a pi a prime divisor of G and a subgroup H of G
such that H ∼= Zpi ⊕ Zpi . Thus H has two distinct subgroups of order
pi, and thus G has two distinct subgroups of order pi, a contradiction.
Hence G is cyclic.

2.11 General Questions on Groups

QUESTION 2.11.1 Give an example of a group G that contains two
elements, say a, b, such that Ord(a2) = Ord(b2) but Ord(a) 6= Ord(b).

Solution : Let G = Z6, under addition module 6, let a = 1 and b = 2.
Then a2 = 1+1 = 2 and b2 = 2+2 = 4. Hence ord(a2) = Ord(b2) = 3.
But Ord(a) = 6 and Ord(b) = 3.

QUESTION 2.11.2 let β =

[

1 2 3 4 5 6 7 8
1 3 8 7 6 5 2 4

]

Write β as

disjoint cycles, then find Ord(β) and β−1.

Solution : β = (1)(2, 3, 8, 4, 7)(5, 6). Hence by Theorem 1.2.20 Ord(β) =
LCM(4, 2) = 4. Now β−1 = (6, 5)(7, 4, 8, 3, 2) = (7, 4, 8, 3, 2)(6, 5).

QUESTION 2.11.3 Let β ∈ S7 and suppose that β = (2, 1, 4, 3)(5, 6, 7).
Find the least positive integer n such that βn = β−3.
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Solution : The idea is to find the order of β. So, we write β as
disjoint cycles. But β is already written in disjoint cycles. Hence
Ord(β) = lcm[4, 3] = 12. Now βn = β−3 implis βn+3 = e ( the
isentity). Hence n+ 3 = 12. Thus n = 9.

QUESTION 2.11.4 Let β = (1, 2, 3)(1, 4, 5). Write β99 in cycle
form.

Solution : First, write β as disjoint cycles. Hence β = (1, 4, 5, 2, 3).
Thus Ord(β) = 5. Since 5 divides 100, we have β100 = ββ99 = e.
Thus β99 = b−1 = (3, 2, 5, 4, 1).

QUESTION 2.11.5 Let β = (1, 5, 3, 2, 6)(7, 8, 9)(4, 10) ∈ S10. Given
βn is a 5-cycle. What can you say about n.

Solution : Since βn is a 5-cycle, we conclude that Ord(βn) = 5. Now
since beta is in disjoint cycles, we conclude that Ord(β) = lcm[5, 3, 2] =
30. Hence by Question 2.1.12 we have Ord(βn) = 30/gcd(n, 30) = 5.
Thus gcd(n, 30) = 6. Thus n = 6m for some m ≥ 1 such that
gcd(m, 5) = 1. So, n = 6, 12, 18, 24, 36,... so all n such that gcd(n, 30) =
6.

QUESTION 2.11.6 Let G = U(8) ⊕ Z12 ⊕ S7. Find the order of
a = (3, 3, (1, 2, 4)(5, 7)).

Solution: By Theorem 1.2.37, Ord(a) = lcm(Ord(3), Ord(3), Ord((1, 2, 4)(5, 7))) =
(2, 4, 6) = 12.

QUESTION 2.11.7 Suppose that H and K are two distinct normal
subgroups of a finite group G such that [G : H] = [G : K] = p, where
p is a prime number. Show that there is a group homomorphism from
G ONTO G/H ⊕G/K. Also, show that G has a normal subgroup D
such that [G : D] = p2. In particular, show that D = H ∩K is a normal
subgroup of G such that [G : D] = p2.

Solution : First observe that since H and K are distinct and G is
finite, [G : H ∩K] > p. Now let Φ be a map from G into G/H⊕G/K
such that Φ(g) = (gH, gK). It is clear that Φ is a group homomorphism
from G into G/H⊕G/K and Ker(Φ) = H ∩K. Hence G/Ker(Φ) =
G/(H ∩K) cong to a subgroup F of G/H ⊕G/K. Since Ord(G/H ⊕
G/K) = p2 and p is prime, we conclude that Ord(F ) = 1, or p, or p2.
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Since Ord(G/(H ∩K)) = [G : H ∩K] = Ord(F ) and [G : H ∩K] > p,
we conclude that Ord(G/(H ∩K)) = Ord(F ) = [G : H ∩K] = p2. Hence
Φ is ONTO and H ∩K is normal in G such that [G : H ∩K] = p2.

QUESTION 2.11.8 Suppose that H and K are two distinct sub-
groups of a finite group G such that [G : H] = [G : K] = 2. Show that
there is a group homomorphism from G ONTO G/H ⊕ G/K. Also,
show that G has a normal subgroup D such that [G : D] = 4. In
particular, show that D = H ∩K is a normal subgroup of G such that
[G : D] = 4.

Solution : Since [G : H] = [G : K] = 2, we conclude that H and K
are both normal in G by Question 2.6.1. Hence replace p in Question
2.11.7 with 2 and use the same argument.

