ON DOMAINS WHICH HAVE PRIME IDEALS THAT ARE LINEARLY ORDERED

Ayman Badawi
Department of Mathematics
Emory & Henry College
Emory, VA 24327

Introduction. Throughout this paper the letter R denotes a commutative integral domain with identity and quotient field K. If I is an ideal of a ring A, then $\text{Rad}(I)$ denotes the radical of I. A domain R is a valuation domain if and only if for every $a, b \in R$, either $a \mid b$ or $b \mid a$. Recall that an integral domain R is a GCD domain if any two elements in R have a greatest common divisor. It is well-known that a GCD domain R which has prime ideals that are linearly ordered is a valuation domain. The purpose of this paper is to provide an alternative proof of this fact. Furthermore, we will give a characterization of divided domains and another characterization of pseudo-valuation domains that are somewhat analogous to the characterization of valuation domains given above.

We start by recalling the following definitions

Definition 1. A domain R is called a divided domain in the sense of [6] if every prime ideal of R is comparable to every principal ideal of R.

Definition 2. A prime ideal P of R is called strongly prime in the sense of [7] if whenever $x, y \in K$
and \(xy \in P \), then \(x \in P \) or \(y \in P \). If every prime ideal of \(R \) is strongly prime, then \(R \) is called a pseudo-
valuation domain [abbreviated PVD].

We start with the following Theorem:

Theorem 1. The following statements are equivalent for a commutative ring \(A \) with identity.

1. The prime ideals of \(A \) are linearly ordered.
2. The radical ideals of \(A \) are linearly ordered.
3. Each proper radical ideal of \(A \) is prime.
4. The radical ideals of principal ideals of \(A \) are linearly ordered.
5. For each \(a, b \in A \), there is an \(n \geq 1 \) such that either \(a \mid b^n \) or \(b \mid a^n \).

Proof. (1) \(\Rightarrow \) (2). Let \(I \) be a proper ideal of \(A \) and \(P \) be the minimum prime ideal of \(A \) over \(I \). Then \(\text{Rad}(I) = P \). (2) \(\Rightarrow \) (1). This requires no comment. (2) \(\Rightarrow \) (3). Let \(I \) be a proper ideal of \(A \) and \(P \) be the minimum prime ideal of \(A \) over \(I \). Then \(\text{Rad}(I) = P \). (3) \(\Rightarrow \) (1). Suppose that \(P, Q \) are two distinct prime ideals of \(A \). Let \(I = P \cap Q \). Then \(\text{Rad}(I) = I \) is a prime ideal of \(A \). But this is possible only if \(P \subseteq Q \) or \(Q \subseteq P \). (2) \(\Rightarrow \) (4). Clear. (4) \(\Rightarrow \) (5). This is clear by the definition of radical ideals. (5) \(\Rightarrow \) (1). Suppose that \(P, Q \) are two distinct prime ideals of \(A \). Now, suppose that there is a \(p \in P - Q \). Then for every \(q \in Q \) there is an \(n \geq 1 \) such that \(p \mid q^n \). Therefore \(q \in P \).

In view of the above Theorem, we have:

Corollary 1. Suppose the prime ideals of a commutative ring \(A \) with identity are linearly ordered and \(a, b \) are nonzero nonunit elements of \(A \). Let \(P \) be the minimum prime ideal of \(A \) that contains \(a \) and \(Q \) be the minimum prime ideal of \(A \) that contains \(b \).
Then $P = Q$ if and only if there exist $n \geq 1$, $m \geq 1$ such that $a \mid b^n$ and $b \mid a^m$.

Proof. This is just the observation that $P = \text{Rad}(\langle a \rangle) = \text{Rad}(\langle b \rangle) = Q$.

The following result appeared in [9, Theorem 1], [5, Corollary 4.3], [10, Corollary 3.8], and [11, Proposition A]. In view of the above Theorem, we give a different proof of it.

Proposition 1. A GCD domain R which has prime ideals that are linearly ordered is a valuation domain.

