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ABSTRACT 
 

In this paper, we give a brief introduction to the problem of partitioning positive 

integers as well as a survey of the most important work from Euler to Ono. In our 

results, we state a basic algorithm that determines all possible partitions of a positive 

integer. A computer algorithm (code) is provided as well as many examples. Two 

simple algebraic formulas that determine all possible partitions of a positive integer 

using the numbers 1 and 2, and 1, 2 and 3, are provided. Last but not least, we draw a 

conclusion from our results that the number of partitions of any positive integer can 

be written as a summation of a number of integers that are partitioned into ones and 

twos. These numbers, however, appear according to a specific pattern. 
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INTRODUCTION 

1.1 Definition of the problem 
A partition of a positive integer n is an expression of n as a sum of positive integers. 

Partitions are considered the same if the summands differ only by order. Let 𝑃(𝑛) be 

the number of partitions of n. By convention, we define 𝑃(0) =  1. 

1.2 Example 
1 can be written as 1, hence 𝑃(1) =  1. 

2 can be written as 1+1 and 2, hence 𝑃(2) =  2. 

3 can be written as 1+1+1, 1+2 and 3, here 1+2 is equivalent to 2+1 hence it is only 

counted once, therefore 𝑃(3) =  3. 

4 can be written as a 1+1+1+1, 1+1+2, 1+3, 2+2 and 4, hence 𝑃(4) = 5. 

1.3 Motivation 
My motivation behind working on the partitioning of positive integers started when 

Dr. Ayman Badawi asked in the abstract algebra course in the spring of 2012 the 

following question: "Who can write a computer program that determines all non-

isomorphic abelian groups of order 𝑃𝑛?" I suddenly raised my hand and I told him 

“this is simple professor, I can do it and hand it in to you tomorrow.” He replied back 

“do you think this is easy?” I told him “for me it sounds simple.” He then told me “try 

it, but if it takes a lot of your time, then leave it for another day, perhaps summer 

break, just don’t spend too much time on it." Then briefly, Prof. Badawi introduced 

the work of Ramanujan on partitioning positive integers. Prof. Badawi stated that in 

order for one to answer the question one needs to calculate 𝑃(𝑛). Considering 𝑃5, I 

obtained the following 7 non-isomorphic abelian groups of order 𝑃5: 

ℤ𝑝1 ⊕ ℤ𝑝1 ⊕ ℤ𝑝1 ⊕ ℤ𝑝1 ⊕ ℤ𝑝1  

ℤ𝑝1 ⊕ ℤ𝑝1 ⊕ ℤ𝑝1 ⊕ ℤ𝑝2  

ℤ𝑝1 ⊕ ℤ𝑝1 ⊕ ℤ𝑝3  

ℤ𝑝1 ⊕ ℤ𝑝2 ⊕ ℤ𝑝2  

ℤ𝑝1 ⊕ ℤ𝑝4  

ℤ𝑝2 ⊕ ℤ𝑝3  

ℤ𝑝5  
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The numbers of non-isomorphic abelian groups of order 𝑃(𝑛) where 1 ≤ 𝑛 ≤ 10 are 

indeed 𝑃(1) = 1, 𝑃(2) =  2, 𝑃(3) = 3, 𝑃(4) = 5, 𝑃(5) = 7, 𝑃(6) =  11, 𝑃(7) =

15, 𝑃(8) =  22, 𝑃(9) = 30, 𝑃(10) =  42. 

The subject of partitioning positive integers respectively is very rich and deep. 

Covering every aspect of partitions would take thousands of pages. Section 2 in this 

paper provides a quick overview of partitions (from Euler to Ono), introduces a few 

techniques for dealing with partitions, and explores some interesting problems. This 

paper will hopefully shed some light on the beauty of partitions, combinatorics, and 

mathematics in general. In section 3, we present our work on partitioning positive 

integers. 

1.4 Different representations of the partitions 
A partition can be written with a graphical representation, known as a Ferres graph, 

named after the British mathematician Norman Macleod Ferres, (see, for example [1] 

for details). For example 5 = 2 + 2 + 1 can be written as: 

2    2    1 

   
  

The conjugate graph is obtained from a graph by writing the columns as rows. Hence 

5=3+2 can be drawn as: 

3    2 

   
  
 

The term Conjugate in partitioning means reflecting the dots across the diagonal, that 

is, replacing every column by a row. 

If the conjugate of a partition happens to be the same as itself, we call this partition as 

self-conjugate. 

Hence the conjugate of (2,2,1) is (3,2). 
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An example of a self- conjugate partition is (4,2,1,1) for the number 8, which looks as 

follows: 

     4    2    1    1 

4       

2     

1    

1    

Alfred Young developed the Young Diagram for partitioning positive integers, which 

is similar to the Ferres diagram where the dots are replaced by boxes instead, such as: 

 
which represents the partition of 10 into (5,4,1). 

This is equivalent to the Ferres Diagram: 

  5    4    1     

      
     
     

     
    

Although Young diagrams are similar to Ferres Diagrams, Young diagrams turn out 

to be extremely useful in the study of symmetric functions and group representation 

theory [2]. 
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HISTORY OF THE PROBLEM 

Although Euler is the first person to work on the problem of partitioning positive 

integers, Andrews in [3] explains how Leibniz, a German mathematician and 

philosopher and known as the father of calculus, was the first person to consider 

partitioning. Leibniz asked Bernoulli in a 1674 letter about the number of 

“divulsions” of integers, which means the number of partitions of integers in the 

modern terminology. Leibniz went on to partition several integers up till 6 where he 

suggested that the number of partitions of any number would always be prime. But 

reaching number 7, he found out that 7 has 15 partitions, hence his suggestions was 

wrong and the problem was open since then. 

2.1 Leonhard Euler [1707 – 1783] 
Leonhard Euler is a Swiss mathematician and physicist. In 1741, Euler gave a 

presentation on partitions of integers to the St. Petersburg Academy, which led to the 

first publication on partition of integers [4]. Euler discovered several theorems in the 

field of integer partitioning [5]. One of his greatest discoveries in this field was 

Euler’s generating function for integer partitioning which is given by: 

∑ 𝑝(𝑛)𝑥𝑛∞
𝑛=0 = 1

∏ 1−𝑥𝑝∞
𝑝=1

 , where |𝑥| < 1  

Equation 1: Euler's Generating Function 

For example, to find the number of partitions of 5, we extract the coefficient of 𝑥5 

from the right hand side of Equation 1: 

�1 + 𝑥1 + 𝑥1(2) + 𝑥1(3) + ⋯��1 + 𝑥2 + 𝑥2(2) + 𝑥2(3) + ⋯��1 + 𝑥3 + 𝑥3(2) + 𝑥3(3)

+ ⋯��1 + 𝑥4 + 𝑥4(2) + 𝑥4(3) + ⋯��1 + 𝑥5 + 𝑥5(2) + 𝑥5(3) + ⋯�… 
Equation 2: Expansion of Euler's Generating Function 

The number of partitions of 5 according to Euler’s formula is the coefficient of 𝑥5. 