QUESTION 2.11.9 Let G be a finite group with an odd number of
elements. Suppose that G has a normal subgroup H of order 5. Show
that H ⊂ Z(G).

Solution : Since H is normal in G, we conclude that Ord(G/C(H))
divides Ord(Aut(H)) by Question 2.7.56. But H ∼= Z5 because H
is cyclic with 5 elements. Thus Ord(G/C(H)) divides Ord(Aut(Z5)).
Hence Ord(G/C(H)) divides Ord(U(5)) = 4 because Ord(Aut(Z5)) =
Ord(U(5)) = 4 by Theorem 1.2.41. Let n = Ord(G/C(H)) = [G : C(H].
Since G has an odd order, n must be an odd number. Since n divides
4 and n is odd, we conclude that n = 1. Hence [G : C(H)] = 1,
and thus C(H) = G. Since every element of H commute with every
element of G, we conclude that H ⊂ Z(G).

QUESTION 2.11.10 Let G be a finite group with an odd number of
elements such that G has no subgroup K with [G : K] = 3. If H is
a normal subgroup of G with 7 elements, then show that H ⊂ Z(G).

Solution : Since H is normal in G, we conclude that Ord(G/C(H))
divides Ord(Aut(H)) by Question 2.7.56. But H ∼= Z7 because H
is cyclic with 7 elements. Thus Ord(G/C(H)) divides Ord(Aut(Z7)).
Hence Ord(G/C(H)) divides Ord(U(7)) = 6 because Ord(Aut(Z7)) =
Ord(U(7)) = 6 by Theorem 1.2.41. Let n = Ord(G/C(H)) = [G : C(H].
Since G has an odd order, n must be an odd number. Since G has no
subgroups of index 3, we conclude that n 6= 3. Since n divides 6 and
n is odd and n 6= 3, we conclude that n = 1. Hence [G : C(H)] = 1,
and thus C(H) = G. Since every element of H commute with every
element of G, we conclude that H ⊂ Z(G).
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QUESTION 2.11.11 Show that G = Q/Z is an infinite group such
that each element of G is of finite order.

Solution: Deny. Then G has a finite order, say n. Thus n = [Q : Z],
and thus ng = Z for every g ∈ G. Now let x = 1/(n+1)Z ∈ G. Then
nx = n/(n + 1)Z 6= Z, a contradiction. Thus G is an infinite group.
Let y ∈ G. Then y = a/mZ for some a ∈ Z and for some nonzero
nonnegative m ∈ Z. Thus my = aZ = Z. Thus Ord(y) divides m,
and hence y is of finite order.

QUESTION 2.11.12 For each n ≥ 2, show that G = Q/Z has a
unique subgroup of order n.

Solution : let n ≥ 2 and Hn = {a/nZ : 0 ≤ a < n}. It is easy to see
that Hn is a subgroup of G of order n. Suppose that D is a subgroup
of G of order n. We will show that D = Hn. let d ∈ D. Then
d = gZ. Since nd = ngZ = Z, we conclude that ng = b ∈ Z. Thus
g = b/n ∈ Q, and hence d = c/nZ for some 0 ≤ c < n. Thus d ∈ Hn,
and hence D ⊂ Hn. Since Ord(Hn) = Ord(D) = n and D ⊂ Hn, we
conclude that D = Hn.

QUESTION 2.11.13 Is there a group homomorphism from G = Z8 ⊕
Z2 ⊕ Z2 ONTO D = Z4 ⊕ Z4.

Solution : No. For suppose that Φ is a group homomorphism from
G ONTO D. Since F = G/Ker(Φ) ∼= D and Ord(G) = 32 and
Ord(D) = 16, we conclude that Ord(Ker(Φ)) = 2. Hence Ker(Φ) =
{(0, 0, 0), (a1, a2, a3)}. Suppose that a1 = 0. ThenOrd((1, 0, 0)Ker(Φ)) =
8, a contradiction since D has no elements of order 8. Thus assume
that a1 6= 0. Since Ord((a1, a2, a3)) = 2, we conclude that a1 = 4. Now
(2, 0, 0)Ker(Φ), (2, 0, 1)Ker(Φ), (2, 1, 0)Ker(Φ), (2, 1, 1)Ker(Φ), (0, 1, 1)Ker(Φ)
are all distinct elements of F = G/Ker(Φ) and each is of order 2. Now
D has exactly 3 elements of order 3, namely: (2, 2), (2, 0), (0, 2). Thus
F 6∼= D because F has at least 4 elements of order 2, where D has
exactly 3 elements of order 2. A contradiction. Hence there is no group
homomorphism from G = Z8 ⊕ Z2 ⊕ Z2 ONTO D = Z4 ⊕ Z4.

