ON ABELIAN π-REGULAR RINGS

Ayman Badawi
Department of Mathematics and Computer Science
Birzeit University
P.O.Box 14
Birzeit, West Bank Via Israel
e-mail: abring@math.birzeit.edu

INTRODUCTION

Throughout this paper the letter R denotes an associative ring with 1, $\text{Id}(R)$ denotes the set of all idempotent elements of R, $\mathcal{C}(R)$ denotes the center of R, and $\text{Nil}(R)$ denotes the set of all nilpotent elements of R. A π-regular ring R is called an abelian π-regular ring if $\text{Id}(R)$ is a subset of $\mathcal{C}(R)$. Recall that a ring R is called strongly π-regular if for every $x \in R$ there exist $n \geq 1$ and $y \in R$ such that $x^{2^n} y = x^n$. It is easy to see that an abelian π-regular ring is strongly π-regular. In [14, Theorem 2, (2)], Ohori showed that in an abelian π-regular ring R, the $\text{Nil}(R)$ is a two-sided ideal of R and $R/\text{Nil}(R)$ is regular. His proof relies on [1, Lemma 1] and [4, Remark]. The purpose of this paper is to give an
alternative proof of this fact and in Theorem 3 we prove the converse of this fact. Also, we show that every element in an abelian π-regular ring R is a sum of two units if and only if $\mathbb{Z}/2\mathbb{Z}$ is not a homomorphic image of R. Recall an element x of R is called regular (unit regular) if there exists $y \in R$ (a unit u in R) such that $xyx = x$ ($xux = x$).

We start with the following lemma:

Lemma 1. Let $x \in R$. If x is unit regular, then $x = eu$ for some $e \in \text{Id}(R)$ and $u \in U(R)$, where $U(R)$ denotes the set of all units of R.

Proof. Suppose x is unit regular. Then for some $v \in U(R)$ we have $xvx = x$. Let $e = xv \in \text{Id}(R)$ and $u = v^{-1}$. Then $x = eu$.

The following fact is needed in the proof of Theorem 1.

Fact 1. [2, Theorem 2]. Suppose $\text{Id}(R) \subseteq C(R)$. Let $x \in R$. If x is regular, then x is unit regular.

The following theorem gives a characterization of all π-regular elements in a ring R such that $\text{Id}(R) \subseteq C(R)$.
Theorem 1. Suppose $\text{Id}(R) \subseteq C(R)$. Let $x \in R$. Then x is π-regular if and only if there exists $e \in \text{Id}(R)$ such that ex is regular and $(1-e)x \in \text{Nil}(R)$.

Proof. Since x is π-regular, for some $n \geq 1$, x^n is regular. Hence, by Fact 1 and Lemma 1, we have $x^n = eu$ for some $e \in \text{Id}(R)$ and $u \in U(R)$. Then $ex(x^{n-1}u^{-1})ex = (ex^n u^{-1})ex = (e uu^{-1})ex = ex$. Hence, ex is regular. Now, $[(1-e)x]^n = (1-e)x^n = (1-e)eu = 0$, since $(1-e) \in C(R)$ and $x^n = eu$.

For the converse, suppose for some $e \in \text{Id}(R)$, ex is regular and $(1-e)x \in \text{Nil}(R)$. Then for some $n \geq 1$, $[(1-e)x]^n = (1-e)x^n = 0$. Hence, $(*)$ $ex^n = x^n$. Since ex is regular, by Lemma 1, $ex = cu$ for some $c \in \text{Id}(R)$ and $u \in U(R)$. Hence, $(ex)^n = (cu)^n = cu^n$, since $c \in C(R)$. But $(ex)^n = ex^n = x^n$ by $(*)$. Thus $x^n = cu^n$. Let $y = cu^n$. Then $x^nyx^n = x^n$ and hence x is π-regular. □

Suppose $\text{Id}(R) \subseteq C(R)$ and $x \in R$ such that x is π-regular. Then by the proof of the above theorem for some $e \in \text{Id}(R)$, $v \in U(R)$ and $m \geq 1$, we have $x^n = ev$ and ex is regular. Hence, by Fact 1 and Lemma 1, $ex = cw$ for some $c \in \text{Id}(R)$ and $w \in U(R)$. In fact, $e = c$. For, $e(ex) = e(cw)$. But $e(ex) = ex = cw$. Thus, $ecw = cw$ and therefore $(**)$ $ec = c$.