Proof. Let a, b be nonzero nonunit elements of R, and let $f = \gcd(a, b)$. Suppose that f is associated in R to neither a nor b. Let $d = a/f$, and $g = b/f$. Then neither d nor g is a unit of R. Thus, by Theorem 1 there exists $m \geq 1$ such that either $d \mid g^n$ or $g \mid d^n$. But it is well-known that $\gcd(d, g) = 1$ and therefore for every $n \geq 1$ $\gcd(d, g^n) = \gcd(g, d^n) = 1$ (see [8, Theorem 49]). Hence, d or g is a unit of R, which is a contradiction. Thus, the assumption that f is associated in R to neither a nor b is invalid. Hence, $a \mid b$ or $b \mid a$. Therefore, R is a valuation domain.

The following Proposition gives a characterization of divided domains in the sense of [6].

Proposition 2. The following statements are equivalent for an integral domain R.

1. R is a divided domain.
2. For every pair of proper ideals I, J of R, the ideals I and $\text{Rad}(J)$ are comparable.
3. For every $a, b \in R$, the ideals (a) and $\text{Rad}(\langle b \rangle)$ are comparable.
4. For every $a, b \in R$, either $a \mid b$ or $b \mid a^n$ for some $n \geq 1$.
Proof. (1) ⇒ (2). Suppose \(R \) is a divided domain. Then by the definition of divided domains, the prime ideals of \(R \) are linearly ordered. Let \(I, J \) be two proper ideals of \(R \). Since \(R \) is divided, \(\text{Rad}(J) = \mathfrak{p} \) is prime by Theorem 1 above. Thus, either \((a) \subseteq \mathfrak{p} \) or \(\mathfrak{p} \subseteq (a) \) for every \(a \in I \) since \(R \) is divided. Hence, the ideals \(I, \text{Rad}(J) \) are comparable. (2) ⇒ (3). This requires no comment. (3) ⇒ (4). Clear. (4) ⇒ (1). Suppose that for every \(a, b \in R \), either \(a|b^n \) for some \(n \geq 1 \) or \(b|a \). Let \(\mathfrak{p} \) be a prime ideal of \(R \) and \(s \in R-\mathfrak{p} \) and \(p \in \mathfrak{p} \). Since for every \(n \geq 1 \) \(p \) does not divide \(s^n \), \(s|p \). Hence, \(\mathfrak{p} \) is comparable to every principal ideal of \(R \). Therefore \(R \) is a divided domain. \(\blacksquare \)

Let \(R \) be a PVD, and \(a, b \) be nonzero nonunit elements of \(R \). Suppose that \(a \) does not divide \(b \) and \(b \) does not divide \(a^2 \). Then \(c=b/a \) and \(g=a^2/b \) are elements in \(K-R \). Let \(M \) be a maximal ideal of \(R \) that contains \(a \). Then \(cg = a \in M \). But neither \(c \) nor \(g \) is an element of \(M \). A contradiction, since \(M \) is strongly prime. Thus, \(a|b \) or \(b|a^2 \). Hence, by Theorem 1 the prime ideals of \(R \) are linearly ordered. In particular, \(R \) is quasilocal. This argument provides an alternative proof of \([7, \text{Corollary 1.3}]\). Anderson [1, Proposition 3.1] proved that a quasilocal domain \(R \) with maximal ideal \(M \) is a PVD if and only if for every \(x \in K \), either \(xR \subseteq M \) or \(M \subseteq xR \), that is, if for every \(a, b \in R \), either \(aM \subseteq bR \) or \(bR \subseteq aM \). In view of [1, Proposition 3.1] and Theorem 1, we now give several other Characterizations of pseudovaluation domains.

Proposition 3. Let \(N \) be the set of all nonunit elements of an integral domain \(R \). The following statements are equivalent.
(1) R is a PVD with the maximal ideal N.

(2) For each pair I, J of ideals of R, either $J \subseteq I$ or $IB \subseteq J$ for every proper ideal B of R.