QUESTION 2.11.14 Let G = Z ⊕ Z and let H = {(a, b) : a, b are
even integers }. Show that H is a subgroup of G. Describe the group
G/H.
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Let x = (a1, b1), y = (a2, b2) ∈ H. Then y−1x = (−a2,−b2) + (a1, b1) =
(a1−a2, b1−b2) ∈ H because a1−a2, b1−b2 are even integers. Thus H
is a subgroup of G by Theorem 1.2.7. Observe that H = 2Z⊕2Z. Now
let K = Z/2Z and let Φ be the group homomorphism from G ONTO
K⊕K defined by Φ(a, b) = (a2Z, b2Z). Then Ker(Φ) = 2Z⊕2Z = H.
Hence G/H ∼= K ⊕K = Z2 ⊕ Z2. Thus G/H has exactly 4 elements.

For two elements x, y in a group G, [xy] denotes the element
x−1y−1xy (such element is called the commutator of x and y).

QUESTION 2.11.15 Let x, y be two elements in a group G such
that y commutes with the element [xy]. Prove that ynx = xyn[yx]n for
every positive integer n ≥ 1.

Solution: First observe that [yx] is the inverse of [xy]. Since y commutes
with [xy], we conclude that y commutes with [yx] by Question 2.2.6.
We prove the claim by induction. Let n = 1. Then yx = xy[yx] =
xyy−1x−1yx = yx. Assume the claim is valid for a positive integer n ≥ 1,
i.e., ynx = xyn[yx]n. We prove the claim for n+1. Now yn+1x = yynx =
yxyn[yx]n. But yx = xy[yx] and ym commutes with [yx] for every
positive integer m (since y commute with [yx]). Hence yn+1x = yynx =
yxyn[yx]n = xy[yx]yn[yx]n = xyn+1[yx]n+1.

QUESTION 2.11.16 Let x, y be two elements in a group G such
that X and y commute with the element [xy]. Prove that (xy)n =
xnyn[yx]n(n−1)/2 for every positive integer n ≥ 1.

Solution: Once again, observe that [yx] is the inverse of [xy]. Since x
and y commute with [xy], we conclude that x and y commute with
[yx] by Question 2.2.6. We prove the claim by induction. Let n = 1.
Then xy = xy[yx]0 = xy. Assume the claim is valid for a positive integer
n ≥ 1, i.e., (xy)n = xnyn[yx]n(n−1)/2. We prove the claim for n+1, i. e.,
we need to show that (xy)n+1 = xn+1yn+1[yx](n+1)n/2. Now (xy)n+1 =
(xy)n(xy) = xnyn[yx]n(n−1)/2(xy) = xnynxy[yx]n(n−1)/2 (since x and y
commute with [xy]). But ynx = xyn[yx]n by Question 2.11.15. Hence
(xy)n+1 = (xy)n(xy) = xnyn[yx]n(n−1)/2(xy) = xnynxy[yx]n(n−1)/2 =
xnxyny[yx]n[yx]n(n−1)/2 = xn+1yn+1[yx]n+(n(n−1)/2) =
xn+1yn+1[yx](n+1)n/2.

QUESTION 2.11.17 Let G be a non-cyclic group of order p3 for
some odd prime number p. Then :
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1. If G is non-Abelian, then show that Z(G) (the center of G)
contains exactly p elements. Also, show that (xy)p = xpyp for
every x, y ∈ G.

2. Let L be a subgroup of Z(G) of order p. Show that the map
α : G −→ L such that α(g) = gp is a ring homomorphism from G
into L.

3. Show that G contains a normal subgroup H that is isomorphic
to Zp ⊕ Zp.

Solution (1). By Theorem 1.2.47, Ord(Z(G)) = p or p2 or p3.
Since G is non-Abelian, we conclude that Ord(Z(G)) 6= p3. Sup-
pose that Ord(Z(G)) = p2. Since Z(G) is a normal subgroup of G
and Ord(G/Z(G)) = p, we conclude that G/Z(G) is a cyclic group,
and hence G is Abelian by Question 2.6.6, a contradiction. Thus
Ord(Z(G)) = p (observe that p is an odd number not needed here.)
Now since Ord(G/Z(G)) = p2, we conclude that G/Z(G) is abelian by
Question 2.8.3. Hence xyZ(G) = yxZ(G) for every x, y ∈ G, and thus
[xy] = x−1y−1xy = z ∈ Z(G) for every x, y ∈ G. Since [xy] ∈ Z(G)
for every x, y ∈ G, we conclude that (xy)p = xpyp[yx]p(p−1)/2 for ev-
ery x, y ∈ G by Question 2.11.16. Since Ord(Z(G)) = p and 2
divides p−1 (because p is odd), we conclude that [yx]p(p−1)/2 = 1. Thus
(xy)p = xpyp[yx]p(p−1)/2 = xpyp.

(2) Since L ⊂ Z(G), we conclude that L is normal in G. Since
Ord(L) = p Ord(G/L) = p2. Since G is non-cyclic, we conclude that
G/L is not cyclic. Since Ord(G/L) = p2 and G/L is not cyclic,
we conclude that each non-identity element of G/L has order p, i.e.,
gp ∈ L for every g ∈ G. Now let x, y ∈ G. Since α(xy) = (xy)p = xpyp

by (1) and xp ∈ L for each x ∈ G, we conclude that α is a group
homomorphism from G into L.

