Discrete Mathematics MTH 213 Fall 2011, 1-4

Exam I MTH 213, Fall 2011

Ayman Badawi

QUESTION 1. (21 points, each = 1.5 points) Just write down T or F

- (i) $\sqrt{15}$ is irrational number
- (ii) π is irrational number
- (iii) 3.14 is a rational number
- (iv) 22/7 is a rational number
- (v) -9(mod 13) is 4
- (vi) -9(mod13) is 4
- (vii) since $\frac{a}{b} = \frac{-a}{-b}$ for every nonzero positive integers a, b, we have (-a)(mod b) = a(mod b).
- (viii) If x is a rational number, then x + 1.7 is a rational number
- (ix) If $A = \{1, 3, 5\}$. Then $T = \{(1, 1), (5, 5), (3, 3), (1, 3), (5, 1)\}$ is a total order on A
- (x) If |A| = 21 and T is a partial order on A, then $|T| \ge 21$
- (xi) Let $A = \{4, 5, 7\}$ and $T = \{(4, 4)\}$. Then T is symmetric and transitive.
- (xii) Let $A = \{0, 2, 7\}$ and $T = \{(0, 0), (2, 2), (7, 7), (2, 7), (7, 2)\}$. Then T is an equivalence relation such that A (under T) has exactly 2 distinct equivalent classes.
- (xiii) If a relation T on a set A is not anti-symmetric, then T is symmetric.
- (xiv) Assume A is a set with 3 elements, and $B = \{d \in P(A) \mid |d| = 3\}$. Then |B| = 56.

QUESTION 2. (9 points, each = 1 point) Let $A = \{0, \{6\}, \{0\}, \{0, 6\}, 7\}$. Then write down T or F

- (i) $\{7\} \subset P(A)$
- (ii) $\{0\} \in A$
- (iii) $\{0\} \in P(A)$
- (iv) A is a countable set.
- (v) $\{\{0,6\},7\} \in P(A)$
- (vi) |P(A)| = 32
- (vii) It is possible to have a binary relation T on A such that |T| = 32.
- (viii) Let $K = \{x \in P(A) \mid |x| = 2\}$ and $F = \{y \in P(A) \mid |y| = 3\}$. Then there is a bijection function from K into F.
- (ix) Let $K = \{x \in P(A) \mid |x| = 2\}$ and $F = \{y \in P(A) \mid |y| = 1\}$. Then there is a bijection function from K into F.

QUESTION 3. (8 points) Prove that $(A \cup B)^c = A^c \cap B^c$.

QUESTION 4. (7 points) Show that |(2,8]| = |[4,1)| by constructing a bijection function from (2,8] into [4,1)

QUESTION 5. (7 points) Let $D = Q^+ \cap (0, 1)$. Find |D| (explain your answer in at most 1.5 lines)

QUESTION 6. (10 points) Let $A = \{1, 2, 3, 5, 7, 10\}$. Define a relation T on A such that whenever $a, b \in A$, $aTb \Leftrightarrow b = ak$ for some $k \in A$. a) Find T

b) If T is a partial order on A, then find

(i) 5 ∧ 2

(ii) 10 ∨ 2

(iii) If possible find the minimum element and the maximum element of A under T

QUESTION 7. (10 points) a) Let $A = \{6, 9, 1\}$. Construct a partial order relation on A, say T, such $6 \land 9 = 1$.

b) Is the relation T you constructed in (a) a lattice? Briefly explain (not more than a line)

c) If possible find the minimum element and the maximum element of A under T as in (a).

d) Can we construct a relation H on A (the same A as in (a)) such that H is a total order and $6 \bigvee 1 = 9$? If yes, then construct H. If no, then briefly explain

QUESTION 8. (10 points) Let $N = \{1, 2, 3, ..., \}$ be the set of all natural numbers, and let T be a binary relation on P(N) such that whenever $x, y \in P(N) x T y \Leftrightarrow y \subseteq x$. We know that T is a partial order on P(N).

(i) Find $\{34, 0, 1\} \setminus \{77\}$

(ii) Find $\{7, 5, 3\} \land \{5, 3\}$

(iii) Is T a total order? Explain briefly

(iv) If possible find the minimum element and the maximum element of P(N) under T.

QUESTION 9. (9 points) We know that Q^+ is countable. Use the algorithm we discussed in the class in order to find the next 10 numbers after 14,

QUESTION 10. (9 points) Let $A = \{1, 2, 3, 4\}$.

a) Construct an equivalence relation on A such that $D = \{1, 4\}$ and $F = \{2, 3\}$ are equivalent classes of A.

b) Construct an equivalence relation on A such that A has exactly 4 distinct equivalent classes

Faculty information

Ayman Badawi, Department of Mathematics & Statistics, American University of Sharjah, P.O. Box 26666, Sharjah, United Arab Emirates.

E-mail: abadawi@aus.edu, www.ayman-badawi.com