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Let R be a commutative ring with identity, Z(R) its set of zero-divisors, and Nil(R)
its ideal of nilpotent elements. The zero-divisor graph of R is I'(R) = Z(R)\{0}, with
distinct vertices x and y adjacent if and only if xy=0. In this article, we study
I'(R) for rings R with nonzero zero-divisors which satisfy certain divisibility conditions
between elements of R or comparability conditions between ideals or prime ideals of R.
These rings include chained rings, rings R whose prime ideals contained in Z(R) are
linearly ordered, and rings R such that {0} # Nil(R) € zR for all z € Z(R)\Nil(R).

Key Words: Chained rings; Linearly ordered prime ideals; ¢-Rings; Zero-divisor graph.

2000 Mathematics Subject Classification: ~ Primary 13A15; Secondary 13F99, 05C99.

1. INTRODUCTION

Let R be a commutative ring with 1, and let Z(R) be its set of zero-divisors.
The zero-divisor graph of R, denoted by I'(R), is the (undirected) graph with
vertices Z(R)* = Z(R)\{0}, the set of nonzero zero-divisors of R, and for distinct
x,y € Z(R)*, the vertices x and y are adjacent if and only if xy = 0. Note that I'(R)
is the empty graph if and only if R is an integral domain and that a nonempty
I'(R) is finite if and only if R is finite and not a field (Anderson and Livingston,
1999, Theorem 2.2). This concept is due to Beck (1988), who let all the elements
of R be vertices and was mainly interested in colorings. Our present definition and
emphasis on the interplay between ring-theoretic properties of R and graph-theoretic
properties of I'(R) are from Anderson and Livingston (1999).

In this article, we study I'(R) for several classes of rings which generalize
valuation domains to the context of rings with zero-divisors. These are rings with
nonzero zero-divisors that satisfy certain divisibility conditions between elements
or comparability conditions between ideals or prime ideals. In Sections 2 and 3,
we consider rings R such that the prime ideals of R contained in Z(R) are linearly
ordered. In particular, we compute the diameter and girth for I'(R) and I'(R[X]).
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In Section 4, we specialize to the case where R is a chained ring. In the final section,
we investigate I'(R) for rings R such that {0} # Nil(R) C zR for all z € Z(R)\Nil(R).
We assume throughout that all rings are commutative with 1 #0. If R is
a ring, then dim(R) denotes its (Krull) dimension, T(R) its total quotient ring,
U(R) its group of units, Z(R) its set of zero-divisors, Nil(R) its ideal of nilpotent
elements, N(R) = {x € R|x* = 0} C Nil(R), and Rad(I) = {x € R|x" € I for some
integer n > 1} for I an ideal of R. We say that R is reduced if Nil(R) = {0}.
For A,BC R, let A* = A\{0} and (A: B)={x€ R|xBC A}. We let Z, Z,, Z,,
Q, R, and IFq denote the rings of integers, integers modulo n, integers localized
at the prime ideal pZ, rational numbers, real numbers, and the finite field with
g eclements, respectively. In the next six paragraphs, we recall some background
material. To avoid any trivialities when I'(R) is the empty graph, we implicitly
assume when necessary that R is not an integral domain. For any undefined ring-
theoretic concepts or terminology, see Huckaba (1988) or Kaplansky (1974).

Let G be a graph. We say that G is connected if there is path between any two
distinct vertices of G. At the other extreme, we say that G is rotally disconnected if no
two vertices of G are adjacent. For vertices x and y of G, we define d(x, y) to be the
length of a shortest path from x to y in G (d(x, x) = 0 and d(x, y) = oo if there is no
such path). The diameter of G is diam(G) = sup{d(x, y) | x and y are vertices of G}.
The girth of G, denoted by gr(G), is the length of a shortest cycle in G (gr(G) = oo if
G contains no cycles). Then I'(R) is connected with diam(I'(R)) < 3 (Anderson and
Livingston, 1999, Theorem 2.3) and gr(I'(R)) < 4 if I'(R) contains a cycle (Mulay,
2002, (1.4)). Thus diam(I'(R)) =0, 1, 2, or 3, and gr(I'(R)) = 3, 4, or oo. For other
articles on zero-divisor graphs, see Anderson and Naseer (1993), Anderson (2008),
Anderson et al. (2001, 2003), Anderson and Mulay (2007), Axtel et al. (2005), Axtel
and Stickles (2006), DeMeyer and Schneider (2002), Lucas (2006), Mulay (2002),
Redmond (2007), and Smith (2003). In particular, a list of all the zero-divisor graphs
with up to 14 vertices is given in Redmond (2007). A general reference for graph
theory is Bollabods (1979).

