Contents

Introduction			
1	Tools and Major Results of Groups		
	1.1	Notations	1
	1.2	Results	2
2	2 Problems in Group Theory		9
	2.1	Elementary Properties of Groups	9
	2.2	Subgroups	13
	2.3	Cyclic Groups	16
	2.4	Permutation Groups	20
	2.5	Cosets and Lagrange's Theorem	24
	2.6	Normal Subgroups and Factor Groups	30
	2.7	Group Homomorphisms and Direct Product	37
	2.8	Sylow Theorems	50
	2.9	Simple Groups	57
	2.10	Classification of Finite Abelian Groups	62
	2.11	General Questions on Groups	65
3	Too	ls and Major Results of Ring Theory	81
	3.1	Notations	81
	3.2	Major Results of Ring Theory	82
4	Pro	blems in Ring Theory	89
	4.1	Basic Properties of Rings	89
	4.2	Ideals, Subrings, and Factor Rings	93
	4.3	Integral Domains, and Zero Divisors	101
	4.4	Ring Homomorphisms and Ideals	105
	4.5	Polynomial Rings	113
	4.6	Factorization in Polynomial Rings	119

CONTENTS

4.7	Unique Factorization Domains	122	
4.8	Gaussian Ring : $\mathcal{Z}[i]$	124	
4.9	Extension Fields, and Algebraic Fields	131	
4.10	Finite Fields	136	
4.11	Galois Fields and Cyclotomic Fields	143	
4.12	General Questions on Rings and Fields	148	
Bibliography			
Index			

Introduction

This edition is an improvement of the first edition. In this edition, I corrected some of the errors that appeared in the first edition. I added the following sections that were not included in the first edition: Simple groups, Classification of finite Abelian groups, General question on Groups, Euclidean domains, Gaussian Ring $(\mathcal{Z}[i])$, Galois field and Cyclotomic fields, and General question on rings and fields. I hope that students who use this book will obtain a solid understanding of the basic concepts of abstract algebra through doing problems, the best way to understand this challenging subject. So often I have encountered students who memorize a theorem without the ability to apply that theorem to a given problem. Therefore, my goal is to provide students with an array of the most typical problems in basic abstract algebra. At the beginning of each chapter, I state many of the major results in Group and Ring Theory, followed by problems and solutions. I do not claim that the solutions in this book are the shortest or the easiest; instead each is based on certain well-known results in the field of abstract algebra. If you wish to comment on the contents of this book, please email your thoughts to abadawi@aus.edu

I dedicate this book to my father Rateb who died when I was 9 years old. I wish to express my appreciation to my wife Rawya, my son Nadeem, my friend Brian Russo, and Nova Science Inc. Publishers for their superb assistance in this book. It was a pleasure working with them.

Ayman Badawi

A. Badawi

viii

Chapter 1

Tools and Major Results of Groups

1.1 Notations

- 1. e indicates the identity of a group G.
- 2. e_H indicates the identity of a group H
- 3. Ord(a) indicates the order of a in a group.
- 4. gcd(n,m) indicates the greatest common divisor of n and m.
- 5. lcm(n,m) indicates the least common divisor of n and m.
- 6. $H \triangleleft G$ indicates that H is a normal subgroup of G.
- 7. $Z(G) = \{x \in G : xy = yx \text{ for each } y \in G\}$ indicates the center of a group G.
- 8. Let H be a subgroup of a group G. Then $C(H) = \{g \in G : gh = hg \text{ for each } h \in H\}$ indicates the centralizer of H in G.
- 9. Let a be an element in a group G. Then $C(a) = \{g \in G : ga = ag\}$ indicates the centralizer of a in G.
- 10. Let H be a subgroup of a group G. Then $N(H) = \{g \in G : g^{-1}Hg = H\}$ indicates the normalizer of H in G.
- 11. Let H be a subgroup of a group G. Then [G : H] = number of all distinct left(right) cosets of H in G.

- 12. C indicates the set of all complex numbers.
- 13. Z indicates the set of all integers.
- 14. $Z_n = \{m : 0 \le m < n\}$ indicates the set of integers module n
- 15. Q indicates the set of all rational numbers.
- 16. $U(n) = \{a \in Z_n : gcd(a, n) = 1\}$ indicates the unit group of Z_n under multiplication module n.
- 17. If G is a group and $a \in G$, then (a) indicates the cyclic subgroup of G generated by a.
- 18. If G is a group and $a_1, a_2, ..., a_n \in G$, then $(a_1, a_2, ..., a_n)$ indicates the subgroup of G generated by $a_1, a_2, ..., a_n$.
- 19. $GL(m, Z_n)$ indicates the group of all invertible $m \times m$ matrices with entries from Z_n under matrix-multiplication
- 20. If A is a square matrix, then det(A) indicates the determinant of A.
- 21. Aut(G) indicates the set of all isomorphisms (automorphisms) from G onto G.
- 22. S_n indicates the group of all permutations on a finite set with n elements.
- 23. $A \cong B$ indicates that A is isomorphic to B.
- 24. $a \in A \setminus B$ indicates that a is an element of A but not an element of B.
- 25. $a \mid b$ indicates that a divides b.

1.2 Results

THEOREM 1.2.1 Let a be an element in a group G. If $a^m = e$, then Ord(a) divides m.

THEOREM 1.2.2 Let p be a prime number and n, m be positive integers such that p divides nm. Then either p divides n or p divides m.

Tools and Major Results of Groups

THEOREM 1.2.3 Let n, m be positive integers. Then gcd(n,m) = 1 if and only if am + bm = 1 for some integers a and b.

THEOREM 1.2.4 Let n and m be positive integers. If a = n/gcd(n,m)and b = m/gcd(n,m), then gcd(a,b) = 1.

THEOREM 1.2.5 Let n, m, and c be positive integers. If gcd(c,m) = 1 and c divides nm, then c divides n.

THEOREM 1.2.6 Let n and m and c be positive integers such that gcd(n,m) = 1. If n divides c and m divides c, then nm divides c.

THEOREM 1.2.7 Let H be a subset of a group G. Then H is a subgroup of G if and only if $a^{-1}b \in H$ for every a and $b \in H$.

THEOREM 1.2.8 Let H be a finite set of a group G. Then H is a subgroup of G if and only if H is closed.

THEOREM 1.2.9 Let a be an element of a group G. If a has an infinite order, then all distinct powers of a are distinct elements. If a has finite order, say, n, then the cyclic group $(a) = \{e, a, a^2, a^3, ..., a^{n-1}\}$ and $a^i = a^j$ if and only if n divides i - j.

THEOREM 1.2.10 Every subgroup of a cyclic group is cyclic.

THEOREM 1.2.11 If G = (a), a cyclic group generated by a, and Ord(G) = n, then the order of any subgroup of G is a divisor of n.

THEOREM 1.2.12 Let G = (a) such that Ord(G) = n. Then for each positive integer k divides n, the group G = (a) has exactly one subgroup of order k namely $(a^{n/k})$.

THEOREM 1.2.13 Let $n = P_1^{\alpha_1} \dots P_k^{\alpha_k}$, where the P_i 's are distinct prime numbers and each α_i is a positive integer ≥ 1 . Then $\phi(n) = (P_1 - 1)P_1^{\alpha_1 - 1} \dots (P_k - 1)P_k^{\alpha_k - 1}$, where $\phi(n) =$ number of all positive integers less than N and relatively prime to n.

THEOREM 1.2.14 Let G be a cyclic group of order n, and let d be a divisor of n. Then number of elements of G of order d is $\phi(d)$. In particular, number of elements of G of order n is $\phi(n)$.

THEOREM 1.2.15 Z is a cyclic group and each subgroup of Z is of the form nZ for some $n \in Z$.

THEOREM 1.2.16 Z_n is a cyclic group and if k is a positive divisor of n, then (n/k) is the unique subgroup of Z_n of order k.

THEOREM 1.2.17 Let n be a positive integer, and write $n = P_1^{\alpha_1} P_2^{\alpha_2} \dots P_k^{\alpha_k}$ where the P_i 's are distinct prime numbers and each α_i is a positive integer ≥ 1 . Then number of all positive divisors of n (including 1 and n) is $(\alpha_1 + 1)(\alpha_2 + 1)...(\alpha_k + 1)$.

THEOREM 1.2.18 Let n, m, k be positive integers. Then lcm(n,m) = nm/gcd(n,m). If n divides k and m divides k, then lcm(n,m) divides k.

THEOREM 1.2.19 Let $\alpha = (a_1, a_2, ..., a_n)$ and $\beta = (b_1, b_2, ..., b_m)$ be two cycles. If α and β have no common entries, then $\alpha\beta = \beta\alpha$.

THEOREM 1.2.20 Let α be a permutation of a finite set. Then α can be written as disjoint cycles and $Ord(\alpha)$ is the least common multiple of the lengths of the disjoint cycles.

THEOREM 1.2.21 Every permutation in $S_n(n > 1)$ is a product of 2-cycles.

THEOREM 1.2.22 Let α be a permutation. If $\alpha = B_1B_2...B_n$ and $\alpha = A_1A_2...A_m$, where the B_i 's and the A_i 's are 2-cycles, then m and n are both even or both odd.

THEOREM 1.2.23 Let $\alpha = (a_1, a_2, ..., a_n) \in S_m$. Then $\alpha = (a_1, a_n)$ $(a_1, a_{n-1})(a_1, a_{n-2})...(a_1, a_2)$.

THEOREM 1.2.24 The set of even permutations A_n is a subgroup of S_n .

THEOREM 1.2.25 Let $\alpha = (a_1, a_2, ..., a_n) \in S_m$. Then $\alpha^{-1} = (a_n, a_{n-1}, ..., a_2, a_1)$.

THEOREM 1.2.26 Let H be a subgroup of G, and let $a, b \in G$. Then aH = bH if and only if $a^{-1}b \in H$. In particular, if gH = H for some $g \in G$, then $g \in H$

THEOREM 1.2.27 Let G be a finite group and let H be a subgroup of G. Then Ord(H) divides Ord(G).

THEOREM 1.2.28 Let G be a finite group and let H be a subgroup of G. Then the number of distinct left(right) cosets of H in G is Ord(G)/Ord(H).

THEOREM 1.2.29 Let G be a finite group and $a \in G$. Then Ord(a) divides Ord(G).

THEOREM 1.2.30 Let G be a group of order n, and let $a \in G$. Then $a^n = e$.

THEOREM 1.2.31 Let G be a finite group, and let p be a prime number such that p divides Ord(G). Then G contains an element of order p.

THEOREM 1.2.32 Let H be a subgroup of a group G. Then H is normal if and only if $gHg^{-1} = H$ for each $g \in G$.

THEOREM 1.2.33 Let H be a normal subgroup of G. Then $G/H = \{gH : g \in G\}$ is a group under the operation aHbH = abH. Furthermore, If [G : H] is finite, then Ord(G/H) = [G : H].

THEOREM 1.2.34 Let Φ be a group homomorphism from a group G to a group H and let $g \in G$ and D be a subgroup of G. Then :

- 1. Φ carries the identity of G to the identity of H.
- 2. $\Phi(g^n) = (\Phi(g))^n.$
- 3. $\Phi(D)$ is a subgroup of H.
- 4. If D is normal in G, then $\Phi(D)$ is normal in $\Phi(H)$.
- 5. If D is Abelian, then $\Phi(D)$ is Abelian.
- 6. If D is cyclic, then $\Phi(D)$ is cyclic. In particular, if G is cyclic and D is normal in G, then G/D is cyclic.

THEOREM 1.2.35 Let Φ be a group homomorphism from a group G to a group H. Then $Ker(\Phi)$ is a normal subgroup of G and $G/Ker(\Phi) \cong \Phi(G)$ (the image of G under Φ).

THEOREM 1.2.36 Suppose that $H_1, H_2, ..., H_n$ are finite groups. Let $D = H_1 \oplus H_2 ... \oplus H_n$. Then D is cyclic if and only if each H_i is cyclic and if $i \neq j$, then $gcd(Ord(H_i), Ord(H_j) = 1$.

THEOREM 1.2.37 Let $H_1, ..., H_n$ be finite groups, and let $d = (h_1, h_2, ..., h_n) \in D = H_1 \oplus H_2 ... \oplus H_n$. Then $Ord(d) = Ord((h_1, h_2, ..., h_n)) = lcm(Ord(h_1), Ord(h_2), ..., Ord(h_n))$.

THEOREM 1.2.38 Let $n = m_1 m_2 ... m_k$ where $gcd(m_i, m_j) = 1$ for $i \neq j$. Then $U(n) = U(m_1) \oplus U(m_2) ... \oplus U(m_k)$.

THEOREM 1.2.39 Let H, K be normal subgroups of a group G such that $H \cap K = \{e\}$ and G = HK. Then $G \cong H \oplus K$.

THEOREM 1.2.40 Let p be a prime number. Then $U(p) \cong Z_{p-1}$ is a cyclic group. Furthermore, if p is an odd prime, then $U(p^n) \cong Z_{\phi(p^n)} = Z_{p^n-p^{n-1}} = Z_{(p-1)p^{n-1}}$ is a cyclic group. Furthermore, $U(2^n) \cong Z_2 \oplus Z_{2n-2}$ is not cyclic for every $n \ge 3$.

THEOREM 1.2.41 $Aut(Z_n) \cong U(n)$.

THEOREM 1.2.42 Every group of order n is isomorphic to a subgroup of S_n .

THEOREM 1.2.43 Let G be a finite group and let p be a prime. If p^k divides Ord(G), then G has a subgroup of order p^k .

THEOREM 1.2.44 If H is a subgroup of a finite group G such that Ord(H) is a power of prime p, then H is contained in some Sylow p-subgroup of G.

THEOREM 1.2.45 Let n be the number of all Sylow p-subgroups of a finite group G. Then n divides Ord(G) and p divides (n-1).

THEOREM 1.2.46 A Sylow p-subgroup of a finite group G is a normal subgroup of G if and only if it is the only Sylow p-subgroup of G.

THEOREM 1.2.47 Suppose that G is a group of order p^n for some prime number p and for some $n \ge 1$. Then $Ord(Z(G)) = p^k$ for some $0 < k \le n$.

THEOREM 1.2.48 Let H and K be finite subgroups of a group G. Then $Ord(HK) = Ord(H)Ord(K)/Ord(H \cap K)$.

THEOREM 1.2.49 Let G be a finite group. Then any two Sylow-psubgroups of G are conjugate, i.e., if H and K are Sylow-p-subgroups, then $H = g^{-1}Kg$ for some $g \in G$.

THEOREM 1.2.50 Let G be a finite group, H be a normal subgroup of G, and let K be a Sylow p-subgroup of H. Then $G = HN_G(K)$ and [G:H] divides $Ord(N_G(K))$, where $N_G(K) = \{g \in G : g^{-1}Kg = K\}$ (the normalizer of K in G). Tools and Major Results of Groups

THEOREM 1.2.51 Let G be a finite group, n_p be the number of Sylow-p-subgroups of G, and suppose that p^2 does not divide $n_p - 1$. Then there are two distinct Sylow-p-subgroups K and H of G such that $[K: H \cap K] = [H: H \cap K] = p$. Furthermore, $H \cap K$ is normal in both K and H, and thus $HK \subset N(H \cap K)$ and $Ord(N(H \cap K)) >$ $Ord(HK) = Ord(H)ORD(K)/Ord(H \cap K)$.

THEOREM 1.2.52 Every finite Abelian group is a direct product of cyclic groups of prime-power order. Moreover, the factorization is unique except for rearrangement of the factors.

THEOREM 1.2.53 Let G be a finite Abelian group of order n. Then for each positive divisor k of n, there is a subgroup of G of order k.

THEOREM 1.2.54 We say a is a conjugate of b in a group G if $g^{-1}bg = a$ for some $g \in G$. The conjugacy class of a is denoted by $CL(a) = \{b \in G : g^{-1}ag = b \text{ for some } g \in G\}$. Recall that $C(a) = \{g \in G : ga = ag\}$ is a subgroup of G and C(a) is called the centralizer of a in G. Also, we say that two subgroups H, K of a group G are conjugate if $H = g^{-1}Kg$ for some $g \in G$. The conjugacy class of a subgroup H of a group G is denoted by $CL(H) = \{g^{-1}Hg : g \in G\}$. Let G be a finite group, $a \in G$, and let H be a subgroup of G. Then Ord(CL(a)) = [G : C(a)] = Ord(G)/Ord(C(a)) and Ord(CL(H)) =[G : N(H)], where $N(H) = \{g \in G : g^{-1}Hg = H\}$ the normalizer of H in G.

We say that a group is simple if its only normal subgroups are the identity subgroup and the group itself.

THEOREM 1.2.55 If Ord(G) = 2n, where *n* is an odd number greater than 1, then *G* is not a simple group.

THEOREM 1.2.56 Let H be a subgroup of a finite group G and let n = [G : H] (the index of H in G). Then there is a group homomorphism, say Φ , from G into S_n (recall that S_n is the group of all permutations on a set with n elements) such that $Ker(\Phi)$ is contained in H. Moreover, if K is a normal subgroup of G and Kis contained in H, then K is contained in $Ker(\Phi)$.

THEOREM 1.2.57 Let H be a proper subgroup of a finite non-Abelian simple group G and let n = [G : H] (the index of H in G). Then Gis isomorphic to a subgroup of A_n . **THEOREM 1.2.58** For each $n \ge 5$, A_n (the subgroup of all even permutation of S_n) is a simple group.

THEOREM 1.2.59 Let G be a group of order p^n , where $n \ge 1$ and p is prime number. Then if H is a normal subgroup of G and $Ord(H) \ge p$, then $Ord(H \cap Z(G)) \ge p$, i.e., $H \cap Z(G) \ne \{e\}$. In particular, every normal subgroup of G of order p is contained in Z(G)(the center of G).

Chapter 2

Problems in Group Theory

2.1 Elementary Properties of Groups

QUESTION 2.1.1 For any elements a, b in a group and any integer n, prove that $(a^{-1}ba)^n = a^{-1}b^n a$.

Solution: The claim is clear for n = 0. We assume $n \ge 1$. We use math. induction. The result is clear for n = 1. Hence, assume it is true for $n \ge 1$. We prove it for n+1. Now, $(a^{-1}ba)^{n+1} = (a^{-1}ba)^n(a^{-1}ba) = (a^{-1}b^n a)(a^{-1}ba) = a^{-1}b^n(aa^{-1})ba = a^{-1}b^{n+1}a$, since aa^{-1} is the identity in the group. Now, we assume $n \le -1$. Since $-n \ge 1$, we have $(a^{-1}ba)^n = [(a^{-1}ba)^{-1}]^{-n} = (a^{-1}b^{-1}a)^{-n} = a^{-1}(b^{-1})^{-n}a = a^{-1}b^na$. (We assume that the reader is aware of the fact that $(b^{-1})^{-n} = (b^{-n})^{-1} = b^n$.)

QUESTION 2.1.2 Let a and b be elements in a finite group G. Prove that Ord(ab) = Ord(ba).

Solution: Let n = Ord(ab) and m = Ord(ba). Now, by the previous Question, $(ba)^n = (a^{-1}(ab)a)^n = a^{-1}(ab)^n a = e$. Thus, m divides n by Theorem 1.2.1. Also, $(ab)^m = (b^{-1}(ba)b)^m = b^{-1}(ba)^m b = e$. Thus, n divides m. Since n divides m and m divides n, we have n = m.

QUESTION 2.1.3 Let g and x be elements in a group. Prove that $Ord(x^{-1}gx) = Ord(g)$.

Solution: Let $a = x^{-1}g$ and b = x. By the previous Question, Ord(ab) = Ord(ba). But ba = g. Hence, $Ord(x^{-1}gx) = Ord(g)$.

QUESTION 2.1.4 Suppose that a is the only element of order 2 in a group G. Prove that $a \in Z(G)$

Solution: Deny. Then $xa \neq ax$ for some $x \in G$. Hence, $x^{-1}ax \neq a$. Hence, by the previous question we have $Ord(x^{-1}ax) = Ord(a) = 2$, a contradiction, since a is the only element of order 2 in G. Thus, our denial is invalid. Hence, $a \in Z(G)$.

QUESTION 2.1.5 In a group, prove that $(a^{-1})^{-1} = a$.

Solution: Since $aa^{-1} = e$, we have $(aa^{-1})^{-1} = e$. But we know that $(aa^{-1})^{-1} = (a^{-1})^{-1}a^{-1}$. Hence, $(a^{-1})^{-1}a^{-1} = e$. Also by a similar argument as before, since $a^{-1}a = e$, we conclude that $a^{-1}(a^{-1})^{-1} = e$. Since the inverse of a^{-1} is unique, we conclude that $(a^{-1})^{-1} = a$.

QUESTION 2.1.6 Prove that if $(ab)^2 = a^2b^2$, then ab = ba.

Solution: $(ab)^2 = abab = a^2b^2$. Hence, $a^{-1}(abab)b^{-1} = a^{-1}(a^2b^2)b^{-1}$. Thus, $(a^{-1}a)ba(bb^{-1}) = (a^{-1}a)ab(bb^{-1})$. Since $a^{-1}a = bb^{-1} = e$, we have ba = ab.

QUESTION 2.1.7 Let a be an element in a group. Prove that $Ord(a) = Ord(a^{-1})$.

Solution: Suppose that Ord(a) = n and $Ord(a^{-1}) = m$. We may assume that m < n. Hence, $a^n(a^{-1})^m = a^n a^{-m} = a^{n-m} = e$. Thus, by Theorem 1.2.1 Ord(a) = n divides n - m, which is impossible since n - m < n.

QUESTION 2.1.8 Let a be a non identity element in a group G such that Ord(a) = p is a prime number. Prove that $Ord(a^i) = p$ for each $1 \le i < p$.

Solution: Let $1 \leq i < p$. Since Ord(a) = p, $(a^i)^p = a^{pi} = e$ the identity in G. Hence, we may assume that $Ord(a^i) = m < p$. Thus, $(a^i)^m = a^{im} = e$. Thus, by Theorem 1.1 Ord(a) = p divides im. Thus, by Theorem 1.2.2 either p divides i or p divides m. Since i < p and m < p, neither p divides i nor p divides m. Hence, $Ord(a^i) = m = p$.

QUESTION 2.1.9 Let G be a finite group. Prove that number of elements x of G such that $x^7 = e$ is odd.

Solution: Let x be a non identity element of G such that $x^7 = e$. Since 7 is a prime number and $x \neq e$, Ord(x) = 7 by Theorem 1.2.1. Now, By the previous question $(x^i)^7 = e$ for each $1 \leq i \leq 6$. Thus, number of non identity elements x of G such that $x^7 = e$ is 6n for some positive integer n. Also, Since $e^7 = e$, number of elements x of G such that $x^7 = e$ is 6n + 1 which is an odd number.

QUESTION 2.1.10 Let a be an element in a group G such that $a^n = e$ for some positive integer n. If m is a positive integer such that gcd(n,m) = 1, then prove that $a = b^m$ for some b in G.

Solution: Since gcd(n,m) = 1, cn + dm = 1 for some integers c and d by Theorem 1.2.3. Hence, $a = a^1 = a^{cn+dm} = a^{cn}a^{dm}$. Since $a^n = e$, $a^{cn} = e$. Hence, $a = a^{dm}$. Thus, let $b = a^d$. Hence, $a = b^m$.

QUESTION 2.1.11 Let G be a group such that $a^2 = e$ for each $a \in G$. Prove that G is Abelian.

Solution: Since $a^2 = e$ for each a in G, $a = a^{-1}$ for each a in G. Now, let a and b be elements in G. Then $(ab)^2 = abab = e$. Hence, (abab)ba = ba. But (abab)ba = aba(bb)a = aba(e)a = ab(aa) = ab(e) = ab. Thus, ab = ba.

QUESTION 2.1.12 Let a be an element in a group such that Ord(a) = n. If i is a positive integer, then prove that $Ord(a^i) = n/gcd(n,i)$.

Solution: Let k = n/gcd(n,i) and let $m = Ord(a^i)$. Then $(a^i)^k = (a^n)^{i/gcd(n,i)} = e$ since $a^n = e$. Since $(a^i)^k = e$, m divides k by Theorem 1.2.1. Also, since $Ord(a^i) = m$, we have $(a^i)^m = a^{im} = e$. Hence, n divides im (again by Theorem 1.2.1). Since n = [n/gcd(i,n)]gcd(i,n) divides im = m[i/gcd(i,n)]gcd(i,n), we have k = n/gcd(n,i) divides m[i/gcd(i,n)]. Since gcd(k, i/gcd(n,i)) = 1 by Theorem 1.2.4 and k divides m[i/gcd(i,n)], we have k divides m by Theorem 1.2.5. Since m divides k and k divides m, m = k. Hence, $Ord(a^i) = k = n/gcd(i, n)$.

QUESTION 2.1.13 Let a be an element in a group such that Ord(a) = 20. Find $Ord(a^6)$ and $Ord(a^{13})$.

Solution: By the previous problem, $Ord(a^6) = 20/gcd(6, 20) = 20/2 = 10$. Also, $Ord(a^{13}) = 20/gcd(13, 20) = 20/1 = 20$.

QUESTION 2.1.14 Let a and b be elements in a group such that ab = ba and Ord(a) = n and Ord(b) = m and gcd(n,m) = 1. Prove that Ord(ab) = lcm(n,m) = nm.

Solution: Let c = Ord(ab). Since ab = ba, we have $(ab)^{nm} = a^{nm}b^{nm} = e$. Hence, c divides nm by Theorem 1.2.1. Since c = Ord(ab) and ab=ba, we have $(ab)^{nc} = a^{nc}b^{nc} = (ab^c)^n = e$. Hence, since $a^{nc} = e$, we have

 $b^{nc} = e$. Thus, m divides nc since m = Ord(b). Since gcd(n,m) = 1, we have m divides c by Theorem 1.2.5. Also, we have $(ab)^{mc} = a^{mc}b^{mc} = (ab^c)^m = e$. Since $b^{mc} = e$, we have $a^{mc} = e$. Hence, n divides mc. Once again, since gcd(n,m) = 1, we have n divides c. Since n divides c and m divides c and gcd(n,m) = 1, we have nm divides c by Theorem 1.2.6. Since c divides nm and nm divides c, we have nm = c = Ord(ab).

QUESTION 2.1.15 In view of the previous problem, find two elements a and b in a group such that ab = ba and Ord(a) = n and Ord(b) = m but $Ord(ab) \neq lcm(n,m)$.

Solution: Let a be a non identity element in a group and let $b = a^{-1}$. Then $Ord(a) = Ord(a^{-1}) = n > 1$ by Question 2.1.7 and ab = ba. But $Ord(ab) = Ord(e) = 1 \neq lcm(n, n) = n$.

QUESTION 2.1.16 Let x and y be elements in a group G such that $xy \in Z(G)$. Prove that xy = yx.

Solution: Since $xy = x^{-1}x(xy)$ and $xy \in Z(G)$, we have $xy = x^{-1}x(xy) = x^{-1}(xy)x = (x^{-1}x)yx = yx$.

QUESTION 2.1.17 Let G be a group with exactly 4 elements. Prove that G is Abelian.

Solution: Let a and b be non identity elements of G. Then e, a, b,ab,and ba are elements of G. Since G has exactly 4 elements, ab = ba. Thus, G is Abelian.

QUESTION 2.1.18 Let G be a group such that each non identity element of G has prime order. If $Z(G) \neq \{e\}$, then prove that every non identity element of G has the same order.