Multiplying the polynomials of Equation 2, we get the following polynomial: 

1 + 𝑥 + 2𝑥2 + 3𝑥3 + 5𝑥4 + 7𝑥5 + 11𝑥6 + 15𝑥7 + ⋯ 

Hence the number of partitions of 5 is 7. 

Another interesting theorem proved by Euler, which ranks 16 in Wells’ list of the 

most beautiful theorems [6], states that the number of partitions of a positive integer n 

into odd-parts equals the number of partitions of n into distinct-parts. 
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Definition: 

(1) Odd parts: The partition of any positive integer n, which comprises odd numbers 

only. 

(2) Distinct Parts: The partition of any positive integer n, which contains no repeated 

numbers, that is no integer will appear twice in the same partition. 

Let n be a positive integer. The number of partitions of n into odd parts equals 

the number of partitions of n into distinct parts. 

Example: 

4 can be written as  

(1,1,1,1): odd part 

(1,1,2) 

(1,3): odd part and distinct part 

(2,2) 

(4): distinct part 

Hence we have two distinct parts and two odd parts, that is, number of odd parts = 

number of distinct parts. 

2.2 Percy Alexander MacMahon [1854 – 1929] 
MacMahom is an English mathematician who is noted for his passion and 

contribution to the field of partitions of numbers and enumerative combinatorics. A 

paper published by University of Iowa in 2001 [7], mentioned that MacMahon 

computed the values of 𝑝(𝑛) for 𝑛 = 1,2,3, … ,200, by hand which turned out to be 

immensely useful for Hardy and Ramanujan for checking the accuracy of their 

formula for approximating p(n). MacMohan found that 

𝑝(200) = 3,972,999,029,388. 

2.3 Srinivasa Ramanujan [1887 – 1920] 
Srinivasa Ramanujan is an Indian mathematician and autodidact in the field of pure 

mathematics, and made marvelous contributions to mathematical analysis, number 

theory, infinite series, and continued fractions. Ramanujan along with Godfrey Harold 

Hardy were able to find a non-convergent asymptotic series that permits exact 

computation of the number of partitions of an integer [8]. 
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2.4 Godfrey Harold Hardy [1877 – 1947]  
Godfrey Hardy is an English mathematician who had great achievements in the field 

of number theory and mathematical analysis. In 1918, Hardy and Ramanujan used the 

circle method and modular functions to obtain an asymptotic solution as given in [9]: 

𝑝(𝑛)~
1

4𝑛√3
𝑒𝜋

�2𝑛 3�      as 𝑛 → ∞ 

Equation 3: Hardy-Ramanujan's Asymptotic Expression 

For example, if we plug 50 and 70 into the equation we obtain the following results: 
Table 1: Comparing Hardy-Ramanujan's Asymptotic Expression against the p(n) function 

𝒏 𝒑(𝒏) 𝒑(𝒏) using Equation 3 
𝒑(𝒏) 𝐮𝐬𝐢𝐧𝐠 Equation 3

𝒑(𝒏)  

10 42 48.10430882 1.145340686 

50 204226 217590.4992 1.065439754 

70 4087968 4312669.963 1.054966664 

80 15796476 16606781.57 1.051296604 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

∞ ∞ ∞ 1 

 

Hardy and Ramanujan made several discoveries in the same field and came up with 

several results as mentioned in [9], such as proving Ramanujan’s congruence 

theorem: 

For every n we have 

𝑝(5𝑛 + 4) ≡ 0 (𝑚𝑜𝑑 5), 

𝑝(7𝑛 + 5) ≡ 0 (𝑚𝑜𝑑 7), 

and 𝑝(11𝑛+ 6) ≡ 0 (𝑚𝑜𝑑 11).    
Equation 4: Ramanujan’s Congruences 

For example, 𝑝(5 + 4) = 30 ≡ 0 (𝑚𝑜𝑑 5) 

Further work by Hardy and Ramanujan [2] made resulted in the following asymptotic 

expansion: 

𝑝(𝑛) =
1

2√2
�𝐴𝑘(𝑛)√𝑘
𝑣

𝑘=1

𝑑
𝑑𝑛 𝑒

𝜋�23

��𝑛− 1
24�

𝑘  
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where    𝐴𝑘(𝑛) = � 𝑒𝜋𝑖[𝑠(𝑚,𝑘)−1𝑘2𝑛𝑚]

𝑜≤𝑚<𝑘
(𝑚,𝑘)=1

 

Equation 5: Hardy-Ramanujan’s Asymptotic Expansion 

2.5 George Neville Watson [1886 – 1965] 
George Watson is an English mathematician who worked in the fields of complex 

analysis and the theory of special functions. Watson contributed to the problem of 

partitioning positive integers by proving several q-series identities. Due to the 

complexity of the identities and the limitation of the paper, the identities can be 

checked at [10] and [11]. Watson has also came up with partition congruences for 

powers of 7 and an alternative simple proof is in [12]. 

2.6 Hans Rademacher [1892 – 1969] 
Hans Rademacher is a German Mathematician known for his research in 

mathematical analysis and number theory. Rademacher worked on Hardy-

Ramanujan’s Asymptotic Expansion (Equation 5), and in 1937 he obtained the final 

explicit form as explained in [9]: 

𝑝(𝑛) =
1
𝜋√2

�𝐴𝑘(𝑛)√𝑘
∞

𝑘=1
⎣
⎢
⎢
⎢
⎡
𝑑
𝑑𝑥

sinh �𝜋𝑘�
2
3 �𝑥 −

1
24��

�𝑥 − 1
24 ⎦

⎥
⎥
⎥
⎤

𝑥=𝑛

 

where   𝐴𝑘(𝑛) = � 𝜔ℎ,𝑘𝑒−2𝜋𝑖𝑛ℎ/𝑘

ℎ mod 𝑘
(ℎ,𝑘)=1

 

 𝜔ℎ,𝑘 is a 24kth root of unity defined as follows: 

𝜔ℎ,𝑘 = �
�
−𝑘
ℎ � 𝑒−𝜋𝑖�

1
4(2−𝑘ℎ−ℎ)+ 1

12(𝑘−𝑘−1)(2ℎ−ℎ∗+ℎ2ℎ∗)�   if h is odd

�
−𝑘
ℎ � 𝑒−𝜋𝑖�

1
4(𝑘−1)+ 1

12(𝑘−𝑘−1)(2ℎ−ℎ∗+ℎ2ℎ∗)�   if h is even
 

ℎℎ∗ ≡ −1(mod 𝑘)  

�
𝑎
𝑏� is the Jacobi − Legendre sym. = �

0   if 𝑎 = 0 (mod 𝑏)                                    
1   if 0 ≠ 𝑎 = 𝑥2 (mod 𝑏), for some 𝑥  

−1   otherwise                                                   
 

Equation 6: Hardy-Ramanujan-Rademacher's Formula 
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As mentioned above, MacMahon previously computed 

𝑃(200) = 3,972,999,029,388. Using Equation 6 to compute the first 8 terms in the 

series, we get 𝑃(200) to be: 

3,972,998,993,185.896 

+                   36,282.978 

−                            87.555 

+                               5.147 

+                               1.424 

+                               0.071 

+                               0.000 

+                               0.043 

3,972,999,029,338.004  

which is equal to p(200) within 0.004. 