(3) Assume that G is Abelian. Since G is non-cyclic, we conclude
that G ∼= Zp2⊕Zp OR G ∼= Zp⊕Zp⊕Zp by Theorem 1.2.52, and thus in
either case G contains a normal subgroup isomorphic to Zp ⊕Zp. Now
suppose that G is non-Abelian. By Theorem 1.2.43, we conclude that
G has a subgroup H of order p2. Since [G : H] = p, we conclude that
there is a group homomorphism from G into Sp such that Ker(Φ) is
contained in H by Theorem 1.2.56. Hence Ord(Ker(Φ)) = 1 OR p Or
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p2. Thus, Ord(G/Ker(Φ)) = p3 or p2 or p. Since G/Ker(Φ) is group-
isomorphic to a subgroup of Sp and neither p3 divides Ord(Sp) = p!,
nor p2 divides p!, we conclude that Ord(G/Ker(Φ)) = p, and thus
Ker(Φ) = H (since Ker(Φ) is contained in H). Thus H is a normal
subgroup of G. Now since Ord(H) = p2, we conclude that H is Abelian
by Question 2.8.3. HenceH ∼= Zp2 or H ∼= Zp⊕Zp by Theorem 1.2.52. If
H ∼= Zp⊕Zp, then we are done. Hence assume that H ∼= Zp2 . Thus H is
cyclic and hence G contains an element of order p2. Now let α as in (2).
Since Ord(Z(G)) = p and α is a group homomorphism from G into Z(G)
and G contains an element of order p2, we conclude that α(G) = Z(G).
Thus, G/Ker(alpha) ∼= Z(G), and hence Ord(G/Ker(α)) = p. Thus,
Ord(Ker(α)) = p2, and therefore Ker(α) is Abelian by Question 2.8.3.
Now let x ∈ Ker(α). Then α(x) = xp = 1 ∈ Z(G). Hence Ord(x) = 1
or Ord(x) = p. Since ker(α) is Abelian and each nonidentity element of
Ker(α) has order p, we conclude that Ker(α) ∼= Zp ⊕ Zp.

QUESTION 2.11.18 Suppose that a non-cyclic group G has order pn

for some odd prime number p and n ≥ 3. Show that G contains a
normal subgroup isomorphic to Zp ⊕ Zp.

Solution : Suppose that G is a non-cyclic Abelian. Then G ∼= Zpi ⊕D
for some Abelian group D of order pn−i for some i, 1 ≤ i < n by
Theorem 1.2.52. Thus G contains a normal subgroup isomorphic to
Zp⊕Zp. Thus assume that G is non-Abelian. We prove it by induction
on n. If n = 3, then by (3) in Question 2.11.17 we are done. Hence
assume that the claim is valid for 3 ≤ m < n and we will prove the claim
when m = n. Since Ord(Z(G)) = pk for some 1 ≤ k < n by Theorem
1.2.47, let F = G/L for some subgroup L of order p contained in
Z(G). Thus Ord(F ) = pn−1. Now suppose that F is cyclic. Then G
is Abelian by Question 2.6.6, a contradiction. Hence F is not cyclic.
Thus F contains a normal subgroup J ( of order p2) isomorphic to
Zp ⊕ Zp by the assumption. Since Ord(J ∩ Z(F )) ≥ p by Theorem
1.2.59, let M be a subgroup J ∩ Z(F ) of order p. Then M is a
normal subgroup of F . Let Φ be the of group homomrphism from G
ONTO F = G/L defined by Φ(g) = gL. Thus H = Φ−1(J) is a normal
subgroup of G which contains L and Ord(H) = p3; also Φ−1(M) = N
is a normal subgroup of G such that Ord(N) = p2 and N ⊂ H. Thus,
N is Abelian by Question 2.8.3. Thus either N ∼= Zp2 OR N ∼= Zp⊕Zp

by Theorem 1.2.52. If N ∼= Zp⊕Zp, then we are done (since N is normal
in G). Thus assume that N ∼= Zp2 , and hence H contains an element of
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order p2 (Since N ⊂ H and N ∼= Zp2). Observe that H is a non-cyclic
normal subgroup of G because Φ(H) = J is a non-cyclic subgroup of F .
Since L is a subgroup of H of order p and it is normal being a subset
of Z(G), let α : H −→ L such that α(h) = hp for every h ∈ H. Hence
α is a group homomorphism from H into L by (2) in Question 2.11.17.
Since H contains an element of order p2, we conclude that α(H) = L.
Since H/Ker(α) ∼= α(H) = L, we conclude that Ord(Ker(α)) = p2 and
Ker(α) = {h ∈ H : α(h) = hp = e (the identity of H (G)}. It is clear
that Ker(α) is normal in H. Now let g ∈ G. Since H is normal
in G and Ker(α) ⊂ H, we conclude that g−1Ker(α)g ⊂ H. Let
a ∈ Ker(α). Then (g−1ag)p = g−1apg = e. Hence g−1ag ∈ Ker(α).
Thus g−1Ker(α)g ⊂ Ker(α) for every g ∈ G. Hence Ker(α) is a
normal subgroup of G by Question 2.6.29. Since Ord(Ker(α)) = p2