Solution: Let $a \in Z(G)$ such that $a \neq e$. Assume there is an element $b \in G$ such that $b \neq e$ and $Ord(a) \neq Ord(b)$. Let n = Ord(a) and m = Ord(b). Since n, m are prime numbers, gcd(n,m) = 1. Since $a \in Z(G)$, ab = ba. Hence, Ord(ab) = nm by Question 2.1.14. A contradiction since nm is not prime. Thus, every non identity element of G has the same order.

QUESTION 2.1.19 Let a be an element in a group. Prove that $(a^n)^{-1} = (a^{-1})^n$ for each $n \ge 1$.

Solution: We use Math. induction on n. For n = 1, the claim is clearly valid. Hence, assume that $(a^n)^{-1} = (a^{-1})^n$. Now, we need to prove the claim for n + 1. Thus, $(a^{n+1})^{-1} = (aa^n)^{-1} = (a^n)^{-1}a^{-1} = (a^{-1})^na^{-1} = (a^{-1})^{n+1}$.

QUESTION 2.1.20 Let $g \in G$, where G is a group. Suppose that $g^n = e$ for some positive integer n. Show that Ord(g) divides n.

Solution: Let m = Ord(g). It is clear that $m \le n$. Hence n = mq + r for some integers q, r where $0 \le r < m$. Since $g^n = e$, we have $e = g^n = g^{mq+r} = g^{mq}g^r = eg^r = g^r$. Since $g^r = e$ and r < Ord(g) = m, we conclude that r = 0. Thus m = Ord(g) divides n.

2.2 Subgroups

QUESTION 2.2.1 Let H and D be two subgroups of a group such that neither $H \subset D$ nor $D \subset H$. Prove that $H \cup D$ is never a group.

Solution: Deny. Let $a \in H \setminus D$ and let $b \in D \setminus H$. Hence, $ab \in H$ or $ab \in D$. Suppose that $ab = h \in H$. Then $b = a^{-1}h \in H$, a contradiction. In a similar argument, if $ab \in D$, then we will reach a contradiction. Thus, $ab \notin H \cup D$. Hence, our denial is invalid. Therefore, $H \cup D$ is never a group.

QUESTION 2.2.2 Give an example of a subset of a group that satisfies all group-axioms except closure.

Solution: Let H = 3Z and D = 5Z. Then H and D are subgroups of Z. Now, let $C = H \cup D$. Then by the previous question, C is never a group since it is not closed.

QUESTION 2.2.3 Let H and D be subgroups of a group G. Prove that $C = H \cap D$ is a subgroup of G.

Solution: Let a and b be elements in C. Since $a \in H$ and $a \in D$ and the inverse of a is unique and H, D are subgroups of G, $a^{-1} \in H$ and $a^{-1} \in D$. Now, Since $a^{-1} \in C$ and $b \in C$ and H, D are subgroups of G, $a^{-1}b \in H$ and $a^{-1}b \in D$. Thus, $a^{-1}b \in C$. Hence, C is a subgroup of G by Theorem 1.2.7.

QUESTION 2.2.4 Let $H = \{a \in Q : a = 3^n 8^m \text{ for some } n \text{ and } m \text{ in } Z\}$. Prove that H under multiplication is a subgroup of $Q \setminus \{0\}$.

Solution: Let $a, b \in H$. Then $a = 3^{n_1}8^{n_2}$ and $b = 3^{m_1}8^{m_2}$ for some $n_1, n_2, m_1, m_2 \in Z$. Now, $a^{-1}b = 3^{m_1-n_1}8^{m_2-n_2} \in H$. Thus, H is a subgroup of $Q \setminus \{0\}$ by Theorem 1.2.7.

QUESTION 2.2.5 Let D be the set of all elements of finite order in an Abelian group G. Prove that D is a subgroup of G.

Solution: Let a and b be elements in D, and let n = Ord(a) and m = Ord(b). Then $Ord(a^{-1}) = n$ by Question 2.1.7. Since G is Abelian, $(a^{-1}b)^{nm} = (a^{-1})^{nm}b^{nm} = e$. Thus, $Ord(a^{-1}b)$ is a finite number (in fact $Ord(a^{-1}b)$ divides nm). Hence, $a^{-1}b \in D$. Thus, D is a subgroup of G by Theorem 1.2.7.

QUESTION 2.2.6 Let a, x be elements in a group G. Prove that ax = xa if and only if $a^{-1}x = xa^{-1}$.

Solution: Suppose that ax = xa. Then $a^{-1}x = a^{-1}xaa^{-1} = a^{-1}axa^{-1} = exa^{-1} = xa^{-1}$. Conversely, suppose that $a^{-1}x = xa^{-1}$. Then $ax = axa^{-1}a = aa^{-1}xa = exa = xa$.

QUESTION 2.2.7 Let G be a group. Prove that Z(G) is a subgroup of G.

Solution: Let $a, b \in Z(G)$ and $x \in G$. Since ax = xa, we have $a^{-1}x = xa^{-1}$ by the previous Question. Hence, $a^{-1}bx = a^{-1}xb = xa^{-1}b$. Thus, $a^{-1}b \in Z(G)$. Thus, Z(G) is a subgroup of G by Theorem 1.2.7.

QUESTION 2.2.8 Let a be an element of a group G. Prove that C(a) is a subgroup of G.

Solution: Let $x, y \in C(a)$. Since ax = xa, we have $x^{-1}a = ax^{-1}$ by Question 2.2.6. Hence, $x^{-1}ya = x^{-1}ay = ax^{-1}y$. Thus, $x^{-1}y \in C(a)$. Hence, C(a) is a subgroup of G by Theorem 1.2.7.

Using a similar argument as in Questions 2.2.7 and 2.2.8, one can prove the following:

QUESTION 2.2.9 Let H be a subgroup of a group G. Prove that N(H) is a subgroup of G.

QUESTION 2.2.10 Let $H = \{x \in C : x^{301} = 1\}$. Prove that H is a subgroup of $C \setminus \{0\}$ under multiplication.

Solution: First, observe that H is a finite set with exactly 301 elements. Let $a, b \in H$. Then $(ab)^{301} = a^{301}b^{301} = 1$. Hence, $ab \in H$. Thus, H is closed. Hence, H is a subgroup of $C \setminus \{0\}$ by Theorem 1.2.8.

QUESTION 2.2.11 Let $H = \{A \in GL(608, Z_{89}) : det(A) = 1\}$. Prove that H is a subgroup of $GL(608, Z_{89})$.

Solution: First observe that H is a finite set. Let $C, D \in H$. Then det(CD) = det(C)det(D) = 1. Thus, $CD \in H$. Hence, H is closed. Thus, H is a subgroup of $GL(608, Z_{89})$ by Theorem 1.2.8.

QUESTION 2.2.12 Suppose G is a group that has exactly 36 distinct elements of order 7. How many distinct subgroups of order 7 does G have?

Solution: Let $x \in G$ such that Ord(x) = 7. Then, $H = \{e, x, x^2, ..., x^6\}$ is a subgroup of G and Ord(H) = 7. Now, by Question 2.1.8, $Ord(x^i) = 7$ for each $1 \le i \le 6$. Hence, each subgroup of G of order 7 contains exactly 6 distinct elements of order 7. Since G has exactly 36 elements of order 7, number of subgroups of G of order 7 is 36/6 = 6.

QUESTION 2.2.13 Let $H = \{x \in U(40) : 5 | x - 1\}$. Prove that H is a subgroup of U(40).

Solution: Observe that H is a finite set. Let $x, y \in H$. xy - 1 = xy - y + y - 1 = y(x - 1) + y - 1. Since 5 divides x - 1 and 5 divides y - 1, we have 5 divides y(x - 1) + y - 1 = xy - 1. Thus, $xy \in H$. Hence, H is closed. Thus, H is a subgroup of G by Theorem 1.2.8

QUESTION 2.2.14 Let G be an Abelian group, and let $H = \{a \in G : Ord(a) \mid 26\}$. Prove that H is a subgroup of G.

Solution: Let $a, b \in H$. Since $a^{26} = e$, Ord(a) divides 26 by Theorem 1.2.1. Since $Ord(a) = Ord(a^{-1})$ and Ord(a) divides 26, $Ord(a^{-1})$ divides 26. Thus, $(a^{-1})^{26} = e$. Hence, $(a^{-1}b)^{26} = (a^{-1})^{26}b^{26} = e$. Thus, H is a subgroup of G by Theorem 1.2.7.

QUESTION 2.2.15 Let G be an Abelian group, and let $H = \{a \in G : Ord(a) = 1 \text{ or } Ord(a) = 13\}$. Prove that H is a subgroup of G.

Solution: Let $a, b \in H$. If a = e or b = e, then it is clear that $(a^{-1}b) \in H$. Hence, assume that neither a = e nor b = e. Hence, Ord(a) = Ord(b) = 13. Thus, $Ord(a^{-1}) = 13$. Hence, $(a^{-1}b)^{13} = (a^{-1})^{13}b^{13} = e$. Thus, $Ord(a^{-1}b)$ divides 13 by Theorem 1.2.1. Since 13 is prime, 1 and 13 are the only divisors of 13. Thus, $Ord(a^{-1}b)$ is either 1 or 13. Thus, $a^{-1}b \in H$. Thus, H is a subgroup of G by Theorem 1.2.7.

2.3 Cyclic Groups

QUESTION 2.3.1 Find all generators of Z_{22} .

Solution: Since $Ord(Z_{22}) = 22$, if a is a generator of Z_{22} , then Ord(a) must equal to 22. Now, let b be a generator of Z_{22} , then $b = 1^b = b$. Since Ord(1) = 22, we have $Ord(b) = Ord(1^b) = 22/gcd(b, 22) = 22$ by Question 2.1.12. Hence, b is a generator of Z_{22} iff gcd(b, 22) = 1. Thus, 1,3,5,7,9,11,13,15,17,19,21 are all generators of Z_{22} .

QUESTION 2.3.2 Let G = (a), a cyclic group generated by a, such that Ord(a) = 16. List all generators for the subgroup of order 8.

Solution: Let H be the subgroup of G of order 8. Then $H = (a^2) = (a^{16/8})$ is the unique subgroup of G of order 8 by Theorem 1.2.12. Hence, $(a^2)^k$ is a generator of H iff gcd(k,8) = 1. Thus, $(a^2)^1 = a^2, (a^2)^3 = a^6, (a^2)^5 = a^{10}, (a^2)^7 = a^{14}$.

QUESTION 2.3.3 Suppose that G is a cyclic group such that Ord(G) = 48. How many subgroups does G have?

Solution: Since for each positive divisor k of 48 there is a unique subgroup of order k by Theorem 1.2.12, number of all subgroups of G equals to the number of all positive divisors of 48. Hence, Write $48 = 3^{1}2^{3}$. Hence, number of all positive divisors of 48 = (1+1)(3+1) = 8 by Theorem 1.2.17. If we do not count G as a subgroup of itself, then number of all proper subgroups of G is 8 - 1 = 7.

QUESTION 2.3.4 Let a be an element in a group, and let i, k be positive integers. Prove that $H = (a^i) \cap (a^k)$ is a cyclic subgroup of (a) and $H = (a^{lcm(i,k)})$.

Solution: Since (a) is cyclic and H is a subgroup of (a), H is cyclic by Theorem 1.2.10. By Theorem 1.2.18 we know that lcm(i,k) = ik/gcd(i,k).

Since k/gcd(i,k) is an integer, we have $a^{lcm(i,k)} = (a^i)^{k/gcd(i,k)}$. Thus, $(a^{lcm(i,k)}) \subset (a^i)$. Also, since k/gcd(i,k) is an integer, we have $a^{lcm(i,k)} = (a^k)^{i/gcd(i,k)}$. Thus, $(a^{lcm(i,k)}) \subset (a^k)$. Hence, $(a^{lcm(i,k)}) \subset H$. Now, let $h \in H$. Then $h = a^j = (a^i)^m = (a^k)^n$ for some $j, m, n \in Z$. Thus, i divides j and k divides j. Hence, lcm(i,k) divides j by Theorem 1.2.18. Thus, $h = a^j = (a^{lcm(i,k)})^c$ where j = lcm(i,k)c. Thus, $h \in (a^{lcm(i,k)})$. Hence, $H \subset (a^{lcm(i,k)})$. Thus, $H = (a^{lcm(i,k)})$.

QUESTION 2.3.5 Let a be an element in a group. Describe the subgroup $H = (a^{12}) \cap (a^{18})$.

Solution: By the previous Question, H is cyclic and $H = (a^{lcm(12,18)}) = (a^{36})$.

QUESTION 2.3.6 Describe the Subgroup $8Z \cap 12Z$.

Solution: Since Z = (1) is cyclic and $8Z = (1^8) = (8)$ and $12Z = (1^{12}) = (12)$, $8Z \cap 12Z = (1^{lcm(8,12)}) = (lcm(8,12)) = 24Z$ by Question 2.3.4

QUESTION 2.3.7 Let G be a group and $a \in G$. Prove $(a) = (a^{-1})$.

Solution: Since $(a) = \{a^m : m \in Z\}$, $a^{-1} \in (a)$. Hence, $(a^{-1}) \subset (a)$. Also, since $(a^{-1}) = \{(a^{-1})^m : m \in Z\}$ and $(a^{-1})^{-1} = a$, $a \in (a^{-1})$. Hence, $(a) \subset (a^{-1})$. Thus, $(a) = (a^{-1})$.

QUESTION 2.3.8 Let a be an element in a group such that a has infinite order. Prove that $Ord(a^m)$ is infinite for each $m \in Z$.

Solution: Deny. Let $m \in Z$. Then, $Ord(a^m) = n$. Hence, $(a^m)^n = a^{mn} = e$. Thus, Ord(a) divides nm by Theorem 1.2.1. Hence, Ord(a) is finite, a contradiction. Hence, Our denial is invalid. Therefore, $Ord(a^m)$ is infinite.

QUESTION 2.3.9 Let G = (a), and let H be the smallest subgroup of G that contains a^m and a^n . Prove that $H = (a^{gcd(n,m)})$.

Solution: Since G is cyclic, H is cyclic by Theorem 1.2.10. Hence, $H = (a^k)$ for some positive integer k. Since $a^n \in H$ and $a^m \in H$, k divides both n and m. Hence, k divides gcd(n,m). Thus, $a^{gcd(n,m)} \in H = (a^k)$. Hence, $(a^{gcd(n,m)}) \subset H$. Also, since gcd(n,m) divides both n and m, $a^n \in (a^{gcd(n,m)})$ and $a^m \in (a^{gcd(n,m)})$. Hence, Since H is the smallest subgroup of G containing a^n and a^m and $a^n, a^m \in (a^{gcd(n,m)}) \subset H$, we conclude that $H = (a^{gcd(n,m)})$.

QUESTION 2.3.10 Let G = (a). Find the smallest subgroup of G containing a^8 and a^{12} .

Solution: By the previous Question, the smallest subgroup of G containing a^8 and a^{12} is $(a^{gcd(8,12)}) = (a^4)$.

QUESTION 2.3.11 Find the smallest subgroup of Z containing 32 and 40.

Solution: Since Z = (1) is cyclic, once again by Question 2.3.4, the smallest subgroup of Z containing $1^{32} = 32$ and $1^{40} = 40$ is $(1^{gcd(32,40)}) = (8)$.

QUESTION 2.3.12 Let $a \in G$ such that Ord(a) = n, and let $1 \le k \le n$. Prove that $Ord(a^k) = Ord(a^{n-k})$.

Solution: Since $a^k a^{n-k} = a^n = e$, a^{n-k} is the inverse of a^k . Hence, $Ord(a^k) = Ord(a^{n-k})$.

QUESTION 2.3.13 Let G be an infinite cyclic group. Prove that e is the only element in G of finite order.

Solution: Since G is an infinite cyclic group, G = (a) for some $a \in G$ such that Ord(a) is infinite. Now, assume that there is an element $b \in G$ such that Ord(b) = m and $b \neq e$. Since G = (a), $b = a^k$ for some $k \geq 1$. Hence, $e = b^m = (a^k)^m = a^{km}$. Hence, Ord(a) divides km by Theorem 1.2.1, a contradiction since Ord(a) is infinite. Thus, e is the only element in G of finite order.

QUESTION 2.3.14 Let G = (a) be a cyclic group. Suppose that G has a finite subgroup H such that $H \neq \{e\}$. Prove that G is a finite group.

Solution: First, observe that H is cyclic by Theorem 1.2.10. Hence, $H = (a^n)$ for some positive integer n. Since H is finite and $H = (a^n)$, $Ord(a^n) = Ord(H) = m$ is finite. Thus, $(a^n)^m = a^{nm} = e$. Hence, Ord(a) divides nm by Theorem 1.2.1. Thus, (a) = G is a finite group.

QUESTION 2.3.15 Let G be a group containing more than 12 elements of order 13. Prove that G is never cyclic.

Solution: Deny. Then G is cyclic. Let $a \in G$ such that Ord(a) = 13. Hence, (a) is a finite subgroup of G. Thus, G must be finite by the previous Question. Hence, by Theorem 1.2.14 there is exactly $\phi(13) = 12$ elements in G of order 13. A contradiction. Hence, G is never cyclic.

QUESTION 2.3.16 Let G = (a) be an infinite cyclic group. Prove that a and a^{-1} are the only generators of G.

solution: Deny. Then G = (b) for some $b \in G$ such that neither b = a nor $b = a^{-1}$. Since $b \in G = (a)$, $b = a^m$ for some $m \in Z$ such that neither m = 1 nor m = -1. Thus, $G = (b) = (a^m)$. Hence $a = b^k = (a^m)^k = a^{mk}$ for some $k \in Z$. Since a is of infinite order and $a = a^{mk}$, 1 = mk by Theorem 1.2.9, a contradiction since neither m = 1 nor m = -1 and mk = 1. Thus, our denial is invalid. Now, we show that $G = (a^{-1})$. Since G = (a), we need only to show that $a \in (a^{-1})$. But this is clear since $a = (a^{-1})^{-1}$ by Question 2.1.5.

QUESTION 2.3.17 Find all generators of Z.

Solution: Since Z = (1) is an infinite cyclic group, 1 and -1 are the only generators of Z by the previous Question.

QUESTION 2.3.18 Find an infinite group G such that G has a finite subgroup $H \neq e$.

Solution: Let $G = C \setminus \{0\}$ under multiplication, and let $H = \{x \in G : x^4 = 1\}$. Then H is a finite subgroup of G of order 4.

QUESTION 2.3.19 Give an example of a noncyclic Abelian group.

Solution: Take $G = Q \setminus \{0\}$ under normal multiplication. It is easy to see that G is a noncyclic Abelian group.

QUESTION 2.3.20 Let a be an element in a group G such that Ord(a) is infinite. Prove that $(a), (a^2), (a^3), ...$ are all distinct subgroups of G, and Hence, G has infinitely many proper subgroups.

Solution: Deny. Hence, $(a^i) = (a^k)$ for some positive integers i, k such that k > i. Thus, $a^i = (a^k)^m$ for some $m \in Z$. Hence, $a^i = a^{km}$. Thus, $a^{i-km} = e$. Since $k > i, km \neq i$ and therefore $i - km \neq 0$. Thus, Ord(a) divides i - km by Theorem 1.2.1. Hence, Ord(a) is finite, a contradiction.

QUESTION 2.3.21 Let G be an infinite group. Prove that G has infinitely many proper subgroups.

Solution:Deny. Then G has finitely many proper subgroups. Also, by the previous Question, each element of G is of finite order. Let $H_1, H_2, ..., H_n$ be all proper subgroups of finite order of G, and let $D = \bigcup_{i=1}^n H_i$. Since G is infinite, there is an element $b \in G \setminus D$. Since Ord(b) is finite and $b \in G \setminus D$, (b) is a proper subgroup of finite order of G and $(b) \neq H_i$ for each $1 \leq i \leq n$. A contradiction.

QUESTION 2.3.22 Let a, b be elements of a group such that Ord(a) = n and Ord(b) = m and gcd(n,m) = 1. Prove that $H = (a) \cap (b) = \{e\}$.

Solution: Let $c \in H$. Since (c) is a cyclic subgroup of (a), Ord(c) = Ord((c)) divides n. Also, since (c) is a cyclic subgroup of (b), Ord(c) = Ord((c)) divides m. Since gcd(n,m) and Ord(c) divides both n and m, we conclude Ord(c) = 1. Hence, c = e. Thus, $H = \{e\}$.

QUESTION 2.3.23 Let a, b be two elements in a group G such that Ord(a) = 8 and Ord(b) = 27. Prove that $H = (a) \cap (b) = \{e\}$.

Solution: Since gcd(8,27) = 1, by the previous Question $H = \{e\}$.

QUESTION 2.3.24 Suppose that G is a cyclic group and 16 divides Ord(G). How many elements of order 16 does G have?

Solution: Since 16 divides Ord(G), G is a finite group. Hence, by Theorem 1.2.14, number of elements of order 16 is $\phi(16) = 8$.

QUESTION 2.3.25 Let a be an element of a group such that Ord(a) = n. Prove that for each $m \ge 1$, we have $(a^m) = (a^{gcd(n,m)})$

Solution: First observe that gcd(n,m) = gcd(n,(n,m)). Since $Ord(a^m) = n/gcd(n,m)$ and $Ord(a^{gcd(n,m)}) = n/gcd(n,gcd(n,m)) = n/gcd(n,m)$ by Question 2.1.12 and (a) contains a unique subgroup of order n/gcd(n,m) by Theorem 1.2.12, we have $(a^m) = (a^{gcd(n,m)})$.

2.4 Permutation Groups

QUESTION 2.4.1 Let $\alpha = (1, 3, 5, 6)(2, 4, 7, 8, 9, 12) \in S_{12}$. Find $Ord(\alpha)$.

Solution: Since α is a product of disjoint cycles, $Ord(\alpha)$ is the least common divisor of the lengths of the disjoint cycles by Theorem 1.2.20. Hence, $Ord(\alpha) = 12$

QUESTION 2.4.2 Determine whether $\alpha = (1, 2)(3, 6, 8)(4, 5, 7, 8) \in S_9$ is even or odd.

Solution: First write α as a product of 2-cycles. By Theorem 1.2.23 $\alpha = (1,2)(3,8)(3,6)(4,8)(4,7)(4,5)$ is a product of six 2-cycles. Hence, α is even.

QUESTION 2.4.3 Let $\alpha = (1, 3, 7)(2, 5, 7, 8) \in S_{10}$. Find α^{-1} .

Solution: Let A = (1,3,7) and B = (2,5,7,8). Hence, $\alpha = AB$. Thus, $\alpha^{-1} = B^{-1}A^{-1}$. Hence, By Theorem 1.2.25, $\alpha^{-1} = (8,7,5,2)(7,3,1)$.

QUESTION 2.4.4 Prove that if α is a cycle of an odd order, then α is an even cycle.

Solution: Let $\alpha = (a_1, a_2, ..., a_n)$. Since $Ord(\alpha)$ is odd, n is an odd number by Theorem 1.2.20. Hence, $\alpha = (a_1, a_n)(a_1, a_{n-1})...(a_1, a_2)$ is a product of n - 1 2-cycles. Since n is odd, n - 1 is even. Thus, α is an even cycle.

QUESTION 2.4.5 *Prove that* $\alpha = (3, 6, 7, 9, 12, 14) \in S_{16}$ *is not a product of 3-cycles.*

Solution: Since $\alpha = (3, 14)(3, 12)...(3, 6)$ is a product of five 2-cycles, α is an odd cycle. Since each 3-cycle is an even cycle by the previous problem, a permutation that is a product of 3-cycles must be an even permutation. Thus, α is never a product of 3-cycles.

QUESTION 2.4.6 Find two elements, say, a and b, in a group such that Ord(a) = Ord(b) = 2, and Ord(ab)=3.

Solution: Let a = (1,2), b = (1,3). Then ab = (1,2)(1,3) = (1,3,2). Hence, Ord(a) = Ord(b) = 2, and Ord(ab) = 3.

QUESTION 2.4.7 Let $\alpha = (1, 2, 3)(1, 2, 5, 6) \in S_6$. Find $Ord(\alpha)$, then find α^{35} .

Solution: First write α as a product of disjoint cycles. Hence, $\alpha = (1,3)(2,5,6)$. Thus, $Ord(\alpha) = 6$ by Theorem 1.2.20. Now, since $Ord(\alpha) = 6$, $\alpha^{35}\alpha = \alpha^{36} = e$. Hence, $\alpha^{35} = \alpha^{-1}$. Thus, $\alpha^{-1} = (6,5,2)(3,1) = (6,5,2,1)(3,2,1)$.

QUESTION 2.4.8 Let $1 \le n \le m$. Prove that S_m contains a subgroup of order n.

Solution: Since $1 \leq n \leq m$, $\alpha = (1, 2, 3, 4, ..., n) \in S_m$. By Theorem 1.2.20, $Ord(\alpha) = n$. Hence, the cyclic group (α) generated by α is a subgroup of S_m of order n.

QUESTION 2.4.9 Give an example of two elements, say, a and b, such that Ord(a)=2, Ord(b)=3 and $Ord(ab) \neq lcm(2,3)=6$.

Solution: Let a = (1, 2), b = (1, 2, 3). Then ab = (2, 3). Hence, Ord(a) = 2, Ord(b) = 3, and $Ord(ab) = 2 \neq lcm(2, 3) = 6$.

QUESTION 2.4.10 Find two elements a, b in a group such that Ord(a) = 5, Ord(b) = 7, and Ord(ab) = 7.

Solution: Let $G = S_7$, a = (1,2,3,4,5), and b = (1,2,3,4,5,6,7). Then ab = (1,3,5,6,7,2,4). Hence, Ord(a) = 5, Ord(b) = 7, and Ord(ab) = 7.

QUESTION 2.4.11 Find two elements a, b in a group such that Ord(a) = 4, Ord(b) = 6, and Ord(ab) = 4.

Solution: Let $G = S_6$, a = (1,2,3,4), b = (1,2,3,4,5,6). Then ab = (1,3)(2,4,5,6). By Theorem 1.2.20, Ord(ab) = 4.

QUESTION 2.4.12 Find two elements a, b in a group such that Ord(a) = Ord(b) = 3, and Ord(ab) = 5.

Solution: Let a = (1,2,3), $b = (1,4,5) \in S_5$. Then ab = (1,4,5,2,3). Hence, Ord(a) = Ord(b) = 3, and Ord(ab) = 5.

QUESTION 2.4.13 Find two elements a, b in a group such that Ord(a) = Ord(b) = 4, and Ord(ab) = 7.

Solution: Let a = (1,2,3,4), $b = (1,5,6,7) \in S_7$. Then ab = (1,5,6,7,2,3,4). Hence, Ord(a) = Ord(b) = 4, and Ord(ab) = 7.

QUESTION 2.4.14 Let $2 \le m \le n$, and let a be a cycle of order m in S_n . Prove that $a \notin Z(S_n)$.