The proof of Rademacher's formula involves Ford circles, Farey sequences, modular 

symmetry and the Dedekind eta function in a central way as indicated in [2]. 

2.7 Arthur Oliver Lonsdale Atkin [1925 – 2008] 
Atkin is a British mathematician. He was one of the first mathematician to use 

computers to do research in pure mathematics. Along with Joseph Lehner, Atkin 

came up with the modula form that helped Andrew wiles to prove Fermat’s Last 

Theorem, the problem that was open for over 300 years [13]. 

Atkin attempted solving several problems in partitioning integers, and in 1966 Atkin 

proved the following [14]: 

(1) Suppose 𝑙 ≡ 4(mod 5)is prime and 𝑛 ∈ 𝑍+ with 𝑙 ∤ 𝑛. If 𝑛

≡ 23𝑙(mod 120)or 𝑛 ≡ 47𝑙(mod 120), then 

𝑝�
𝑙3𝑛 + 1

24 � ≡ 0(mod 5). 

(2) Suppose 𝑙 ≡ 3(mod 5)is a prime exceeding 3 and 𝑛 ∈ 𝑍+ with �−
𝑛
𝑙 �

= −1. If 𝑛 ≡ 23(mod 120)or 𝑛 ≡ 47(mod 120), then 

𝑝�
𝑙2𝑛 + 1

24 � ≡ 0(mod 5). 
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2.8 Freeman Dyson [1923 – Present] 
Dyson is a British theoretical physicist and mathematician, famous for his work in 

several fields in physics such as astronomy and nuclear engineering. In 1944, Dyson 

discovered a combinatorial reason for the existence of the first two congruences and 

conjectured the existence of a crank function for partitions that would provide a 

combinatorial proof of Ramanujan’s congruence modulo 11 (Equation 4). George 

Andrews and Frank Garvan successfully found such a function, and proved the 

celebrated result that the crank simultaneously “explains” the three Ramanujan 

congruences modulo 5, 7 and 11 [15]. More information about Dyson’s conjecture is 

available in [16]. 

In addition, Dyson defined the rank function of a partition as the largest part minus 

the number of parts, which is explained in detail in [17]. He let N(m,t,n) denote the 

number of partitions of n of rank congruent to m modulo t, and he conjectured the 

following: 

𝑁(𝑚, 5,5𝑛 + 4) =
1
5𝑝

(5𝑛 + 4),   0 ≤ 𝑚 ≤ 4 

and 𝑁(𝑚, 7,7𝑛 + 5) = 1
7
𝑝(7𝑛 + 5),   0 ≤ 𝑚 ≤ 6. 

Equation 7:  Dyson's Conjectures 

2.9 George Andrews [1938 – Present] 
George Andrews is an American mathematician working in Analysis and 

combinatorics. His famous book, “The Theory of Partitions” [9], was published in 

1976. It contains a survey of the problem of partitions, and all the contributions to this 

field by previous mathematician and a detail of their approaches and latest theorems 

and results. Andrews is also famous for collecting Ramanujan’s lost notes, and 

finding the crank function, which is proven in [17]. 

More information about Andrews motivational story can be found in [18]. 

2.10 ken Ono [1968 – Present] 
Ken Ono is an American Mathematician who specializes in number theory and 

especially in integer partitions and modular forms. In 2011, Ono along with Jan 

Bruinier, published a paper discovering an algebraic formula for the partition 

function. Due to the limitation and scope of this paper, and due to the complexity of 

Ono’s formula, details will not be disclosed here, and they can be reached in [19]. 
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Another paper published by Folsom, Kent and Ono in 2012 shows a short proof of 

their result and is found in [20].  
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RESULTS 

The following notations will be used through out this section. 

If 𝑚 < 𝑛, where 𝑚,𝑛 ∈ ℤ+, then we define  
 

𝐏𝐦(𝐧) ∶=  𝐭𝐡𝐞 𝐧𝐮𝐦𝐛𝐞𝐫 𝐨𝐟 𝐩𝐚𝐫𝐭𝐢𝐭𝐢𝐨𝐧𝐬 𝐨𝐟 𝐧,

𝐰𝐡𝐞𝐫𝐞 𝐦 𝐚𝐩𝐩𝐞𝐚𝐫𝐬 𝐚𝐭 𝐥𝐞𝐚𝐬𝐭 𝐨𝐧𝐜𝐞 𝐢𝐧 𝐭𝐡𝐞 𝐧𝐮𝐦𝐛𝐞𝐫𝐬 𝐨𝐟 𝐞𝐚𝐜𝐡 𝐩𝐚𝐫𝐭 𝐚𝐧𝐝 𝐭𝐡𝐞 𝐨𝐭𝐡𝐞𝐫 

 𝐧𝐮𝐦𝐛𝐞𝐫𝐬 𝐚𝐫𝐞 𝐧𝐞𝐜𝐞𝐬𝐬𝐚𝐫𝐢𝐥𝐲 𝐧𝐚𝐭𝐮𝐫𝐚𝐥 𝐧𝐮𝐦𝐛𝐞𝐫𝐬 ≤ 𝐦 
 

𝐟𝐦(𝐧) ∶=  𝐭𝐡𝐞 𝐧𝐮𝐦𝐛𝐞𝐫 𝐨𝐟 𝐩𝐚𝐫𝐭𝐢𝐭𝐢𝐨𝐧𝐬 𝐨𝐟 𝐧 𝐮𝐬𝐢𝐧𝐠 𝐨𝐧𝐥𝐲  

𝐧𝐚𝐭𝐮𝐫𝐚𝐥 𝐧𝐮𝐦𝐛𝐞𝐫𝐬 ≤ 𝐦 
 

If 𝑚 > 𝑛, then 𝑃𝑚(𝑛) = 0, and 𝑓𝑚(𝑛) = 𝑓𝑛(𝑛) 

For every positive integer m, we let 𝑓𝑚(0) = 1. 