Recall from Hedstrom and Houston (1978) that an integral domain R with
quotient field K is called a pseudo-valuation domain (PVD) if every prime ideal P of
R is strongly prime, in the sense that whenever x,y € K and xy € P, then x € P or
y € P. This concept was extended to rings with zero-divisors in Badawi et al. (1995),
where R is called a pseudo-valuation ring (PVR) if every prime ideal P of R is strongly
prime, in the sense that xP and yR are comparable (under inclusion) for all x, y € R.
Any valuation domain is a PVD, and it was shown in Badawi et al. (1995) that an
integral domain is a PVD if and only if it is a PVR. It is known that a ring R is a
PVR if and only if for all x, y € R, we have either x|y or y|xz for every nonunit
z € R (Badawi et al., 1995, Theorem 5). We say that a ring R is a chained ring if the
(principal) ideals of R are linearly ordered (by inclusion), equivalently, if either x|y
or y|x for all x, y € R. By our earlier comments, a chained ring is a PVR.

Another generalization of pseudo-valuation rings is given in Badawi (1999b).
Recall from Dobbs (1976) and Badawi (1999a) that a prime ideal P of a ring R
is called a divided prime ideal R if P C xR for all x € R\P. Thus a divided prime
ideal of R is comparable with every ideal of R. We say that a ring R is a divided
ring if every prime ideal of R is divided; so the prime ideals in a divided ring are
linearly ordered. Let # = {R|R is a ring and Nil(R) is a divided prime ideal of
R}. Note that an integral domain or a PVR is in #. For any ring R € #, the ring
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homomorphism ¢ = ¢ : T(R) —> Ryyz)» given by ¢(x/y) = x/y for all x € R and
y € R\Z(R), was introduced in Badawi (1999b). Then ¢|; : R —> Ry, is a ring
homomorphism satisfying ¢(x) = x/1 for all x € R and T(¢(R)) = Ry r)-

Let R € #, and put K = Ry;z)- As in Badawi (1999b), a prime ideal Q of ¢(R)
is said to be K-strongly prime if whenever x, y € K and xy € Q, then either x € Q or
y € Q. A prime ideal P of R is said to be a ¢-strongly prime ideal of R if ¢(P) is a
K-strongly prime ideal of ¢(R). It is known that the prime ideals of ¢(R) are the
sets that are (uniquely) expressible as ¢(P) for some prime ideal P of R (cf. Badawi,
1999b, Lemma 2.5), the key fact being that Ker(¢) € Nil(R). If every prime ideal
of R is a ¢-strongly prime ideal, then R is called a ¢-pseudo-valuation ring (¢-PVR).
It was shown in Badawi (2002, Proposition 2.9) that a ring R € # is a ¢-PVR if
and only if R/Nil(R) is a PVD. A PVR is a ¢-PVR, but an example of a ¢-PVR
which is not a PVR was given in Badawi (2000). Also, a ¢-PVR is a divided ring
Badawi (1999b, Proposition 4), and thus the prime ideals in a ¢-PVR (or a PVR)
are linearly ordered. In particular, a ¢-PVR, and hence a PVR or a chained ring, is
quasilocal.