Since $e, c \in C(R)$, we have $(ex)^m = ex^m = cw^m$. Since $x^m = ev$, $ex^m = ev = cw^m$. Hence, $e = cw^m v^{-1}$. Thus $ec = cw^m v^{-1} c = cw^m v^{-1}$, since $c \in C(R)$. Hence, $ec = e$. Since $ec = c$ by $(**)$ and $ec = e$, $e = c$. Thus, $ex = ew$.
In light of the above argument and Theorem 1, we have

Lemma 2. Suppose \(\text{Id}(R) \subset C(R) \). Let \(x \in R \) such that \(x \) is \(\pi \)-regular. Then for some \(e \in \text{Id}(R) \) and \(u \in U(R) \) we have \(ex = eu \).

MAJOR RESULTS

Now, we state the first major result in this paper.

Theorem 2. Suppose \(R \) is abelian \(\pi \)-regular. Then \(\text{Nil}(R) \) is a two-sided ideal of \(R \).

Proof. Let \(w \in \text{Nil}(R) \) and \(r \in R \). Suppose \(rw \) is not in \(\text{Nil}(R) \). By Lemma 2, there exists \(e \in \text{Id}(R) \) and \(u \in U(R) \) such that \(erw = rew = eu \). Observe that \(e \neq 0 \). For, if \(e = 0 \) then \((1-e)rw = rwe \text{Nil}(R) \) by Theorem 1 and this contradicts the assumption that \(rw \) is not in \(\text{Nil}(R) \). Since \(ew \in \text{Nil}(R) \), let \(n \) be the smallest integer such that \((ew)^n = 0 \). Then \(n \geq 2 \), since \(e \neq 0 \). Thus, \(0 = rew(ew)^{n-1} = eu(ew)^{n-1} = u(ew)^{n-1} \). Hence, \((ew)^{n-1} = 0 \), a contradiction. Thus, for any \(w \in \text{Nil}(R) \) and \(r \in R \), we have \(rw \in \text{Nil}(R) \).

A similar argument will show that for any \(w \in \text{Nil}(R) \) and \(r \in R \), we have \(wr \in \text{Nil}(R) \). Now, let \(w, z \in \text{Nil}(R) \) and suppose \(w + z \) is not in \(\text{Nil}(R) \). Then, once again, there exist \(c \in \text{Id}(R) \), \(c \neq 0 \), and \(u \in U(R) \) such that \(c(w + z) = cu \). Hence, \(cw = cv - cz = cv(1 - v^{-1}z) \). Since \(-v^{-1}z \in \text{Nil}(R) \),
\[1 - v^1 z = u \in U(R). \] Thus, \(cw = cvu \). But \(cw \in \text{Nil}(R) \) and \(cvu \) is not in \(\text{Nil}(R) \). Hence, \(w + z \in \text{Nil}(R) \). Thus, \(\text{Nil}(R) \) is a two-sided ideal of \(R \).

Before stating the second major result, the following two well-known lemmas are needed.

Lemma 3. Let \(R \) be a ring with 1 and \(I \) be a two-sided nil ideal of \(R \). If \([c] \in \text{Id}(R/I) \), then there exists \(e \in \text{Id}(R) \) such that \([e] = [c] \) in \(R/I \).

Lemma 4. Let \(I \) be a two-sided nil ideal of \(R \), \(K = R/I \) and \(u \in R \). Then \([u] \in U(K) \) if and only if \(u \in U(R) \).