 

It is clear that 

𝒇𝒎(𝒏) =  𝑷𝒎(𝒏) +  𝑷𝒎−𝟏(𝒏) +  𝑷𝒎−𝟐(𝒏) + ⋯+  𝑷𝟏(𝒏) 
Equation 8 

Now let 2 ≤ 𝑚 ≤ 𝑛, where 𝑚, 𝑛 ∈ ℤ+ 

𝑛 = 𝑞𝑚 + 𝑟,𝑤ℎ𝑒𝑟𝑒 𝑞, 𝑟 ∈ ℤ+ 𝑎𝑛𝑑 0 ≤ 𝑟 < 𝑚 

It should be clear that  

𝑷𝒎(𝒏) =  𝒇𝒎−𝟏(𝒏 −𝒎) + 𝒇𝒎−𝟏(𝒏 − 𝟐𝒎) + 𝒇𝒎−𝟏(𝒏 − 𝟑𝒎) + ⋯

+ 𝒇𝒎−𝟏(𝒏 − 𝒒𝒎) 
Equation 9 

Note that, 𝑓𝑚−1(𝑛 − 𝑖𝑚) equals to the number of all partitions of n where m appears 

in each partition exactly i times and all other numbers of each partition are strictly less 

than m. 

Note that 𝑞 = �𝑛
𝑚
�, hence in light of Equation 8 and Equation 9, 

 𝑓𝑚(𝑛) = 𝑃𝑚(𝑛) + 𝑓𝑚−1(𝑛) 

𝒇𝒎(𝒏) =  �𝒇𝒎−𝟏(𝒏 − 𝒊𝒎) + 𝒇𝒎−𝟏(𝒏)

�𝒏𝒎�

𝒊=𝟏

= �𝒇𝒎−𝟏(𝒏 − 𝒊𝒎)

�𝒏𝒎�

𝒊=𝟎

 

Equation 10 

In particular if 𝑛 = 𝑚, then 
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𝑷(𝒏) =  𝒇𝒏(𝒏) = 𝑷𝒏(𝒏) + 𝒇𝒏−𝟏(𝒏) = 𝟏 + 𝒇𝒏−𝟏(𝒏) 
Equation 11 

Equation 8, Equation 9, Equation 10 and Equation 11 describes our method of 

partitioning a positive integer n. See Section 3.3 for examples. 

In the following result, we give an explicit formula for 𝑓2(𝑛). 

3.1 Proposition 1: An explicit formula for 𝒇𝟐(𝒏) 

By definition, it is clear that 𝑓1(𝑛) = 𝑃1(𝑛) = 1. 

Now let 𝑛 ∈ ℤ+, then 

𝑓2(𝑛) =  �
𝑛 + 1

2 � 

Equation 12 

Proof 

Let 𝑚 = 2, 𝑛 = 2𝑞 + 𝑟, where 𝑞, 𝑟 ∈ ℤ+ 𝑎𝑛𝑑 0 ≤ 𝑟 < 2 

𝑃2(𝑛) =  𝑓1(𝑛 − 2) + 𝑓1(𝑛 − (2 + 2)) + 𝑓1(𝑛 − (2 + 2 + 2)) … 𝑓1(𝑛 − 2𝑞) 

Note that 𝑃2(1) = 0, hence assume that 𝑛 ≥ 2. 

𝑓2(𝑛) = 𝑃2(𝑛)  + 𝑃1(𝑛) = 𝑞 + 1 = �𝑛
2
� + 1 = �𝑛+1

2
�. 
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It is known that 𝑓3(𝑛) equals to the nearest integer to (𝑛+3)2

12
.  In the following result, 

we give an explicit formula for 𝑓3(𝑛). 

3.2 Proposition 2: An explicit formula for 𝒇𝟑(𝒏) 

The number of partitions of any integer n into parts containing 1,2 and 3 is: 

𝑓3(𝑛) = (2𝑎 + 1) �
𝑛 + 1

2 � −
3
2 �
⌊𝑎⌋2 + ⌊𝑎⌋+ ⌈𝑎⌉2 −

1
3
⌈𝑎⌉�

− (1 − |𝑛 (mod2)|)
(⌈𝑎⌉2 + ⌈𝑎⌉)

2   where 𝑎 =
�𝑛3�
2  

Equation 13 

Proof 

Let 𝑚 = 3, 𝑛 = 3𝑞 + 𝑟, where 𝑞, 𝑟 ∈ ℤ+ and 0 ≤ 𝑟 < 3 

𝑓3(𝑛) =  𝑃3(𝑛) + 𝑓2(𝑛)  

𝑃3(𝑛) = 𝑓2(𝑛 − 3) + 𝑓2(𝑛 − 6) + 𝑓2(𝑛 − 9) + 𝑓2(𝑛 − 12) + 𝑓2(𝑛 − 15) + ⋯+

𝑓2(𝑛 − 3𝑞) 

= �
(𝑛 − 3) + 1

2
� + �

(𝑛 − 6) + 1
2

� + �
(𝑛 − 9) + 1

2
� + �

(𝑛 − 12) + 1
2

�

+ �
(𝑛 − 15) + 1

2
� + ⋯+  �

(𝑛 − 3𝑞) + 1
2

� 

 

= �
𝑛 + 1

2 −
1
2� − 3(0)− 1 + �

𝑛 + 1
2 � − 3(1) + �

𝑛 + 1
2 −

1
2� − 3(1)− 1 + �

𝑛 + 1
2 �

− 3(2) + �
𝑛 + 1

2 −
1
2� − 3(2)− 1 + ⋯  + �

𝑛 + 1
2 −

3𝑞
2 � 

Equation 14 
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Consider the two cases, (a) when n is odd, and (b) when n is even: 

(a) if n is odd 

�𝑛+1
2
− 1

2
� = �𝑛+1

2
�  

Hence  

𝑃3(𝑛) = �
𝑛 + 1

2 � − 3(0)− 1 + �
𝑛 + 1

2 � − 3(1) + �
𝑛 + 1

2 � − 3(1)− 1 + �
𝑛 + 1

2 �

− 3(2) + �
𝑛 + 1

2 � − 3(2)− 1 + ⋯  + �
𝑛 + 1

2 −
3𝑞
2 � 

We have several terms in the formula above, but the repeated term is �𝑛+1
2
� and 

repeats 𝑞 times. Hence 𝑃3(𝑛) = 𝑞 �𝑛+1
2
� 

−3(0)− 1 + 

−3(1) + 

−3(1)− 1 + 

−3(2) + 

−3(2)− 1 + 

… 
Equation 15 

Considering the odd terms of Equation 15, we realize the same pattern. Rearranging 

the terms we get: 