Solution: Let $a = (a_1, a_2, ..., a_m)$, and let

 $b = (a_1, a_2, a_3, ..., a_m, b_{m+1})$. Suppose that m is an odd number and m < n. Then

 $ab = (a_1, a_3, a_5, \dots, a_m, b_{m+1}, a_2, a_4, a_{m-1}).$ Hence, Ord(ab) = m + 1.Now, assume that $a \in Z(S_n)$. Since Ord(a) = m and Ord(b) = m+1and gcd(m,m+1) = 1 and ab = ba, we have Ord(ab) = m(m+1) by Question 2.1.14. A contradiction since ord(ab) = m+1. Thus, $a \notin a$ $Z(S_n)$. Now, assume that m is an even number and m < n. Then ab = $(a_1, a_3, a_5, \dots, a_{m-1})(a_2, a_4, a_6, \dots, a_m, b_{m+1}).$ Hence, Ord(ab) =((m-1)/2)((m-1)/2 + 1) by Theorem 1.2.20. Assume $a \in Z(S_n)$. Since Ord(a) = m and Ord(b) = m+1 and gcd(m,m+1) = 1 and ab = ba, Ord(ab) = m(m+1) by Question 2.1.14. A contradiction since Ord(ab) = $((m-1)/2)((m-1)/2+1) \neq m(m+1)$. Thus, $a \notin Z(S_n)$. Now, assume m = n. Then a = (1, 2, 3, 4, ..., n). Let c = (1, 2). Then ac = (1, 3, 4, 5, 6, ..., n) and ca = (2, 3, 4, 5, ..., n). Hence, $ac \neq ca$. Thus, $a \notin Z(S_n).$

QUESTION 2.4.15 Let $H = \{ \alpha \in S_n : \alpha(1) = 1 \}$ (n > 1). Prove that H is a subgroup of S_n .

Solution: Let α and $\beta \in H$. Since $\alpha(1) = 1$ and $\beta(1) = 1$, $\alpha\beta(1) = \alpha(\beta(1) = 1$. Hence, $\alpha\beta \in H$. Since H is a finite set (being a subset of S_n) and closed, H is a subgroup of S_n by Theorem 1.2.8.

QUESTION 2.4.16 Let n > 1. Prove that S_n contains a subgroup of order (n-1)!.

Solution: Let *H* be the subgroup of S_n described in the previous Question. It is clear that Ord(H) = (n-1)!.

QUESTION 2.4.17 Let $a \in A_5$ such that Ord(a) = 2. Show that $a = (a_1, a_2)(a_3, a_4)$, where a_1, a_2, a_3, a_4 are distinct elements.

Solution: Since Ord(a) = 2, we conclude by Theorem 1.2.20 that we can write a as disjoint 2-cycles. Since the permutation is on a set of 5 elements, it is clear now that $a = (a_1, a_2)(a_3, a_4)$, where a_1, a_2, a_3, a_4 are distinct elements.

QUESTION 2.4.18 Let $\alpha \in S_5$ be a 5-cycle, i.e., $Ord(\alpha) = 5$ (and hence $\alpha \in A_5$), and let $\beta = (b_1, b_2) \in S_5$ be a 2-cycle. If $\alpha(b_1) = b_2$ or $\alpha(b_2) = b_1$, then show that $Ord(\alpha\beta) = 4$. If $\alpha(b_1) \neq b_2$ and $\alpha(b_2) \neq b_1$, then show that $Ord(\alpha\beta) = 6$.

Solution: Let $\beta = (b_1, b_2)$. We consider two cases: first assume that $\alpha(b_2) = b_1$. Then $\alpha(b_1) \neq b_2$ because α is a 5-cycle. Hence $\alpha\beta = (b_1)(b_2, b_3, b_4, b_5)$ where b_1, b_2, b_3, b_4, b_5 are distinct. Thus $Ord(\alpha\beta) = 4$ by Theorem 1.2.20. Also, if $\alpha(b_1) = b_2$, then $\alpha(b_2) \neq b_1$ again because α is a 5-cycle. Hence $\alpha\beta = (b_1, b_3, b_4, b_5)(b_2)$. Thus $Ord(\alpha\beta) = 4$ again by Theorem 1.2.20. Second case, assume that neither $\alpha(b_1) = b_2$ nor $\alpha(b_2) = b_1$. Hence $\alpha\beta(b_1) = b_3 \neq b_2$. Suppose that $\alpha\beta(b_3) = b_1$. Then $\alpha = (b_3, b_1, b_4, b_5, b_2)$ and thus $\alpha\beta = (b_1, b_3)(b_2, b_4, b_5)$ has order 6. Observe that $\alpha\beta(b_3) \neq b_2$ because $\alpha\beta(b_1) = \alpha(b_2) = b_3$ and $\alpha\beta(b_3) = \alpha(b_3)$ and α is a 5-cycle. Hence assume that $\alpha\beta(b_3) = b_4$, where $b_4 \neq b_1$ and $b_4 \neq b_2$. Then since $\alpha(b_1) \neq b_2$ and $\alpha(b_2) \neq b_1$, we conclude that $\alpha\beta = (b_1, b_3, b_4)(b_2, b_5)$ has order 6.

QUESTION 2.4.19 Let $\alpha \in S_5$ be a 5-cycle, $\beta \in S_5$ be 2-cycle, and suppose that $Ord(\alpha\beta) = 4$. Show that $Ord(\alpha^2\beta) = 6$.

Solution: Since $Ord(\alpha) = 5$, $Ord(\alpha^2) = 5$, and hence α^2 is a 5-cycle. Let $\beta = (b_1, b_2)$. Since $Ord(\alpha\beta) = 4$, we conclude $\alpha(b_1) = b_2$ or $\alpha(b_2) = b_1$ by Question 2.4.18. Suppose that $\alpha(b_1) = b_2$. Then α has the form $(..., b_1, b_2, ...)$ and $\alpha(b_2) \neq b_1$ because α is 5-cycle. Thus $\alpha^2(b_1) \neq b_2$ and $\alpha^2(b_2) \neq b_1$. Thus by Question 2.4.18 we conclude that $Ord(\alpha^2\beta) = 6$.

2.5 Cosets and Lagrange's Theorem

QUESTION 2.5.1 Let H = 4Z is a subgroup of Z. Find all left cosets of H in G.

Solution: H, $1 + H = \{\dots, -11, -7, -3, 1, 5, 9, 13, 17, \dots\}, 2 + H = \{\dots, -14, -10, -6, -2, 2, 6, 10, 14, 18, \dots\}, 3 + H = \{\dots, -13, -9, -5, -1, 3, 7, 11, 15, 19, \dots\}.$

QUESTION 2.5.2 Let $H = \{1, 15\}$ is a subgroup of G = U(16). Find all left cosets of H in G.

Solution: Since $Ord(G) = \phi(16) = 8$ and Ord(H) = 2, [G:H] = number of all left cosets of H in G = Ord(G)/Ord(H) = 8/2 = 4 by Theorem 1.2.28. Hence, left cosets of H in G are : $H, 3H = \{3, 13\}, 5H = \{5, 11\},$ $7H = \{7, 9\}.$

QUESTION 2.5.3 Let a be an element of a group such that Ord(a) = 22. Find all left cosets of (a^4) in (a).

Solution: First, observe that $(a) = \{e, a, a^2, a^3, ..., a^{21}\}$. Also, Since $Ord(a^2) = Ord(a^4)$ by Question 2.3.25, we have $(a^4) = (a^2) = \{e, a^2, a^4, a^6, a^8, a^{10}, a^{12}, a^{14}, a^{16}, a^{18}, a^{20}\}$ Hence, by Theorem 1.2.28, number of all left cosets of (a^4) in (a) is 22/11 = 2. Thus, the left cosets of (a^4) in (a) are : (a^4) , and $a(a^4) = \{a, a^3, a^5, a^7, a^9, ..., a^{21}\}$.

QUESTION 2.5.4 Let G be a group of order 24. What are the possible orders for the subgroups of G.

Solution: Write 24 as product of distinct primes. Hence, $24 = (3)(2^3)$. By Theorem 1.2.27, the order of a subgroup of G must divide the order of G. Hence, We need only to find all divisors of 24. By Theorem 1.2.17, number of all divisors of 24 is (1 + 1)(3 + 1) = 8. Hence, possible orders for the subgroups of G are : 1,3,2,4,8,6,12,24.

QUESTION 2.5.5 Let G be a group such that Ord(G) = pq, where p and q are prime. Prove that every proper subgroup of G is cyclic.

Solution: Let H be a proper subgroup of G. Then Ord(H) must divide pq by Theorem 1.2.27. Since H is proper, the possible orders for H are : 1, p,q. Suppose Ord(H) = 1, then $H = \{e\}$ is cyclic. Suppose Ord(H) = p. Let $h \in H$ such that $h \neq e$. Then Ord(h) divide Ord(H) by Theorem 1.2.29. Since $h \neq e$ and Ord(h) divides p, Ord(h) = p. Thus, H = (h) is cyclic. Suppose Ord(H) = q. Then by a similar argument as before, we conclude that H is cyclic. Hence, every proper subgroup of G is cyclic.

QUESTION 2.5.6 Let G be a group such that Ord(G) = 77. Prove that every proper subgroup of G is cyclic.

Solution: Since Ord(G) = 77 = (7)(11) is a product of two primes, every proper subgroup of G is cyclic by the previous Question.

QUESTION 2.5.7 Let $n \ge 2$, and let $a \in U(n)$. Prove that $a^{\phi(n)} = 1$ in U(n).

Solution : Since $Ord(U(n)) = \phi(n)$ and $a \in U(n)$, $a^{\phi(n)} = 1$ in U(n) by Theorem 1.2.30.

QUESTION 2.5.8 Let $3 \in U(16)$. Find 3^{19} in U(16).

Solution: Since $Ord(U(16)) = \phi(16) = 8$, $3^8 = 1$ by the previous Question. Hence, $3^{8k} = 1$ for each $k \ge 1$. Thus, $3^{19} = 3^{19mod8} = 3^3 = 27(mod16) = 11$ in U(16).

QUESTION 2.5.9 Let H, K be subgroups of a group. If Ord(H) = 24and Ord(K) = 55, find the order of $H \cap K$.

Solution: Since $H \cap K$ is a subgroup of both H and K, $Ord(H \cap K)$ divides both Ord(H) and Ord(K) by Theorem 1.2.27. Since gcd(24, 55) = 1 and $Ord(H \cap K)$ divides both numbers 24 and 55, we conclude that $Ord(H \cap K) = 1$. Thus, $H \cap K = \{e\}$.

QUESTION 2.5.10 Let G be a group with an odd number of elements. Prove that $a^2 \neq e$ for each non identity $a \in G$.

Solution: Deny. Hence, for some non identity element $a \in G$, we have $a^2 = e$. Thus, $\{e, a\}$ is a subgroup of G of order 2. Hence, 2 divides Ord(G) by Theorem 1.2.27. A contradiction since 2 is an even integer and Ord(G) is an odd integer.

QUESTION 2.5.11 Let G be an Abelian group with an odd number of elements. Prove that the product of all elements of G is the identity.

Solution: By the previous Question, G does not have a non identity element that is the inverse of itself, i.e. $a^2 \neq e$ for each non identity $a \in G$. Hence, the elements of G are of the following form : $e, a_1, a_1^{-1}, a_2, a_2^{-1}, ..., a_m, a_m^{-1}$. Hence, $e, a_1 a_a^{-1} 1 a_2 a_2^{-1} a_3 a_3^{-1} \dots a_m a_m^{-1} = e(a_1 a_1^{-1})(a_2 a_2^{-1})(a_3 a_3^{-1}) \dots (a_m a_m^{-1}) = e(e)(e)(e)\dots(e) = e$

QUESTION 2.5.12 Let G be a group with an odd number of elements. Prove that for each $a \in G$, the equation $x^2 = a$ has a unique solution.

Solution: First, we show that for each $a \in G$, the equation $x^2 = a$ has a solution. Let $a \in G$, and let m = Ord(a). By Theorem 1.2.29, m must divide Ord(G). Since Ord(G) is an odd number and Ord(a) divides Ord(G), m is an odd number. Hence, let $x = a^{(m+1)/2}$. Then, $(a^{(m+1)/2})^2 = a^{m+1} = aa^m = a(e) = a$ is a solution to the equation $x^2 = a$. Now, we show that $a^{(Ord(a)+1)/2}$ is the only solution to the equation $x^2 = a$ for each $a \in G$. Hence, let $a \in G$. Assume there is a $b \in G$ such that $b^2 = a$. Hence, $(b^2)^{Ord(a)} = a^{Ord(a)} = e$. Thus, Ord(b) divides 2Ord(a). Since Ord(b) must be an odd number and hence gcd(2,Ord(b)) = 1, we conclude that Ord(b) must divide Ord(a) by Theorem 1.2.5. Thus, $b^{Ord(a)} = e$. Now, $b = bb^{Ord(a)} = b^{1+Ord(a)} = (b^2)^{Ord(a)+1} = a^{Ord(a)+1}$.

QUESTION 2.5.13 Let a, b be elements of a group such that $b \notin (a)$ and Ord(a) = Ord(b) = p is a prime number. Prove that $(b^i) \cap (a^j) = \{e\}$ for each $1 \leq i < p$ and for each $1 \leq j < p$.

Solution: Let $1 \leq i < p$ and $1 \leq j < p$, and let $H = (b^i) \cap (a^j)$. Since Ord(a) = Ord(b) = p is a prime number and H is a subgroup of both (b^i) and (a^j) , Ord(H) divides p by Theorem 1.2.27. Hence, Ord(H) = 1 or Ord(H) = p. Suppose that Ord(H) = p. Then $(b^i) = (a^j)$. But since $Ord(b^i) = Ord(b)$ and $Ord(a) = Ord(a^j)$, we have $(b) = (b^i) = (a^j) = (a)$. Hence, $b \in (a)$ which is a contradiction. Thus, Ord(H) = 1. Hence, $H = \{e\}$.

QUESTION 2.5.14 Let G be a non-Abelian group of order 2p for some prime $p \neq 2$. Prove that G contains exactly p-1 elements of order p and it contains exactly p elements of order 2.

Solution:Since p divides the order of G, G contains an element a of order p by Theorem 1.2.31. Hence, H = (a) is a subgroup of G of order p. Hence, [G:H] = 2p/p = 2. Let $b \in G \setminus H$. Hence, H and bH are the only left cosets of H in G. Now, We show that $b^2 \notin bH$. Suppose that $b^2 \in bH$. Hence, $b^2 = bh$ for some $h \in H$. Thus, $b = h \in H$. A contradiction since $b \notin H$. Since $G = H \cup bH$ and $b^2 \notin bH$, we conclude that $b^2 \in H$. Since Ord(H) = p is a prime number and $b^2 \in H$, $Ord(b^2)$ must be 1 or p by Theorem 1.2.29. Suppose that $Ord(b^2) = p$. Then $b^{2p} = e$. Hence, Ord(b) = p or Ord(b) = 2p. Suppose that Ord(b) = 2p. Then G = (b) is a cyclic group. Hence, G is Abelian. A contradiction. Thus, assume that Ord(b) = p. Then $Ord(b) = Ord(b^2) = p$. Since Ord(H) = p and $Ord(b^2) = Ord(b) = p$ and $b^2 \in H$, we conclude that $(b) = (b^2) = H$. Hence, $b \in H$. A contradiction. Thus, $Ord(b^2)$ must be 1. Hence, $b^2 = e$. Thus, each element of G that lies outside H is of order 2. Since Ord(H) = p and Ord(G) = 2p, we conclude that G contains exactly p elements of order p. Hence, if $c \in G$ and Ord(c) = p, then $c \in H$. Thus, G contains exactly p-1 elements of order p.

QUESTION 2.5.15 Let G be a non-Abelian group of order 26. Prove that G contains exactly 13 elements of order 2.

Solution. Since 26 = (2)(13), by the previous Question G contains exactly 13 elements of order 2.

QUESTION 2.5.16 Let G be an Abelian group of order pq for some prime numbers p and q such that $p \neq q$. Prove that G is cyclic.

Solution: Since p divides Ord(G) and q divides Ord(G), G contains an element, say, a, of order p and it contains an element, say,b, of order q. Since ab = ba and gcd(p,q) = 1, Ord(ab) = pq by Question 2.1.14. Hence, G = (ab) is a cyclic group.

QUESTION 2.5.17 Let G be an Abelian group of order 39. Prove that G is cyclic.

Solution: Since 39 = (3)(13), G is cyclic by the previous Question.

QUESTION 2.5.18 Find an example of a non-cyclic group, say, G, such that Ord(G) = pq for some prime numbers p and q and $p \neq q$.

Solution: Let $G = S_3$. Then Ord(G) = 6 = (2)(3). But we know that S_3 is not Abelian and hence it is not cyclic.

QUESTION 2.5.19 Let G be a finite group such that Ord(G) = p is a prime number. Prove that G is cyclic.

Solution: Let $a \in G$ such that $a \neq e$. Then Ord(a) = p by Theorem 1.2.29. Hence, G = (a) is cyclic.

QUESTION 2.5.20 Find an example of a non-Abelian group, say, G, such that every proper subgroup of G is cyclic.

Solution: Let $G = S_3$. Then G is a non-Abelian group of order 6. Let H be a proper subgroup of G. Then Ord(H) = 1 or 2 or 3 by Theorem 1.2.27. Hence, by the previous Question H is cyclic.

QUESTION 2.5.21 Let G be a group such that $H = \{e\}$ is the only proper subgroup of G. Prove that Ord(G) is a prime number.

Solution: Ord(G) can not be infinite by Question 2.3.21. Hence, G is a finite group. Let Ord(G) = m. Suppose that m is not prime. Hence, there is a prime number q such that q divides m. Thus, G contains an element, say,a, of of order q by Theorem 1.2.31. Thus, (a) is a proper subgroup of G of order q. A contradiction. Hence, Ord(G) = m is a prime number.

QUESTION 2.5.22 Let G be a finite group with an odd number of elements, and suppose that H be a proper subgroup of G such that Ord(H) = p is a prime number. If $a \in G \setminus H$, then prove that $aH \neq a^{-1}H$.

28

Solution: Since Ord(H) divides Ord(G) and Ord(G) is odd, we conclude that $p \neq 2$. Let $a \in G \setminus H$. Suppose that $aH = a^{-1}H$. Then $a^2 = h \in H$ for some $h \in H$ by Theorem 1.2.26. Hence, $a^{2p} = h^p = e$. Thus, Ord(a) divides 2p by Theorem 1.2.1. Since Ord(G) is odd and by Theorem 1.2.29 Ord(a) divides Ord(G), Ord(a) is an odd number. Since Ord(a) is odd and Ord(a) divides 2p and $p \neq 2$ and $a \notin H$, we conclude Ord(a) = p. Hence, $Ord(a^2) = p$ and therefore $(a) = (a^2)$. Since Ord(H) = p and $a^2 \in H$ and Ord(a) = p, $(a) = (a^2) = H$. Thus, $a \in H$. A contradiction. Thus, $aH \neq a^{-1}H$ for each $a \in G \setminus H$.

QUESTION 2.5.23 Suppose that H, K are subgroups a group G such that $D = H \cap K \neq \{e\}$. Suppose Ord(H) = 14 and Ord(K) = 35. Find Ord(D).

Solution: Since *D* is a subgroup of both H and K, Ord(D) divides both 14 and 35 by Theorem 1.2.27. Since 1 and 7 are the only numbers that divide both 14 and 35 and $H \cap K \neq \{e\}$, $Ord(D) \neq 1$. Hence, Ord(D) = 7.

QUESTION 2.5.24 Let a, b be elements in a group such that ab = baand Ord(a) = 25 and Ord(b) = 49. Prove that G contains an element of order 35.

Solution: Since ab = ba and gcd(25,49) = 1, Ord(ab) = (25)(49) by Question 2.1.14. Hence, let $x = (ab)^{35}$. Then, by Question 2.1.12, $Ord(x) = Ord(ab^{35}) =$

ord(ab)/gcd(35, Ord(ab)) = (25)(49)/gcd(35, (25)(49)) = 35. Hence, G contains an element of order 35.

QUESTION 2.5.25 Let H be a subgroup of S_n . Show that either $H \subset A_n$ or exactly half of the elements of H are even permutation.

Solution : Suppose that $H \not\subset A_n$. Let K be the set of all even permutations of H. Then K is not empty since $e \in K$ (e is the identity). It is clear that K is a subgroup of H. Let β be an odd permutation of H. Then the each element of the left coset βK is an odd permutation (recall that a product of odd with even gives an odd permutation). Now let α be an odd permutation H. Since H is a group, there is an element $k \in H$ such that $\alpha = \beta k$. Since α and β are odd, we conclude that k is even, and hence $k \in K$. Thus $\alpha \in \beta K$. Hence βK contains all odd permutation of H. Since $Ord(\beta K) = Ord(K)$ (because βK is a left coset of K), we conclude that exactly half of the elements of H are even permutation.

2.6 Normal Subgroups and Factor Groups

QUESTION 2.6.1 Let H be a subgroup of a group G such that [G:H] = 2. Prove that H is a normal subgroup of G.

Solution: Let $a \in G \setminus H$. Since [G:H] = 2, H and aH are the left cosets of H in G ,and H and Ha are the right cosets of H in G. Since $G = H \cup aH = H \cup Ha$, and $H \cap aH = \phi$, and $H \cap Ha = \phi$, we conclude that aH = Ha. Hence, $aHa^{-1} = H$. Thus, H is a normal subgroup of G by Theorem 1.2.32.

QUESTION 2.6.2 Prove that A_n is a normal subgroup of S_n .

Solution: Since $[S_n : A_n] = Ord(S_n)/Ord(A_n)$ by Theorem 1.2.28, we conclude that $[S_n : A_n] = 2$. Hence, A_n is a normal subgroup of S_n by the previous Question.

QUESTION 2.6.3 Let a be an element of a group G such that Ord(a) is finite. If H is a normal subgroup of G, then prove that Ord(aH) divides Ord(a).

Solution: Let m = Ord(a). Hence, $(aH)^m = a^m H = eH = H$. Thus, Ord(aH) divides m = Ord(a) by Theorem 1.2.1.

QUESTION 2.6.4 Let H be a normal subgroup of a group G and let $a \in G$. If Ord(aH) = 5 and Ord(H) = 4, then what are the possibilities for the order of a.

Solution: Since Ord(aH) = 5, $(aH)^5 = a^5H = H$. Hence, $a^5 \in H$ by Theorem 1.2.26. Thus, $a^5 = h$ for some $h \in H$. Thus, $(a^5)^4 = h^4 = e$. Thus, $a^{20} = e$. Hence, Ord(a) divides 20 by Theorem 1.2.1. Since $Ord(aH) \mid Ord(a)$ by the previous Question and $Ord(a) \mid 20$, we conclude that all possibilities for the order of a are : 5, 10, 20.

QUESTION 2.6.5 Prove that Z(G) is a normal subgroup of a group G.

Solution: Let $a \in G$, and let $z \in Z(G)$. Then $aza^{-1} = aa^{-1}z = ez = z$. Thus, $aZ(G)a^{-1} = Z(G)$ for each $a \in G$. Hence, Z(G) is normal by Theorem 1.2.32.

QUESTION 2.6.6 Let G be a group and let L be a subgroup of Z(G) (note that we may allow L = Z(G)), and suppose that G/L is cyclic. Prove that G is Abelian.

Solution: Since G/L is cyclic, G/Z(G) = (wL) for some $w \in G$. Let $a, b \in G$. Since G/L = (wL), $aL = w^nL$ and $bL = w^mL$ for some integers n, m. Hence, $a = w^n z_1$ and $b = w^m z_2$ for some $z_1, z_2 \in L$ by Theorem 1.2.26. Since $z_1, z_2 \in L \subset Z(G)$ and $w^n w^m = w^m w^n$, we have $ab = w^n z_1 w^m z_2 = w^m z_2 w^n z_1 = ba$. Thus, G is Abelian.

QUESTION 2.6.7 Let G be a group such that Ord(G) = pq for some prime numbers p, q. Prove that either Ord(Z(G)) = 1 or G is Abelian.

Solution: Deny. Hence 1 < Ord(Z(G)) < pq. Since Z(G) is a subgroup of G, Ord(Z(G)) divides Ord(G) = pq by Theorem 1.2.27. Hence, Ord(Z(G)) is either p or q. We may assume that Ord(Z(G)) = p. Hence, Ord(G/Z(G)) = [G:Z(G)] = Ord(G)/Ord(Z(G)) = q is prime. Thus, G/Z(G) is cyclic by Question 2.5.19. Hence, by the previous Question, G is Abelian, A contradiction. Thus, our denial is invalid. Therefore, either Ord(Z(G)) = 1 or Ord(Z(G)) = pq,i.e. G is Abelian.

QUESTION 2.6.8 Give an example of a non-Abelian group, say, G, such that G has a normal subgroup H and G/H is cyclic.

Solution: Let $G = S_3$, and let $a = (1, 2, 3) \in G$. Then Ord(a) = 3. Let H = (a). Then Ord(H) = Ord(a) = 3. Since [G:H] = 2, H is a normal subgroup of G by Question 2.6.1. Thus, G/H is a group and Ord(G/H) = 2. Hence, G/H is cyclic by Question 2.5.19. But we know that $G = S_3$ is not Abelian group.

QUESTION 2.6.9 Prove that every subgroup of an Abelian group is normal.

Solution: Let H be a subgroup of an Abelian group G. Let $g \in G$. Then $gHg^{-1} = gg^{-1}H = eH = H$. Hence, H is normal by Theorem 1.2.32.

QUESTION 2.6.10 Let Q^+ be the set of all positive rational numbers, and let Q^* be the set of all nonzero rational numbers. We know that Q^+ under multiplication is a (normal) subgroup of Q^* . Prove that $[Q^* : Q^+] = 2$. **Solution:** Since $-1 \in Q^* \setminus Q^+$, $-1Q^+$ is a left coset of Q^+ in Q^* . Since $Q^+ \cap -1Q^+ = \{0\}$ and $Q^+ \cup -1Q^+ = Q^*$, we conclude that Q^+ and $-1Q^+$ are the only left cosets of Q^+ in Q^* . Hence, $[Q^* : Q^+] = 2$.

QUESTION 2.6.11 Prove that Q (the set of all rational numbers) under addition, has no proper subgroup of finite index.

Solution: Deny. Hence Q under addition, has a proper subgroup, say, H, such that [Q : H] = n is a finite number. Since Q is Abelian, H is a normal subgroup of Q by Question 2.6.9. Thus, Q/H is a group and Ord(Q/H) = [Q : H] = n. Now, let $q \in Q$. Hence, by Theorem 1.2.30, $(qH)^n = q^n H = H$. Thus, $q^n = h \in H$ by Theorem 1.2.26. Since addition is the operation on Q, q^n means nq. Thus, $q^n = nq \in H$ for each $q \in Q$. Since $ny \in H$ for each $y \in Q$ and $q/n \in Q$, we conclude that $q = n(q/n) \in H$. Thus, $Q \subset H$. A contradiction since H is a proper subgroup of Q. Hence, our denial is invalid. Thus, Q has no proper subgroup of finite index.

QUESTION 2.6.12 Prove that R^* (the set of all nonzero real numbers) under multiplication, has a proper subgroup of finite index.

Solution: Let $H = R^+$ (the set of all nonzero positive real numbers). Then, it is clear that H is a (normal) subgroup of R^* . Since $R = R^+ \cup -1R^+$ and $R^+ \cap -1R^+ = \{0\}$, we conclude that R^+ and $-1R^+$ are the only left cosets of R^+ in R^* . Hence, $[R^* : R^+] = 2$.

QUESTION 2.6.13 Prove that R^+ (the set of all nonzero positive real numbers) under multiplication, has no proper subgroup of finite index.