Theorem 3. Suppose \(\text{Id}(R) \subset C(R) \). Then \(R \) is \(\pi \)-regular if and only if \(\text{Nil}(R) \) is a two-sided ideal of \(R \) and \(R/\text{Nil}(R) \) is regular.

Proof. Suppose \(R \) is \(\pi \)-regular. By Theorem 2, \(\text{Nil}(R) \) is a two-sided ideal of \(R \). Let \([x] \in R/\text{Nil}(R) \). Then for some \(y \in R \) and \(n \geq 1 \), \(x^n y x^n = x^n \). Thus, \(e = x^n y \in \text{Id}(R) \) and therefore \(1 - e \in \text{Id}(R) \). Since \(1 - e \in C(R) \), \(((1 - e)x)^n = (1 - e)x^n = (1 - x^n y)x^n = 0 \). Thus, \((1 - e)x = (1 - x^n y)x \in \text{Nil}(R) \).

Thus, \([x] [x^{n-1} y] [x] = [x^n y] [x] = [x] \).

Suppose \(\text{Nil}(R) \) is a two-sided ideal of \(R \) and \(K = R/\text{Nil}(R) \) is regular. Let \(x \in R \). By Fact 1, \([x] \) is unit regular in \(K \) and, by Lemma 1, \([x] = [c] [u] \) for some \([c] \in \text{Id}(R) \).
Id(K) and \([u] \in U(K)\). By Lemma 3, there exists \(e \in Id(R)\) such that \([c] = [e]\) and by Lemma 4, \(u \in U(R)\). Thus, \(x = eu + w\) for some \(w \in Nil(R)\). Now, \(ex = e(u + w)\). Since \(w \in J(R)\), \(u + w \in U(R)\), where \(J(R)\) denotes the Jacobson radical of \(R\). Thus, \(ex\) is regular. Further, \((1 - e)x = x - ex = (eu + w) - (eu + ew) = w - ew \in Nil(R)\). Hence, \((1 - e)x \in Nil(R)\).

Thus, by Theorem 1, \(x\) is \(\pi\)-regular.

Suppose a ring \(R\) is an abelian \(\pi\)-regular ring. Since \(Nil(R)\) is a two-sided ideal of \(R\), \(Nil(R) \subset J(R)\). Since \(R/Nil(R)\) is regular by Theorem 3 and the Jacobson radical of any regular ring is 0, we have \(J(R) = Nil(R)\).

Lemma 5. Suppose \(R\) is abelian \(\pi\)-regular. Then \(J(R) = Nil(R)\).

The following result follows from Theorem 3 and Lemma 1.

Corollary 1. A ring \(R\) is abelian \(\pi\)-regular if and only if \(Id(R) \subset C(R)\), \(Nil(R)\) is a two-sided ideal of \(R\), and for every \(x \in R\) there exist \(e \in Id(R)\), \(u \in U(R)\), and \(w \in Nil(R)\) such that \(x = eu + w\).

In light of Theorems 1 and 3, we have:
Theorem 4. Suppose \(\text{Id}(R) \) is a subset of \(\mathcal{C}(R) \). Then \(R \) is \(\pi \)-regular if and only if for some two-sided nil ideal \(I \) of \(R \), \(K = R/I \) is \(\pi \)-regular.

Proof. Suppose \(R \) is \(\pi \)-regular. By Theorem 2, \(I = \text{Nil}(R) \) is a two-sided ideal of \(R \), and by Theorem 3, \(K = R/I \) is regular and hence \(\pi \)-regular.

For the converse, assume that \(R/I \) is \(\pi \)-regular for some two-sided nil ideal \(I \) of \(R \). Then \(\text{Nil}(R/I) = \text{Nil}(R)/I \) is a two-sided ideal of \(R/I \) by Theorem 3. So \(\text{Nil}(R) \) is a two-sided ideal of \(R \). Since \(R/I \) is \(\pi \)-regular, so is \(R/\text{Nil}(R) \). Therefore by Theorem 3, \(R \) is \(\pi \)-regular.