−3(1) + 2 + 

−3(2) + 2 + 

−3(3) + 2 + 

… 

and we get the following series: 

�−3𝑖 + 2 = �
−3
2 ��

𝑞
2
�� ��

𝑞
2
� + 1� + 2 �

𝑞
2
��

�𝑞2�

𝑖=1

 

Equation 16 

Considering the even terms of the sequence in Equation 15: 

−3(1) + 

−3(2) + ⋯ 

And we get the following series: 
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−3�𝑖 = −3 �
1
2 �
�
𝑞
2
�� ��

𝑞
2
� + 1��

�𝑞3�

𝑖=1

 

Equation 17 

Combining the first term in Equation 15 with Equation 16 and Equation 17, we get: 

𝑃3(𝑛) = 𝑛3 �
𝑛 + 1

2 � + �
−3
2 ��

𝑞
2
�� ��

𝑞
2
� + 1�+ 2 �

𝑞
2
�� +  −3 �

1
2 �
�
𝑞
2
�� ��

𝑞
2
� + 1�� 

𝑃3(𝑛) = 𝑛3 �
𝑛 + 1

2 � + �
−3
2 ��

𝑞
2
�� ��

𝑞
2
� + 1�+ 2 �

𝑞
2
�� +  �

−3
2 ��

𝑞
2
�� ��

𝑞
2
� + 1�� 

𝑃3(𝑛) = 𝑛3 �
𝑛 + 1

2 � +
−3
2 ��

𝑞
2
�� ��

𝑞
2
�+ 1�+ 2 �

𝑞
2
� +  

−3
2 ��

𝑞
2
�� ��

𝑞
2
� + 1� 

𝑃3(𝑛) = 𝑛3 �
𝑛 + 1

2 � +
−3
2
�
𝑞
2
�
2

+
−3
2
�
𝑞
2
� + 2 �

𝑞
2
� +

−3
2  �

𝑞
2
�
2

+
−3
2
�
𝑞
2
� 

𝑃3(𝑛) = 𝑛3 �
𝑛 + 1

2 � −
3
2
�
𝑞
2
�
2
−

3
2
�
𝑞
2
� −

3
2
�
𝑞
2
�
2
−

3
2
�
𝑞
2
�+ 2 �

𝑞
2
� 

Equation 18 

(b) if n is even 

�𝑛+1
2
− 1

2
� = �𝑛+1

2
� − 1  

Hence substitute �𝑛+1
2
� − 1 in Equation 14. We get: 

𝑃3(𝑛) = �
𝑛 + 1

2 � − 1 − 3(0)− 1 + �
(𝑛 + 1)

2
� − 3(1) + �

𝑛 + 1
2 � − 1 − 3(1)− 1

+ �
(𝑛 + 1)

2
� − 3(2) + �

𝑛 + 1
2 � − 1 − 3(2)− 1 + ⋯  

+ �
(𝑛 + 1)

2 −
3𝑞
2
� 

After arranging the above equation we get: 

𝑃3(𝑛) = �
𝑛 + 1

2 � − 1 − 3(0)− 1 + 

�
𝑛 + 1

2 � − 3(1) + 

�
𝑛 + 1

2 � − 1 − 3(1)− 1 + 

�
𝑛 + 1

2 � − 3(2) + 

�
𝑛 + 1

2 � − 1 − 3(2)− 1 
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+⋯ + �
𝑛 + 1

2 −
3𝑛3

2 � 

Equation 19 

Comparing Equation 15 and Equation 19, we realize that a term -1 is added for the 

odd terms, hence using the sum of integers up to �𝑞
2
�, we get for even n: 

𝑃3(𝑛) = 𝑞 �
𝑛 + 1

2 � −
3
2
�
𝑞
2
�
2
−

3
2
�
𝑞
2
� −

3
2
�
𝑞
2
�
2
−

3
2
�
𝑞
2
� + 2 �

𝑞
2
� −

1
2
���
𝑞
2
�� ��

𝑞
2
�+ 1�� 

Equation 20 

Considering Equation 18 and Equation 20, we can use −(1− |𝑛 (mod2)|) for the 

additional term for an even n, hence: 

𝑓3(𝑛) = 𝑃3(𝑛) + �
𝑛 + 1

2 � 

= (2𝑎 + 1) �
𝑛 + 1

2 � −
3
2 �
⌊𝑎⌋2 + ⌊𝑎⌋+ ⌈𝑎⌉2 −

1
3
⌈𝑎⌉�

− (1− |𝑛 (mod 2)|)
(⌈𝑎⌉2 + ⌈𝑎⌉)

2  , where 𝑎 =
�𝑛3�
2  

Equation 21 
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3.3 Examples on proposition 1 
(1) 

𝑃(5) = 𝑓5(5) = 𝑃5(5) +  𝑓4(5) = 1 + 𝑓4(5) = 1 + �𝑓3(5 − 4𝑖)

�54�

𝑖=0

 

= 1 + 𝑓3(5) + 𝑓3(1) =  1 + 𝑓3(5) + 1 = 2 + �𝑓2(5 − 3𝑖)

�53�

𝑖=0

= 2 + 𝑓2(5) + 𝑓2(2) =  

 

=  2 + �
5 + 1

2 � + �
2 + 1

2 � = 2 + 3 + 2 = 7  

Hence the total number of partitions for 5 is 7 (by proposition 1) 

 

(2) 

𝑃(6) = 𝑓6(6) = 𝑃6(6) +  𝑓5(6) = 1 + �𝑓4(6 − 5𝑖) = 1 +

�65�

𝑖=0

𝑓4(6) + 𝑓4(1) 

= 2 + 𝑓4(6) = 2 + �𝑓3(6− 4𝑖) = 2 + 𝑓3(6) + 𝑓3(2) = 2 +

�64�

𝑖=0

2 + 𝑓3(6) 

= 4 + �𝑓2(6 − 3𝑖) = 4 + 𝑓2(6) + 𝑓2(3) + 𝑓2(0) = 5 +

�63�

𝑖=0

�
6 + 1

2 �+ �
3 + 1

2 � 

= 4 + 2 + 5 = 11 

Hence the total number of partitions for 6 is 11 (by proposition 1) 
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3.4 Examples on proposition 2 
(1) 

 

𝑓3(5) = (2𝑎 + 1) �
𝑛 + 1

2 � −
3
2 �
⌊𝑎⌋2 + ⌊𝑎⌋+ ⌈𝑎⌉2 −

1
3
⌈𝑎⌉�

− (1 − |𝑛 (mod2)|)
(⌈𝑎⌉2 + ⌈𝑎⌉)

2   where 𝑎 =
�53�
2 = 0.5 and 𝑛 = 5 

 

𝑓3(5) = 5 

Check: 

5=1+1+1+1+1, 1+1+1+2, 1+2+2, 3+2 and 3+1+1 

5 has 5 partitions comprising 1, 2 and 3 only. 