and every nonidentity element of Ker(α) has order p, we conclude that
Ker(α) ∼= Zp⊕Zp is a normal subgroup of G. [LONG PROOF BUT
I TRIED TO GIVE ALL THE DETAILS, SO DO NOT GET
DISCOURAGED]

QUESTION 2.11.19 (compare with Question 2.8.22) Let G be a
group of order pn where n ≥ 1 and p is an odd prime number.
If G contains exactly one subgroup of order p, then show that G is
cyclic.

Solution : If n = 1 OR n = 2, then the claim is clear. Hence assume
that n ≥ 3. Deny. Then by Question 2.11.18, G contains a subgroup
that is isomorphic to Zp ⊕ Zp. Thus G contains at least two distinct
subgroups of order p, a contradiction. Thus G must be cyclic.

QUESTION 2.11.20 Let H, K be normal subgroups of a group G
such that G/H and G/K are Abelian groups. Prove that G/(H ∩K)
is Abelian group.

Solution Let Φ be the group homomorphism from G into G/H⊕G/K
defined by Φ(g) = (gH, gK). Then Ker(Φ) = H ∩K. Thus, G/(H ∩
K) ∼= to a subgroup of G/H ⊕G/K. Hence G/(H ∩K) is an Abelian
group.

QUESTION 2.11.21 Let G be a group of order pn where n ≥ 1
and p is an odd prime number. If every subgroup of G is normal in
G, then show that G is Abelian.
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Solution If n = 1 OR n = 2, then there is nothing to prove. Hence
assume that n ≥ 3. Assume the claim is valid for all 2 ≤ m < n.
Then by Question 2.11.18, G contains a normal subgroup isomorphic to
Zp⊕Zp. Hence G contains two distinct normal subgroups, say H and K,
each is of order p. Hence G/H and G/K are Abelian by assumption.
Thus G/(H ∩K) is Abelian by Question ??. But H ∩K = {e} (e = the
identity of G). Thus G is Abelian.

QUESTION 2.11.22 (A generalization of Question 2.6.1) let G be a
group of order n and let H be a subgroup of G such that [G : H] = p
where p is the smallest prime divisor of n. Prove that H is normal in
G.

Solution : By Theorem 1.2.56, there is a group homomorphism Φ from
G into Sp such that Ker(Φ) is a normal subgroup of H. We will
show that Ker(Φ) = H, and hence H is normal in G. Suppose that
Ker(Φ) is properly contained in H. Since [G : H] = p, we conclude that
Ord(G/Ker(Φ)) = d for some integer d > 2. Since p is the smallest
positive prime divisor of n, we conclude that either p2 divides d or there
is a prime number q > p such that q divides d. Since G/Ker(Φ) is
isomorphic to a subgroup of Sp and Ord(Sp) = p! = p(p−1)(p−2)...(1),
we conclude that p is the largest prime number that may divide the order
of G/Ker(Φ) = d and if p divides d, then p2 does not divide d.
Hence neither p2 divides d nor q divides d, a contradiction. Thus
Ker(Φ) = H is a normal subgroup of G.

QUESTION 2.11.23 Let G be a group of order pn where n ≥ 1
and p is a prime number. Prove that for every m, 1 ≤ m < n, there is
a normal subgroup of G of order pm.

Solution : If n = 1 OR n = 2, then the claim is clear. Hence assume
that n ≥ 3. First it is clear that for every m, 1 ≤ m < n, there is a
subgroup of order pm. Hence let H be a subgroup of G of order n−1.
Then [G : H] = p is the smallest prime divisor of the order of G. Thus
H is normal in G by Question 2.11.22. Also, since Ord(Z(G)) ≥ p
by Theorem 1.2.47, we conclude that G has a normal subgroup of order
p. We prove the claim by induction. For n = 3, then the claim is clear
by the previous argument. Hence assume that the claim is correct for all
groups of order pk where 3 ≤ k < n. Let L be a subgroup of Z(G)
of order p. Set F = G/L and let Phi be the group homomorphism
from G ONTO F defined by Φ(g) = gL for every g ∈ G. Then
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Ord(G/L) = pn−1. Thus , by assumption, for every 2 ≤ mleqn− 1, there
is a normal subgroup D of F of order pm−1, and hence J = Φ−1(D)
is a normal subgroup of G of order pm.

