\qquad

Exam I MTH 213 , Fall 2011

Ayman Badawi

QUESTION 1. (21 points, each = $\mathbf{1 . 5}$ points) Just write down T or F
(i) $\sqrt{15}$ is irrational number
(ii) π is irrational number
(iii) 3.14 is a rational number
(iv) $22 / 7$ is a rational number
(v) $-9(\bmod -13)$ is 4
(vi) $-9(\bmod 13)$ is 4
(vii) since $\frac{a}{b}=\frac{-a}{-b}$ for every nonzero positive integers a, b, we have $(-a)(\bmod -b)=a(\bmod b)$.
(viii) If x is a rational number, then $x+1.7$ is a rational number
(ix) If $A=\{1,3,5\}$. Then $T=\{(1,1),(5,5),(3,3),(1,3),(5,1)\}$ is a total order on A
(x) If $|A|=21$ and T is a partial order on A, then $|T| \geq 21$
(xi) Let $A=\{4,5,7\}$ and $T=\{(4,4)\}$. Then T is symmetric and transitive.
(xii) Let $A=\{0,2,7\}$ and $T=\{(0,0),(2,2),(7,7),(2,7),(7,2)\}$. Then T is an equivalence relation such that A (under T) has exactly 2 distinct equivalent classes.
(xiii) If a relation T on a set A is not anti-symmetric, then T is symmetric.
(xiv) Assume A is a set with 3 elements, and $B=\{d \subset P(A)| | d \mid=3\}$. Then $|B|=56$.

QUESTION 2. (9 points, each $=$ 1point) Let $A=\{0,\{6\},\{0\},\{0,6\}, 7\}$. Then write down T or F
(i) $\{7\} \subset P(A)$
(ii) $\{0\} \in A$
(iii) $\{0\} \in P(A)$
(iv) A is a countable set.
(v) $\{\{0,6\}, 7\} \in P(A)$
(vi) $|P(A)|=32$
(vii) It is possible to have a binary relation T on A such that $|T|=32$.
(viii) Let $K=\{x \in P(A)| | x \mid=2\}$ and $F=\{y \in P(A)| | y \mid=3\}$. Then there is a bijection function from K into F.
(ix) Let $K=\{x \in P(A)| | x \mid=2\}$ and $F=\{y \in P(A)| | y \mid=1\}$. Then there is a bijection function from K into F.

QUESTION 3. (8 points) Prove that $(A \cup B)^{c}=A^{c} \cap B^{c}$.

QUESTION 4. (7 points) Show that $|(2,8]|=|[4,1)|$ by constructing a bijection function from $(2,8]$ into $[4,1)$

QUESTION 5. (7 points) Let $D=Q^{+} \cap(0,1)$. Find $|D|$ (explain your answer in at most 1.5 lines)

QUESTION 6. (10 points) Let $A=\{1,2,3,5,7,10\}$. Define a relation T on A such that whenever $a, b \in A$, $a T b \Leftrightarrow b=a k$ for some $k \in A$.
a) Find T
b) If T is a partial order on A, then find
(i) $5 \bigwedge 2$
(ii) $10 \bigvee 2$
(iii) If possible find the minimum element and the maximum element of A under T

QUESTION 7. (10 points) a) Let $A=\{6,9,1\}$. Construct a partial order relation on A, say T, such $6 \wedge 9=1$.
b) Is the relation T you constructed in (a) a lattice? Briefly explain (not more than a line)
c) If possible find the minimum element and the maximum element of A under T as in (a).
d) Can we construct a relation H on A (the same A as in (a)) such that H is a total order and $6 \bigvee 1=9$? If yes, then construct H. If no, then briefly explain

QUESTION 8. (10 points) Let $N=\{1,2,3, \ldots$,$\} be the set of all natural numbers, and let T$ be a binary relation on $P(N)$ such that whenever $x, y \in P(N) x T y \Leftrightarrow y \subseteq x$. We know that T is a partial order on $P(N)$.
(i) Find $\{34,0,1\} \bigvee\{77\}$
(ii) Find $\{7,5,3\} \wedge\{5,3\}$
(iii) Is T a total order? Explain briefly
(iv) If possible find the minimum element and the maximum element of $P(N)$ under T.

QUESTION 9. (9 points) We know that Q^{+}is countable. Use the algorithm we discussed in the class in order to find the next 10 numbers after 14 ,

QUESTION 10. (9 points) Let $A=\{1,2,3,4\}$.
a) Construct an equivalence relation on A such that $D=\{1,4\}$ and $F=\{2,3\}$ are equivalent classes of A.
b) Construct an equivalence relation on A such that A has exactly 4 distinct equivalent classes

Faculty information

Ayman Badawi, Department of Mathematics \& Statistics, American University of Sharjah, P.O. Box 26666, Sharjah, United Arab Emirates.
E-mail: abadawi@aus.edu, www.ayman-badawi.com

