Rn Contains a Division Ring if and only if R Does

Author(s): Ayman Badawi

Published by: Mathematical Association of America

Stable URL: http://www.jstor.org/stable/2323892

Accessed: 20/04/2011 16:59
R_n Contains a Division Ring iff R Does

Ayman Badawi

INTRODUCTION. Let R be a ring with 1, and let R_n denote the complete matrix ring of all $n \times n$ matrices over R under the usual matrix addition and multiplication. Recall $A, B \in R_n$ are similar if and only if there exists $P \in R_n$ such that $A = PBP^{-1}$. If $A \in R_n$ is similar over R to a diagonal matrix, then A is called [1] diagonalizable over R. For $B \in R_n$, b_{ij} denotes the entry of B in the ith row and jth column.

In this note, we give an alternative proof of [1, Theorem 1] which is quite shorter than that in [1]. We would like to point out that our proof begins exactly like the original.

Theorem ([1, Theorem 1]). Let R be a ring with 1 for which each idempotent matrix in R_n is diagonalizable over R. Then R contains a division ring if and only if R_n contains a division ring.

Proof: If R contains a division ring, then clearly R_n contains a division ring. Assume R_n contains a division ring K. The division ring K has an identity—call it J—and by the hypothesis $PJP^{-1} = I$ a diagonal matrix for some invertible matrix $P \in R_n$. Since the conjugation of R_n by P induces a ring automorphism of R_n, $M = PKP^{-1}$ is a division ring of R_n and has I as the identity. Hence I is a nonzero idempotent of R_n. Let $S = \{A \in M: A$ is diagonal$\}$. Since $I \in S$, S is not empty. We leave it to the reader to verify that S is a division subring of M. Since $I \neq 0$, there exists $1 \leq j \leq n$ such that i_{jj} is a nonzero idempotent of R. Let $D = \{a_{ii}; A \in S\}$. Then D is a division ring of R with i_{jj} as the identity.

We end this note with some examples that satisfy the hypothesis of the Theorem and with one example where the hypothesis fails. Let R be a commutative ring with 1. Then R is called ID (basal) as in [7] ([2]) iff for every $n \geq 1$ the idempotents of R_n are diagonalizable. Foster [2] has shown that if R is a principal ideal domain, then R is ID. Seshadri [6] has shown that if R is a principal ideal domain, then $R[x]$ is ID. In particular if F is a field, then $F[x, y]$ is ID. Steger [7] has shown that if R is an elementary division ring (i.e., for every $n \geq 1$ and $A \in R_n$ there exist invertible matrices P, Q in R_n such that PAQ is diagonal) then R is ID. Also; Steger has shown that if R is π-regular ring (i.e., for every x in R there exists $n \geq 1$ and y in R (n and y depending on x) such that $x^n y x^n = x^n$) then R is ID. In particular for every $m \geq 1 Z_m$ (i.e., Z/mZ) is ID (Foster has shown independently that Z_m is ID).

Finally, Theorem 3 in [7] states that if R is ID, then every invertible ideal of R is principal. Thus if R is a Dedekind domain which is not principal, then R is not ID. In particular, let $R = Z[\sqrt{-5}]$ (Z is the set of all integers). Then R is a Dedekind domain, see [4, EX. 37, P. 70]. But R is not a unique factorization domain, for example 21 does not have unique factorization in R. Thus R is not principal and therefore it is not ID.

1993] NOTES 679
REFERENCES

1. Jacob T. B. Beard, Jr. and Robert McConnel, Matrix fields over the integers modulo m, Linear Algebra and Its Applications 14, (1976), 95–105.

Dedicated to Prof. Nick Vaughan on his retirement.

Department. of Mathematics
University of North Texas
Denton, TX. 76203

A Further Simplification of Dixon’s Proof of Cauchy’s Integral Theorem

Peter A. Loeb

The modification in [1] of Dixon’s proof of the Cauchy Integral Theorem and Formula is based on the proposition stated below. In this note we give a proof of that proposition which is more suitable for undergraduate students. In what follows, G will be an open set in the complex plane C, and γ will be a closed rectifiable curve. We write $f \in H(G)$ if f is holomorphic, i.e. analytic, in G, and we use the notation $D(z, r)$ for the disk $\{w \in C : |w - z| < r\}$. The trace of γ in C is denoted by $\{\gamma\}$; we say the curve γ is in G when $\{\gamma\} \subset G$.

Proposition. If γ is a curve in G, then for any $z \in \{\gamma\}$ there is a closed curve σ in G with $z \notin \{\sigma\}$ such that $\int_{\gamma} f = \int_{\sigma} f$ for all $f \in H(G)$.

Proof: We assume that there is a point $\zeta \neq z$ with $\zeta \in \{\gamma\}$; otherwise the result is trivial. Pick $r > 0$ so that $D(z, r) \subset G$ and $\zeta \notin D(z, r)$. We will assume that γ is given by $\gamma(t)$ for $t \in [0, 1]$ and $\gamma(0) = \gamma(1) = \zeta$. By the uniform continuity of the mapping γ, there is a natural number n such that if $s, t \in [0, 1]$ and $|t - s| < 1/n$, then $|\gamma(t) - \gamma(s)| < r$. Partition the interval $[0, 1]$ using the points $0 < 1/n < \cdots < (n - 1)/n < 1$. Let $0 = x_0 < x_1 < x_2 < \cdots < x_m = 1$ be the set of partition points k/n such that $\gamma(k/n) \neq z$. If between adjacent points x_i and x_{i+1} there is a point of the form k/n or any other point t_0 with $\gamma(t_0) = z$, then the path $\gamma(t)$, $x_i \leq t \leq x_{i+1}$, is in the disk $D(z, r)$. In this case, we may replace the