QUESTION 2.11.24 Let L be a normal subgroup of a group G,
Φ be the group homomorphism from G ONTO F = G/L defined by
Φ(g) = gL for every g ∈ G, H be a subgroup of F , NF (H) be the
normalizer of H in F , K = Φ−1(H). Then N(K) = Φ−1(NF (H)),
where N(K) is the normalizer of K in G.

Solution : First observe that L is a subgroup of K. Let g ∈ N(K).
Since gKg−1 = K and Φ(K) = H, gLHg−1L = H in F . Thus
gL ∈ NF (H), and hence g ∈ Φ−1(NF (H)). Now let g ∈ Φ−1(NF (H))
and let kinK. Then Φ(k) = kL ∈ H. Thus gLkLg−1L = gkg−1L ∈ H.
Since Φ(K) = H, we conclude that gLkLg−1L = gkg−1L = k1L for
some k1 ∈ K. Thus gkg−1 = k1z ∈ K for some z ∈ L ⊂ K. Thus
g ∈ N(K). Hence N(K) = Φ−1(NF (H))

QUESTION 2.11.25 Let G be a group of order pn where n ≥ 1
and p is a prime number. Prove that H is properly contained in N(H)
for every proper subgroup H of G.

Solution: If n = 1 or n = 2, then the claim is clear. Also if G is
Abelian, then there is nothing to prove. Hence assume that n ≥ 3 and
G is non-Abelian. Now let H be a subgroup of G. If Z(G) not ⊂ H,
then Ord(Z(G)H) > Ord(H) by Theorem 1.2.48 and it is clear that
H ⊂ Z(G)H. But is is easily verified that Z(G)H ⊂ N(H). Thus
H 6= N(H). So we prove the claim for all proper subgroups of G that
contain Z(G). Now Let n = 3. Then every subgroup of G of order p2

is normal in G by Question 2.11.22 and if H is subgroup of G of order
p containing Z(G), then H = Z(G) and thus N(H) = N(Z(G)) = G.
We proceed by induction on n. For n = 3, then the claim is clear by the
previous argument. Hence assume that the claim is correct for all groups
of order pk where 3 ≤ k < n. Set F = G/Z(G) and let Phi be the
group homomorphism from G ONTO F defined by Φ(g) = gZ(G)
for every g ∈ G. Then Ord(F = G/Z(G)) < pn and there is one to
one correspondence between the subgroups of G containing Z(G) and
the subgroups of F . Let H be a subgroup of F ,and K = Φ−1(H).
Then N(K) = Φ−1(NF (H)) by Question 2.11.24, where NF (H) is the
normalizer of H in F . Since H 6= NF (H) by assumption, we conclude
that K 6= N(K), and thus K is properly contained in N(K).
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QUESTION 2.11.26 Show that A4 does not contain a subgroup of
order 6,

Solution : Deny. Let H be a subgroup of A4 of order 6. Since
[A4 : H] = 2, by Question 2.6.1 we conclude that H is normal in A4.
Now since Ord(H) = 6 = (3)(2), let K be a Sylow-3-subgroup of H
(observe that K is also a Sylow-3-subgroup of A4). Then by Theorem
1.2.50 we conclude that A4 = HNA4

(K) (note that NA4
(K) is the

normalizer of K in A4). Since [H : K] = 2, once again K is normal in
H. Thus H ⊂ NA4

(K). Hence by Theorem 1.2.48 we have Ord(A4) =
Ord(H)Ord(NA4

(K))/Ord(H∩NA4
(K) = 6Ord(NA4

(K)/6 = Ord(NA4
(K).

Hence NA4
(K) = A4. Thus K is normal in A4. Hence K is unique by

Theorem 1.2.46. Thus there are exactly two elements of order 3 in A4.
But (1, 2, 3), (1, 3, 2), (1, 2, 4) are elements in A4 and each is of order 3.
Thus A4 has at least 3 elements of order 3, a contradiction. Hence A4

does not contain a subgroup of order 6.

QUESTION 2.11.27 Let G be a group of order 105 = (7)(5)(3).
Show that if G has a subgroup H of order 35 = (7)(5), then G has
exactly subgroup, say K, of order 7, and hence show that K is normal
in G.

Solution : Since [G : H] = 3, we conclude that H is normal in G
by Question 2.11.22. By Theorem 1.2.43, we conclude that H has a
Sylow-7-subgroup, say K (observe that K is a Sylow-7-subgroup of
G). Since [H : K] = 5, we conclude that K is normal in H again
by Question 2.11.22. Thus H ⊂ NG(K). But by Theorem 1.2.50, we
conclude that [G : H] = 3 divides NG(K). Since H ⊂ NG(K), we
conclude that 35 divides Ord(NG(K)). Since 35 divides Ord(NG(K))
and 3 divides Ord(NG(K)) and gcd(35, 3) = 1, we conclude that
(35)(3) = 105 divides Ord(NG(K)). Thus NG(K) = G. Hence K is
normal in G. Now G is unique by Theorem 1.2.46.