Observe that if Nil(R) is a divided prime ideal of R, then Nil(R) is also the
nilradical of T(R) and Ker(¢) is a common ideal of R and T(R). Other useful
features of each ring R € # include the following: (i) ¢(R) € #; (i) T(¢(R)) =
Ry has only one prime ideal, namely, Nil(¢(R)); (ii)) ¢(R) is naturally
isomorphic to R/Ker(¢); (iv) Z(¢(R)) = Nil(¢(R)) = ¢(Nil(R)) = Nil(Ry;); and
(V) Ryir)/Nil($(R)) = T(¢(R))/Nil(¢(R)) is the quotient field of ¢(R)/Nil(¢(R)).
For further studies on rings in the class #, see Anderson and Badawi (2004),
Anderson and Badawi (2005), Badawi (1999b), Badawi (2000), Badawi (2001),
Badawi (2002), Badawi and Dobbs (2006), and Badawi and Lucas (2006).

Throughout this article, we will use the technique of idealization of a
module to construct examples. Recall that for an R-module B, the idealization of
B over R is the ring formed from R x B by defining addition and multiplication
as (r,a)+(s,b)=(r+s,a+b) and (r,a)(s,b) = (rs, rb+ sa), respectively.
A standard notation for this “idealized ring” is R(+)B; see Huckaba (1988) for
basic properties of rings resulting from the idealization construction. In particular,
note that the ideal I = {0}(+)B of T = R(+)B satisfies I = {0}; so I C Nil(T). The
zero-divisor graph I'(R(4)B) has recently been studied in Anderson and Mulay
(2007) and Axtel and Stickles (2006).

2. LINEARLY ORDERED PRIMES

In this section, we investigate the zero-divisor graph of a ring R such that the
prime ideals of R contained in Z(R) are linearly ordered. These are precisely the
rings R such that the prime ideals of T(R) are linearly ordered, and include chained
rings, divided rings, PVRs, ¢-PVRs, rings with Z(R) = Nil(R), and zero-dimensional
quasilocal rings. For these rings, we show that diam(I'(R)) < 2 and gr(I'(R)) = 3 or
oo. We start with the following lemma (cf. Anderson, 2008, Lemma 3.1; Lucas, 2006,
Lemma 2.3).

Lemma 2.1. Let R be a ring, and let x,y € Nil(R)* be distinct with xy # 0. Then
(0: (x,y)) # {0}, and moreover, there is a path of length 2 from x to y in Nil(R)* C
I'(R). In particular, if Z(R) = Nil(R), then diam(I'(R)) < 2.
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Proof. Since xy #0 and x € Nil(R)*, let n (>2) be the least positive integer
such that x"y = 0. Also, since x"~'y # 0 and y € Nil(R)*, let m (>2) be the least
positive integer such that x"~'y” = 0. Then 0 # x"'y"~! € Nil(R) and x"'y"! ¢
(0: (x,y)). Thus x —x""'y"~! —y is a path of length 2 from x to y in Nil(R)*.
The “in particular” statement is clear. d

When Z(R) = Nil(R), it is easy to explicitly describe the diameter of I'(R);
and moreover, diam(I'(R)) # 3 in this case. We record this as our first theorem
(cf. Lucas, 2006, Theorem 2.6). Note that in this case, Nil(R) is the unique minimal
prime ideal of R and is the only prime ideal of R contained in Z(R); so this is the
simplest case where the prime ideals of R contained in Z(R) are linearly ordered.

Theorem 2.2. Let R be a ring with Z(R) = Nil(R) # {0}. Then exactly one of the
following three cases must occur.

(1) |Z(R)*| = 1. In this case, R is isomorphic to Z, or Z,[X]/(X?), and diam(I'(R)) = 0;

(2) |1Z(R)*| =2 and Z(R)*> ={0}. In this case, T(R) is a complete graph, and
diam(I'(R)) = 1;

(3) Z(R)* # {0}. In this case, diam(I'(R)) = 2.

Proof. (1) If |Z(R)*|=1, then R=Z, or Z,[X]/(X*) (Beck, 1988,
Proposition 2.2). Thus diam(I'(R)) = 0.

(2) 1If Z(R)* = {0}, then xy = 0 for all x, y € Z(R). Thus I'(R) is a complete
graph with diam(I'(R)) = 1 since |Z(R)*| > 2.