(3) For every $a, b \in R$, either $bR \subseteq aR$ or $acR \subseteq bR$ for every nonunit $c \in R$.

(4) For every $a, b \in R$, either $a|b$ or $b|ac$ for every nonunit $c \in R$.

(5) For every $a, b \in R$, either $bR \subseteq aR$ or $aN \subseteq bR$.

(6) For every $a, b \in R$, either $bN \subseteq aR$ or $aR \subseteq bN$.

Proof. (1) \Rightarrow (2). Let I, J be ideals of R and B be a proper ideal of R. Suppose that J is not a subset of I and BI is not a subset of J. Then there exist $j \in J - I$ and $ib \in IB$ for some $i \in I$ and $b \in B$ such that $j/i \in K - R$ and $ib/j \in K - R$. But $(j/i)(bi/j) = b \in N$ and neither $j/i \in N$ nor $ib/j \in N$, which is a contradiction. (2) \Rightarrow (3). Clear. (3) \Rightarrow (4). Clear. (4) \Rightarrow (1). Suppose that for every $a, b \in R$ and any nonunit c in R, either $a|b$ or $b|ac$. Let a be any nonunit element of R and $b \in R$. Then either $a|b$ or $b|a^2$. Hence, the prime ideals of R are linearly ordered by Theorem 1. In particular, R is quasilocal with maximal ideal N. By [2, Proposition 4.8] (see also [4, Proposition 2]), it suffices to show that N is strongly prime. Suppose that $xy \in N$ for some $x, y \in K$. If $x \in R$ or $y \in R$, then it is easy to see that $x \in N$ or $y \in N$. Hence, suppose that $x, y \in K - R$. Write $x = b/a$ and $y = c/d$ for some $a, b, c, d \in R$. Since $x = b/a \in K - R$ and $xy = bc/ad \in N$, $b|a(bc/ad)$. Thus, $y = c/d \in R$, which is a contradiction. Therefore, if $xy \in N$ for some $x, y \in K$, then $x \in N$ or $y \in N$. (4) \iff (5). Clear. (6) \Rightarrow (1). Let $a, b \in R$. Then either $a|b$ or $b|a^2$.
Hence, the prime ideals of \(R \) are linearly ordered. In particular, \(R \) is quasilocal with the maximal ideal \(N \). Hence, \(R \) is a PVD by [1, Proposition 3.1]. (1) \(\Rightarrow \) (6). Again, This is just a restatement of [1, Proposition 3.1].

An immediate consequence of the above Proposition is [7, Proposition 1.1]. We state it here as a corollary.

Corollary 2. Every valuation domain is a PVD.

RELATED RESULTS

Throughout this section the letter \(N \) denotes the set of all nonunit elements of \(R \), and \(G \) denotes the group of divisibility of \(R \). If \(I \) is an ideal of \(R \), then \(I : I = \{ x \in K : xI \subseteq I \} \).

Anderson [1, Proposition 3.10] proved the following result.

Fact 1 [1, Proposition 3.10]. The following statements are equivalent for a quasilocal domain \(R \) with maximal ideal \(M \).

1. For every \(a, b \in R \), either \(aM \subseteq bR \) or \(bM \subseteq aR \).
2. For every \(a, b \in R \), either \(aM \subseteq bM \) or \(bM \subseteq aM \).

In view of Fact 1 above and Theorem 1, we have the following result.

Proposition 4. The following statements are equivalent for an integral domain \(R \). Furthermore, if \(R \) satisfies any of the following conditions, then \(R \) is quasilocal with the maximal ideal \(N \) and \(N : N \) is a valuation domain.

1. For every \(a, b \in R \), either \(aN \subseteq bR \) or \(bN \subseteq aR \).
(2) For every $a, b \in R$, either $aN \subseteq bN$ or $aN \subset bN$.