QUESTION 2.11.28 (a generalization of Question 2.11.27) Sup-
pose that G is a group of order pqr such that p > q > r, where p, q, r
are prime numbers. Show that G has a subgroup of order pq if and
only if G has exactly one subgroup of order p, i.e., if and only if G
has a normal subgroup of G of order p.

Solution : Suppose that G has a subgroup H of order pq. Since
[G : H] = r, we conclude that H is normal in G by Question 2.11.22.
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Let K be a Sylow-p-subgroup of H. Since [H : K] = q and q < p,
we conclude that K is normal in H again by Question 2.11.22. Hence
H ⊂ NG(K), and thus pq divides Ord(NG(K)). Now by Theorem
1.2.50 we conclude that r divides Ord(NG(K)). Since gcd(pq, r) = 1
and pq divides Ord(NG(K)) and r divides Ord(NG(K)), we conclude
that pqr divides Ord(NG(K)). Thus NG(K) = G. Hence K is normal
in G, and thus K is unique by Theorem 1.2.46.

For the converse, suppose that G has exactly one subgroup, say K,
of order p. Then K is normal in G by Theorem 1.2.46. Let D be
a Sylow-q-subgroup of G. Then KD is a subgroup of G by Question
2.6.16. Now since K ∩ D = {e}, we conclude that Ord(KD) = pq by
Theorem 1.2.48.

QUESTION 2.11.29 Let G be an infinite group and suppose that G
has a a proper subgroup H such that [G : H] = n < ∞. Show that G
has a normal subgroup K such that neither K = G nor K = {e}.

Solution : By Theorem 1.2.56, there is a group homomorphism Φ from
G into Sn such that Ker(Φ) ⊂ H. Now K = Ker(Φ) is a normal
subgroup of G. Since G is infinite and Sn is finite and G/K ∼= to a
subgroup of Sn, we conclude that K 6= {e}. Also, since K ⊂ H and
H 6= G, we conclude that K 6= G.

QUESTION 2.11.30 Let G be a finite group of odd order. Prove that
if a is a nonidentity elements of G, then a is not a conjugate of a−1,
i.e., show that a 6= g−1a−1g for every g ∈ G.

Solution First observe that since ord(G) is an odd number, a 6= a−1

for every nonidentity element a ∈ G (for if a = a−1 and a is nonidentity,
then Ord(a) = 2 which is impossible since Ord(G) is an odd number).
Now assume that a = g−1a−1g for some g ∈ G, where a is nonidentity.
Then a and a−1 are two distinct elements of G. Now let b ∈ CL(a)
(recall that CL(a) is the conjugacy class of a, see Theorem 1.2.54), Since
b is a conjugate of a , b−1 is a conjugate of a−1. Thus b−1 is a conjugate
of a. Hence b−1 ∈ CL(a). Since b−1 ∈ CL(a) for every b ∈ CL(a)
and b−1 6= b for every b ∈ CL(a), we conclude that Ord(CL(a)) is
an even number. But Ord(CL(a)) = Ord(G)/Ord(C(a)) by Theorem
1.2.54 and Ord(G)/Ord(C(a)) is an odd number since Ord(G) is an
odd number. Thus Ord(CL(a)) is an odd number which is contradiction.
Thus, a is not a conjugate of a−1 for every nonidentity element a of
G.
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QUESTION 2.11.31 Let G be a group and Φ be a map from G
ONTO G given by Φ(g) = g−1. Show that Φ is a group isomorphism
if and only if G is an Abelian group.

Solution : If G is Abelian, then it is clear that Φ is an isomor-
phism. Hence assume that Φ is an isomorphism. Let g1, g2 ∈ G.
Then Φ(g1g2) = (g1g2)

−1 = g−1
1 g−1

2 . But (g1g2)
−1 = g−1

2 g1−1. Thus
g−1
2 g1−1 = g−1

1 g−1
2 . Hence (g−1

2 g1−1)−1 = (g−1
1 g−1

2 )−1. Hence g1g2 =
g2g1.

QUESTION 2.11.32 Let G be a finite a group and Φ be an isomor-
phism from G ONTO G such that Φ(g) = g if and only if g = e and
Φ2 is the identity map (Φ2 means the composition of Φ with Φ). Show
that G is Abelian.

Solution : Let K = {g−1
1 Φ(g1) : g1 ∈ G}. First we show that G =

K. Suppose that g−1
1 Φ(g1) = g−1

2 Φ(g2) for some g1, g2 ∈ G. Then
Φ(g1)Φ(g2)

−1 = Φ(g1g2−1) = g1g2−1. Thus g1g
−1
2 = e by hypothesis.

Hence g1 = g2. Since G is finite and for every g1, g2 ∈ G g−1
1 Φ(g1) 6=

g−1
2 Φ(g2), we conclude that K = G. Now let x ∈ G. Then x =
g−1Φ(g) for some g ∈ G. Thus Φ(x) = Φ(g−1Φ(g)) = Φ(g−1)Φ(Φ(g)) =
Φ(g)−1g = (g−1Φ(g))−1 = x−1. Since Φ(x) = x−1 is an isomorphism,
we conclude that G is Abelian by Question 2.11.31.