(2) 

𝑓3(6) = (2𝑎 + 1) �
𝑛 + 1

2 � −
3
2 �
⌊𝑎⌋2 + ⌊𝑎⌋+ ⌈𝑎⌉2 −

1
3
⌈𝑎⌉�

− (1 − |𝑛 (mod2)|)
(⌈𝑎⌉2 + ⌈𝑎⌉)

2   where 𝑎 =
�63�
2 = 1 and 𝑛 = 6 

 

𝑓3(6) = 7 

Check: 

6=3+3, 3+2+1, 3+1+1+1, 2+2+2, 2+2+1+1, 2+1+1+1+1, 1+1+1+1+1+1 

6 has 7 partitions comprising 1, 2 and 3 only. 
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3.5 Computer Algorithm for proposition 1 
We wrote a computer algorithm implementing the formula to calculate the number of 

partitions using MATLAB: 
n=input('Please enter the number you wish to partition: '); 
a=1; 
x=n; 
z=n; 
b=1; 
for count=1:n-2 
    a=a+1; 
    d=1; 
    e=b; 
    b=1; 
    for count2=1:e % for going to second number in previous row 
        for s=0:floor(x(a-1,d)/z) % for using the first number in 
previous row  
            x(a,b)=x(a-1,d)-(z*s); 
            b=b+1; 
        end 
        d=d+1; 
    end 
    b=b-1; 
    z=z-1; 
end 
No_of_Partitions=0; 
for count3=1:b 
    parts=ceil((x(a,count3)+1)/2); 
    No_of_Partitions=No_of_Partitions+parts; 
end 
disp('Number of Partitions is: ') 
disp(No_of_Partitions) 
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Please enter the number you wish to partition: 1 
Number of Partitions is:  
     1 
 
Please enter the number you wish to partition: 2 
Number of Partitions is:  
     2 
 
Please enter the number you wish to partition: 3 
Number of Partitions is:  
     3 
 
Please enter the number you wish to partition: 4 
Number of Partitions is:  
     5 
 
Please enter the number you wish to partition: 5 
Number of Partitions is:  
     7 
 
Please enter the number you wish to partition: 6 
Number of Partitions is:  
    11 
 
Please enter the number you wish to partition: 7 
Number of Partitions is:  
    15 
 
Please enter the number you wish to partition: 8 
Number of Partitions is:  
    22 
 
Please enter the number you wish to partition: 9 
Number of Partitions is:  
    30 
 
Please enter the number you wish to partition: 10 
Number of Partitions is:  
    42 
 
Please enter the number you wish to partition: 20 
Number of Partitions is:  
   627 
 
Please enter the number you wish to partition: 30 
Number of Partitions is:  
        5604 
 
Please enter the number you wish to partition: 40 
Number of Partitions is:  
       37338 
 
Please enter the number you wish to partition: 50 
Number of Partitions is:  
      204226 
 
Please enter the number you wish to partition: 60 
Number of Partitions is:  
      966467 
 
Please enter the number you wish to partition: 80 



 
 

25 

Number of Partitions is:  
    15796476 

n 
Number of Partitions using Proposition 

1 
1 1 
2 2 
3 3 
4 5 
5 7 
6 11 
7 15 
8 22 
9 30 
10 42 
20 627 
30 5604 
40 37338 
50 204,226 
60 966,467 
80 15,796,476 
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CONCLUSION AND FUTURE WORK 

In this paper, we presented a brief introduction to the problem of partitioning a 

positive integer n. We presented our method of partitioning a positive integer n, and 

an explicit basic formula for 𝑓2(𝑛) and for 𝑓3(𝑛) are obtained. 

During our work on partitioning we used the code in section 3.5 in order to generate a 

matrix for each positive integer n. This matrix is a trace of the algorithm in section 

3.5. This algorithm as mentioned before is an implementation of Equation 10, 

presented under section 3 (Results).  

Recalling Equation 10: 

𝒇𝒎(𝒏) =  �𝒇𝒎−𝟏(𝒏 − 𝒊𝒎) + 𝒇𝒎−𝟏(𝒏)

�𝒏𝒎�

𝒊=𝟏

= �𝒇𝒎−𝟏(𝒏 − 𝒊𝒎)

�𝒏𝒎�

𝒊=𝟎

 

For example, to find the number of partitions of 6 using the above equation: 

𝑓6(6) =  �𝑓5(6 − 6𝑖)

�66�

𝑖=0

=  𝑓5(6) +  𝑓5(0) 

=  �𝑓4(6 − 5𝑖)

�65�

𝑖=0

+ �𝑓4(0− 5𝑖)

�05�

𝑖=0

=  𝑓4(6) +  𝑓4(1) + 𝑓4(0) 

=  �𝑓3(6 − 4𝑖)

�64�

𝑖=0

+  �𝑓3(1 − 4𝑖)

�14�

𝑖=0

=  𝑓3(6) + 𝑓3(2) + 𝑓3(1) +  𝑓3(0) 

=  �𝑓2(6 − 3𝑖)

�63�

𝑖=0

+ �𝑓2(2 − 3𝑖)

�23�

𝑖=0

+ �𝑓𝑧−1(1 − 3𝑖)

�13�

𝑖=0

 

=  𝑓2(6) + 𝑓2(3) + 𝑓2(0) + 𝑓2(2) + 𝑓2(1) + 𝑓2(0) 

=  �6+1
2
� + �3+1

2
� + �0+1

2
� + �2+1

2
� + �1+1

2
� + �0+1

2
� = 4 + 2 + 1 + 2 + 1 + 1 = 11   

 

The first row in the matrix generated by setting n =6 will contain the number itself. 

The second row will contain the entries in 𝑓5(𝑛). So as seen above, for number 6 the 

entries are 6 and 0. 

The second row will contain the entries in 𝑓4(𝑛). So as seen above, for number 6 the 

entries are 6, 1 and 0. 
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Until reaching the last row of the matrix that represents the numbers that shall be 

placed in 𝑓2(𝑛) in order to calculate the total number of partitions of n.  

For example, take the number 6. As it is shown below, the last row in the generated 

matrix associated to the number 6 is: 6 3 2 1 0 0.  Hence 

𝑃(6) = 𝑓6(6) = 𝑓2(6) + 𝑓2(3) + 𝑓2(2) + 𝑓2(1) + 𝑓2(0) + 𝑓2(0) = 11 

However, a pattern can be noticed after writing down several numbers.  

