Discrete Mathematics MTH 213 Fall 2011, 1–5

Final Exam MTH 213, Fall 2011

Ayman Badawi

QUESTION 1. (WRITE DOWN T OR F. Each 1.5 points, total = 30 points)

- (i) If T is a partial order on a set A and $x, y \in A$, then either $x \wedge y = x$ or $x \wedge y = y$.
- (ii) If $k \in \mathbb{N}$, then \sqrt{k} is an irrational number.
- (iii) If A is a set such that |A| = 2, then there are exactly 3 binary relation on A.
- (iv) $-21 \pmod{11} = 10$.
- (v) The number 1.81345 is a rational number.
- (vi) the equation $4x \equiv 6 \pmod{10}$ has exactly two distinct solutions in Z_{10} .
- (vii) There is no SOLUTION to the two equations $x \equiv 9 \pmod{12}$ and $x \equiv 3 \pmod{4}$
- (viii) Let $F = \{a \in \mathbb{R} \mid a \text{ is irrational number }\}$. Then there is a bijection function from F onto [-4, 0].
- (ix) $K_{10,2}$ is a planar.
- (x) $TG(Z_{125})$ is a connected graph.
- (xi) If $a, b, d \in \mathbb{N}$ and d = na + mb for some $n, m \in \mathbb{Z}$, then gcd(a, b) = d.
- (xii) If T is a tree with n vertices, then |E| = (n(n-1))/2
- (xiii) It is possible to have a planar with 22 edges and 9 vertices.
- (xiv) It is possible to have an Euler Graph with 13 vertices and 12 edges.
- (xv) It is possible to have a Hamilton Graph with 13 vertices and 12 edges.
- (xvi) $K_{10,1}$ is a tree
- (xvii) If T is a partial order on \mathbb{N} and $(13, 4) \in T$, then $4 \wedge 13 = 13$.
- (xviii) If T is a total order on a set A and $b \bigvee a = a(a \neq b)$, then $(b, a) \in T$ but $(a, b) \notin T$
- (xix) $TG(Z_{16})$ has exactly two components such that each component is complete.
- (xx) $K_{3,3}$ has a subgraph H where H is a planar.

QUESTION 2. (Circle the correct answer. Each = 2points, Total = 42 points)

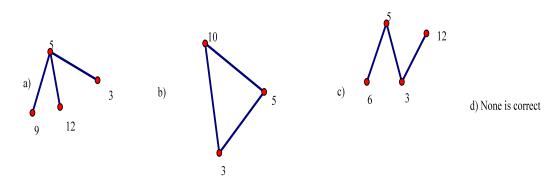
- (i) One of the following binary relations on $A = \{1, 2\}$ is a lattice. a) $\{(2, 2), (1, 1), (1, 2)\}$ b) $\{(2, 2), (1, 1), (1, 2), (2, 1)\}$ c) $\{(1, 2)\}$ d) $\{(1, 2), (2, 1), (1, 1)\}$
- (ii) Let T be a partial order relation on N (recall N = {1,2,3,4,...}) such that for every a, b ∈ N, (a, b) ∈ T iff b ≤ a. Then 5 ∨ 10 =
 a) 10
 b) 5
 c) Does not exist
 d) 1
- (iii) Let T and N as in (ii). The maximum element of N under T is

a) Does not exist b) 1 c) Need more information d) None of the previous is correct

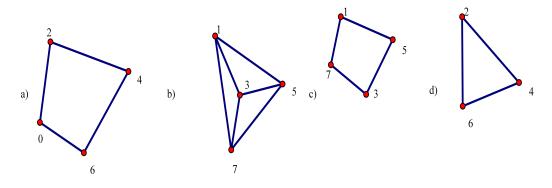
- (iv) Let $A = \{0, 1, \{1\}, \{0\}\}$. Then |P(A)| = a) 4 b) 3 c) 8 d) 16
- (v) Let A as in (iv). Then a) $\{0\} \in A$ b) $\{1\} \in P(A)$ c) (a) and (b) are correct d) $\{0,1\} \subset P(A)$ e) ALL previous statements are correct.
- (vi) Let G(V, E) be a Hamilton graph such that |V| = 6. Then a) $deg(v) \ge 3$ for each $v \in V$. b) |E| = 6 c) $|E| \ge 6$ d) (a) and (b) are correct e) (a) and (c) are correct.
- (vii) Let $F = \mathbb{Q} \cap [1, 6]$. Then

a) There is a bijection function from F onto \mathcal{N} . b) There is a bijection function from F onto [1,6] c) There is a bijection function from F onto \mathbb{Q} d) (a) and (c) are correct. e) None of the previous is correct.