Solution: Deny. Hence, R^+ has a proper subgroup, say, H, such that $[R^+:H] = n$ is a finite number. Let $r \in R^+$. Since $rH \in R^+/H$ and $Ord(R^+/H) = n$, we conclude that $(rH)^n = r^nH = H$ by Theorem 1.2.30. Thus, $r^n \in H$ for each $r \in R^+$. In particular, $r = (\sqrt[n]{r})^n \in H$. Thus, $R^+ \subset H$. A contradiction since H is a proper subgroup of R^+ . Hence, R^+ has no proper subgroups of finite index.

QUESTION 2.6.14 Prove that C^* (the set of all nonzero complex numbers) under multiplication, has no proper subgroup of finite index.

Solution : Just use similar argument as in the previous Question.
QUESTION 2.6.15 Prove that R^+ (the set of all positive nonzero real numbers) is the only proper subgroup of R^* (the set of all nonzero real numbers) of finite index.

Solution: Deny. Then R^* has a proper subgroup $H \neq R^+$ such that $[R^* : H] = n$ is finite. Since $Ord(R^*/H) = [R^* : H] = n$, we have $(xH)^n = x^n H = H$ for each $x \in R^*$ by Theorem 1.2.30. Thus, $x^n \in H$ for each $x \in R^*$. Now, let $x \in R^+$. Then $x = (\sqrt[n]{x})^n \in H$. Thus, $R^+ \subset H$. Since $H \neq R^+$ and $R^+ \subset H$, we conclude that H must contain a negative number, say, -y, for some $y \in R^+$. Since $1/y \in R^+ \subset H$ and $-y \in H$ and H is closed, we conclude that $-y(1/y) = -1 \in H$. Since H is closed and $R^+ \subset H$ and $-1 \in H$, $-R^+$ (the set of all nonzero negative real numbers) $\subset H$. Since $R^+ \subset H$ and $-R^+ \subset H$, we conclude that $H = R^*$. A contradiction since H is a proper subgroup of R^* . Hence, R^+ is the only proper subgroup of R^* of finite index.

QUESTION 2.6.16 Let N be a normal subgroup of a group G. If H is a subgroup of G, then prove that $NH = \{nh : n \in N \text{ and } h \in H\}$ is a subgroup of G.

Solution: Let $x, y \in NH$. By Theorem 1.2.7 We need only to show that $x^{-1}y \in NH$. Since $x, y \in NH$, $x = n_1h_1$ and $y = n_2h_2$ for some $n_1, n_2 \in N$ and for some $h_1, h_2 \in H$. Hence, we need to show that $(n_1h_1)^{-1}n_2h_2 = h_1^{-1}n_1^{-1}n_2h_2 \in NH$. Since N is normal, we have $h_1^{-1}n_1^{-1}n_2h_1 = n_3 \in N$. Hence, $h_1^{-1}n_1^{-1}n_2h_2 = (h_1^{-1}n_1^{-1}n_2h_1)h_1^{-1}h_2 = n_3h_1^{-1}h_2 \in NH$. Thus, NH is a subgroup of G.

QUESTION 2.6.17 Let N, H be normal subgroups of a group G. Prove that $NH = \{nh : n \in N \text{ and } h \in H\}$ is a normal subgroup of G.

Solution: Let $g \in G$. Then $g^{-1}NHg = g^{-1}Ngg^{-1}Hg = (g^{-1}Ng)(g^{-1}Hg) = NH$.

QUESTION 2.6.18 Let N be a normal cyclic subgroup of a group G. If H is a subgroup of N, then prove that H is a normal subgroup of G.

Solution: Since N is cyclic, N = (a) for some $a \in N$. Since H is a subgroup of N and every subgroup of a cyclic group is cyclic and N = (a), we have $H = (a^m)$ for some integer m. Let $g \in G$, and let $b \in H = (a^m)$. Then $b = a^{mk}$ for some integer k. Since N =(a) is normal in G, we have $g^{-1}ag = a^n \in N$ for some integer n. Since $g^{-1}ag = a^n$ and by Question 2.1.1 $(g^{-1}a^{mk}g) = (g^{-1}ag)^{mk}$, we have $g^{-1}bg = g^{-1}a^{mk}g = (g^{-1}ag)^{mk} = (a^n)^{mk} = a^{mkn} \in H = (a^m)$

QUESTION 2.6.19 Let G be a finite group and H be a subgroup of G with an odd number of elements such that [G:H] = 2. Prove that the product of all elements of G (taken in any order) does not belong to H.

Solution: Since [G:H] = 2, by Question 2.6.1 we conclude that H is normal in G. Let $g \in G \setminus H$. Since [G:H] = 2, H and gH are the only elements of the group G/H. Since [G:H] = Ord(G)/Ord(H) = 2, Ord(G)= 2Ord(H). Since Ord(H) = m is odd and Ord(G) = 2Ord(H) = 2m, we conclude that there are exactly m elements that are in G but not in H. Now, say, $x_1, x_2, x_3, ..., x_{2m}$ are the elements of G. Since $x_iH = gH$ for each $x_i \in G \setminus H$ and $x_iH = H$ for each $x_i \in H$ and G/H is Abelian(cyclic), we have $x_1x_2x_3...x_{2m}H = x_1Hx_2H...x_{2m}H = g^mHH = g^mH$. Since m is odd and Ord(gH) = 2 in G/H and 2 divides m - 1, we have $g^{m-1}H = H$ and hence $g^mH = g^{m-1}HgH = HgH = gH \neq H$. Since $x_1x_2x_3...x_{2m}H \neq H$, the product $x_1x_2x_3...x_{2m}$ does not belong to H by Theorem 1.2.26.

QUESTION 2.6.20 Let H be a normal subgroup of a group G such that Ord(H) = 2. Prove that $H \subset Z(R)$.

Solution: Since Ord(H) = 2, we have $H = \{e, a\}$. Let $g \in G$ and $g \neq a$. Since $g^{-1}Hg = H$, we conclude that $g^{-1}ag = a$. Hence, ag = ga. Thus, $a \in Z(R)$. Thus, $H \subset Z(R)$.

QUESTION 2.6.21 Let G be a finite group and H be a normal subgroup of G. Suppose that Ord(aH) = n in G/H for some $a \in G$. Prove that G contains an element of order n.

Solution: Since Ord(aH) = n, Ord(aH) divides Ord(a) by Question 2.6.3. Hence, Ord(a) = nm for some positive integer m. Thus, by Question 2.1.12, we have $Ord(a^m) = Ord(a)/gcd(m, nm) = nm/m = n$. Hence, $a^m \in G$ and $Ord(a^m) = n$.

QUESTION 2.6.22 Find an example of an infinite group, say, G, such that G contains a normal subgroup H and Ord(aH) = n in G/H but G does not contain an element of order n.

Solution: Let G = Z under normal addition, and n = 3, and H = 3Z. Then H is normal in Z and Ord(1+3Z) = 3, but Z does not contain an element of order 3.

QUESTION 2.6.23 Let H, N be finite subgroups of a group G, say, Ord(H) = k and Ord(N) = m such that gcd(k,m) = 1. Prove that $HN = \{hn : h \in H \text{ and } n \in N\}$ has exactly km elements.

Solution: Suppose that $h_1n_1 = h_2n_2$ for some $n_1, n_2 \in N$ and for some $h_1, h_2 \in H$. We will show that $h_1 = h_2$ and $n_1 = n_2$. Hence, $n_1n_2^{-1} = h_1^{-1}h_2$. Since Ord(N) = m, we have $e = (n_1n_2^{-1})^m = (h_1^{-1}h_2)^m$. Thus, $Ord(h_1h_2^{-1})$ divides m. Since gcd(k,m) = 1 and $Ord(h_1h_2^{-1})$ divides both k and m, we conclude that $Ord(h_1^{-1}h_2) = 1$. Hence, $h_1^{-1}h_2 = e$. Thus, $h_2 = h_1$. Also, since Ord(H) = k, we have $e = (h_1^{-1}h_2)^k = (n_1n_2^{-1})^k$. Thus, by a similar argument as before, we conclude that $n_1 = n_2$. Hence, HN has exactly km elements.

QUESTION 2.6.24 Let N be a normal subgroup of a finite group G such that Ord(N) = 7 and ord(aN) = 4 in G/N for some $a \in G$. Prove that G has a subgroup of order 28.

Solution: Since G/N has an element of order 4 and G is finite, G has an element, say, b, of order 4 by Question 2.6.21. Thus, H = (b) is a cyclic subgroup of G of order 4. Since N is normal, we have NH is a subgroup of G by Question 2.6.16. Since gcd(7,4) = 1, Ord(NH) = 28 by the previous Question.

QUESTION 2.6.25 Let G be a finite group such that $Ord(G) = p^n m$ for some prime number p and positive integers n, m and gcd(p,m) = 1. Suppose that N is a normal subgroup of G of order p^n . Prove that if H is a subgroup of G of order p^k , then $H \subset N$.

Solution: Let H be a subgroup of G of order p^k , and let $x \in H$. Then $xN \in G/N$. Since $\operatorname{Ord}(G/N) = [G:N] = m$, we have $x^mN = N$ by Theorem 1.2.30. Since $x \in H$ and $\operatorname{Ord}(H) = p^k$, we conclude that $\operatorname{Ord}(x) = p^j$. Thus, $x^{p^j}N = N$. Since $x^mN = x^{p^j}N = N$, we conclude that $\operatorname{Ord}(xN)$ divides both m and p^j . Hence, since $gcd(p,m) = gcd(p^j,m) = 1$, we have $\operatorname{Ord}(xN) = 1$. Thus, xN = N. Hence, $x \in N$ by Theorem 1.2.26.

QUESTION 2.6.26 Let H be a subgroup of a group G, and let $g \in G$. Prove that $D = g^{-1}Hg$ is a subgroup of G. Furthermore, if Ord(H) = n, then $Ord(g^{-1}Hg) = Ord(H) = n$.

Solution: Let $x, y \in D$. Then $x = g^{-1}h_1g$ and $y = g^{-1}h_2g$ for some $h_1, h_2 \in H$. Hence, $x^{-1}y = (g^{-1}h_1^{-1}g)(g^{-1}h_2g) = g^{-1}h_1^{-1}h_2g \in g^{-1}Hg$

since $h_1^{-1}h_2 \in H$. Thus, $D = g^{-1}Hg$ is a subgroup of G by Theorem 1.2.7. Now, suppose that Ord(H) = n. Let $g \in G$. We will show that $Ord(g^{-1}Hg) = n$. Suppose that $g^{-1}h_1g = g^{-1}h_2g$. Since G is a group and hence it satisfies left-cancelation and right-cancelation, we conclude that $h_1 = h_2$. Thus, $Ord(g^{-1}Hg) = Ord(H) = n$.

QUESTION 2.6.27 Suppose that a group G has a subgroup, say, H, of order n such that H is not normal in G. Prove that G has at least two subgroups of order n.

Solution: Since *H* is not normal in *G*, we have $g^{-1}Hg \neq H$ for some $g \in G$. Thus, by Question 2.6.26, $g^{-1}Hg$ is another subgroup of *G* of order *n*.

QUESTION 2.6.28 Let n be a positive integer and G be a group such that G has exactly two subgroups, say, H and D, of order n. Prove that if H is normal in G, then D is normal in G.

Solution: Suppose that H is normal in G and D is not normal in G. Since D is not normal in G, we have $g^{-1}Dg \neq D$ for some $g \in G$. Since $g^{-1}Dg$ is a subgroup of G of order n by Question 2.6.26 and $g^{-1}Dg \neq D$ and D, H are the only subgroups of G of order n, We conclude that $g^{-1}Dg = H$. Hence, $D = gHg^{-1}$. But, since H is normal in G, we have $g^{-1}Hg = H = gHg^{-1} = D$. A contradiction. Thus, $g^{-1}Dg = D$ for each $g \in G$. Hence, D is normal in G.

QUESTION 2.6.29 Let H be a subgroup of a group G. Prove that H is normal in G if and only if $g^{-1}Hg \subset H$ for each $g \in G$.

Solution: We only need to prove the converse. Since $g^{-1}Hg \subset H$ for each $g \in G$, we need only to show that $H \subset g^{-1}Hg$ for each $g \in G$. Hence, let $h \in H$ and $g \in G$. Since $gHg^{-1} \subset H$, we have $ghg^{-1} \in H$. Since $g^{-1}Hg \subset H$ and $ghg^{-1} \in H$, we conclude that $g^{-1}(ghg^{-1})g = h \in g^{-1}Hg$. Thus, $H \subset g^{-1}Hg$ for each $g \in G$. Hence, $g^{-1}Hg = H$ for each $g \in G$. Thus, H is normal in G.

QUESTION 2.6.30 Suppose that a group G has a subgroup of order n. Prove that the intersection of all subgroups of G of order n is a normal subgroup of G. **Solution:** Let D be the intersection of all subgroups of G of order n. Let $g \in G$. If $g^{-1}Dg$ is a subset of each subgroup of G of order n, then $g^{-1}Dg$ is a subset of the intersection of all subgroups of G of order n. Hence, $g^{-1}Dg \subset D$ for each $g \in G$ and therefore D is normal in G. Hence, assume that $g^{-1}Dg$ is not contained in a subgroup, say, H, of G of order n for some $g \in G$. Thus D is not contained in gHg^{-1} , for if D is contained in gHg^{-1} , then $g^{-1}Dg$ is contained in H which is a contradiction. But gHg^{-1} is a subgroup of G of order n by Question 2.6.26, and Hence, $D \subset gHg^{-1}$, a contradiction. Thus, $g^{-1}Dg = D$ for each $g \in G$. Hence, D is normal in G.

QUESTION 2.6.31 Suppose that H and K are Abelian normal subgroups of a group G such that $H \cap K = \{e\}$. Prove that HK is an Abelian normal subgroup of G.

Solution: Let $h \in H$ and $k \in K$. Since $hkh^{-1}k^{-1} = (hkh^{-1})k^{-1}$ and K is normal, $hkh^{-1} \in K$. Thus, $(hkh^{-1})k^{-1} \in K$. Also, since $hkh^{-1}k^{-1} = h(kh^{-1}k^{-1})$ and H is normal, we have $kh^{-1}k^{-1} \in H$. Thus, $h(kh^{-1}k^{-1}) \in H$. Since $H \cap K = \{e\}$, we conclude that $hkh^{-1}k^{-1} = e$. Thus, hk = kh. Hence, HK is Abelian. Now, HK is normal by Question 2.6.17.

2.7 Group Homomorphisms and Direct Product

Observe that when we say that a map Φ from G ONTO H, then we mean that $\Phi(G) = H$, i.e., ϕ is surjective.

QUESTION 2.7.1 Let Φ be a group homomorphism from a group G to a group H. Let D be a subgroup of G of order n. Prove that $Ord(\Phi(D))$ divides n.

Solution: Define a new group homomorphis, say $\alpha : D \longrightarrow \Phi(D)$ such that $\alpha(d) = \Phi(d)$ for each $d \in D$. Clearly, α is a group homomorphism from D ONTO $\alpha(D) = \Phi(D)$. Hence, by Theorem 1.2.35, we have $D/Ker(\alpha) \cong \alpha(D) = \Phi(D)$. Thus, $Ord(D)/Ord(Ker(\alpha)) = Ord(\Phi(D))$. Hence, $n = Ord(ker(\alpha))Ord(\Phi(D))$. Thus, Ord(D) divides n.

QUESTION 2.7.2 Let Φ be a group homomorphism from a group GONTO a group H. Prove that $G \cong H$ if and only if $Ker(\Phi) = \{e\}$. **Solution:** Suppose that $G \cong H$. Hence, $\Phi(x) = e_H($ the identity in H) iff x = e (the identity of G). Hence, $Ker(\Phi) = \{e\}$. Conversely, suppose that $Ker(\Phi) = \{e\}$. Hence, by Theorem 1.2.35, we have $G/Ker(\Phi) = G/\{e\} = G \cong \Phi(G) = H$.

QUESTION 2.7.3 Let Φ be a group homomorphism from a group G to a group H. Let K be a subgroup of H. Prove that $\Phi^{-1}(K) = \{x \in G : \Phi(x) \in K\}$ is a subgroup of G.

Solution: Let $x, y \in \Phi^{-1}(K)$. Then $\Phi(x) = k \in K$. Hence, by Theorem 1.2.34(2), $\Phi(x^{-1}) = (\Phi(x))^{-1} = k^{-1} \in K$. Thus, $x^{-1} \in \Phi^{-1}(K)$. Since $\Phi(x^{-1}y) = \Phi(x^{-1})\Phi(y) = k^{-1}\Phi(y) \in K$, we have $x^{-1}y \in \Phi^{-1}(K)$. Hence, $\Phi^{-1}(K)$ is a subgroup of G by Theorem 1.2.7.

QUESTION 2.7.4 Let Φ be a group homomorphism from a group G to a group H, and let K be a normal subgroup of H. Prove that $D = \Phi^{-1}(K)$ is a normal subgroup of G.

Solution: Let $g \in G$. Then $\Phi(g^{-1}Dg) = (\Phi(g))^{-1}\Phi(D)\Phi(g) = (\Phi(g))^{-1}K\Phi(g) = K$. Since $\Phi(g^{-1}Dg) = K$ for each $g \in G$, we conclude that $g^{-1}Dg \subset D$ for each $g \in G$. Thus, D is normal in G by Question 2.6.29.

QUESTION 2.7.5 Let Φ be a ring homomorphism from a group G to a group H. Suppose that D is a subgroup of G and K is a subgroup of Hsuch that $\Phi(D) = K$. Prove that $\Phi^{-1}(K) = Ker(\Phi)D$.

Solution: Let $x \in Ker(\Phi)D$. Then x = zd for some $z \in Ker(\Phi)$ and for some $d \in D$. Hence, $\Phi(x) = \Phi(zd) = \Phi(z)\Phi(d) = e_H\Phi(d) = \Phi(d) \in K$. Thus, $Ker(\Phi)D \subset \Phi^{-1}(K)$. Now, let $y \in \Phi^{-1}(K)$. Then $\Phi(w) = y$ for some $w \in G$. Since $\Phi(D) = K$, we have $\Phi(d) = y$ for some $d \in D$. Since Gis group, we have w = ad for some $a \in G$. Now, we show that $a \in Ker(\Phi)$. Hence, $y = \Phi(w) = \Phi(ad) = \Phi(a)\Phi(d) = \Phi(a)y$. Thus, $\Phi(a)y = y$. Hence, $\Phi(a) = e_H$. Thus, $a \in Ker(\Phi)$. Hence, $w = ad \in Ker(\Phi)D$. Thus, $\Phi^{-1}(K) \subset Ker(\Phi)D$. Hence, $\Phi^{-1}(K) = Ker(\Phi)D$.

QUESTION 2.7.6 Let Φ be a group homomorphism from a group Gto a group H. Suppose that $\Phi(g) = h$ for some $g \in G$ and for some $h \in H$. Prove that $\Phi^{-1}(h) = \{x \in G : \Phi(x) = h\} = Ker(\Phi)g$. Furthermore, if $Ord(Ker(\Phi)) = n$ and $\Phi(g) = h$, then $Ord(\Phi^{-1}(h)) = n$, i.e., There are exactly n elements in G that map to $h \in H$. Hence, if Φ is

onto and $Ord(Ker(\Phi)) = n$ and D is a subgroup of H of order m, then $Ord(\Phi^{-1}(D)) = nm$. In particular, if N is a normal subgroup of G of order n and G/N has a subgroup of order m, then $\Phi^{-1}(D)$ is a subgroup of G of order nm.

Solution: We just use a similar argument as in the previous Question. Now, suppose that $Ord(Ker(\Phi)) = n$ and $\Phi(g) = h$. Since $\Phi^{-1}(h) = gKer(\Phi)$, we conclude that $Ord(\Phi^{-1}(h)) = Ord(gKer(\Phi)) = n$.

QUESTION 2.7.7 Let H be an infinite cyclic group. Prove that H is isomorphic to Z.

Solution: Since H is cyclic, H = (a) for some $a \in H$. Define $\Phi : H \longrightarrow Z$ such that $\Phi(a^n) = n$ for each $n \in Z$. It is easy to check that Φ is onto. Also, $\Phi(a^n a^m) = \Phi(a^{n+m}) = n + m = \Phi(a^n)\Phi(a^m)$. Hence, Φ is a group homomorphism. Now, we show that Φ is one to one. Suppose that $\Phi(a^n) = \Phi(a^m)$. Then n = m. Thus, Φ is one to one. Hence, Φ is an isomorphism. Thus, $H \cong Z$.

QUESTION 2.7.8 Let G be a finite cyclic group of order n. Prove that $G \cong Z_n$.

Solution: Since G is a finite cyclic group of order n, we have $G = (a) = \{a^0 = e, a^1, a^2, a^3, ..., a^{n-1}\}$ for some $a \in G$. Define $\Phi : G \longrightarrow Z_n$ such that $\Phi(a^i) = i$. By a similar argument as in the previous Question, we conclude that $G \cong Z_n$.

QUESTION 2.7.9 Let k, n be positive integers such that k divides n. Prove that $Z_n/(k) \cong Z_k$.

Solution: Since Z_n is cyclic, we have $Z_n/(k)$ is cyclic by Theorem 1.2.34(6). Since Ord((k)) = n/k, we have $order(Z_n/(k)) = k$. Since $Z_n/(k)$ is a cyclic group of order k, $Z_n/(k) \cong Z_k$ by the previous Question.

QUESTION 2.7.10 Prove that Z under addition is not isomorphic to Q under addition.

Solution: Since Z is cyclic and Q is not cyclic, we conclude that Z is not isomorphic to Q.

QUESTION 2.7.11 Let Φ be a group homomorphism from a group G to a group H. Prove that Φ is one to one if and only if $Ker(\Phi) = \{e\}$.

Solution: Suppose that Φ is one to one. Hence, $\Phi(x) = e_H$ iff $x = e_G$ the identity in G. Hence, $Ker(\Phi) = \{e\}$. Now, suppose that $Ker(\Phi) = \{e\}$. Let $x, y \in G$ such that $\Phi(x) = \Phi(y)$. Hence, $\Phi(x)[\Phi(y)]^{-1} = \Phi(x)\Phi(y^{-1}) = \Phi(xy^{-1}) = e_H$. Since $Ker(\Phi) = \{e\}$, we conclude that $xy^{-1} = e_G$ the identity in G. Hence, x = y. Thus, Φ is one to one.

QUESTION 2.7.12 Suppose that G is a finite Abelian group of order n and m is a positive integer such that gcd(n,m) = 1. Prove that Φ : $G \longrightarrow G$ such that $\Phi(g) = g^m$ is an automorphism (group isomorphism) from G onto G.

Solution: Let $g_1, g_2 \in G$. Then $\Phi(g_1g_2) = (g_1g_2)^m = g_1^m g_2^m$ since G is Abelian. Hence, $\Phi(g_1g_2) = g_1^m g_2^m = \Phi(g_1)\Phi(g_2)$. Thus, Φ is a group homomorphism. Now, let $b \in G$. Since $b^n = e$ and gcd(n,m) = 1, By Question 2.1.10 we have $b = g^m$ for some $g \in G$. Hence, $\Phi(g) = b$. Thus, Φ is Onto. Now, we show that Φ is one to one. By the previous Question, it suffices to show that $Ker(\Phi) = \{e\}$. Let $g \in Ker(\Phi)$. Then $\Phi(g) = g^m = e$. Thus, Ord(g) divides m. Since Ord(g) divides m and Ord(g) divides n and gcd(n,m) = 1, we conclude that Ord(g) = 1. Hence, g = e. Thus, $Ker(\Phi) = \{e\}$. Hence, Φ is an isomorphism from G Onto G.

QUESTION 2.7.13 Suppose that G is a finite Abelian group such that G has no elements of order 2. Prove that $\Phi: G \longrightarrow G$ such that $\Phi(g) = g^2$ is a group isomorphism (an automorphism) from G onto G.

Solution: Since G has no elements of order 2 and 2 is prime, we conclude that 2 does not divide n by Theorem 1.2.31. Hence, n is an odd number. Thus, since gcd(2, n) = 1, we conclude that Φ is an isomorphism by the previous Question.

QUESTION 2.7.14 Let $n = m_1m_2$ such that $gcd(m_1, m_2) = 1$. Prove that $H = Z_{m_1} \oplus Z_{m_2} \cong Z_n$.

Solution: Since Z_{m_1} and Z_{m_2} are cyclic and $gcd(m_1, m_2) = 1$, By Theorem 1.2.36 we conclude that H is a cyclic group of order $n = m_1m_2$. Hence, $H \cong Z_n$ by Question 2.7.8. **QUESTION 2.7.15** Is there a nontrivial group homomorphism from Z_{24} onto $Z_6 \oplus Z_2$?

Solution: No. For suppose that Φ is a group homomorphism from Z_{24} onto $Z_6 \oplus Z_2$. Then by Theorem 1.2.35 we have $Z_{24}/Ker(\Phi) \cong Z_6 \oplus Z_2$. A contradiction since $Z_{24}/Ker(\Phi)$ is cyclic by Theorem 1.2.34(6) and by Theorem 1.2.36 $Z_6 \oplus Z_2$ is not cyclic (observe that $gcd(2, 6) = 2 \neq 1$).

QUESTION 2.7.16 Let G be a group of order n > 1. Prove that $H = Z \oplus G$ is never cyclic.

Solution: Deny. Then H is cyclic. Since Z = (1) and Ord(G) > 1, we have H = ((1,g)) for some $g \in G$ such that $g \neq e$. Since $(1,e) \in H$, we have $(1,g)^n = (1,e)$ for some $n \in Z$. Thus, $(n,g^n) = (1,e)$. Hence, n = 1. Thus, g = e. A contradiction since $g \neq e$. Hence, H is never cyclic.

QUESTION 2.7.17 Suppose That $G = H \oplus K$ is cyclic such that Ord(K) > 1 and Ord(H) > 1. Prove that H and K are finite groups.

Solution: Since G is cyclic, we have H and K are cyclic. We may assume that H is infinite. By Question 2.7.7, $H \cong Z$. Hence, $Z \oplus K$ is cyclic, which is a contradiction by the previous Question.

QUESTION 2.7.18 Let $G = Z_n \oplus Z_m$ and $d = p^k$ for some prime number p such that d divides both n and m. Prove that G has exactly $d\phi(d) + [d - \phi(d)]\phi(d)$ elements of order d.

Solution: Since Z_n is cyclic, by Theorem 1.2.14 we have exactly $\phi(d)$ elements of order d in Z_n . Hence, let $g = (z_1, z_2) \in G$ such that $\operatorname{Ord}(g) = d$. Since $d = p^k$ and p is prime and by Theorem 1.2.37 $\operatorname{Ord}(g) = lcm(Ord(z_1), Ord(z_2)) = p^k = d$, we conclude that either $Ord(z_1) = d$ and $dz_2 = 0$ or $Ord(z_2) = d$ and $dz_1 = 0$. Hence, if $Ord(z_1) = d$ and $dz_2 = 1$, then Ord(g) = d. Thus, there are exactly $d\phi(d)$ elements in D of this kind. If $Ord(z_2) = d$ and $dz_1 = 0$, then Ord(g) = d. Hence, we have exactly $d\phi(d)$ elements in G of this kind. If $Ord(z_1) = d$ and $Ord(z_2) = d$, then there are exactly $\phi(d)\phi(d)$ elements of this kind, but this kind of elements has been included twice in the first calculation and in the second calculation. Hence, number of all elements in G of order d is $d\phi(d) + d\phi(d) - \phi(d)\phi(d) = d\phi(d) + [d - \phi(d)]\phi(d)$

QUESTION 2.7.19 *How many elements of order* 4 *does* $G = Z_4 \oplus Z_4$ *have* ?