For 1: 
 
     1          
 
For 2: 
 
     2         
 
For 3: 
 
     3     0 
     3     0             
 
For4: 
 
     4     0     0 
     4     0     0 
     4     1     0             
 
For5: 
 
     5     0     0     0 
     5     0     0     0 
     5     1     0     0 
     5     2     1     0             
 
For 6: 
 
     6     0     0     0     0     0 
     6     0     0     0     0     0 
     6     1     0     0     0     0 
     6     2     1     0     0     0 
     6     3     0     2     1     0               
 
6 3 2 1 0 0  
 
For 7: 
 
     7     0     0     0     0     0     0     0 
     7     0     0     0     0     0     0     0 
     7     1     0     0     0     0     0     0 
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     7     2     1     0     0     0     0     0 
     7     3     2     1     0     0     0     0 
     7     4     1     3     0     2     1     0         
 
7 4 3 2 1 1 0 0  
 
For 8: 
 
     8     0     0     0     0     0     0     0     0     0     0 
     8     0     0     0     0     0     0     0     0     0     0 
     8     1     0     0     0     0     0     0     0     0     0 
     8     2     1     0     0     0     0     0     0     0     0 
     8     3     2     1     0     0     0     0     0     0     0 
     8     4     0     3     2     1     0     0     0     0     0 
     8     5     2     4     1     0     3     0     2     1     0            
 
8 5 4 3 2 2 1 1 0 0 0  
 
For 9: 
 
     9     0     0     0     0     0     0     0     0     0     0     0     0     0     0 
     9     0     0     0     0     0     0     0     0     0     0     0     0     0     0 
     9     1     0     0     0     0     0     0     0     0     0     0     0     0     0 
     9     2     1     0     0     0     0     0     0     0     0     0     0     0     0 
     9     3     2     1     0     0     0     0     0     0     0     0     0     0     0 
     9     4     3     2     1     0     0     0     0     0     0     0     0     0     0 
     9     5     1     4     0     3     2     1     0     0     0     0     0     0     0 
     9     6     3     0     5     2     1     4     1     0     3     0     2     1     0      
 
9 6 5 4 3 3 2 2 1 1 1 0 0 0 0 
 
For 10: 
 
    10     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0 
    10     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0 
    10     1     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0 
    10     2     1     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0 
    10     3     2     1     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0 
    10     4     3     2     1     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0 
    10     5     0     4     3     2     1     0     0     0     0     0     0     0     0     0     0     0     0     0 
    10     6     2     5     1     0     4     0     3     2     1     0     0     0     0     0     0     0     0     0 
    10     7     4     1     6     3     0     2     5     2     1     0     4     1     0     3     0     2     1     0 
 
10 7 6 5 4 4 3 3 2 2 2 1 1 1 1 0 0 0 0 0 
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Table 2 

 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 

1  1                    

2   1                   

3 1   1                  

4 1 1   1                 

5 1 1 1   1                

6 2 1 1 1   1               

7 2 2 1 1 1   1              

8 3 2 2 1 1 1   1             

9 4 3 2 2 1 1 1   1            

10 5 4 3 2 2 1 1 1   1           

11 6 5 4 3 2 2 1 1 1   1          

12 9 6 5 4 3 2 2 1 1 1   1         

13 10 9 6 5 4 3 2 2 1 1 1   1        

14 13 10 9 6 5 4 3 2 2 1 1 1   1       

15 17 13 10 9 6 5 4 3 2 2 1 1 1   1      

16 21 17 13 10 9 6 5 4 3 2 2 1 1 1   1     

17 25 21 17 13 10 9 6 5 4 3 2 2 1 1 1   1    

18 23 25 21 17 13 10 9 6 5 4 3 2 2 1 1 1   1   

19 39 23 25 21 17 13 10 9 6 5 4 3 2 2 1 1 1   1  

20 49 39 23 25 21 17 13 10 9 6 5 4 3 2 2 1 1 1   1 

In order to calculate the number of occurrence of each number, we wrote the 

algorithm in Appendix 1. 

As shown in Table 2, there is a pattern in the numbers of occurrence of each number 

that when placed in 𝑓2(𝑛) gives the total number of partitions of that number. 

Figure 1 below shows the zeros occurrences using the code attached in Appendix IV. 
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Figure 1: Number of zeros occurrence Vs. number to be partitioned 

Considering the case where 8 ≤ 𝑛 ≤ 11: 

𝑝(8) =  𝑝(7)− 𝑓2(7) + 𝑓2(8) + 𝑓2(5) + 𝑓2(2) + 𝑓2(0) 

For n=9: 

𝑝(9) =  𝑝(8)− 𝑓2(8) + 𝑓2(9) + 𝑓2(6) + 𝑓2(3) + 𝑓2(0) + 𝑓2(0) 

And the same pattern would continue as we move on until we reach 11, because 

always the term having the zero would increase by one, and the function can be 

extracted from the previous expressions that would yield: 

𝑝(𝑛) =  𝑝(𝑛 − 1) − 𝑓2(𝑛 − 1) + 𝑓2(𝑛) + 𝑓2(𝑛 − 3) + 𝑓2(𝑛 − 6) + �𝑓2(𝑘)
𝑛−8

𝑘=0

  

for 8 ≤ 𝑛 ≤ 11 

Simplifying the previous expression yields: 

𝑝(𝑛) =  𝑝(𝑛 − 1) − 𝑓2(𝑛 − 1) + 𝑓2(𝑛) + 𝑓2(𝑛 − 3) + 𝑓2(𝑛 − 6) + �𝑓2(𝑘)
𝑛−8

𝑘=0

 

𝑝(𝑛) =  𝑝(𝑛 − 1) − �
𝑛 − 1 + 1

2 �+ 𝑓2(𝑛) + �
𝑛 − 3 + 1

2 � + �
𝑛 − 6 + 1

2 �+ �𝑓2(𝑘)
𝑛−8

𝑘=0
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𝑝(𝑛) =  𝑝(𝑛 − 1)− �
𝑛
2
� + 𝑓2(𝑛) + �

𝑛
2 − 1� + �

𝑛 + 1
2 − 3� + �𝑓2(𝑘)

𝑛−8

𝑘=0

 

𝑝(𝑛) =  𝑝(𝑛 − 1)− �
𝑛
2
� + 𝑓2(𝑛) + �

𝑛
2
� − 1 + �

𝑛 + 1
2 � − 3 + �𝑓2(𝑘)

𝑛−8

𝑘=0

 

𝑝(𝑛) =  𝑝(𝑛 − 1)− �
𝑛
2
� + �

𝑛
2
� − 1 − 3 + 𝑓2(𝑛) + �

𝑛 + 1
2 � + �𝑓2(𝑘)

𝑛−8

𝑘=0

 