A consequence of the above theorem is the following corollary

Corollary 2. Suppose \(\text{Id}(R) \) is a subset of \(\mathcal{C}(R) \). Then \(R \) is \(\pi \)-regular if and only if \(R/\text{N}(R) \) is \(\pi \)-regular where \(\text{N}(R) \) is the prime radical of \(R \).

RELATED RESULTS

Recall, a prime ideal \(P \) of a ring \(R \) is called completely prime iff \(R/P \) is domain. It is well-known that if \(\text{Id}(R) \subset \mathcal{C}(R) \) and \(R \) is regular and \(I \) is a prime ideal of \(R \), then \(R/I \) is a division ring. However, the above fact is not always true for an abelian \(\pi \)-regular
ring R. The referee provided us with a counterexample, see [13, Proposition 1.11] and [3, example 3.3]. But, we are able to state the following result:

Theorem 5. Suppose R is abelian π-regular and let P be a prime ideal of R, then every element in $K = R/P$ is either a nilpotent element of K or a unit element of K. In particular, if P is a prime ideal of R containing $\text{Nil}(R)$ (e.g., a left or right primitive ideal of R), then K is a division ring.

Proof. Let $x \in R$ such that $x \notin P$. Then for some $e \in \text{Id}(R)$ and $u \in U(R)$ and $n \geq 1$, we have $x^n = eu$ by Lemma 1. Now, if $e \in P$, then $x \notin \text{Nil}(K)$. Hence, suppose that $e \notin P$. Thus, $eu \notin P$. Since $(1 - e)Re \subset P$ and $e \notin P$, $(1 - e)e \in P$. Thus $[e] = [1]$ in R/P. Thus $[x^n] = [eu] = [u]$ in R/P. But $[x^n] = [u]$ in R/P implies $[x^n]$ is a unit in R/P and therefore $[x]$ is a unit in R/P.

By Theorem 3, $\text{Nil}(R)$ is a two-sided ideal and $R/\text{Nil}(R)$ is a reduced regular ring. Thus every prime factor of $R/\text{Nil}(R)$ is a division ring. Let P be a prime ideal of R containing $\text{Nil}(R)$. Then $K = R/P$ is a prime factor ring of $R/\text{Nil}(R)$ and so K is a division ring. Particularly, if P is a left (or right) primitive ideal of R, then note that $\text{Nil}(R) = J(R)$ by Lemma 5 and so $\text{Nil}(R) \subset P$. Thus the ring K is a division ring.
Remark. Let K and P as in the above theorem. It is easy to see that $K = R/P$ is a division ring iff R/P is domain iff P is completely prime.

Ehrlich [5] showed that if R is a unit regular ring, then every element in R is a sum of two units. A ring R is called an $(s,2)$-ring [11], see also [7], if every element in R is a sum of two units of R. The following theorem gives a characterization of all abelian π-regular $(s,2)$-rings.

Theorem 6. Suppose R is abelian π-regular. Then R is an $(s,2)$-ring if and only if $\mathbb{Z}/2\mathbb{Z}$ is not a homomorphic image of R.

Proof. Suppose R is an $(s,2)$-ring and $\mathbb{Z}/2\mathbb{Z}$ is a homomorphic image of R. Then $1 \in R$ cannot be a sum of two units. Hence, $\mathbb{Z}/2\mathbb{Z}$ is not a homomorphic image of R.

Conversely, suppose $\mathbb{Z}/2\mathbb{Z}$ is not a homomorphic image of R. By Theorem 5, every primitive factor of R is a division ring and hence Artinian. Thus, by [7, Theorem 2] R is an $(s,2)$-ring.