Solution: Since $4 = 2^2$, By the previous Question, number of elements of order 4 in G is $4\phi(4) + [4 - \phi(4)]\phi(4) = [4]2 + [2]2 = 8 + 4 = 12$.

QUESTION 2.7.20 *How many elements of order* 6 *does the group* $G = Z_6 \oplus Z_6$ *have?*

Solution: Let $g = (z_1, z_2) \in G$ such that Ord(g) = 6. Since $Ord(g) = lcm(Ord(z_1), Ord(z_2)) = 6$, we conclude that $Ord(z_1) = 6$ and $6z_2 = 0$ or $Ord(z_2) = 6$ and $6z_1 = 0$ or $Ord(z_1) = 2$ and $Ord(z_2) = 3$ or $Ord(z_1) = 3$ and $Ord(z_2) = 2$. Hence, number of elements in G of order 6 is $(6\phi(6) + 6\phi(6) - \phi(6)\phi(6)) + (\phi(2)\phi(3)) + (\phi(3)\phi(2)) = (12 + 12 - 4) + 2 + 2 = 20 + 2 + 2 = 24$.

QUESTION 2.7.21 How many elements of order 6 does $G = Z_{12} \oplus Z_2$ have?

Solution: Let $g = (z_1, z_2) \in G$. Since $Ord(g) = lcm(Ord(z_1), Ord(z_2)) = 6$, we conclude that $Ord(z_1) = 6$ and $6z_2 = 2z_2 = 0$ or $Ord(z_1) = 3$ and $Ord(z_2^2) = 2$. Hence number of elements of order 6 in G is $2\phi(6) + \phi(3)\phi(2) = 4 + 2 = 6$.

QUESTION 2.7.22 *Find the order of* $g = (6, 4) \in G = Z_{24} \oplus Z_{16}$ *.*

Solution: Ord(g) = lcm(Ord(6), Ord(4)) = lcm(4, 4) = 4.

QUESTION 2.7.23 *Prove that* $H = Z_8 \oplus Z_2 \not\cong G = Z_4 \oplus Z_4$ *.*

Solution: We just observe that G has no elements of order 8, but the element $(1,0) \in H$ has order equal to 8. Thus, $H \not\cong G$.

QUESTION 2.7.24 Let Φ be a group homomorphism from Z_{13} to a group G such that Φ is not one to one. Prove that $\Phi(x) = e$ for each $x \in Z_{13}$.

Solution: Since Φ is not one to one, we have $Ord(Ker(\Phi)) > 1$. Since $Ord(Ker(\Phi)) > 1$ and it must divide 13 and 13 is prime, we conclude that $Ord(Ker(\Phi)) = 13$. Hence, $\Phi(x) = e$ for each $x \in Z_{13}$.

QUESTION 2.7.25 Let Φ be a group homomorphism from Z_{24} onto Z_8 . Find $Ker(\Phi)$.

Solution: Since $Z_{24}/Ker(\Phi) \cong Z_8$ by Theorem 1.2.35 and $Ord(Z_8) = 8$ and $Ord(Z_{24}) = 24$, we conclude that $Ord(Ker(\Phi)) = 3$. Since Z_{24} is cyclic, by Theorem 1.2.12 Z_{24} has a unique subgroup of order 3. Since $Ker(\Phi)$ is a subgroup of Z_{24} and $Ord(Ker(\Phi)) = 3$, $Ker(\Phi)$ is the only subgroup of Z_{24} of order 3. Hence, we conclude that $Ker(\Phi) = \{0, 8, 16\}$.

QUESTION 2.7.26 Is there a group homomorphism from Z_{28} onto Z_6 ?

Solution: NO. For let Φ be a group homomorphism from Z_{28} onto Z_6 . Then by Question 2.7.1 we conclude that 6 divides 28. A Contradiction. Hence, there is no group homomorphism from Z_{28} onto Z_6 .

QUESTION 2.7.27 Let Φ be a group homomorphism from Z_{20} to Z_8 such that $Ker(\Phi) = \{0, 4, 8, 12, 16\}$ and $\Phi(1) = 2$. Find all elements of Z_{20} that map to 2, i.e., find $\Phi^{-1}(2)$.

Solution: Since $\Phi(1) = 2$, By Question 2.7.6 we have $\Phi^{-1}(2) = Ker(\Phi) + 1 = \{1, 5, 9, 13, 17\}.$

QUESTION 2.7.28 Let Φ be a group homomorphism from Z_{28} to Z_{16} such that $\Phi(1) = 12$. Find $Ker(\Phi)$.

Solution: Since Z_{28} is cyclic and $Z_{28} = (1)$ and $\Phi(1) = 12$, we conclude that $\Phi(Z_{28}) = (\Phi(1)) = (12)$. Hence, $Ord(\Phi(Z_{28})) = Ord(\Phi(1)) =$ Ord(12) = 4. Since $Z_{28}/Ker(\Phi) \cong \Phi(Z_{28})$ by Theorem 1.2.35 and $Ord(\Phi(Z_{28}) = 4$, we conclude that $Ord(Ker(\Phi)) = 7$. Since Z_{28} is cyclic, Z_{28} has a unique subgroup of order 7 by Theorem 1.2.12. Hence, $Ker(\Phi) = \{0, 4, 8, 12, 16, 20, 24\}.$

QUESTION 2.7.29 Let Φ be a group homomorphism from Z_{36} to Z_{20} . Is it possible that $\Phi(1) = 2$?

Solution: NO. because $Ord(\Phi(1)) = Ord(2)$ must divide Ord(1) by Theorem 1.2.34. But since $1 \in Z_{36}$ and $\Phi(1) = 2 \in Z_{20}$, Ord(1) = 36 and Ord(2) = 5. Hence, 5 does not divide 36.

QUESTION 2.7.30 Find all group homomorphism from Z_8 to Z_6 .

Solution: Since Z_8 is cyclic and $Z_8 = (1)$, a group homomorphism, say, Φ , from Z_8 to Z_6 is determined by $\Phi(1)$. Now, by Theorem 1.2.34 $Ord(\Phi(1) \in Z_6)$ must divide $Ord(1 \in Z_8)$. Also, since $\Phi(1) \in Z_6$,

 $Ord(\Phi(1))$ must divide 6. Hence, $Ord(\Phi(1) \in Z_6)$ must divide both numbers 8 and 6. Hence, $Ord(\Phi(1)) = 1$ or 2. Since $0 \in Z_6$ has order 1 and $3 \in Z_6$ is the only element in Z_6 has order 2, we conclude that the following are all group homomorphisms from Z_8 to Z_6 : (1) $\Phi(1) = 0$. (2) $\Phi(1) = 3$.

QUESTION 2.7.31 Find all group homomorphism from Z_{30} to Z_{20} .

Solution: Once again, since $Z_{30} = (1)$ is cyclic, a group homomorphism Φ from Z_{30} to Z_{20} is determined by $\Phi(1)$. Now, since $\Phi(1)$ divides both numbers 20 and 30, we conclude that the following are all possibilities for $Ord(\Phi(1))$: 1, 2, 5, 10. By Theorem there are exactly $\phi(1) = 1$ element in Z_{20} of order 1 and $\phi(2) = 1$ element in Z_{20} of order 2 and $\phi(5) = 4$ elements in Z_{20} of order 5 and $\phi(10) = 4$ elements in Z_{20} of order 10. Now, 0 is of order 1, 10 is the only element in Z_{20} of order 2, each element in $\{4, 8, 12, 16\}$ is of order 5, and each element in $\{2, 6, 14, 18\}$ is of order 10. Thus, the following are all group homomorphisms from Z_{30} to Z_{20} : (1) $\Phi(1) = 0$. (2) $\Phi(1) = 10$. (3) $\Phi(1) = 4$. (4) $\Phi(1) = 8$. (5) $\Phi(1) = 12$. (6) $\Phi(1) = 16$. (7) $\Phi(1) = 2$. (8) $\Phi(1) = 6$. (9) $\Phi(1) = 14$. (10) $\Phi(1) = 18$. Hence, there are exactly 10 group homomorphisms from Z_{30} to Z_{20} .

QUESTION 2.7.32 Let m_1 , m_2 , m_3 ,..., m_k be all positive integers that divide both numbers n and m. Prove that number of all group homomorphisms from Z_n to Z_m is $\phi(m_1) + \phi(m_2) + \phi(m_3) + ... + \phi(m_k) = gcd(n,m)$.

Solution: As we have seen in the previous two Questions, a homomorphism Φ from Z_n to Z_m is determined by $\Phi(1)$. Since $Ord(\Phi(1))$ must divide both numbers n and m, we conclude that $Ord(\Phi(1))$ must be m_1 or m_2 , or...or m_k . Since Z_m has exactly $\phi(m_1)$ elements of order m_1 and $\phi(m_2)$ elements of order m_2 and...and $\phi(m_k)$ elements of order m_k , we conclude that number of all group homomorphisms from Z_n to Z_m is $\phi(m_1) + \phi(m_2) + \ldots + \phi(m_k) = gcd(n, m)$.

QUESTION 2.7.33 Let Φ be a group homomorphism from Z_{30} to Z_6 such that $Ker(\Phi) = \{0, 6, 12, 18, 24\}$. Prove that Φ is onto. Also, find all possibilities for $\Phi(1)$.

Solution: Since $Z_{30}/Ker(\Phi) \cong \Phi(Z_{30}) \subset Z_6$ by Theorem 1.2.35 and $Ord(Ker(\Phi)) = 5$, we conclude that $Ord(Z_{30}/Ker(\Phi)) = Ord(\Phi(Z_{30}) = 30/5 = 6$. Hence, $\Phi(Z_{30}) = Z_6$. Thus, Φ is onto. Now, since $Z_{30} = (1)$ is cyclic and a group homomorphism from Z_{30} to Z_6 is determined by $\Phi(1)$

and Φ is onto, we conclude $Ord(\Phi(1)) = 6$. Hence, there are $\phi(6) = 2$ elements in Z_6 of order 6, namely, 1 and 5. Thus, all possibilities for $\Phi(1)$ are : (1) $\Phi(1) = 1$. (2) $\Phi(1) = 5$.

QUESTION 2.7.34 Let Φ be a group homomorphism from G onto H, and suppose that H contains a normal subgroup K such that [H : K] = n. Prove that G has a normal subgroup D such that [G:D] = n.

Solution: Since $\alpha : H \longrightarrow H/K$ such that $\alpha(h) = hK$ is a group homomorphism from H onto H/K, we conclude that $\alpha \circ \Phi$ is a group homomorphism from G onto H/K. Thus, by Theorem 1.2.35 $G/Ker(\alpha \circ \Phi) \cong H/K$. Since n = [H : K] = Ord(H/K), we conclude that $Ord(G/Ker(\alpha \circ \Phi)) = [G : Ker(\alpha \circ \Phi] = n$. Thus, let $D = Ker(\alpha \circ \Phi)$. Then [G : D] = n and D is a normal subgroup of G by Theorem 1.2.35.

QUESTION 2.7.35 Let Φ be a group homomorphism from G onto Z_{15} . Prove that G has normal subgroups of index 3 and 5.

Solution: Since Z_{15} is cyclic and both numbers 3, 5 divide 15, Z_{15} has a subgroup, say, H, of order 3 and it has a subgroup, say, K, of order 5. Since Z_{15} is Abelian, H and K are normal subgroups of Z_{15} . Since $[Z_{15}: H] = 5$, by the previous Question we conclude that G has a normal subgroup of index 5. Also, since $[Z_{15}: K] = 3$, once again by the previous Question we conclude that G has a normal subgroup of index 3.

QUESTION 2.7.36 Let H be a subgroup of G and N be a subgroup of K. Prove that $H \oplus N$ is a subgroup of $G \oplus K$.

Solution: Let $(h_1, n_1), (h_2, n_2) \in H \oplus N$. Then $(h_1, n_1)^{-1}(h_2, n_2) = (h_1^{-1}, n_1^{-1})(h_2, n_2) = (h_1^{-1}h_2, n_1^{-1}n_2) \in H \oplus N$. Hence, by Theorem 1.2.7 $H \oplus N$ is a subgroup of $G \oplus K$.

QUESTION 2.7.37 Let H be a normal subgroup of G and N be a normal subgroup of K. Prove that $H \oplus N$ is a normal subgroup of $G \oplus K$.

Solution: Let $(g,k) \in G \oplus K$. Then $(g,k)^{-1}[H \oplus N](g_1,k_1) = (g^{-1},k^{-1})[H \oplus N](g,k) = g^{-1}Hg \oplus k^{-1}Nk = H \oplus N$ since $g^{-1}Hg = H$ and $k^{-1}Nk = N$. Thus, $H \oplus N$ is a normal subgroup of $G \oplus K$.

QUESTION 2.7.38 Let H be a normal subgroup of G such that [G : H] = n and N be a normal subgroup of K such that [K : N] = m. Prove that $H \oplus N$ is a normal subgroup of $G \oplus K$ of index nm.

Solution: Let $\Phi : G \oplus K \longrightarrow G/H \oplus K/N$ such that $\Phi(g, k) = (gH, kN)$. Then clearly that Φ is a group homomorphism from $G \oplus K$ onto $G/H \oplus K/N$ and $Ker(\Phi) = H \oplus N$. Hence, by Theorem 1.2.35 we have $G \oplus K/Ker(\Phi) = G \oplus K/H \oplus N \cong G/H \oplus K/N$. Since [G : H] = n and [K : N] = m, Ord(G/H) = n and Ord(K/N) = m. Hence, $Ord(G/H \oplus K/N) = nm$. Thus, $Ord(G \oplus K/H \oplus N) = nm$. Hence, $[G \oplus K : H \oplus N] = nm$.

QUESTION 2.7.39 Prove that $Z_4 \oplus Z_8$ has a normal subgroup of index 16.

Solution: Let $H = \{0\} \subset Z_4$, and let $N = \{0, 4\} \subset Z_8$. Then H is a normal subgroup of Z_4 of index 4 and N is a normal subgroup of Z_8 of index 4. Hence, by the previous Question $H \oplus N$ is a normal subgroup of $G \oplus K$ of index 16.

QUESTION 2.7.40 Let Φ be a group homomorphism from G onto $Z_8 \oplus Z_6$ such that $Ord(Ker(\Phi)) = 3$. Prove that G has a normal subgroup of order 36.

Solution: Let H be a normal subgroup of Z_8 of order 4 and let N be a normal subgroup of Z_6 of order 3. Then $H \oplus N$ is a normal subgroup of $Z_8 \oplus Z_6$ of order 12. Now, let $a \in H \oplus N$. Then $Ord(\Phi^{-1}(a)) =$ $Ord(Ker(\Phi)) = 3$ by Question 2.7.6. Hence, since $Ord(\Phi^{-1}(a)) = 3$ for each $a \in H \oplus N$ and $Ord(H \oplus N) = 12$, we conclude that $Ord(\Phi^{-1}(H \oplus N)) = (12)(3) = 36$. Now, by Question 2.7.4 $D = \Phi^{-1}(H \oplus N)$ is a normal subgroup of G. (by a similar argument, one can prove that Ghas normal subgroups of order 6, 9, 12, 18, 24.)

QUESTION 2.7.41 Let G be a group of order pq for some prime numbers $p,q, p \neq q$ such that G has a normal subgroup H of order p and a normal subgroup K of order q. Prove that G is cyclic and hence $G \cong Z_{pq}$.

Solution: Since gcd(p,q) = 1, by Question 2.6.23 we have Ord(HK) = pq. Thus, HK = G. Also, since gcd(p,q) = 1, we conclude that $H \cap K = \{e\}$. Hence, by Theorem 1.2.39 $G \cong H \oplus K$. Since Ord(H) = p and Ord(K) = q, H and K are cyclic groups. Hence, since H and K are cyclic groups and gcd(p,q) = 1, by Theorem 1.2.36 we conclude that $G \cong H \oplus K$ is cyclic. Hence, $G \cong Z_{pq}$ by Question 2.7.8.

QUESTION 2.7.42 Let G be a group of order 77 such that G has a normal subgroup of order 11 and a normal subgroup of order 7. Prove that G is cyclic and hence $G \cong Z_{77}$.

Solution: Since Ord(G) = 77 is a product of two distinct prime numbers, the result is clear by the previous Question.

QUESTION 2.7.43 Prove that $Aut(Z_{125})$ is a cyclic group.

Solution: Since $Aut(Z_{125}) \cong U(125) = U(5^3)$ by Theorem 1.2.41 and $U(5^3)$ is cyclic by Theorem 1.2.40, we conclude that $Aut(Z_{125})$ is cyclic.

QUESTION 2.7.44 Let p be an odd prime number and n be a positive integer. Then prove that $U(2p^n)$ is a cyclic group.

Solution: By Theorem 1.2.38, we have $U(2p^n) \cong U(2) \oplus U(p^n)$. Since U(2) and $U(p^n)$ are cyclic groups by Theorem 1.2.40 and gcd(Ord(U(2))), $Ord(U(p^n))) = gcd(1, (p-1)p^{n-1}) = 1$, we conclude that $U(2p^n) \cong U(2) \oplus U(p^n)$ is cyclic by Theorem 1.2.36.

QUESTION 2.7.45 Prove that U(54) is a cyclic group.

Solution: Since $54 = 2(3^3)$, U(54) is cyclic by the previous Question.

QUESTION 2.7.46 Let p and q be two distinct odd prime numbers and n, m be positive integers. Prove that $U(p^nq^m)$ is never a cyclic group.

Solution: By Theorem 1.2.38, we have $U(p^nq^m) \cong U(p^n) \oplus U(p^m) \cong Z_{(p-1)p^{n-1}} \oplus Z_{(q-1)q^{m-1}}$ by Theorem 1.2.40. Since $(p-1)p^{n-1}$ and $(q-1)q^{m-1}$ are even numbers, we conclude that $gcd((p-1)p^{n-1}, (q-1)q^{m-1}) \neq 1$. Hence, by Theorem 1.2.36 $U(p^nq^m)$ is not cyclic.

QUESTION 2.7.47 Let n be a positive integer. Prove that up to isomorphism there are finitely many groups of order n.

Solution : Let G be a group of order n. By Theorem 1.2.42, G is isomorphic to a subgroup of S_n . Hence, number of groups of order n up to isomorphism equal number of all subgroups of S_n of order n. Since S_n is a finite group, S_n has finitely many subgroups of order n.

QUESTION 2.7.48 Let p be a prime number in Z. Suppose that H is a subgroup of Q^* under multiplication such that $p \in H$. Prove that there is no group homomorphism from Q under addition onto H. Hence, $Q \ncong H$.

Solution: Deny. Then there is a group homomorphism Φ from Q onto H. Since $p \in H$, there is an element $x \in Q$ such that $\Phi(x) = p$. Hence, $p = \Phi(x) = \Phi(x/2+x/2) = \Phi(x/2)\Phi(x/2) = (\Phi(x/2))^2$. Since $\Phi(x/2)^2 = p$, we conclude $\Phi(x/2) = \sqrt{p}$. A contradiction, since p is prime and $\Phi(x/2) \in H \subset Q^*$ and $\sqrt{p} \notin Q$.

QUESTION 2.7.49 Prove that Q under addition is not isomorphic to Q^* under multiplication.

Solution: This result is now clear by the previous Question.

QUESTION 2.7.50 Let H be a subgroup of C^* under multiplication, and let Φ be a group homomorphism from Q under addition to H. Then prove that there is a positive real number $a \in H$ such that $\Phi(n/m) = a^{n/m}$ for each $n/m \in Q$, n and m are integers.

Solution: Now $\Phi(1) = a \in H$. Let *n* be a positive integer. Then $\Phi(n) = \Phi(1+1+\ldots+1) = \Phi(1)\Phi(1)\ldots\Phi(1) = \Phi(1)^n = a^n$. Also, $a = \Phi(1) = \Phi(n(1/n)) = \Phi(1/n+1/n+\ldots+1/n) = \Phi(1/n)\Phi(1/n)\ldots\Phi(1/n) = \Phi(1/n)^n$. Since $\Phi(1/n)^n = a$, we have $\Phi(1/n) = \sqrt[n]{a}$. Now, if *n* is a negative number, then since $1 = \Phi(0) = \Phi(n-n)$ and $\Phi(-n) = a^{-n}$ we have $\Phi(n) = a^n$. Also, if n is negative, then $\Phi(1/n) = a^{1/n}$. Hence, if n and m are integers and $m \neq 0$, then $\Phi(n/m) = a^{n/m}$. Since $\Phi(1/2) = \sqrt{a}$, we conclude that *a* is a positive real number.

QUESTION 2.7.51 Prove that Q under addition is not isomorphic to R^* under multiplication.

Solution: By the previous Question, a group homomorphism Φ from Q to R^* is of the form $\Phi(x) = a^x$ for each $x \in Q$ for some positive real number a. Since $a^x \ge 0$ for each $x \in Q$, There is no element in Q maps to -1. Hence, $Q \not\cong R^*$.

QUESTION 2.7.52 Prove that Q under addition is not isomorphic to R^+ (the set of all nonzero positive real numbers) under multiplication.

Solution: Deny. Then Φ is an isomorphism from Q onto R^+ . Hence, by Question 2.7.50 there is a positive real number a such that $\Phi(n/m) = a^{n/m}$. Now, suppose that $a = \pi$. Then there is no $x \in Q$ such that $a^x = \pi^x = 2$. Thus, Φ is not onto. Hence, assume that $a \neq \pi$. Then there is no $x \in Q$ such that $a^x = \pi$. Thus, once again, Φ is not onto. Hence, $Q \ncong R^+$. **QUESTION 2.7.53** Give an example of a non-Abelian group of order 48.

Solution: Let $G = S_4 \oplus Z_2$. Then Ord(G) = 48. Since S_4 is a non-Abelian group, G is non-Abelian.

QUESTION 2.7.54 Let Φ be a group homomorphism from a group Ginto a group H. If D is a subgroup of H, then $Ker(\Phi)$ is a subgroup of $\Phi^{-1}(D)$. In particular, if K is a normal subgroup of G and D is a subgroup of G/K, then K is a subgroup of $\Phi^{-1}(D)$ where $\Phi : G \longrightarrow G/K$ given by $\Phi(g) = gK$.

Solution: Let *D* be a subgroup of *H*. Since $e_H \in D$, we have $\Phi(b) = e_H$ for each $b \in Ker(\Phi)$. Thus, $Ker(\Phi) \subset \Phi^{-1}(D)$. The remaining part is now clear.

QUESTION 2.7.55 Let G be a group and H be a cyclic group and Φ be a group homomorphism from G onto H. Is $\Phi^{-1}(H) = G$ an Abelian group?

Solution: No. Let $G = S_4$, and $K = A_4$. Now, H = G/K is a cyclic group of order 2 and Φ from G into H given by $\Phi(g) = gK$ is a group homomorphism from G onto H. Now, $\Phi^{-1}(H) = G = S_4$ is not Abelian.

QUESTION 2.7.56 Let H be a subgroup of a finite group G. Prove that C(H) is a normal subgroup of N(H) and Ord(N(H)/C(H)) divides Ord(Aut(H)). In particular, prove that if H is a normal subgroup of G, then Ord(G/C(H)) divides Ord(Aut(H)).

Solution: We know that C(H) is a subgroup of G. By the definitions $C(H) \subset N(H)$. Now, let $g \in N(H)$. We need to show that $g^{-1}C(H)g \subset C(H)$. Let $c \in C(H)$. We need to show that $g^{-1}cg \in C(H)$. Hence, let $h \in H$. We show that $(g^{-1}cg)h = h(g^{-1}cg)$. Now, since H is normal in N(H), we have gh = fg for some $f \in H$. Hence, $g^{-1}f = hg^{-1}$. Since gh = fh and $g^{-1}f = hg^{-1}$ and cf = fc, we have $g^{-1}cgh = g^{-1}cfg = g^{-1}fcg = hg^{-1}cg$. Thus, $g^{-1}cg \in C(H)$. Hence, C(H) is normal in N(H). Let α be a map from N(H) to Aut(H) such that $\alpha(x) = \Phi_x$ for each $x \in N(H)$, where Φ_x is an automorphism from H onto H such that $\Phi_x(h) = x^{-1}hx$ for each $h \in H$. It is easy to check that α is a group homomorphism from N(H) to Aut(H). Now, $Ker(\alpha) = \{y \in N(H) : \Phi_y = \Phi_e\}$. But $\Phi_y = \Phi_e$ iff $y^{-1}hy = e$ for each $h \in H$ iff hy = yh

for each $h \in H$. Thus, $Ker(\alpha) = C(H)$. Hence, by Theorem 1.2.35 we have $N(H)/C(H) \cong Image(\alpha)$. But $Image(\alpha)$ is a subgroup of Aut(H). Thus, $Ord(Image(\alpha))$ divides Ord(Aut(H)). So, since $N(H)/C(H) \cong$ $Image(\alpha)$, we have Ord(N(H)/C(H)) divides Ord(Aut(H)). For the remaining part, just observe that if H is normal in G, then N(H) = G.

QUESTION 2.7.57 Let p be a prime number > 3. We know that Z_p^* under multiplication modulo p is a cyclic group of order p - 1. Let $H = \{a^2 : a \in Z_p^*\}$. Prove that H is a subgroup of Z_p^* such that $[Z_p^* : H] = 2$.

Solution: Let $\Phi: Z_p^* \longrightarrow Z_p^*$ such that $\Phi(a) = a^2$. It is trivial to check that Φ is a group homomorphism. Clearly $\Phi(Z_p^*) = H$. Thus, H is a subgroup of Z_p^* . Now, $Ker(\Phi) = \{a \in Z_p^* : a^2 = 1\}$. Since $2 \mid p-1$ and Z_p^* is cyclic, there are exactly two elements, namely 1 and p-1 in Z_p^* whose square is 1. Thus $Ker(\Phi) = \{1, p-1\}$. Hence, by Theorem 1.2.35 $Z_p^*/Ker(\Phi) \cong \Phi(Z_p^*) = H$. Thus, Ord(H) = (p-1)/2. Hence, $[Z_p^*:H] = 2$

QUESTION 2.7.58 Let p be a prime number > 3, and let $H = \{a^2 : a \in Z_p^*\}$. Suppose that $p-1 \notin H$. Prove that if $a \in Z_p^*$, then either $a \in H$ or $p-a \in H$.

Solution : By the previous Question, since H is a subgroup of $G = Z_p^*$ and [G : H] = 2, we conclude that the group G/H has exactly two elements. Since $p - 1 \notin H$, we conclude that H and (p - 1)H = -H are the elements of G/H. Now, let $a \in Z_p^*$ and suppose that $a \notin H$. Hence, $aH \neq H$. Thus, aH = (p - 1)H = -H. Hence, H = -H - H = -aH =(p - a)H. Thus, $p - a \in H$.

2.8 Sylow Theorems

QUESTION 2.8.1 Let H be a Sylow p-subgroup of a finite group G. We know that (the normalizer of H in G) $N(H) = \{x \in G : x^{-1}Hx = H\}$ is a subgroup of G. Prove that H is the only Sylow p-subgroup of G contained in N(H).

Solution: Let $h \in H$. Then $h^{-1}Hh = H$. Hence, $h \in N(H)$. Thus, $H \subset N(H)$. Now, we show that H is the only Sylow p-subgroup of G contained in N(H). By the definition of N(H), we observe that H is a normal subgroup of N(H). Hence, H is a normal Sylow p-subgroup of N(H). Thus, by Theorem 1.2.46, we conclude that H is the only Sylow p-subgroup of G contained in N(H).