Proof. Suppose that R satisfies (1) or (2) above. Let $a, b \in R$. Then $a|b^2$ or $b|a^2$. Hence, the prime ideals of R are linearly ordered by Theorem 1. In particular, R is quasilocal with the maximal ideal N. Thus, (1) and (2) are equivalent by Fact 1 above. Now, if R satisfies (1) or (2), then $N : N$ is a valuation domain by [1, Corollary 3.4].

In light of Proposition 4 above, we have the following result.

Proposition 5. The following statements are equivalent for an integral domain R.

(1) R is quasilocal with the maximal ideal N such that $N : N$ is a valuation domain.

(2) For every $a, b \in R$, either $aN \subseteq bR$ or $bN \subseteq aR$.

(3) For every $a, b \in R$, $a|bc$ for every nonunit $c \in R$ or $b|ac$ for every nonunit $c \in R$.

(4) For every $a, b \in R$, either $aN \subseteq bN$ or $bN \subseteq aN$.

Proof. Clearly, (3) is a restatement of (2). By Proposition 4 above, we now only need show that (1) \Rightarrow (2). Hence, suppose that R is quasilocal with the maximal ideal N and $N : N$ is a valuation domain. For nonzero $a, b \in R$, either $a/bN \subset N$ or $b/aN \subset N$ since $N : N$ is a valuation domain. Thus, $aN \subseteq bR$ or $bN \subseteq aR$.

Remark 1. It is well-known that a quasilocal domain R with maximal ideal M is a PVD iff $M : M$ is a valuation domain with maximal ideal M (see [3, Proposition 2.5]). So it is natural to ask whether the condition $aN \subseteq bR$ or $bN \subseteq aR$ implies that the domain in
the above Proposition is a PVD. The answer is negative and for a counter-example see [1, Example 3.2].

Combining [1, Proposition 3.10, Corollary 3.4, Corollary 3.8, Proposition 3.11 (b), Proposition 3.12, Proposition 4.3, and Proposition 5.2] with Proposition 5, we arrive at the following Corollary.

Corollary 3. The following statements are equivalent for an integral domain \(R \).

1. \(R \) is quasilocal with maximal ideal \(M \) such that \(M:M \) is a valuation domain.
2. For each nonzero prime ideal \(P \) of \(R \), \(P:P \) is a valuation domain.
3. The prime ideals of \(R \) are linearly ordered and if \(M \) is the maximal ideal of \(R \), then \(M:M \) is a valuation domain.
4. For every \(a,b \in R \), either \(aN \subseteq bR \) or \(bN \subseteq aR \).
5. For every \(a,b \in R \), either \(aN \subseteq bN \) or \(bN \subseteq aN \).
6. For every \(a,b \in R \), either \(a|bc \) for every nonunit \(c \in R \) or \(b|ac \) for every nonunit \(c \in R \).
7. For each \(g \in G \), either \(g > h \) for all \(h \in G \) with \(h < 0 \) or \(g < h \) for all \(h \in G \) with \(h > 0 \).
8. There is a valuation overring \(V \) of \(R \) and a maximal ideal \(J \) of \(R \) which is also an ideal of \(V \).
9. For each \(x \in K \) and maximal ideal \(M \) of \(R \), \(xM \) and \(M \) are comparable.
10. \(R \) is quasilocal with maximal ideal \(M \) such that for every \(a,b \in R \), either \(aM \subseteq bR \) or \(bM \subseteq aR \).
11. \(R \) is quasilocal with maximal ideal \(M \) such that for every \(a,b \in R \), either \(aM \subseteq bM \) or \(bM \subseteq aM \).
12. For some maximal ideal \(M \) of \(R \), \(xM \) and \(M \) are comparable for each \(x \in K \).
13. For each \(x \in K \), there is a maximal ideal \(M \) of \(R \) so that \(xM \) and \(M \) are comparable.
ACKNOWLEDGMENTS

I would like to thank my friend Brian C. Russo, professor of English, for reading the manuscript. Also, I am very grateful to the referee for his many helpful suggestions and comments.

REFERENCES

Received: October 1994

Revised: January 1995 and March 1995