(3) Suppose that Z(R)*> # {0}. Then I'(R) is not complete (Anderson and
Livingston, 1999, Theorem 2.8), and thus diam(I'(R)) > 2. Hence diam(I'(R)) = 2
by Lemma 2.1. O

Thus when studying the diameter of the zero-divisor graph of a ring R,
the interesting case is when Nil(R) C Z(R). We next give several lemmas.
Note that in Lemma 2.4 we need only assume that x € Z(R)\N(R), where
N(R) = {x € R|x* = 0}.

Lemma 2.3. Let R be a ring with x € Nil(R)* and y € Z(R)*. Then d(x,y) <2
in T'(R).

Proof. We may assume that x # y and xy # 0. Since y € Z(R)* and xy # 0, there
is a z € Z(R)*\{x} such that yz =0. Let n be the least positive integer such that
x"z = 0 (such an n exists since x € Nil(R)*). Then x — x"~!z — y is a path of length
2 from x to y (if n = 1, then x"~'z = z). Thus d(x, y) <2 in I'(R). O

Lemma 2.4. Let R be a ring with x € Z(R)\Nil(R) and y € Z(R)* such that x| zy"
for some integer n > 1 and z € R\Z(R). Then d(x,y) <2 in I'(R).

Proof. We may assume that x # y and xy # 0. Since x € Z(R)\Nil(R) and xy # 0,
there is a w € Z(R)*\{x, y} such that xw = 0. Since x | zy" with z € R\Z(R) and xw =
0, we conclude that y"w = 0. Let k be the least positive integer such that y*w = 0.
Then x — y*~'w — y is a path of length 2 from x to y. Thus d(x,y) <2 in I[(R). O
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By Badawi (1995, Theorem 1), the prime ideals of R are linearly ordered if and
only if the radical ideals of R are linearly ordered, if and only if for all x,y € R,
there is an integer n = n(x, y) > 1 such that either x|y” or y|x". This result easily
extends to the prime ideals of R contained in Z(R).

Theorem 2.5. Let R be a ring.

(1) The prime ideals of R contained in Z(R) are linearly ordered if and only if for all
X,y € Z(R), there is an integer n = n(x,y) > 1 and an element z € R\Z(R) such
that either x| zy" or y | zx".

(2) The radical ideals of R contained in Z(R) are linearly ordered if and only if for all
X,y € Z(R), there is an integer n = n(x, y) > 1 such that either x| y" or y | x".

(3) If the prime ideals of R contained in Z(R) are linearly ordered, then Nil(R) and
Z(R) are prime ideals of R.

Proof. (1) Note that the prime ideals of R contained in Z(R) are linearly ordered
if and only if the prime ideals of T(R) are linearly ordered, if and only if for all
x,y € T(R), there is an integer n = n(x, y) > 1 such that either x| y" or y | x" in T(R)
(Badawi, 1995, Theorem 1). The result now easily follows.

(2) Suppose that the radical ideals of R contained in Z(R) are linearly
ordered. Let x, y € Z(R). Then Rad(xR), Rad(yR) € Z(R); so we may assume that
Rad(xR) € Rad(yR). Thus x € Rad(yR); so y|x" for some integer n > 1. Conversely,
let 1, J € Z(R) be radical ideals of R. If I and J are not comparable, pick x € I\J
and y € J\I. If x|y", then y" € xR C I, and hence y € I, a contradiction.

(3) Suppose that the prime ideals of R contained in Z(R) are linearly ordered.
Then Nil(R) is an intersection of linearly ordered prime ideals of R since each
minimal prime ideal of R is contained in Z(R) (Huckaba, 1988, Theorem 2.1), and
thus Nil(R) is prime. Also, Z(R) is the union of linearly ordered prime ideals of R
(Kaplansky, 1974, p. 3), and hence Z(R) is prime. O