QUESTION 2.8.2 Let H be a Sylow p-subgroup of a finite group G. Let $x \in N(H)$ such that $Ord(x) = p^n$ for some positive integer n. Prove that $x \in H$.

Solution: Since $Ord(x) = p^n$, $Ord((x)) = p^n$. Since N(H) is a group (subgroup of G) and $x \in N(H)$ and $Ord((x)) = p^n$, by Theorem 1.2.44 (x) is contained in a Sylow p-subgroup of N(H). By the previous Question H is the only Sylow p-subgroup of G contained in N(H). Hence, $x \in H$.

QUESTION 2.8.3 Let G be a group of order p^2 . Prove that G is Abelian.

Solution: Since $Ord(G) = p^2$, by Theorem 1.2.47 we have Ord(Z(G)) = p or p^2 . If $Ord(Z(G)) = p^2$, then G is Abelian. Thus, assume that Ord(Z(G)) = p. Hence, Ord(G/Z(G)) = p. Thus, G/Z(G) is cyclic. Hence, G is Abelian by Question 2.6.6.

QUESTION 2.8.4 Let G be a non-Abelian group of order 36. Prove that G has more than one Sylow 2-subgroup or more than one Sylow 3subgroup.

Solution: Deny. Since $36 = 2^2 3^2$, *G* has exactly one Sylow 3-subgroup, say, *H*, and it has exactly one Sylow 2-subgroup, say, *K*. Thus, *H* and *K* are normal subgroups of *G* by Theorem 1.2.46. Since $Ord(H) = 3^2 = 9$ and $Ord(K) = 2^2 = 4$ and gcd(4,9) = 1, we have $H \cap K = \{e\}$ and Ord(HK) = 36 = Ord(G) by Question 2.6.23. Hence, HK = G and by Theorem 1.2.39 we have $G \cong H \oplus K$. Since $Ord(H) = 3^2 = 9$ and $Ord(K) = 2^2 = 4$, we conclude that *H* and *K* are Abelian groups by the previous Question. Thus, $G \cong H \oplus K$ is Abelian. A contradiction since *G* is a non-Abelian group by the hypothesis.

QUESTION 2.8.5 Let G be a group of order 100. Prove that G has a normal subgroup of order 25.

Solution: Since $Ord(G) = 100 = 2^{2}5^{2}$, we conclude that G has a Sylow 5-subgroup, say, H. Then Ord(H) = 25. Let n be the number of all Sylow 5-subgroups. Then 5 divides (n-1) and n divides Ord(G) = 100 by Theorem 1.2.45. Hence, n = 1. Thus, H is the only Sylow 5-subgroup of G. Hence, H is normal by Theorem 1.2.46.

QUESTION 2.8.6 Let G be a group of order 100. Prove that G has a normal subgroup of order 50.

Solution:Since 2 divides 100, G has a subgroup, say, K, of order 2 by Theorem 1.2.43. By the previous Question, G has a normal subgroup of order 25, say, H. Hence, HK is a subgroup of G by Question 2.6.16. Since gcd(2,25) = 1, Ord(HK) = 50 by Question 2.6.23. Thus, [G : HK] = 2. Hence, HK is normal by Question 2.6.1.

QUESTION 2.8.7 Let G be a group such that Ord(G) = pq for some primes p < q and p does not divide q - 1. Prove that $G \cong Z_{pq}$ is cyclic.

Solution: Let *n* be the number of all Sylow q-subgroups and let *m* be the number of all Sylow p-subgroups. Then *n* divides pq and *q* divides n-1 and *m* divides pq and *p* divides m-1. Since p < q, we conclude that n = 1. Also, since *p* does not divide q - 1, m = 1. Hence, *G* has exactly one Sylow q-subgroup, say, H and it has exactly one Sylow p-subgroup, say, K. Thus, *H* and *K* are normal subgroups of *G* by Theorem 1.2.46. Since gcd(p,q) = 1, Ord(HK) = pq = Ord(G) and $H \cap K = \{e\}$ by Question 2.6.23. Thus, $G \cong H \oplus K$ by Theorem 1.2.39. Since Ord(H)= q and Ord(K) = p, we conclude that *H* and *K* are cyclic and hence $G \cong H \oplus K$ is cyclic. Since *G* is a cyclic group of order pq, we conclude that $G \cong Z_{pq}$ is cyclic by Question 2.7.8.

QUESTION 2.8.8 Let G be a group of order 35. Prove that G is a cyclic group and $G \cong Z_{35}$.

Solution: Let p = 5 and q = 7. Then Ord(G) = pq such that p < q and p does not divide q - 1. Hence, $G \cong Z_{35}$ is cyclic by the previous Question.

QUESTION 2.8.9 Let G be a noncyclic group of order 57. Prove that G has exactly 38 elements of order 3.

Solution: Since 57 = (3)(19) and 19 does not divide 3 - 1, by Theorem 1.2.45 *G* has exactly one Sylow 19-subgroup, say, H. Let $a \in G$ such that $a \neq e$. Since Ord(a) divides Ord(G) = 57 = (3)(19) and *G* is not cyclic and $a \neq e$, we conclude that the possibilities for Ord(a) are : 3, 19. Since *H* is the only Sylow 19-subgroup of order 19, we have exactly 18 elements in *G* of order 19. Hence, there are exactly 38 elements in *G* of order 3.

QUESTION 2.8.10 Let G be a group of order 56. Prove that H has a proper normal subgroup, say, H, such that $H \neq \{e\}$.

Solution: Since $56 = 72^3$, we conclude that G has a Sylow 7-subgroup, say, H, and it has a Sylow 2-subgroup, say, K, by Theorem 1.2.43. If H is the only Sylow 7-subgroup of G, then by Theorem 1.2.46 we conclude that H is normal and we are done. Hence, let n be the number of all Sylow 7-subgroups of G such that n > 1. Since n divides 56 and 7 divides n-1 and n > 1, we conclude that n = 8. Since each non identity element in a Sylow 7-subgroup of G has order 7, we conclude that there are (8)(6) = 48 elements in G of order 7. Since there are exactly 48 elements in G of order 7 and K is a Sylow 2-subgroup of order 8, we conclude that K is the only Sylow 2-subgroup of G. Thus, K is normal by Theorem 1.2.46.

QUESTION 2.8.11 Let G be a group of order 105. Prove that it is impossible that Ord(Z(G)) = 7.

Solution: Deny. Hence, Ord(Z(G)) = 7. Then Ord(G/Z(G)) = 15. Since 15 = (3)(5) and 3 does not divide 5 - 1 = 4, by Question 2.8.7 we conclude that G/Z(G) is cyclic. Hence, G is Abelian by Question 2.6.6. Hence, Z(G) = G, a contradiction. Thus, it is impossible that Ord(Z(G)) = 7.

QUESTION 2.8.12 Let G be a group of order 30. Prove that G has an element of order 15.

Solution: Since 30 = (2)(3)(5), by Theorem 1.2.43 there is a subgroup of order 2 and a subgroup of order 3 and a subgroup of order 5. Let n be the number of all subgroups of G of order 3. Then by Theorem 1.2.45 we conclude that either n = 1 or n = 10. Suppose that n = 1. Let H be the subgroup of G of order 3. Then H is normal by Theorem 1.2.46. Since Ord(G/H) = 10 = (2)(5), by Theorem 1.2.45 we conclude that G/H has exactly one subgroup of order 5. Hence, by Question 2.7.6, we conclude that G has a subgroup, say, D, of order 15. Since 15 = (3)(5) and 3 does not divide 5-1, by Question 2.8.7 we conclude that D is cyclic. Hence, there is an element in G of order 15. Now, assume that n = 10. Let m be the number of all subgroups of G of order 5. Then by Theorem 1.2.45 we conclude that either m = 1 or m = 6. Since n = 10, there are exactly (10)(2) = 20 elements of order 3. Hence, m = 1, for if m = 6, then there are exactly (6)(4) = 24 elements of order 5, which is impossible since Ord(G) = 30 and there are 20 elements of order 3. Let K be the subgroup of G of order 5. Then by Theorem 1.2.46 we conclude that Kis normal. Since Ord(G/K) = 6, by Theorem 1.2.45 we conclude that G/K has a subgroup of order 3. Hence, by Question 2.7.6 we conclude that G has a subgroup, say, L, of order 15. Thus, as mentioned earlier in the solution G has an element of order 15.

QUESTION 2.8.13 Let G be a group of order 30. Prove that G has exactly one subgroup of order 3 and exactly one subgroup of order 5.

Solution: Since 30 = (2)(3)(5), by Theorem 1.2.43 *G* has a subgroup of order 2 and a subgroup of order 3 and a subgroup of order 5. Let *n* be the number of all subgroups of *G* of order 3, and let *m* be the number of all subgroups of *G* of order 5. By Theorem 1.2.45 we conclude that either n = 1 or n = 10 and either m = 1 or m = 6. Suppose that n = 10. Then *G* has exactly (10)(2) = 20 elements of order 3. Since by the previous Question *G* has an element of order 15, we conclude by Theorem 1.2.14 that *G* has at least $\phi(15) = 8$ elements of order 15. Since Ord(G) = 30 and there are 20 elements of order 3 and 8 elements of order 15, we conclude that there are no subgroups of *G* of order 5, a contradiction. Hence, n = 1. Now, suppose that m = 6. By an argument similar to the one just given, we will reach to a contradiction. Hence, we conclude that m = 1.

QUESTION 2.8.14 Let G be a group of order 30. Prove that G has a normal subgroup of order 3 and a normal subgroup of order 5.

Solution: By the previous Question there are exactly one Sylow 3-subgroup of G, say, H, and exactly one Sylow 5-subgroup of G, say, K. Hence, by Theorem 1.2.46 we conclude that H and K are normal in G.

QUESTION 2.8.15 Let G be a group of order 60 such that G has a normal subgroup of order 2. Prove that G has a normal subgroup of order 6 and a normal subgroup of order 10 and a normal subgroup of order 30.

Solution: Let H be a normal subgroup of G of order 2. Then G/H is a group of order 30. Hence, by the previous Question G/H has a normal subgroup of order 3, say, K. Thus, by Question 2.7.6 G has a normal subgroup of order 6. Since G/H has a normal subgroup of order 5, by an argument similar to the one just given we conclude that G has a normal subgroup of order 10. Also, by the previous Question G/H has a normal subgroup of order 5, say, D. Hence, by Question 2.7.6 KD is a normal subgroup of G/H. Since gcd(3,5) = 1, we conclude that Ord(KD) = 15. Thus, by Question 2.7.6 we conclude that G has a normal subgroup of order 30.

QUESTION 2.8.16 Let G be a group of order 60 such that G has a normal subgroup of order 2. Prove that G has a subgroup of order 20 and a subgroup of order 12.

Solution: By the previous Question G has a normal subgroup of order 10, say, H. Hence, Ord(G/H) = 6. Since 6 = (2)(3), by Theorem 1. 2.43 G/H has a subgroup of order 2. Hence, by Question 2.7.6 G has a subgroup of order 20. Also, by the previous Question G has a normal subgroup of order 6, say, K. Since Ord(G/K) = 10 and 10 = (2)(5), by Theorem 1.2.43 G/K has a subgroup of order 2. Thus, by Question 2.7.6 we conclude that G has a subgroup of order 12.

QUESTION 2.8.17 Let G be a group of order 60 such that G has a normal subgroup of order 2. Prove that G has a cyclic subgroup of order 30, that is, show that G has an element of order 30.

Solution: Let K be a normal subgroup of G of order 2. Set H = G/K. Since Ord(H) = 30, By Question 2.8.12 H has an element a of order 15. Hence, D = (a) is a subgroup of H of order 15. Thus, by Question 2.7.6 G has a subgroup, V, of order 30 and by Question 2.7.54 $K \subset V$. By Question 2.8.12 V has an element m of order 15. Thus, M = (m) is a subgroup of V of order 15. Since [V : M] = 2, by Question 2.6.1 M is a normal subgroup of V. Since K is normal in G and $K \subset V$, K is a normal subgroup of V. Since gcd(2,15) = 1, $K \cap M = \{e\}$. Since K, Mare Abelian normal subgroups of V and $K \cap M = \{e\}$, by Question 2.6.31 KM is an Abelian group. Hence, let $k \in K$ such that Ord(k) = 2. Since K = (k) and M = (m) and KM is Abelian, we have km = mk. Since mk= km and gcd(2,15) = 1, by Question 2.1.14 Ord(km) = 30. Thus, G has a cyclic subgroup of order 30, namely (km).

QUESTION 2.8.18 Let G be a group of order 345. Prove that G is cyclic.

Solution : Since 345 = (3)(5)(23), by Theorem 1.2.43 there are subgroups of G of order 3 and 5 and 23. Let H be a subgroup of G of order 23. By Theorem 1.2.45, we conclude that H is the only subgroup of G of order 23. Thus, by Theorem 1.2.46, H is normal in G. Hence, by Question 2.7.56 we have Ord(G/C(H)) divides Ord(Aut(H)). By Theorem 1.2.41 we have Ord(Aut(H)) = Ord(U(23)) = 22. Thus, Ord(G/C(H)) divides 22. Since Ord(G/C(H)) divides both numbers 365 and 22, we conclude that Ord(G/C(H)) = 1. Hence, C(H) = G. Hence, by the definition of C(H) we conclude that C(H) = G means that every element in H commute with every element in G. Hence, $H \subset Z(G)$. Thus, $Ord(Z(G)) \ge 23$. Hence, Ord(G/Z(G)) = 1 or 3 or 5 or 15. In each case, we conclude that G/Z(G) is cyclic. Thus, by Question 2.6.6, G must be Abelian. Now, since G has subgroups of order 3 and 5 and 23, G has an element a of order 3 and an element of b of order 5 and an element c of order 23. Since a, b, c commute with each other , by Question 2.1.14 Ord(abc) = Ord((abc)) = Ord((abc)) = (3)(5)(23) = 345. Thus, G = (abc) is cyclic.

QUESTION 2.8.19 let H, K be two distinct Sylow p-subgroups of a finite group G. Prove that HK is never a subgroup of G.

Solution: Since H and K are Sylow p-subgroups of G, we conclude $Ord(H) = Ord(K) = p^n$ such that p^{n+1} does not divide Ord(G). Since H and K are distinct, $Ord(H \cap K) = p^m$ such that $0 \le m < n$. Hence, by Theorem 1.2.48 we conclude $Ord(HK) = p^n p^n / p^m = p^{2n-m} > p^n$. Since order of any subgroup of G must divide Ord(G) and p^{2n-m} does not divide Ord(G), HK is not a subgroup of G.

QUESTION 2.8.20 Let H be a subgroup of order p (prime) of a finite group G such that $p^2 > Ord(G)$. Prove that H is the only subgroup of G of order p and hence it is normal in G.

Solution: Suppose that there is another subgroup, say, K, of G of order p. Hence, $H \cap K = \{e\}$. By Theorem 1.2.48, $Ord(HK) = p^2/1 = p^2 > Ord(G)$ which is impossible since $HK \subset G$. Thus, H is the only subgroup of order p of G. Since $p^2 > Ord(G)$, we conclude that p^2 does not divide Ord(G). Thus, H is a Sylow p-subgroup of G. Hence, by Theorem 1.2.46, we conclude that H is normal in G.

QUESTION 2.8.21 Let G be a group of order 46 such that G has a normal subgroup of order 2. Prove that G is cyclic, that is, $G \cong Z_{46}$.

Solution: Since 46 = (2)(23). By Theorem 1.2.43, G has a Sylow 23subgroup H, of G. By Theorem 1.2.45, we conclude that H is the only subgroup of G of order 23. By Theorem 1.2.46, H is normal in G. By hypothesis, let K be a normal subgroup of G of order 2. Hence, $H \cap K =$ $\{e\}$. By Theorem 1.2.48 we have HK = G. Since $H \cap K = \{e\}$ and HK = G and H, K are normal in G, by Theorem 1.2.39, $G \cong H \oplus K$. But $K \cong Z_2$ and $H \cong Z_{23}$. Hence, $G \cong Z_2 \oplus Z_{23}$. Thus, by Theorem 1.2.36, G is a cyclic group of order 46. Hence, by Question 2.7.8 we have $G \cong Z_{46}$.

QUESTION 2.8.22 Let G be a group of order p^n for some prime number p such that for each $0 \le m \le n$ there is exactly one subgroup of G of order p^m . Prove that G is cyclic.

Solution: Let $x \in G$ of maximal order. Then $Ord(x) = p^k$ for some $1 \leq k \leq n$. Now, let $y \in G$. Then $Ord(y) = p^i$ for some $i \leq k$. Since $Ord((y)) = p^i$ and G has exactly one subgroup of order p^i and the subgroup (x) of G, being cyclic, has a subgroup of order p^i , we conclude that $(y) \subset (x)$. Hence, $y \in (x)$. Thus, $G \subset (x)$. Hence, G = (x) is cyclic.

QUESTION 2.8.23 Let G be a finite Abelian group. Show that A Sylow-p-subgroup of G is unique.

Solution: Let H be a Sylow-p-subgroup of G. Since G is Abelian, we conclude that H is normal. Hence H is the only Sylow-p-subgroup of G by Theorem 1.2.46

QUESTION 2.8.24 Let G be a group of order p^2q , where p and q are distinct prime numbers, p does not divide q - 1, and q does not divide $p^2 - 1$. Show that G is Abelian.

Solution: Let n_p be the number of Sylow-p-subgroups and n_q be the number of Sylow-q-subgroups. Then since q does not divide $p^2 - 1$ and p does not divide q-1, by Theorem 1.2.45 we conclude that $n_p = n_q = 1$. Let H be a Sylow-p-subgroup and K be a Sylow-q-subgroup. Then H and K are both normal in G by Theorem 1.2.46. Since $H \cap K = \{e\}$ and $Ord(G) = p^2 q$, we conclude that $G \cong H \oplus K$. Since q is prime, K is cyclic and hence Abelian. Also, since p is prime and $Ord(H) = p^2$, we conclude that H is Abelian by Question 2.8.3.

2.9 Simple Groups

QUESTION 2.9.1 Prove that there is no simple groups of order $300 = (2^2)(3)(5^2)$.

Solution: Let G be a group of order 300. Let n_5 be the number of Sylow-5-subgroups of G. Then by Theorem 1.2.45 we have $n_5 = 1$ or $n_5 = 6$. If $n_5 = 1$, then a Sylow-5-subgroup of G is normal in G by Theorem 1.2.46, and hence G is not simple. Hence assume that $n_5 = 6$. Since 25 does not divide $n_5 - 1$, by Theorem 1.2.51 we conclude that there are two distinct Sylow-5-subgroups H and K of G, such that

 $Ord(H \cap K) = 5$ and $HK \subset N(H \cap K)$. Again by Theorem 1.2.51 we have $Ord(N(H \cap K)) > Ord(HK) = Ord(H)Ord(K)/Ord(H \cap K) =$ (25)(25)/5 = 125. So, let $m = Ord(N(H \cap K))$. Since m > 125 and mdivides 300, we conclude that m = 150 or m = 300. If m = 300, then $H \cap K$ is normal in G, and since $Ord(H \cap K) = 5$, we conclude that Gis not simple. Thus assume that m = 150. Hence $[G : N(H \cap K)] = 2$. Since $n_5 \neq 1$, we conclude that G is non-Abelian (see Question 2.8.23) and hence if G is simple, then G is isomorphic to a subgroup of A_2 by Theorem 1.2.57 which is clearly impossible because Ord(G) = 300where $Ord(A_2) = 1$.

QUESTION 2.9.2 Prove that there is no simple groups of order 500.

Solution : Since 500 = 2(125) and 125 is an odd number, we conclude that there is no simple groups of order 500 by Theorem 1.2.55.

QUESTION 2.9.3 Show that there is no simple groups of order $396 = (2^2)(3^2)(11)$.

Solution: Let G be a group of order 396. Let n_{11} be the number of Sylow-11-subgroups. Then by Theorem 1.2.45 we have $n_{11} = 1$ or $n_{11} = 12$. If $n_{11} = 1$, then a Sylow-11-subgroup of G is normal in G by Theorem 1.2.46, and hence G is not simple. Thus assume that $n_{11} = 12$. Let H be a Sylow-11-subgroup of G. Then by Theorems 1.2.49 and 1.2.54 we conclude that $12 = n_{11} = [G : N(H)]$. Thus Ord(N(H)) = Ord(G)/12 = 33. Hence N(H) is cyclic by Question 2.8.7. Thus G has an element of order 33. Now since $n_{11} \neq 1$, we conclude that G is non-Abelian. Since N(H) is a subgroup of G and [G : N(H)] = 12, if G is simple, then we conclude that G is isomorphic to a subgroup of A_{12} by Theorem 1.2.57. But A_{12} does not have an element of order 33, for if $\beta \in A_{12}$ of order 33, then by Theorem 1.2.22, β is a product of DISJOINT cycles of length 11 and 3, which is clearly impossible.

QUESTION 2.9.4 Show that there is no simple groups of order $525 = (3)(5^2)(7)$.

Solution: Let G be a group of order 525. Let n_7 be the number of Sylow-7-subgroups of G. Then by Theorem 1.2.45 we have $n_7 = 1$ or $n_7 = 15$. If $n_7 = 1$, then a Sylow-7-subgroup of G is normal in G by Theorem 1.2.46, and hence G is not simple. Hence assume that $n_7 = 15$. Let H be a Sylow-7-subgroup of G. Thus by Theorems 1.2.54 and 1.2.49, we conclude that $15 = n_7 = [G : N(H)]$. Hence N(H) = Ord(G)/15 = 35. Thus N(H) is cyclic (and hence Abelian) by Question 2.8.7. Now let K be a subgroup of N(H) of order 5. Since N(H) is Abelian, $N(H) \subset N(K)$. Also, since K is a 5-subgroup of G, K is contained in a Sylow-5-subgroup of G by Theorem 1.2.44. Hence there is a Sylow-5-subgroup, say D, such that $K \subset D$. Since $Ord(D) = 5^2$, we conclude that D is Abelian by Question 2.8.3. Thus $D \subset N(K)$. Since $N(H) \subset N(K)$ and $D \subset N(K)$, we conclude that $Ord(N(K)) \ge (5)(35) = 175$. Thus $m = [G : N(K)] \le 3$. Hence if G is simple, then G is isomorphic to a subgroup of A_m , which is impossible because $m \le 3$ and $Ord(G) > 3!/2 = Ord(A_3)$.

QUESTION 2.9.5 Let G be a finite simple group and suppose that G has two subgroups K and H such that [G:H] = q and [G:K] = p where q, p are prime numbers. Show that Ord(H) = Ord(K).

Solution: Since G is finite, we need only to show that p = q. Hence assume that p > q. By Theorem 1.2.56 there is a group homomorphism Φ from G into S_q such that $Ker(\Phi) = \{e\}$ (because G is simple). Hence G is isomrphic to a subgroup of S_q , which is impossible since p > q, p divides Ord(G) and p does not divide q!. Thus p = q, and hence Ord(H) = Ord(K).

QUESTION 2.9.6 Show that A_5 cannot contain subgroups of order 30 or 20 or 15.

Solution: Suppose that A_5 has a subgroup H of order 30 20 or 15. Then [G:H] = 2 or 3 or 4. Since A_5 is non-Abelian simple group (see Theorem ??), by Theorem 1.2.57 we conclude that A_5 is isomorphic to a subgroup of A_2 or A_3 or A_4 , which is impossible since G has more elements than A_2 or A_3 or A_4 .

QUESTION 2.9.7 Show that a simple group of order 60 has a subgroup of order 10 and a subgroup of order 6.

Solution: Let G be a simple group of order 60. Write $60 = (2^2)(3)(5)$. Let n_5 be the number of Sylow-5-subgroups, n_3 be the number of Sylow-3-subgroups. By Theorem 1.2.45 we conclude that $n_5 = 6$. Let H be a Sylow-5-subgroup. Then by Theorems 1.2.49 and 1.2.54, we conclude that $6 = n_5 = [G : N(H)]$. Hence Ord(N(H)) = 60/6 = 10. Thus *G* has a subgroup of order 10. Now by Theorem 1.2.45 we conclude that $n_3 = 4$ or 10. Let *K* be a Sylow-3-subgroup. Then again by Theorems 1.2.49 and 1.2.54 $n_3 = 4 = [G : N(K)]$ or $10 = n_3 = [G : N(K)]$. If $n_3 = 4 = [G : N(K)]$, then by Theorem 1.2.57 we conclude that *G* is isomorphic to a subgroup of A_4 which is impossible since Ord(G) = 60 where $Ord(A_4) = 12$. Thus $10 = n_3 = [G : N(K)]$. Hence Ord(N(K)) = 60/10 = 6. Thus *G* has a subgroup of order 6.

QUESTION 2.9.8 Show that a simple group G of order 60 is isomorphic to A_5 .

Solution: Write $Ord(G) = (2^2)(3)(5)$. Let n_2 be the number of Sylow-2-subgroups of G. Then either $n_2 = 5$ or $n_2 = 15$ or $n_2 = 3$ by Theorem 1.2.49. By Theorem 1.2.57 it is impossible that $n_2 = 3$. Let K be a Sylow-2-subgroup. If $n_2 = 5$, then 5 = [G : N(K)] by Theorem 1.2.49 and 1.2.54, and hence $G \cong A_5$ by Theorem 1.2.57. Thus assume that $n_2 = 15$. Since 4 does not divide $14 = n_2 - 1$, by Theorem 1.2.51 we conclude that there are two distinct Sylow-2-subgroup H and K such that $Ord(H \cap K) = 2 \ Ord(N(H \cap K)) > Ord(HK) = Ord(H)Ord(K)/2 = 8$. Since $Ord(N(H \cap K)) > 8$ and $Ord(N(H \cap K))$ divides 60, we conclude that $m = [G : N(H \cap K)] \leq 5$. Thus G is isomorphic to a subgroup of A_m by Theorem 1.2.57. Since Ord(G) = 60 and $Ord(A_m) < 60$ if m < 5, we conclude that m = 5. Since G is isomorphic to a subgroup of A_5 and $Ord(G) = Ord(A_5) = 60$, we conclude that G is isomorphic to A_5 .

QUESTION 2.9.9 Let H be a subgroup of S_5 that contains a 5-cycle and a 2-cycle. Show that $H = S_5$.

Solution: Let alpha be a 5-cycle in H, and let $\beta = (b_1, b_2)$ be a 2-cycle. By Question 2.4.18 we conclude that $Ord(\alpha\beta) = 4$ OR 6. If $Ord(\alpha\beta) = 4$, then $Ord(\alpha^{\beta}) = 6$ by Question 2.4.19. Thus H contains an element of order 6. Since H contains an element of order 5 and an element of order 6 and gcd(5,6) = 1, we conclude that 30 divides Ord(H). Let $D = H \cap A_5$ and $m = [A_5:D]$. By Question 2.5.25 we conclude that $Ord(D) \ge 15$. If $D \ne A_5$, then $1 < m \le 4$, and thus $A_5 \cong A_m$ by Theorem 1.2.57 which is impossible. Thus $D = A_5$. Since D is exactly half of H by Question 2.5.25, we conclude that $H = S_5$.

QUESTION 2.9.10 Let H be a subgroup of A_5 that contains a 5-cycle and a 3-cycle. Show that either $H = A_5$ or $H = S_5$.