QUESTION 2.11.33 Let G be a group and Φ be a group isomorphism
from G Onto G such that Φ(g) = g2 for every g ∈ G. Suppose that
Φ2 is the identity map on G. Show that G is Abelian such that
Ord(g) = 3 for every nonidentity g ∈ G. In particular, if G is finite,
then show that Ord(G) = 3n for some n ≥ 1 and G ∼= Z3⊕Z3 · · ·⊕Z3

(n copies of Z3).

Solution : Let g ∈ G. Since Φ(g) = g2 and Φ(Φ(g)) = g, we conclude
that g = Φ(Φ(g)) = Φ(g2) = g4. Thus g3 = e. Hence Ord(g) = 3 for
every nonidentity g ∈ G and g2 = g−1. Thus Φ(g) = g2 = g−1 for every
g ∈ G. Since φ is an isomorphism, we conclude that G is Abelian by
Question 2.11.31. Suppose G is finite. Since every nonidentity element
of G has order 3, we conclude that Ord(G) = 3n for some n ≥ 1.
Also, by Theorem 1.2.52, we conclude that G ∼= Z3⊕Z3 · · ·⊕Z3 (n copies
of Z3).
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QUESTION 2.11.34 Show that G = {





1 a b
0 1 c
0 0 1



 : a, b, c ∈ Z3} is a

non-Abelian group of order 27, under matrix multiplication such that
each nonidentity element of G has order 3.

Solution : A straight forward calculation will show that G is a group

with 27 elements. Now let A =





1 1 1
0 1 1
0 0 1



 and B =





1 0 0
0 1 1
0 0 1



. Then

the entry in the first row and third column of AB is 2. But the entry
in the first row and third column of BA is 1. Hence AB 6= BA.

Thus G is non-Abelian. Let A =





1 a b
0 1 c
0 0 1



, a, b, c ∈ Z3 . Thus

A3 =





1 3a 3ac+ 3b
0 1 3c
0 0 1



. but 3a = 3ac + 3b = 3c = 0 in Z3. Hence

A3 =





1 0 0
0 1 0
0 0 1



.

QUESTION 2.11.35 Let A =





1 a b
0 1 c
0 0 1



, a, b, c ∈ Zn . Show that

Thus Am =





1 ma m(m− 1)/2ac+mb
0 1 mc
0 0 1



.

Solution : For m = 1, the claim is clear. Hence assume that the
claim is valid for m = k ≥ 1. We prove it for m = k + 1. Now Ak+1 =




1 a b
0 1 c
0 0 1



Ak =





1 a b
0 1 c
0 0 1









1 ka k(k − 1)/2ac+ kb
0 1 kc
0 0 1



 =





1 (k + 1)a (k(k − 1)/2 + k)ac (k + 1)b
0 1 (k + 1)c
0 0 1



 =





1 (k + 1)a k(k + 1)/2ac (k + 1)b
0 1 (k + 1)c
0 0 1





QUESTION 2.11.36 ( a generalization of Question 2.11.34) Let

p be an odd prime number. Show that G = {





1 a b
0 1 c
0 0 1



 : a, b, c ∈ Zp} is
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a non-Abelian group of order p3, under matrix multiplication, such that
each nonidentity element of G has order p.

Solution :A straight forward calculation will show that G is a group

with p3 elements. Now let A =





1 1 1
0 1 1
0 0 1



 and B =





1 0 0
0 1 1
0 0 1



.

Then the entry in the first row and third column of AB is 2. But the
entry in the first row and third column of BA is 1. Hence AB 6= BA.

Thus G is non-Abelian. Let A =





1 a b
0 1 c
0 0 1



, a, b, c ∈ Zp. Then

by Question 2.11.35, we have Ap =





1 pa p(p− 1)/2ac+ pb
0 1 pc
0 0 1



. but

pa = p(p− 1)/2ac+ pb = pc = 0 in Zp. Hence Ap =





1 0 0
0 1 0
0 0 1



.

QUESTION 2.11.37 Give an example of a a non-Abelian group H of
order 35 such that each element of G is of order 3. Also, give an
example of a non-Abelian group H of order 54 such that H has an
element of order 12.

Solution : Let H = Z3 ⊕ Z3 ⊕ G, where G is the group in Question
2.11.34. Since G is non-Abelian, we conclude that H is non-Abelian.
It is clear that each element of H is of order 3.

For the second part, let H = Z4 ⊕ G, where G is the group in
Question 2.11.34. Then H a non-Abelian group and Ord(H) = 54. Let
a = (1, B), where B is a nonidentity element of G. Then by Theorem
1.2.37 Ord(a) = lcm[Ord(1), Ord(B)] = lcm[4, 3] = 12.
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