𝑝(𝑛) =  𝑝(𝑛 − 1) − 4 + 2𝑓2(𝑛) + �𝑓2(𝑘)
𝑛−8

𝑘=0

    for    8 ≤ 𝑛 ≤ 11 

Equation 22 

Plotting the Number of partitions Versus the number to be partitioned we obtain the 

following graph: 

 

Figure 2: Number of Partitions Vs. number to be partitioned 



 
 

32 

REFERENCES 

[1] Joseph Laurendi. (2005, January) Art of Problem Solving. [Online]. 
http://www.artofproblemsolving.com/Resources/Papers/LaurendiPartitions.pdf 

[2] (2013, January) Wikipedia. [Online]. 
http://en.wikipedia.org/wiki/Partition_(number_theory) 

[3] George E. Andrews. Penn State University, Department of Mathematics. 
[Online]. 
http://www.math.psu.edu/vstein/alg/antheory/preprint/andrews/chapter.pdf 

[4] Brian Hopkins and Robin Wilson, "Euler’s Science of Combinations," Leonhard 
Euler Tercentenary, no. 1707, 2007. 

[5] H. L. Alder, "Partition Identities-From Euler to the Present," American 
Mathematical Society, no. 76, pp. 733-746, 1969. 

[6] Christian S Calude, Elena Calude, and Melissa S Queen, "The Complexity of 
Euler’s Integer Partition Theorem," University of Auckland, NZ, Massey 
University at Auckland, NZ, Dartmouth College, USA, Centre for Discrete 
Mathematics and Theoretical Computer Science, Research Report Series 2011. 

[7] (2001, September) University of Iowa, Department of Mathematics. [Online]. 
http://homepage.cs.uiowa.edu/~sriram/196/fall01/lecture6.ps 

[8] (2012, December) Wikipedia. [Online]. 
http://en.wikipedia.org/wiki/Srinivasa_Ramanujan 

[9] George E. Andrews, The Theory of Partitions. Pennsylvania, Pennsylvania, 
USA: Addison-Wesley, 1976. 

[10] Willard G. Connor, "Partition Theorems Related to Some Identities of Rogers 
and Watson," Transactions of the American Mathematical Society, vol. 214, 
1975. 

[11] M V Subbarao and M Vidyasagar, "On Watson's Quintuple Product Identity," p. 
5, January 1970. 

[12] F G Garvan, "A Simple Proof Of Watson's Partition Congruences For Powers Of 
7," Australian Mathematical Society, vol. Series A, no. 36, pp. 316-334, 1984. 

[13] chilton-computing. [Online]. http://www.chilton-
computing.org.uk/acl/associates/permanent/atkin.htm 

[14] Scott Ahlgren and Ken Ono, "Congruence properties for the partition function," 
National Academy of Sciences, vol. 98, no. 23, pp. 12882-12884, 2000. 

[15] Karl Mahlburg, "Partition congruences and the Andrews–Garvan–Dyson crank," 
National Academy of Sciences, vol. 102, no. 43, pp. 15373-15376, 2005. 

[16] Freeman J. Dyson, "Some guesses in the theory of partitions," pp. 10-15, 1944. 
[17] George E. Andrews and F. G. Garvan, "Dyson's Crank of a Partition," American 

Mathematical Socitey, vol. 18, no. 2, pp. 167-171, 1988. 

http://www.artofproblemsolving.com/Resources/Papers/LaurendiPartitions.pdf
http://en.wikipedia.org/wiki/Partition_(number_theory)
http://www.math.psu.edu/vstein/alg/antheory/preprint/andrews/chapter.pdf
http://homepage.cs.uiowa.edu/~sriram/196/fall01/lecture6.ps
http://en.wikipedia.org/wiki/Srinivasa_Ramanujan
http://www.chilton-computing.org.uk/acl/associates/permanent/atkin.htm
http://www.chilton-computing.org.uk/acl/associates/permanent/atkin.htm


 
 

33 

[18] Richard Askey, "The Work Of George Andrews: A Madison Perspective," The 
Andrews Festschrift (Maratea,1998), vol. 42, p. 24, 1999. 

[19] Ken Ono and Jan Hendrik Bruinier, "Algebraic Formulas for the Coeffiecients of 
Half-Integral Weight Harmonic Weak Mass Forms," 2011. 

[20] Amanda Folsom, Zachary A Kent, and Kent Ono, "l-Adic Properties of the 
Partition Function," Advances in Mathematics, vol. 3, no. 229, pp. 1586-1609, 
2012. 

 
 
  



 
 

34 

APPENDIX 
I 

 
%% to count the number of occurrence of each number in the final f2 
count=0; 
[a,b]=size(x); 
for i=1:b 
    if x(a,i)==0 
        count=count+1; 
    end 
end 
n 
count 

II 
 
%% to get the sequence where we get 0 in the f2 
[a,b]=size(x); 
c=x(a); 
d=1; 
for i=1:b 
    if x(a,i)==0 
        c(d,1)=i; 
        d=d+1; 
    end 
end 
c 

III 
 
%% to get the difference between each row and the other 
  
for i=1:size(c)-1 
    e(i)=c(i+1)-c(i); 
end 
e' 

IV 
 
%% To get the graph of the number of zeros 
  
no_of_zeros=[0 0 1 1 1 2 2 3 4 5 6 9 10 13 17 21 25 33 39 49 60 73 88 110 
130 158 191 230 273 331 391 468 556 660 779 927 1087 1284 1510 1775 2075 
2438 2842 3323 3872 4510 5273 6095 7056 8182]; 
no_of_parts=[ 
           1 
           2 
           3 
           5 
           7 
          11 
          15 
          22 
          30 
          42 
          56 
          77 
         101 
         135 
         176 
         231 
         297 
         385 
         490 
         627 
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         792 
        1002 
        1255 
        1575 
        1958 
        2436 
        3010 
        3718 
        4565 
        5604 
        6842 
        8349 
       10143 
       12310 
       14883 
       17977 
       21637 
       26015 
       31185 
       37338 
       44583 
       53174 
       63261 
       75175 
       89134 
      105558 
      124754 
      147273 
      173525 
      204226]; 
no_of_ones=[1 
           0 
           0 
           1 
           1 
           1 
           2 
           2 
           3 
           4 
           5 
           6 
           9 
          10 
          13 
          17 
          21 
          25 
          33 
          39 
          49 
          60 
          73 
          88 
         110 
         130 
         158 
         191 
         230 
         273 
         331 
         391 
         468 
         556 
         660 
         779 
         927 
        1087 
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        1284 
        1510 
        1775 
        2075 
        2438 
        2842 
        3323 
        3872 
        4510 
        5237 
        6095 
        7056]'; 
plot(no_of_zeros,'x'); 
  
hold off 
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