Solution: Let $D = H \cap A_5$, α be a 5-cycle of H, and β be a 3-cycle of H. Since β and α are even permutation, we conclude that $\alpha \in D$ and $\beta \in D$. Thus 15 divides Ord(D). Hence $Ord(D) \geq 15$. Suppose that $D \neq A_5$, and let $m = [A_5:D]$. Then $1 < m \leq 4$. Thus $A_5 \cong A_m$ by Theorem 1.2.57 which is impossible. Thus $D = A_5$. If $H \neq A_5$, then $H = S_5$ because $D = A_5$ contains exactly half of the elements of H by Question 2.5.25.

QUESTION 2.9.11 Show that S_5 contains exactly one subgroup of order 60.

Solution : Clearly A_5 is a subgroup of S_5 of order 60. Let H be a subgroup of S_5 of order 60. We will show that $H = A_5$. Let $D = H \cap A_5$. Suppose that $H \neq A_5$. Hence D is a proper subgroup of A_5 . By Question 2.5.25 we conclude that Ord(D) = 30. Since $[A_5:D] = 2$, we conclude that D is normal in A_5 by Question 2.6.1, a contradiction since A_5 is simple.

QUESTION 2.9.12 Let G be a group of order p^n where p is prime and $n \ge 2$. Show that G is not simple.

Solution: If G is Abelian, then every subgroup of G of order p is normal in G, and thus G is not simple. Thus assume that G is not Abelian. Then By Theorem 1.2.47 $Ord(Z(G)) \ge p$, and since G is not Abelian $Z(G) \ne G$. Thus Z(G) is normal in G. Since $Z(G) \ne \{e\}$ and $Z(G) \ne G$, we conclude that G is not simple.

QUESTION 2.9.13 Let G be a group of order pqr such that p > q > r and p,q,r are prime numbers. Show that G is not simple.

Solution: Deny. Hence G is simple. Let n_p be the number of Sylowp-subgroups of G, n_q be the number of Sylow-q-subgroups of G, and n_r be the number of Sylow-r-subgroups of G. Since G is simple, by Theorem 1.2.46 we conclude that $n_p \neq 1$, $n_q \neq 1$, and $n_r \neq 1$. Since p > q > r, we conclude that $n_p = qr$ by Theorem 1.2.45. Hence there are $N_p = (p-1)qr = pqr - qr$ elements of order p. Since q > r and p > q, we conclude that the minimum value of $n_q = p$ and the minimum value of $n_r = q$. Hence there are at least $N_q = (q-1)p = pq - p$ elements of order q and at least $N_r = (r-1)q = qr - q$ elements of order r. Now $N_p + N_q + N_r \ge pqr - qr + pq - p + qr - q = pqr + pq - (p+q) > pqr = Ord(G)$ (because p > q we have pq > (p+q)), a contradiction. Thus G is not simple. **QUESTION 2.9.14** Let G be a group of order p^2q , where p and q are distinct prime numbers. Show that G is not simple.

Solution : Deny. Hence G is simple. Let n_p be the number of Sylow-p-subgroups of G, n_q be the number of Sylow-q-subgroups of G. Since G is simple, by Theorem 1.2.46 we conclude that $n_p \neq 1$ and $n_q \neq 1$. Thus $n_p = q$ by Theorem 1.2.45. Thus p < q. Hence $n_q = p^2$ again by Theorem 1.2.45. Thus p^2 does not divide $n_p - 1 = q - 1$. Hence by Theorem 1.2.51 there are two distinct Sylow-p-subgroups H and K such that $Ord(H \cap K) = p$ and $Ord(N(H \cap K)) > Ord(HK) = p^2p^2/p = p^3$. Since $Ord(N(H \cap K) > p^3$ and $Ord(N(H \cap K))$ must divide $Ord(G) = p^2q$, we conclude that $Ord(N(H \cap K)) = p^2q = Ord(G)$. Hence $N(H \cap K) = G$, and thus $H \cap K$ is normal in G a contradiction. Hence G is not simple.

2.10 Classification of Finite Abelian Groups

QUESTION 2.10.1 What is the smallest positive integer n such that there are exactly 3 nonisomorphic Abelian group of order n.

Solution: Let n = 8. Then a group of order 8 is isomorphic to one of the following three nonisomorphic groups: $Z_8, Z_2 \oplus Z_2 \oplus Z_2$, and $Z_2 \oplus Z_4$.

QUESTION 2.10.2 How many elements of order 2 in $Z_8 \oplus Z_2$? How many elements of order 2 in $Z_4 \oplus Z_2 \oplus Z_2$?

Solution: In $Z_8 \oplus Z_2$, there are exactly 3 elements of order 2, namely: (4, 0), (4, 1), (0, 1). In $Z_4 \oplus Z_2 \oplus Z_2$, there are exactly 6 elements of order 2, namely: (2, 0, 0), (2, 1, 0), (2, 0, 1), (0, 1, 0), (0, 1, 1), (0, 0, 1).

QUESTION 2.10.3 Show that an (Abelian) group G of order 45 contains an element of order 15.

By Theorem 1.2.52, G is isomorphic to one of the following : $Z_{45} \cong Z_5 \oplus Z_9$, or $Z_5 \oplus Z_3 \oplus Z_3$. In the first case, since Z_{45} is cyclic and 15 divides 45, we conclude that G contains an element of order 15. In the second case, let a = (1, 1, 1). Then by Theorem 1.2.37 Ord(a) = lcm[Ord(1), Ord(1), Ord(1)] = lcm[5, 3, 3] = 15.

QUESTION 2.10.4 Show that an Abelian group of order p^n for some prime p and some $n \ge 1$ is cyclic if and only if G has exactly one subgroup of order p.

Solution: Suppose that G is cyclic. Then G has exactly subgroup of order p by Theorem 1.2.12. Conversely, suppose that G has exactly one subgroup of order p. Then G must be isomorphic to Z_{p^n} by Theorem 1.2.52, for if by Theorem 1.2.52 G is isomorphic to $Z_{p^k} \oplus Z_{p^i} \oplus ...$ for some $k, i \geq 1$, then G would have at least two subgroups of order p.

QUESTION 2.10.5 Show that there are exactly two Abelian groups of order 108 that have exactly one subgroup of order 3.

Solution: First $108 = (3)(36) = (2^2)(3^3)$. For G to have exactly one subgroup of order 3, G must have a cyclic a subgroup of order 27 (see Question 2.10.4.) Let $G_1 = Z_4 \oplus Z_{3^3}$ and $G_2 = Z_2 \oplus Z_2 \oplus Z_{3^3}$. Then clearly that G_1 and G_2 are nonisomorphic. The subgroup of G_1 generated by (0,9) is cyclic of order 3, and the subgroup of G_2 generated by (0,0,9) is also cyclic of order 3.

QUESTION 2.10.6 Suppose that G is an Abelian group of order 120 such that G has exactly three elements of order 2. Classify G up to isomorphism.

Solution: Write $120 = (2^3)(3)(5)$. Since *G* has exactly 3 elements of order 2. *G* can not have a cyclic subgroup of order 8. Thus by Theorem 1.2.52 *G* is isomorphic to $G_1 = Z_2 \oplus Z_4 \oplus Z_{15}$ (observe that Z_{15} is isomorphic to $Z_3 \oplus Z_5$) or *G* is isomorphic to $G_2 = Z_2 \oplus Z_2 \oplus Z_2 \oplus Z_{15}$. In the first case, G_1 has the following elements of order 2, namely : (1, 2, 0), (1, 0, 0), (0, 2, 0). In the second case G_2 has the following elements of order 2, namely : (1, 1, 0), (1, 0, 0), (0, 1, 0).

QUESTION 2.10.7 Suppose that the order of a finite Abelian group G is divisible by 10. Show that G has an element of order 10.

Solution: Since 2 divides Ord(G), G has an element, say a, of order 2 by Theorem 1.2.31. Also, since 5 divides Ord(G), G has an element, say b, of order 5 again by Theorem 1.2.31. Since gcd(2,5) = 1 and ab = ba, we conclude that Ord(ab) = 10 by Question 2.1.14.

QUESTION 2.10.8 Find an example of a finite Abelian group such that Ord(G) is divisible by 4 but G has no elements of order 4.

Solution: Let $G = Z_2 \oplus Z_2 \oplus Z_2$. Then G is a group of order 8 and hence Ord(G) is divisible by 4, but each nonidentity element of G is of order 2.

QUESTION 2.10.9 What is the isomorphism class of U(20), i.e., $U(20) = \{a : 1 \le a < 20 \text{ and } gcd(a, 20) = 1\}$ is a group under multiplication module 20.

Solution: First $Ord(U(20)) = \phi(20) = 8$ (see Theorem 1.2.13) by Theorem 1.2.14. Since U(20) is not cyclic, by Theorem 1.2.52 we conclude that U(20) is isomorphic to $G_1 = Z_2 \oplus Z_4$ or $G_2 = Z_2 \oplus Z_2 \oplus Z_2 \oplus Z_2$. Since $3 \in U(20)$ and Ord(3) = 4, we conclude that U(20) is not isomorphic to G_2 (because every nonidentity element of G_2 is of order 2). Thus U(20) is isomorphic to $Z_2 \oplus Z_4$. **Another Solution**: Write 20 = (4)(5). Since gcd(4,5) = 1, we conclude that $U(20) \cong U(4) \oplus U(5)$ by Theorem 1.2.38. But U(4) is isomorphic to Z_2 by Theorem 1.2.40 and U(5) is isomorphic to Z_4 again by Theorem 1.2.40. Thus $U(20) \cong Z_2 \oplus Z_4$.

QUESTION 2.10.10 What is the isomorphism class of U(100). How many elements of order 20 does U(100) have?

Solution: First $100 = (2^2)(5^2)$. By Theorems 1.2.38 and 1.2.40 we conclude that $U(100) = U(2^2) \oplus U(5^2) = Z_2 \oplus Z_{20}$. If $b \in Z_{20}$ such that Ord(b) = 20, then 20(a, b) = (0, 0) for every $a \in Z_2$. By Theorem 1.2.14, there are $\phi(20) = 8$ elements in Z_{20} of order 20. Since (a, b) has order 20 if and only if b has order 20 and a has two choices, namely: 0, 1, we conclude that there $8 \times 2 = 16$ elements in $Z_2 \oplus Z_{20}$ of order 20. Since $U(100) \cong Z_2 \oplus Z_{20}$, we conclude that U(100) has exactly 16 elements of order 20.

QUESTION 2.10.11 Let G be a finite Abelian group and $b \in G$ has maximal order. Show that if $a \in G$, then Ord(a) divides Ord(b).

Solution: Let n = Ord(b) and let $a \in G$ such that m = Ord(a). We need to show that m divides n. Let k = gcd(m, n). Then 1 = gcd(m, n/k). Since Ord(b) = n, we conclude that $Ord(b^k) = n/k$. Since G is Abelian and gcd(m, n/k) = 1, we conclude that $Ord(ab^k) = mn/k$ by Question 2.1.14. Now since k = gcd(m, n), we conclude that $nm/k \ge n$. Since Ord(b) = n is of maximal order, we conclude that mn/k = n. Since k divides m and mn/k = n, we conclude that k = m. Since k = m = gcd(m, n), we conclude that m divides n.

QUESTION 2.10.12 Let G be a finite Abelian group of order 2^n . Show that G has an odd number of elements of order 2.

Solution: If G is cyclic, then $G \cong Z_{2^n}$, and hence G has exactly one element of order 2 because G has exactly one subgroup of order 2. Thus suppose that G is not cyclic. Then by Theorem 1.2.52 we conclude that $G \cong G_1 = Z_{2^{m_1}} \oplus Z_{2^{m_2}} \oplus Z_{2^{m_3}} \oplus \cdots \oplus Z_{2^{m_i}}$ where $m_1 + m_2 + \cdots + m_i = n$, and $1 \leq m_k < n$. Let $a = (a_1, a_2, ..., a_i) \in G_1$ of order 2. Then not all a_k 's are zeros, and for each a_k we have either $a_k = 0$ or $Ord(a_k) = 2$. Since each $Z_{2^{m_k}}$ has exactly one subgroup of order 2, we conclude that there are exactly $2^i - 1$ elements of order 2. Since $2^i - 1$ is an odd number, the proof is completed.

QUESTION 2.10.13 Let G be a finite Abelian group such that for each divisor k of Ord(G) there is exactly one subgroup of G of order k. Show that G is cyclic.

Solution: Write $Ord(G) = (p_1^{n_1})(p_2^{n_2})\cdots(p_m^{n_m})$ where the p_i 's are distinct prime numbers and each $n_i \geq 1$. We need to show that $G \cong G_1 = Z_{p_1^{n_1}} \oplus \cdots Z_{p_m^{n_m}}$. Deny. Then by Theorem 1.2.52 and Theorem 1.2.53 there is a p_i a prime divisor of G and a subgroup H of G such that $H \cong Z_{p_i} \oplus Z_{p_i}$. Thus H has two distinct subgroups of order p_i , and thus G has two distinct subgroups of order p_i , a contradiction. Hence G is cyclic.

2.11 General Questions on Groups

QUESTION 2.11.1 Give an example of a group G that contains two elements, say a, b, such that $Ord(a^2) = Ord(b^2)$ but $Ord(a) \neq Ord(b)$.

Solution: Let $G = Z_6$, under addition module 6, let a = 1 and b = 2. Then $a^2 = 1+1=2$ and $b^2 = 2+2=4$. Hence $ord(a^2) = Ord(b^2) = 3$. But Ord(a) = 6 and Ord(b) = 3.

QUESTION 2.11.2 let $\beta = \begin{bmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 1 & 3 & 8 & 7 & 6 & 5 & 2 & 4 \end{bmatrix}$ Write β as disjoint cycles, then find $Ord(\beta)$ and β^{-1} .

Solution: $\beta = (1)(2,3,8,4,7)(5,6)$. Hence by Theorem 1.2.20 $Ord(\beta) = LCM(4,2) = 4$. Now $\beta^{-1} = (6,5)(7,4,8,3,2) = (7,4,8,3,2)(6,5)$.

QUESTION 2.11.3 Let $\beta \in S_7$ and suppose that $\beta = (2, 1, 4, 3)(5, 6, 7)$. Find the least positive integer n such that $\beta^n = \beta^{-3}$. **Solution**: The idea is to find the order of β . So, we write β as disjoint cycles. But β is already written in disjoint cycles. Hence $Ord(\beta) = lcm[4,3] = 12$. Now $\beta^n = \beta^{-3}$ implies $\beta^{n+3} = e$ (the isentity). Hence n+3 = 12. Thus n = 9.

QUESTION 2.11.4 Let $\beta = (1, 2, 3)(1, 4, 5)$. Write β^{99} in cycle form.

Solution: First, write β as disjoint cycles. Hence $\beta = (1, 4, 5, 2, 3)$. Thus $Ord(\beta) = 5$. Since 5 divides 100, we have $\beta^{100} = \beta\beta^{99} = e$. Thus $\beta^{99} = b^{-1} = (3, 2, 5, 4, 1)$.

QUESTION 2.11.5 Let $\beta = (1, 5, 3, 2, 6)(7, 8, 9)(4, 10) \in S_{10}$. Given β^n is a 5-cycle. What can you say about n.

Solution: Since β^n is a 5-cycle, we conclude that $Ord(\beta^n) = 5$. Now since *beta* is in disjoint cycles, we conclude that $Ord(\beta) = lcm[5,3,2] = 30$. Hence by Question 2.1.12 we have $Ord(\beta^n) = 30/gcd(n,30) = 5$. Thus gcd(n,30) = 6. Thus n = 6m for some $m \ge 1$ such that gcd(m,5) = 1. So, $n = 6, 12, 18, 24, 36, \ldots$ so all n such that gcd(n,30) = 6.

QUESTION 2.11.6 Let $G = U(8) \oplus Z_{12} \oplus S_7$. Find the order of a = (3, 3, (1, 2, 4)(5, 7)).

Solution: By Theorem 1.2.37, Ord(a) = lcm(Ord(3), Ord(3), Ord((1, 2, 4)(5, 7))) = (2, 4, 6) = 12.

QUESTION 2.11.7 Suppose that H and K are two distinct normal subgroups of a finite group G such that [G : H] = [G : K] = p, where p is a prime number. Show that there is a group homomorphism from G ONTO $G/H \oplus G/K$. Also, show that G has a normal subgroup D such that $[G : D] = p^2$. In particular, show that $D = H \cap K$ is a normal subgroup of G such that $[G : D] = p^2$.

Solution: First observe that since H and K are distinct and G is finite, $[G: H \cap K] > p$. Now let Φ be a map from G into $G/H \oplus G/K$ such that $\Phi(g) = (gH, gK)$. It is clear that Φ is a group homomorphism from G into $G/H \oplus G/K$ and $Ker(\Phi) = H \cap K$. Hence $G/Ker(\Phi) = G/(H \cap K)$ cong to a subgroup F of $G/H \oplus G/K$. Since $Ord(G/H \oplus G/K) = p^2$ and p is prime, we conclude that Ord(F) = 1, or p, or p^2 .

Since $Ord(G/(H \cap K)) = [G: H \cap K] = Ord(F)$ and $[G: H \cap K] > p$, we conclude that $Ord(G/(H \cap K)) = Ord(F) = [G: H \cap K] = p^2$. Hence Φ is ONTO and $H \cap K$ is normal in G such that $[G: H \cap K] = p^2$.

QUESTION 2.11.8 Suppose that H and K are two distinct subgroups of a finite group G such that [G:H] = [G:K] = 2. Show that there is a group homomorphism from G ONTO $G/H \oplus G/K$. Also, show that G has a normal subgroup D such that [G:D] = 4. In particular, show that $D = H \cap K$ is a normal subgroup of G such that [G:D] = 4.

Solution: Since [G:H] = [G:K] = 2, we conclude that H and K are both normal in G by Question 2.6.1. Hence replace p in Question 2.11.7 with 2 and use the same argument.

QUESTION 2.11.9 Let G be a finite group with an odd number of elements. Suppose that G has a normal subgroup H of order 5. Show that $H \subset Z(G)$.

Solution: Since H is normal in G, we conclude that Ord(G/C(H)) divides Ord(Aut(H)) by Question 2.7.56. But $H \cong Z_5$ because H is cyclic with 5 elements. Thus Ord(G/C(H)) divides $Ord(Aut(Z_5))$. Hence Ord(G/C(H)) divides Ord(U(5)) = 4 because $Ord(Aut(Z_5)) = Ord(U(5)) = 4$ by Theorem 1.2.41. Let n = Ord(G/C(H)) = [G : C(H]]. Since G has an odd order, n must be an odd number. Since n divides 4 and n is odd, we conclude that n = 1. Hence [G : C(H)] = 1, and thus C(H) = G. Since every element of H commute with every element of G, we conclude that $H \subset Z(G)$.

QUESTION 2.11.10 Let G be a finite group with an odd number of elements such that G has no subgroup K with [G:K] = 3. If H is a normal subgroup of G with 7 elements, then show that $H \subset Z(G)$.

Solution: Since H is normal in G, we conclude that Ord(G/C(H)) divides Ord(Aut(H)) by Question 2.7.56. But $H \cong Z_7$ because H is cyclic with 7 elements. Thus Ord(G/C(H)) divides $Ord(Aut(Z_7))$. Hence Ord(G/C(H)) divides Ord(U(7)) = 6 because $Ord(Aut(Z_7)) = Ord(U(7)) = 6$ by Theorem 1.2.41. Let n = Ord(G/C(H)) = [G : C(H]]. Since G has an odd order, n must be an odd number. Since G has no subgroups of index 3, we conclude that $n \neq 3$. Since n divides 6 and n is odd and $n \neq 3$, we conclude that n = 1. Hence [G : C(H)] = 1, and thus C(H) = G. Since every element of H commute with every element of G, we conclude that $H \subset Z(G)$. **QUESTION 2.11.11** Show that G = Q/Z is an infinite group such that each element of G is of finite order.

Solution: Deny. Then G has a finite order, say n. Thus $n = [\mathcal{Q} : \mathcal{Z}]$, and thus $ng = \mathcal{Z}$ for every $g \in G$. Now let $x = 1/(n+1)\mathcal{Z} \in G$. Then $nx = n/(n+1)\mathcal{Z} \neq \mathcal{Z}$, a contradiction. Thus G is an infinite group. Let $y \in G$. Then $y = a/m\mathcal{Z}$ for some $a \in \mathcal{Z}$ and for some nonzero nonnegative $m \in \mathcal{Z}$. Thus $my = a\mathcal{Z} = \mathcal{Z}$. Thus Ord(y) divides m, and hence y is of finite order.

QUESTION 2.11.12 For each $n \ge 2$, show that G = Q/Z has a unique subgroup of order n.

Solution: let $n \geq 2$ and $H_n = \{a/n\mathbb{Z} : 0 \leq a < n\}$. It is easy to see that H_n is a subgroup of G of order n. Suppose that D is a subgroup of G of order n. We will show that $D = H_n$. let $d \in D$. Then $d = g\mathbb{Z}$. Since $nd = ng\mathbb{Z} = \mathbb{Z}$, we conclude that $ng = b \in \mathbb{Z}$. Thus $g = b/n \in \mathbb{Q}$, and hence $d = c/n\mathbb{Z}$ for some $0 \leq c < n$. Thus $d \in H_n$, and hence $D \subset H_n$. Since $Ord(H_n) = Ord(D) = n$ and $D \subset H_n$, we conclude that $D = H_n$.

QUESTION 2.11.13 *Is there a group homomorphism from* $G = Z_8 \oplus Z_2 \oplus Z_2$ *ONTO* $D = Z_4 \oplus Z_4$.

Solution: No. For suppose that Φ is a group homomorphism from *G* ONTO *D*. Since $F = G/Ker(\Phi) \cong D$ and Ord(G) = 32 and Ord(D) = 16, we conclude that $Ord(Ker(\Phi)) = 2$. Hence $Ker(\Phi) =$ $\{(0,0,0), (a_1, a_2, a_3)\}$. Suppose that $a_1 = 0$. Then $Ord((1,0,0)Ker(\Phi)) =$ 8, a contradiction since *D* has no elements of order 8. Thus assume that $a_1 \neq 0$. Since $Ord((a_1, a_2, a_3)) = 2$, we conclude that $a_1 = 4$. Now $(2,0,0)Ker(\Phi), (2,0,1)Ker(\Phi), (2,1,0)Ker(\Phi), (2,1,1)Ker(\Phi), (0,1,1)Ker(\Phi))$ are all distinct elements of $F = G/Ker(\Phi)$ and each is of order 2. Now *D* has exactly 3 elements of order 3, namely: (2,2), (2,0), (0,2). Thus $F \ncong D$ because *F* has at least 4 elements of order 2, where *D* has exactly 3 elements of order 2. A contradiction. Hence there is no group homomorphism from $G = Z_8 \oplus Z_2 \oplus Z_2$ ONTO $D = Z_4 \oplus Z_4$.

QUESTION 2.11.14 Let $G = \mathcal{Z} \oplus \mathcal{Z}$ and let $H = \{(a, b) : a, b \text{ are even integers }\}$. Show that H is a subgroup of G. Describe the group G/H.
Let $x = (a_1, b_1), y = (a_2, b_2) \in H$. Then $y^{-1}x = (-a_2, -b_2) + (a_1, b_1) = (a_1 - a_2, b_1 - b_2) \in H$ because $a_1 - a_2, b_1 - b_2$ are even integers. Thus H is a subgroup of G by Theorem 1.2.7. Observe that $H = 2\mathcal{Z} \oplus 2\mathcal{Z}$. Now let $K = \mathcal{Z}/2\mathcal{Z}$ and let Φ be the group homomorphism from G ONTO $K \oplus K$ defined by $\Phi(a, b) = (a2\mathcal{Z}, b2\mathcal{Z})$. Then $Ker(\Phi) = 2\mathcal{Z} \oplus 2\mathcal{Z} = H$. Hence $G/H \cong K \oplus K = Z_2 \oplus Z_2$. Thus G/H has exactly 4 elements.

For two elements x, y in a group G, [xy] denotes the element $x^{-1}y^{-1}xy$ (such element is called the commutator of x and y).

QUESTION 2.11.15 Let x, y be two elements in a group G such that y commutes with the element [xy]. Prove that $y^n x = xy^n [yx]^n$ for every positive integer $n \ge 1$.

Solution: First observe that [yx] is the inverse of [xy]. Since y commutes with [xy], we conclude that y commutes with [yx] by Question 2.2.6. We prove the claim by induction. Let n = 1. Then $yx = xy[yx] = xyy^{-1}x^{-1}yx = yx$. Assume the claim is valid for a positive integer $n \ge 1$, i.e., $y^n x = xy^n [yx]^n$. We prove the claim for n+1. Now $y^{n+1}x = yy^n x = yxy^n [yx]^n$. But yx = xy[yx] and y^m commutes with [yx] for every positive integer m (since y commute with [yx]). Hence $y^{n+1}x = yy^n x = yxy^n [yx]^n = xy[yx]y^n [yx]^n = xy^{n+1} [yx]^{n+1}$.

QUESTION 2.11.16 Let x, y be two elements in a group G such that X and y commute with the element [xy]. Prove that $(xy)^n = x^n y^n [yx]^{n(n-1)/2}$ for every positive integer $n \ge 1$.

Solution: Once again, observe that [yx] is the inverse of [xy]. Since x and y commute with [xy], we conclude that x and y commute with [yx] by Question 2.2.6. We prove the claim by induction. Let n = 1. Then $xy = xy[yx]^0 = xy$. Assume the claim is valid for a positive integer $n \ge 1$, i.e., $(xy)^n = x^n y^n [yx]^{n(n-1)/2}$. We prove the claim for n+1, i. e., we need to show that $(xy)^{n+1} = x^{n+1}y^{n+1}[yx]^{(n+1)n/2}$. Now $(xy)^{n+1} = (xy)^n(xy) = x^n y^n [yx]^{n(n-1)/2}(xy) = x^n y^n xy [yx]^{n(n-1)/2}$ (since x and y commute with [xy]). But $y^n x = xy^n [yx]^n$ by Question 2.11.15. Hence $(xy)^{n+1} = (xy)^n (xy) = x^n y^n [yx]^{n(n-1)/2}(xy) = x^n y^n xy [yx]^{n(n-1)/2} = x^n xy^n y [yx]^n [yx]^{n(n-1)/2} = x^{n+1}y^{n+1} [yx]^{(n+1)n/2}$.

QUESTION 2.11.17 Let G be a non-cyclic group of order p^3 for some odd prime number p. Then :

- 1. If G is non-Abelian, then show that Z(G) (the center of G) contains exactly p elements. Also, show that $(xy)^p = x^p y^p$ for every $x, y \in G$.
- 2. Let L be a subgroup of Z(G) of order p. Show that the map $\alpha: G \longrightarrow L$ such that $\alpha(g) = g^p$ is a ring homomorphism from G into L.
- 3. Show that G contains a normal subgroup H that is isomorphic to $Z_p \oplus Z_p$.

Solution (1). By Theorem 1.2.47, Ord(Z(G)) = p or p^2 or p^3 . Since G is non-Abelian, we conclude that $Ord(Z(G)) \neq p^3$. Suppose that $Ord(Z(G)) = p^2$. Since Z(G) is a normal subgroup of G and Ord(G/Z(G)) = p, we conclude that G/Z(G) is a cyclic group, and hence G is Abelian by Question 2.6.6, a contradiction. Thus Ord(Z(G)) = p (observe that p is an odd number not needed here.) Now since $Ord(G/Z(G)) = p^2$, we conclude that G/Z(G) is abelian by Question 2.8.3. Hence xyZ(G) = yxZ(G) for every $x, y \in G$, and thus $[xy] = x^{-1}y^{-1}xy = z \in Z(G)$ for every $x, y \in G$. Since $[xy] \in Z(G)$ for every $x, y \in G$ by Question 2.11.16. Since Ord(Z(G)) = p and 2 divides p-1 (because p is odd), we conclude that $[yx]^{p(p-1)/2} = 1$. Thus $(xy)^p = x^p y^p [yx]^{p(p-1)/2} = x^p y^p$.