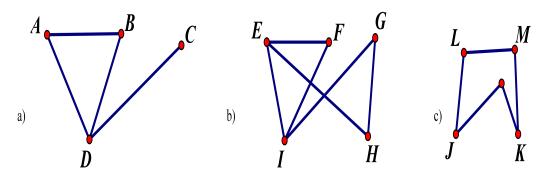
(viii) One of the following is a subgraph of $G(Z_{15})$



(ix) One of the following is a component of $TG(Z_8)$.



(x) One of the following is a Hamilton graph that is not an Euler graph



- (xi) Let $x \in Z$. The set of solution of $8x \equiv 4 \pmod{10}$ over Z is a) $\{3+10k \mid k \in Z\}$ b) $\{3,8\}$ c) $\{3+5k \mid k \in Z\}$ d) None of the previous
- (xii) Let $x \in Z_9$. The set of solution of 6x = 3 over Z_9 a) $\{2\}$ b) $\{2, 5, 8\}$ c) $\{1/2\}$ d) None of the previous.
- (xiii) Let $x \in Z$. The set of solution to $x \equiv 3 \pmod{6}$ and $x \equiv 3 \pmod{4}$. a) $\{3 + 12k \mid k \in Z\}$ b) $\{15 + 24k \mid k \in Z\}$ c) $\{3, 15\}$ d) $\{3 + 24k \mid k \in Z\}$ e) None of the previous.
- (xiv) Let T(V, E) be a full 8-ary tree. Then one of the following is a possibility for |V|a) 16 b) 21 c) 8 d) 33 e) 15
- (xv) $(11)_4 = (x)_5$. Then x =a) 0 b) 10 c) 11 d) 01
- (xvi) The graph $G(Z_{10})$ is a) K_5 b) full 4-ary tree c) $K_{2,3}$ d) Euler but not Hamilton
- (xvii) Let $n = 8 \times 44$ and $F = \{a \mid 1 \le a \le n \text{ and } gcd(a, n) = 4\}$. Then |F| = a) 40 b) 77 c) 160 d) none of the previous
- (xviii) Let $x \in Z$. The set of solution to $x \equiv 6 \pmod{7}$ and $x \equiv 5 \pmod{6}$ is a) $\{13 + 42k \mid k \in Z\}$ b) $\{41 + 42k \mid k \in Z\}$ c) $\{1 + 13k \mid k \in Z\}$ d) None of the previous
- (xix) If we divide 5¹⁴⁶ by 13. Then the remainder is
 a) 12 b) 1 c) 0 d) 5 e) None of the previous
- (xx) $(101)_4 = (x)_{64}$. Then x =a)<u>11</u> b) 11 c)<u>17</u> d) <u>20</u> e) None of the previous.
- (xxi) One of the following is both Euler and Hamilton graph
 a) K₈ b) K_{4,2} c) K_{5,5} d) K₉.

QUESTION 3. (8 points) Use Math Induction to prove that 3 is a factor of $n^3 + 8n + 6$ for each $n \ge 1$ (i.e., prove that $3 \mid (n^3 + 8n + 6)$)

QUESTION 4. (6 points) Show that |R| = |(2,4)| by constructing a bijection function from R onto (2,4). (Only write down a function that will do the job and graph it).

QUESTION 5. (4 points) Let $F = (1,9] - \{5\}$ (i.e., F is the set of all real numbers between 1 and 9 except the numbers 1 and 5). Show that |(0,4)| = |F| by constructing a bijection function from (0, 4) onto F. (Only write down a function that will do the job and graph it).

QUESTION 6. (10 points) Given $a_0 = 3$, $a_1 = -2$, and $a_n = a_{n-1} + 12a_{n-2}$. Find a mathematical equation for a_n for each $n \ge 2$. Then find the 10th term in the sequence.

Faculty information

Ayman Badawi, Department of Mathematics & Statistics, American University of Sharjah, P.O. Box 26666, Sharjah, United Arab Emirates. E-mail: abadawi@aus.edu, www.ayman-badawi.com