From Theorem 6, we have the following corollaries:

Corollary 3. Let R be an abelian π-regular ring such that $2 = (1+1)\epsilon U(R)$. Then R is an $(s,2)$-ring.
Corollary 4. Let \(R \) be an abelian \(\pi \)-regular ring. Then \(R \) is an \((s,2)\)-ring if and only if for some \(d \in \text{U}(R) \), \(1+d \in \text{U}(R) \).

If 2 is a nonnilpotent element in an abelian \(\pi \)-regular ring \(R \), then we have

Theorem 7. Suppose \(R \) is abelian \(\pi \)-regular and 2 is a nonnilpotent element of \(R \). Then there exists \(e \in \text{Id}(R) \) such that \(e \neq 0 \), and every element in \(eR \) is a sum of two units of \(R \).

Proof. Since 2 is \(\pi \)-regular, by Lemma 2 we have \(e2 = eu \) for some \(e \in \text{Id}(R) \) and \(u \in \text{U}(R) \). Since 2 is not nilpotent, we see that \(e \neq 0 \) and \((1-e)2\) is nilpotent by Theorem 1 and the proof of Theorem 2. Now, let \(x \in eR \).

By Corollary 1, there exist \(c \in \text{Id}(R) \), \(v \in \text{U}(R) \) and \(w \in \text{Nil}(R) \) such that \(x = cv + w \). Since \(ex = x \), we have \(x = ex = ecv + ew \). On the other hand, since \((1-e)2 = 2-2e\) is nilpotent, \(1-(2-2e) = -1 + 2e \in \text{U}(R) \) and so \(1-2e \in \text{U}(R) \). If \(c = 0 \), then \(1-2ec = 1 \in \text{U}(R) \). If \(c \neq 0 \), then \(c(1-2e) = c-2ec \in \text{U}(cR) = \text{U}(cRc) \) and thus there is \(a \in cR \) such that \((c-2ec)a = a(c-2ec) = c \).

Therefore \((1-2ec)(a+1-c) = (c-2ec+1-c)(a+1-c) = 1\) and similarly \((a+1-c)(1-2ec) = 1\). Thus, \(1-2ec \in \text{U}(R) \).

Since \(2e = eu \), we have \(1-uec \in \text{U}(R) \). Now, \(1-uec = (u^1 - ec)u \in \text{U}(R) \) and \(u \in \text{U}(R) \). So \(u^1 - ec \in \text{U}(R) \).
U(R) and hence \(-u^{-1} + ec \in U(R)\). Therefore \(ec = (-u^{-1} + ec) + u^{-1}\) with \(-u^{-1} + ec \in U(R)\) and \(u^{-1} \in U(R)\). Now for our convenience, let \(z = -u^{-1} + ec\) and \(d = u^{-1}\). Hence, \(x = (z+d)v + ew = zv + (dv+ew)\). Since \(ew \in \text{Nil}(R)\) and \(\text{Nil}(R) = J(R)\), \((dv+ew) \in U(R)\). Thus, \(x\) is a sum of two units of \(R\).

Observe that if 2 is a nonnilpotent element of \(R\), then this does not imply that \(R\) is an \((s,2)\)-ring. For example, \(R = \mathbb{Z}_6\) is abelian \(\pi\)-regular and 2 is a nonnilpotent element of \(R\), but \(R\) is not an \((s,2)\)-ring. However, 4 \(\in \text{Id}(R)\) and every element in 4\(R\) is a sum of two units.

ACKNOWLEDGMENTS

This work was supported by a grant under the Pew Fellowship at the University of Kentucky, Lexington, U.S.A.

I would like to thank the Dept. of Mathematics at the Univ. of Kentucky for their hospitality, especially, Professors Paul Eakin and Avinash Sathaye for helpful suggestions. Also, I am very grateful to the referee for his many suggestions and comments.

REFERENCES

Received: December 1994

Revised: April 1996 and September 1996