(2) Since $L \subset Z(G)$, we conclude that L is normal in G. Since $Ord(L) = p \quad Ord(G/L) = p^2$. Since G is non-cyclic, we conclude that G/L is not cyclic. Since $Ord(G/L) = p^2$ and G/L is not cyclic, we conclude that each non-identity element of G/L has order p, i.e., $g^p \in L$ for every $g \in G$. Now let $x, y \in G$. Since $\alpha(xy) = (xy)^p = x^p y^p$ by (1) and $x^p \in L$ for each $x \in G$, we conclude that α is a group homomorphism from G into L.

(3) Assume that G is Abelian. Since G is non-cyclic, we conclude that $G \cong Z_{p^2} \oplus Z_p$ OR $G \cong Z_p \oplus Z_p \oplus Z_p$ by Theorem 1.2.52, and thus in either case G contains a normal subgroup isomorphic to $Z_p \oplus Z_p$. Now suppose that G is non-Abelian. By Theorem 1.2.43, we conclude that G has a subgroup H of order p^2 . Since [G:H] = p, we conclude that there is a group homomorphism from G into S_p such that $Ker(\Phi)$ is contained in H by Theorem 1.2.56. Hence $Ord(Ker(\Phi)) = 1$ OR p Or Problems in Group Theory

 p^2 . Thus, $Ord(G/Ker(\Phi)) = p^3$ or p^2 or p. Since $G/Ker(\Phi)$ is groupisomorphic to a subgroup of S_p and neither p^3 divides $Ord(S_p) = p!$, nor p^2 divides p!, we conclude that $Ord(G/Ker(\Phi)) = p$, and thus $Ker(\Phi) = H$ (since $Ker(\Phi)$ is contained in H). Thus H is a normal subgroup of G. Now since $Ord(H) = p^2$, we conclude that H is Abelian by Question 2.8.3. Hence $H \cong Z_{p^2}$ or $H \cong Z_p \oplus Z_p$ by Theorem 1.2.52. If $H \cong Z_p \oplus Z_p$, then we are done. Hence assume that $H \cong Z_{p^2}$. Thus H is cyclic and hence G contains an element of order p^2 . Now let α as in (2). Since Ord(Z(G)) = p and α is a group homomorphism from G into Z(G)and G contains an element of order p^2 , we conclude that $\alpha(G) = Z(G)$. Thus, $G/Ker(alpha) \cong Z(G)$, and hence $Ord(G/Ker(\alpha)) = p$. Thus, $Ord(Ker(\alpha)) = p^2$, and therefore $Ker(\alpha)$ is Abelian by Question 2.8.3. Now let $x \in Ker(\alpha)$. Then $\alpha(x) = x^p = 1 \in Z(G)$. Hence Ord(x) = 1or Ord(x) = p. Since $ker(\alpha)$ is Abelian and each nonidentity element of $Ker(\alpha)$ has order p, we conclude that $Ker(\alpha) \cong Z_p \oplus Z_p$.

QUESTION 2.11.18 Suppose that a non-cyclic group G has order p^n for some odd prime number p and $n \ge 3$. Show that G contains a normal subgroup isomorphic to $Z_p \oplus Z_p$.

Solution : Suppose that G is a non-cyclic Abelian. Then $G \cong Z_{p^i} \oplus D$ for some Abelian group D of order p^{n-i} for some i, $1 \le i < n$ by Theorem 1.2.52. Thus G contains a normal subgroup isomorphic to $Z_p \oplus Z_p$. Thus assume that G is non-Abelian. We prove it by induction on n. If n = 3, then by (3) in Question 2.11.17 we are done. Hence assume that the claim is valid for $3 \le m < n$ and we will prove the claim when m = n. Since $Ord(Z(G)) = p^k$ for some $1 \le k < n$ by Theorem 1.2.47, let F = G/L for some subgroup L of order p contained in Z(G). Thus $Ord(F) = p^{n-1}$. Now suppose that F is cyclic. Then G is Abelian by Question 2.6.6, a contradiction. Hence F is not cyclic. Thus F contains a normal subgroup J (of order p^2) isomorphic to $Z_p \oplus Z_p$ by the assumption. Since $Ord(J \cap Z(F)) \ge p$ by Theorem 1.2.59, let M be a subgroup $J \cap Z(F)$ of order p. Then M is a normal subgroup of F. Let Φ be the of group homomorphism from G ONTO F = G/L defined by $\Phi(g) = gL$. Thus $H = \Phi^{-1}(J)$ is a normal subgroup of G which contains L and $Ord(H) = p^3$; also $\Phi^{-1}(M) = N$ is a normal subgroup of G such that $Ord(N) = p^2$ and $N \subset H$. Thus, N is Abelian by Question 2.8.3. Thus either $N \cong Z_{p^2}$ OR $N \cong Z_p \oplus Z_p$ by Theorem 1.2.52. If $N \cong Z_p \oplus Z_p$, then we are done (since N is normal in G). Thus assume that $N \cong Z_{p^2}$, and hence H contains an element of order p^2 (Since $N \subset H$ and $N \cong Z_{p^2}$). Observe that H is a non-cyclic normal subgroup of G because $\Phi(H) = J$ is a non-cyclic subgroup of F. Since L is a subgroup of H of order p and it is normal being a subset of Z(G), let $\alpha: H \longrightarrow L$ such that $\alpha(h) = h^p$ for every $h \in H$. Hence α is a group homomorphism from H into L by (2) in Question 2.11.17. Since H contains an element of order p^2 , we conclude that $\alpha(H) = L$. Since $H/Ker(\alpha) \cong \alpha(H) = L$, we conclude that $Ord(Ker(\alpha)) = p^2$ and $Ker(\alpha) = \{h \in H : \alpha(h) = h^p = e \text{ (the identity of } H(G)\}$. It is clear that $Ker(\alpha)$ is normal in H. Now let $g \in G$. Since H is normal in G and $Ker(\alpha) \subset H$, we conclude that $g^{-1}Ker(\alpha)g \subset H$. Let $a \in Ker(\alpha)$. Then $(g^{-1}ag)^p = g^{-1}a^pg = e$. Hence $g^{-1}ag \in Ker(\alpha)$. Thus $g^{-1}Ker(\alpha)g \subset Ker(\alpha)$ for every $g \in G$. Hence $Ker(\alpha)$ is a normal subgroup of G by Question 2.6.29. Since $Ord(Ker(\alpha)) = p^2$ and every nonidentity element of $Ker(\alpha)$ has order p, we conclude that $Ker(\alpha) \cong Z_p \oplus Z_p$ is a normal subgroup of G. [LONG PROOF BUT I TRIED TO GIVE ALL THE DETAILS, SO DO NOT GET DISCOURAGED]

QUESTION 2.11.19 (compare with Question 2.8.22) Let G be a group of order p^n where $n \ge 1$ and p is an odd prime number. If G contains exactly one subgroup of order p, then show that G is cyclic.

Solution: If n = 1 OR n = 2, then the claim is clear. Hence assume that $n \geq 3$. Deny. Then by Question 2.11.18, G contains a subgroup that is isomorphic to $Z_p \oplus Z_p$. Thus G contains at least two distinct subgroups of order p, a contradiction. Thus G must be cyclic.

QUESTION 2.11.20 Let H, K be normal subgroups of a group G such that G/H and G/K are Abelian groups. Prove that $G/(H \cap K)$ is Abelian group.

Solution Let Φ be the group homomorphism from G into $G/H \oplus G/K$ defined by $\Phi(g) = (gH, gK)$. Then $Ker(\Phi) = H \cap K$. Thus, $G/(H \cap K) \cong$ to a subgroup of $G/H \oplus G/K$. Hence $G/(H \cap K)$ is an Abelian group.

QUESTION 2.11.21 Let G be a group of order p^n where $n \ge 1$ and p is an odd prime number. If every subgroup of G is normal in G, then show that G is Abelian. **Solution** If n = 1 OR n = 2, then there is nothing to prove. Hence assume that $n \ge 3$. Assume the claim is valid for all $2 \le m < n$. Then by Question 2.11.18, G contains a normal subgroup isomorphic to $Z_p \oplus Z_p$. Hence G contains two distinct normal subgroups, say H and K, each is of order p. Hence G/H and G/K are Abelian by assumption. Thus $G/(H \cap K)$ is Abelian by Question ??. But $H \cap K = \{e\}$ (e = the identity of G). Thus G is Abelian.

QUESTION 2.11.22 (A generalization of Question 2.6.1) let G be a group of order n and let H be a subgroup of G such that [G:H] = p where p is the smallest prime divisor of n. Prove that H is normal in G.

Solution: By Theorem 1.2.56, there is a group homomorphism Φ from G into S_p such that $Ker(\Phi)$ is a normal subgroup of H. We will show that $Ker(\Phi) = H$, and hence H is normal in G. Suppose that $Ker(\Phi)$ is properly contained in H. Since [G:H] = p, we conclude that $Ord(G/Ker(\Phi)) = d$ for some integer d > 2. Since p is the smallest positive prime divisor of n, we conclude that either p^2 divides d or there is a prime number q > p such that q divides d. Since $G/Ker(\Phi)$ is isomorphic to a subgroup of S_p and $Ord(S_p) = p! = p(p-1)(p-2)...(1)$, we conclude that p is the largest prime number that may divide the order of $G/Ker(\Phi) = d$ and if p divides d, then p^2 does not divide d. Hence neither p^2 divides d nor q divides d, a contradiction. Thus $Ker(\Phi) = H$ is a normal subgroup of G.

QUESTION 2.11.23 Let G be a group of order p^n where $n \ge 1$ and p is a prime number. Prove that for every $m, 1 \le m < n$, there is a normal subgroup of G of order p^m .

Solution: If n = 1 OR n = 2, then the claim is clear. Hence assume that $n \ge 3$. First it is clear that for every $m, 1 \le m < n$, there is a subgroup of order p^m . Hence let H be a subgroup of G of order n-1. Then [G:H] = p is the smallest prime divisor of the order of G. Thus H is normal in G by Question 2.11.22. Also, since $Ord(Z(G)) \ge p$ by Theorem 1.2.47, we conclude that G has a normal subgroup of order p. We prove the claim by induction. For n = 3, then the claim is clear by the previous argument. Hence assume that the claim is correct for all groups of order p^k where $3 \le k < n$. Let L be a subgroup of Z(G)of order p. Set F = G/L and let Phi be the group homomorphism from G ONTO F defined by $\Phi(q) = qL$ for every $q \in G$. Then $Ord(G/L) = p^{n-1}$. Thus, by assumption, for every $2 \leq mleqn-1$, there is a normal subgroup D of F of order p^{m-1} , and hence $J = \Phi^{-1}(D)$ is a normal subgroup of G of order p^m .

QUESTION 2.11.24 Let L be a normal subgroup of a group G, Φ be the group homomorphism from G ONTO F = G/L defined by $\Phi(g) = gL$ for every $g \in G$, H be a subgroup of F, $N_F(H)$ be the normalizer of H in F, $K = \Phi^{-1}(H)$. Then $N(K) = \Phi^{-1}(N_F(H))$, where N(K) is the normalizer of K in G.

Solution: First observe that L is a subgroup of K. Let $g \in N(K)$. Since $gKg^{-1} = K$ and $\Phi(K) = H$, $gLHg^{-1}L = H$ in F. Thus $gL \in N_F(H)$, and hence $g \in \Phi^{-1}(N_F(H))$. Now let $g \in \Phi^{-1}(N_F(H))$ and let kinK. Then $\Phi(k) = kL \in H$. Thus $gLkLg^{-1}L = gkg^{-1}L \in H$. Since $\Phi(K) = H$, we conclude that $gLkLg^{-1}L = gkg^{-1}L = k_1L$ for some $k_1 \in K$. Thus $gkg^{-1} = k_1z \in K$ for some $z \in L \subset K$. Thus $g \in N(K)$. Hence $N(K) = \Phi^{-1}(N_F(H))$

QUESTION 2.11.25 Let G be a group of order p^n where $n \ge 1$ and p is a prime number. Prove that H is properly contained in N(H)for every proper subgroup H of G.

Solution: If n = 1 or n = 2, then the claim is clear. Also if G is Abelian, then there is nothing to prove. Hence assume that $n \geq 3$ and G is non-Abelian. Now let H be a subgroup of G. If Z(G) not $\subset H$, then Ord(Z(G)H) > Ord(H) by Theorem 1.2.48 and it is clear that $H \subset Z(G)H$. But is is easily verified that $Z(G)H \subset N(H)$. Thus $H \neq N(H)$. So we prove the claim for all proper subgroups of G that contain Z(G). Now Let n = 3. Then every subgroup of G of order p^2 is normal in G by Question 2.11.22 and if H is subgroup of G of order p containing Z(G), then H = Z(G) and thus N(H) = N(Z(G)) = G. We proceed by induction on n. For n = 3, then the claim is clear by the previous argument. Hence assume that the claim is correct for all groups of order p^k where $3 \leq k < n$. Set F = G/Z(G) and let Phi be the group homomorphism from G ONTO F defined by $\Phi(q) = qZ(G)$ for every $g \in G$. Then $Ord(F = G/Z(G)) < p^n$ and there is one to one correspondence between the subgroups of G containing Z(G) and the subgroups of F. Let H be a subgroup of F, and $K = \Phi^{-1}(H)$. Then $N(K) = \Phi^{-1}(N_F(H))$ by Question 2.11.24, where $N_F(H)$ is the normalizer of H in F. Since $H \neq N_F(H)$ by assumption, we conclude that $K \neq N(K)$, and thus K is properly contained in N(K).

QUESTION 2.11.26 Show that A_4 does not contain a subgroup of order 6,

Solution: Deny. Let H be a subgroup of A_4 of order 6. Since $[A_4:H] = 2$, by Question 2.6.1 we conclude that H is normal in A_4 . Now since Ord(H) = 6 = (3)(2), let K be a Sylow-3-subgroup of H (observe that K is also a Sylow-3-subgroup of A_4). Then by Theorem 1.2.50 we conclude that $A_4 = HN_{A_4}(K)$ (note that $N_{A_4}(K)$ is the normalizer of K in A_4). Since [H:K] = 2, once again K is normal in H. Thus $H \subset N_{A_4}(K)$. Hence by Theorem 1.2.48 we have $Ord(A_4) = Ord(H)Ord(N_{A_4}(K))/Ord(H \cap N_{A_4}(K)) = 6Ord(N_{A_4}(K)/6) = Ord(N_{A_4}(K))$. Hence $N_{A_4}(K) = A_4$. Thus K is normal in A_4 . Hence K is unique by Theorem 1.2.46. Thus there are exactly two elements of order 3 in A_4 . But (1, 2, 3), (1, 3, 2), (1, 2, 4) are elements in A_4 and each is of order 3. Thus A_4 has at least 3 elements of order 3, a contradiction. Hence A_4 does not contain a subgroup of order 6.

QUESTION 2.11.27 Let G be a group of order 105 = (7)(5)(3). Show that if G has a subgroup H of order 35 = (7)(5), then G has exactly subgroup, say K, of order 7, and hence show that K is normal in G.

Solution: Since [G:H] = 3, we conclude that H is normal in G by Question 2.11.22. By Theorem 1.2.43, we conclude that H has a Sylow-7-subgroup, say K (observe that K is a Sylow-7-subgroup of G). Since [H:K] = 5, we conclude that K is normal in H again by Question 2.11.22. Thus $H \subset N_G(K)$. But by Theorem 1.2.50, we conclude that [G:H] = 3 divides $N_G(K)$. Since $H \subset N_G(K)$, we conclude that 35 divides $Ord(N_G(K))$. Since 35 divides $Ord(N_G(K))$ and 3 divides $Ord(N_G(K))$ and gcd(35, 3) = 1, we conclude that (35)(3) = 105 divides $Ord(N_G(K))$. Thus $N_G(K) = G$. Hence K is normal in G. Now G is unique by Theorem 1.2.46.

QUESTION 2.11.28 (a generalization of Question 2.11.27) Suppose that G is a group of order pqr such that p > q > r, where p, q, r are prime numbers. Show that G has a subgroup of order pq if and only if G has exactly one subgroup of order p, i.e., if and only if G has a normal subgroup of G of order p.

Solution: Suppose that G has a subgroup H of order pq. Since [G:H] = r, we conclude that H is normal in G by Question 2.11.22.

Let K be a Sylow-p-subgroup of H. Since [H:K] = q and q < p, we conclude that K is normal in H again by Question 2.11.22. Hence $H \subset N_G(K)$, and thus pq divides $Ord(N_G(K))$. Now by Theorem 1.2.50 we conclude that r divides $Ord(N_G(K))$. Since gcd(pq,r) = 1and pq divides $Ord(N_G(K))$ and r divides $Ord(N_G(K))$, we conclude that pqr divides $Ord(N_G(K))$. Thus $N_G(K) = G$. Hence K is normal in G, and thus K is unique by Theorem 1.2.46.

For the converse, suppose that G has exactly one subgroup, say K, of order p. Then K is normal in G by Theorem 1.2.46. Let D be a Sylow-q-subgroup of G. Then KD is a subgroup of G by Question 2.6.16. Now since $K \cap D = \{e\}$, we conclude that Ord(KD) = pq by Theorem 1.2.48.

QUESTION 2.11.29 Let G be an infinite group and suppose that G has a proper subgroup H such that $[G:H] = n < \infty$. Show that G has a normal subgroup K such that neither K = G nor $K = \{e\}$.

Solution: By Theorem 1.2.56, there is a group homomorphism Φ from G into S_n such that $Ker(\Phi) \subset H$. Now $K = Ker(\Phi)$ is a normal subgroup of G. Since G is infinite and S_n is finite and $G/K \cong$ to a subgroup of S_n , we conclude that $K \neq \{e\}$. Also, since $K \subset H$ and $H \neq G$, we conclude that $K \neq G$.

QUESTION 2.11.30 Let G be a finite group of odd order. Prove that if a is a nonidentity elements of G, then a is not a conjugate of a^{-1} , i.e., show that $a \neq g^{-1}a^{-1}g$ for every $g \in G$.

Solution First observe that since ord(G) is an odd number, $a \neq a^{-1}$ for every nonidentity element $a \in G$ (for if $a = a^{-1}$ and a is nonidentity, then Ord(a) = 2 which is impossible since Ord(G) is an odd number). Now assume that $a = g^{-1}a^{-1}g$ for some $g \in G$, where a is nonidentity. Then a and a^{-1} are two distinct elements of G. Now let $b \in CL(a)$ (recall that CL(a) is the conjugacy class of a, see Theorem 1.2.54), Since b is a conjugate of a, b^{-1} is a conjugate of a^{-1} . Thus b^{-1} is a conjugate of a. Hence $b^{-1} \in CL(a)$. Since $b^{-1} \in CL(a)$ for every $b \in CL(a)$ and $b^{-1} \neq b$ for every $b \in CL(a)$, we conclude that Ord(CL(a)) is an even number. But Ord(CL(a)) = Ord(G)/Ord(C(a)) by Theorem 1.2.54 and Ord(G)/Ord(C(a)) is an odd number since Ord(G) is an odd number. Thus Ord(CL(a)) is an odd number since Ord(G) is an odd number. Thus Ord(CL(a)) is an odd number which is contradiction. Thus, a is not a conjugate of a^{-1} for every nonidentity element a of G.

Problems in Group Theory

QUESTION 2.11.31 Let G be a group and Φ be a map from G ONTO G given by $\Phi(g) = g^{-1}$. Show that Φ is a group isomorphism if and only if G is an Abelian group.

Solution: If *G* is Abelian, then it is clear that Φ is an isomorphism. Hence assume that Φ is an isomorphism. Let $g_1, g_2 \in G$. Then $\Phi(g_1g_2) = (g_1g_2)^{-1} = g_1^{-1}g_2^{-1}$. But $(g_1g_2)^{-1} = g_2^{-1}g_1^{-1}$. Thus $g_2^{-1}g_1^{-1} = g_1^{-1}g_2^{-1}$. Hence $(g_2^{-1}g_1^{-1})^{-1} = (g_1^{-1}g_2^{-1})^{-1}$. Hence $g_1g_2 = g_2g_1$.

QUESTION 2.11.32 Let G be a finite a group and Φ be an isomorphism from G ONTO G such that $\Phi(g) = g$ if and only if g = e and Φ^2 is the identity map (Φ^2 means the composition of Φ with Φ). Show that G is Abelian.

Solution: Let $K = \{g_1^{-1}\Phi(g_1) : g_1 \in G\}$. First we show that G = K. Suppose that $g_1^{-1}\Phi(g_1) = g_2^{-1}\Phi(g_2)$ for some $g_1, g_2 \in G$. Then $\Phi(g_1)\Phi(g_2)^{-1} = \Phi(g_1g_2-1) = g_1g_2-1$. Thus $g_1g_2^{-1} = e$ by hypothesis. Hence $g_1 = g_2$. Since G is finite and for every $g_1, g_2 \in G$ $g_1^{-1}\Phi(g_1) \neq g_2^{-1}\Phi(g_2)$, we conclude that K = G. Now let $x \in G$. Then $x = g^{-1}\Phi(g)$ for some $g \in G$. Thus $\Phi(x) = \Phi(g^{-1}\Phi(g)) = \Phi(g^{-1})\Phi(\Phi(g)) = \Phi(g)^{-1}g = (g^{-1}\Phi(g))^{-1} = x^{-1}$. Since $\Phi(x) = x^{-1}$ is an isomorphism, we conclude that G is Abelian by Question 2.11.31.

QUESTION 2.11.33 Let G be a group and Φ be a group isomorphism from G Onto G such that $\Phi(g) = g^2$ for every $g \in G$. Suppose that Φ^2 is the identity map on G. Show that G is Abelian such that Ord(g) = 3 for every nonidentity $g \in G$. In particular, if G is finite, then show that $Ord(G) = 3^n$ for some $n \ge 1$ and $G \cong Z_3 \oplus Z_3 \cdots \oplus Z_3$ (n copies of Z_3).

Solution: Let $g \in G$. Since $\Phi(g) = g^2$ and $\Phi(\Phi(g)) = g$, we conclude that $g = \Phi(\Phi(g)) = \Phi(g^2) = g^4$. Thus $g^3 = e$. Hence Ord(g) = 3 for every nonidentity $g \in G$ and $g^2 = g^{-1}$. Thus $\Phi(g) = g^2 = g^{-1}$ for every $g \in G$. Since ϕ is an isomorphism, we conclude that G is Abelian by Question 2.11.31. Suppose G is finite. Since every nonidentity element of G has order 3, we conclude that $Ord(G) = 3^n$ for some $n \ge 1$. Also, by Theorem 1.2.52, we conclude that $G \cong Z_3 \oplus Z_3 \cdots \oplus Z_3$ (n copies of Z_3). **QUESTION 2.11.34** Show that $G = \{ \begin{bmatrix} 1 & a & b \\ 0 & 1 & c \\ 0 & 0 & 1 \end{bmatrix} : a, b, c \in Z_3 \}$ is a

non-Abelian group of order 27, under matrix multiplication such that each nonidentity element of G has order 3.

Solution : A straight forward calculation will show that G is a group with 27 elements. Now let $A = \begin{bmatrix} 1 & 1 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{bmatrix}$ and $B = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{bmatrix}$. Then

the entry in the first row and third column of AB is 2. But the entry in the first row and third column of BA is 1. Hence $AB \neq BA$.

Thus G is non-Abelian. Let $A = \begin{bmatrix} 1 & a & b \\ 0 & 1 & c \\ 0 & 0 & 1 \end{bmatrix}$, $a, b, c \in \mathbb{Z}_3$. Thus

 $A^{3} = \begin{bmatrix} 1 & 3a & 3ac + 3b \\ 0 & 1 & 3c \\ 0 & 0 & 1 \end{bmatrix}$ but 3a = 3ac + 3b = 3c = 0 in Z_{3} . Hence $A^3 = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}.$

QUESTION 2.11.35 Let $A = \begin{bmatrix} 1 & a & b \\ 0 & 1 & c \\ 0 & 0 & 1 \end{bmatrix}$, $a, b, c \in Z_n$. Show that Thus $A^m = \begin{bmatrix} 1 & ma & m(m-1)/2ac + mb \\ 0 & 1 & mc \\ 0 & 0 & 1 \end{bmatrix}$.

Solution : For m = 1, the claim is clear. Hence assume that the claim is valid for $m = k \ge 1$. We prove it for m = k + 1. Now $A^{k+1} =$ $\begin{bmatrix} 1 & a & b \\ 0 & 1 & c \\ 0 & 0 & 1 \end{bmatrix} A^{k} = \begin{bmatrix} 1 & a & b \\ 0 & 1 & c \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & ka & k(k-1)/2ac + kb \\ 0 & 1 & kc \\ 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & (k+1)a & (k(k-1)/2+k)ac & (k+1)b \\ 0 & 1 & (k+1)c \\ 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & (k+1)a & k(k+1)/2ac & (k+1)b \\ 0 & 1 & (k+1)c \\ 0 & 0 & 1 \end{bmatrix}$

QUESTION 2.11.36 (a generalization of Question 2.11.34) Let p be an odd prime number. Show that $G = \{ \begin{bmatrix} 1 & a & b \\ 0 & 1 & c \\ 0 & 0 & 1 \end{bmatrix} : a, b, c \in \mathbb{Z}_p \}$ is Problems in Group Theory

a non-Abelian group of order p^3 , under matrix multiplication, such that each nonidentity element of G has order p.

Solution : A straight forward calculation will show that G is a group with p^3 elements. Now let $A = \begin{bmatrix} 1 & 1 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{bmatrix}$ and $B = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{bmatrix}$. Then the entry in the first row and third column of AB is 2. But the entry in the first row and third column of BA is 1. Hence $AB \neq BA$. Thus G is non-Abelian. Let $A = \begin{bmatrix} 1 & a & b \\ 0 & 1 & c \\ 0 & 0 & 1 \end{bmatrix}$, $a, b, c \in Z_p$. Then by Question 2.11.35, we have $A^p = \begin{bmatrix} 1 & pa & p(p-1)/2ac + pb \\ 0 & 1 & pc \\ 0 & 0 & 1 \end{bmatrix}$. but pa = p(p-1)/2ac + pb = pc = 0 in Z_p . Hence $A^p = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$.

QUESTION 2.11.37 Give an example of a non-Abelian group H of order 3^5 such that each element of G is of order 3. Also, give an example of a non-Abelian group H of order 54 such that H has an element of order 12.

Solution: Let $H = Z_3 \oplus Z_3 \oplus G$, where G is the group in Question 2.11.34. Since G is non-Abelian, we conclude that H is non-Abelian. It is clear that each element of H is of order 3.

For the second part, let $H = Z_4 \oplus G$, where G is the group in Question 2.11.34. Then H a non-Abelian group and Ord(H) = 54. Let a = (1, B), where B is a nonidentity element of G. Then by Theorem 1.2.37 Ord(a) = lcm[Ord(1), Ord(B)] = lcm[4, 3] = 12.

A. Badawi

80