Since Z(R) is a union of prime ideals of R (Kaplansky, 1974, p. 3), Z(R) is a
prime ideal of R if and only if it is an ideal of R. If dim(R) = 0 (e.g., R is finite) and
the prime ideals of R contained in Z(R) are linearly ordered, then R is quasilocal
with Z(R) = Nil(R) its unique prime ideal. If Nil(R) € Z(R) and Nil(R) is a prime
ideal of R, then dim(R) > 1 and I'(R) must be infinite. For in this case, R is not
an integral domain, and thus if I'(R) is finite, then R must also be finite (Anderson
and Livingston, 1999, Theorem 2.2), contradicting dim(R) > 1. In particular, if the
prime ideals of R contained in Z(R) are linearly ordered and Nil(R) C Z(R), then
I'(R) is infinite. It is clear that if the radical ideals of R contained in Z(R) are linearly
ordered, then the prime ideals of R contained in Z(R) are also linearly ordered.
However, we next give an example where the prime ideals of R contained in Z(R)
are linearly ordered, but the radical ideals of R contained in Z(R) are not linearly
ordered, and hence the prime ideals of R are not linearly ordered.

Example 2.6. Let D=7 + XQ[[X]], and let I =Z; X + X’Q[[X]] be an ideal
of D. Set R = D/I. Then Z(R) = (2Z + XQ[[X]])/] = 2R = annz(: X + I), N(R) =
Nil(R) = XQ[[X]]/I, and Nil(R)> = {0}. The prime ideals of R contained in Z(R),
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namely, Z(R) and Nil(R), are linearly ordered. But the radical ideals of R contained
in Z(R) are not linearly ordered since the two radical ideals (6Z + XQ[[X]])/]
and (10Z + X@Q[[X]])/I are not comparable. Thus the prime ideals of R are also
not linearly ordered; for example, (2Z + XQ[[X]])/I and (3Z + XQ[[X]])/I are
not comparable. We have diam(I'(R)) = 2 by Theorem 2.7, and gr(I'(R)) = 3 by
Theorem 2.12. Also note that R = Z(+)(Q/Z,)).

The prime ideals of R contained in Z(R) are linearly ordered if and only if
the prime ideals of T(R) are linearly ordered. Moreover, I'(R) = I'(T(R)) (Anderson
et al., 2003, Theorem 2.2). Thus we can often reduce to the case where the prime
ideals of R are linearly ordered. Note that a reduced ring R with its prime ideals
contained in Z(R) linearly ordered is an integral domain. Also observe that a
nonreduced ring R has I'(R) complete if and only if Z(R)?> = {0} (Anderson and
Livingston, 1999, Theorem 2.8), i.e., if xy =0 for all x, y € Z(R) with x # y, then
x> =0 for all x € Z(R). So if R is a nonreduced ring with Z(R)? = {0}, then {0} #
N(R) = Nil(R) = Z(R) and diam(I'(R)) < 1, with equality when |Z(R)*| > 2. We are
now ready for the first of the two main results of this section.

Theorem 2.7. Let R be a ring with Z(R)* # {0} such that the prime ideals of R
contained in Z(R) are linearly ordered. Then diam(I'(R)) = 2.

Proof. By the above comments, R is not reduced. So I'(R) is not a complete graph
and diam(I'(R)) > 2. Let x, y € Z(R)* be distinct with xy # 0. If x, y € Nil(R), then
d(x,y) =2 by Lemma 2.1. If x € Nil(R) and y € Z(R)\Nil(R), then d(x,y) =2 by
Lemma 2.3. Finally, suppose that x, y € Z(R)\Nil(R). Since the prime ideals of R
contained in Z(R) are linearly ordered, there is an integer n > 1 and an element
z € R\Z(R) such that either x | zy" or y | zx" by Theorem 2.5(1). We may assume that
x| zy" for some integer n > 1 and z € R\Z(R). Thus d(x, y)2 by Lemma 2.4. Hence
diam(I'(R)) < 2, and thus diam(I(R)) = 2 since diam(I'(R)) > 2. O

Corollary 2.8. If R is any of the following types of rings with Z(R)* # {0}, then
diam(T(R)) = 2.

(1) R is a ring such that the prime ideals of R are linearly ordered,
(2) R is a divided ring;

(3) Ris a PVR;

(4) R is a ¢-PVR;

(5) R is a chained ring.

In view of Theorem 2.7 and Lucas (2006, Theorem 2.6(3)), we have the
following corollary.

Corollary 2.9. Let R be a ring with Z(R)? # {0} such that the prime ideals of R
contained in Z(R) are linearly ordered. Then Z(R) is an (prime) ideal of R and each
pair of distinct zero-divisors of R has a nonzero annihilator.

Our next example illustrates what can happen when the prime ideals of R
contained in Z(R) are not linearly ordered.
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Example 2.10. (a) Let D = R[[X, Y]] + ZK[[Z]], where K is the quotient field of
R[[X, Y]], and let I = ZD. Set R = D/I. Then R is quasilocal with maximal ideal
Z(R)((X,Y) + ZK[[Z]])/I, N(R) = Nil(R) = ZK[[Z]]/1, Nil(R)* = {0}, and ((X)+
ZK[[Z]])/I and ((Y) + ZK[[Z]])/I are incomparable prime ideals of R contained
in Z(R). One can easily show that diam(I'(R)) =3 and gr(I'(R)) = 3. Also see
Example 5.3(b).

(b) Let R=7Z, xZ,. Then N(R)= Nil(R) ={0} x {0,2} C Z(R) = PUQ,
where P=127Z, x {0,2} and Q = {0} x Z, are incomparable primes ideals of R
contained in Z(R). One can easily show that diam(I'(R)) = 3 and gr(I'(R)) = .

We conclude this section with a discussion of the girth of I'(R) when the prime
ideals of R contained in Z(R) are linearly ordered. We first handle the case where
Z(R) = Nil(R). In this case, gr(I'(R)) # 4, and we can explicitly say when the girth
is either 3 or oo. Note that in Theorem 2.11, gr(I'(R)) = oo if and only if I'(R) is
a finite star graph. (Recall that a graph is a star graph if it has a vertex which is
adjacent to every other vertex and this is the only adjacency relation. We consider
a singleton graph to be a star graph.)

Theorem 2.11. Let R be a ring with Z(R) = Nil(R) # {0}. Then exactly one of the
following four cases must occur:

(1) |Z(R)*| = 1. In this case, R is isomorphic to Z, or Z,[X]/(X?), and gr(I'(R)) = oo;

(2) |Z(R)*| = 2. In this case, R is isomorphic to Zy or Z5[X]/(X?), and gr(I'(R)) = oo;

(3) |Z(R)*| = 3. If R is isomorphic to Zg, Z,[X]/(X?), or Z,[X]/(2X, X> — 2), then
gr(I(R)) = oo. Otherwise, R is isomorphic to Z,[X,Y|/(X,Y)? Z,[X]/(2,X)?
Z,X]/(X>+ X + 1), or F,[X]/(X?); and in this case, gr(I(R)) = 3;

(4) |Z(R)*| = 4. In this case, gr(I'(R)) = 3.

Proof. By Anderson and Mulay (2007, Theorem 2.3), gr(I'(R)) # 4 when Z(R) =
Nil(R). Thus gr(I'(R)) =3 or oo. The theorem then follows from Anderson
and Mulay (2007, Theorem 2.5, Remark 2.6(a)), and Anderson et al. (2001,
Example 2.1). u

We next handle the Nil(R) C Z(R) case when Nil(R) a prime ideal of R
(cf. Remark 2.13(b)). In this case, we have already observed that I'(R) is infinite.
The next theorem, together with Theorem 2.11, completely characterizes gr(I'(R)) in
terms of |Nil(R)*| when the prime ideals of R contained in Z(R) are linearly ordered.
In particular, we have gr(I'(R)) = 3 or oo, with gr(I(R)) = co if and only if T'(R) is
a star graph.

Theorem 2.12. Let R be a ring such that Nil(R) is a prime ideal of R and Nil(R) C
Z(R). In particular, this holds when the prime ideals of R contained in Z(R) are linearly
ordered and Nil(R) C Z(R). Then gr(I'(R)) = 3 or co. Moreover, gr(I(R)) = oo if and
only if |Nil(R)*| = 1; and in this case, I'(R) is an infinite star graph.

Proof. Since I'(R)) = I'(T(R)) (Anderson et al., 2003, Theorem 2.2), we may
assume that R = T(R). Note that R is not reduced; so if gr(I'(R)) =4, then
R = D x B, where D is an integral domain and B = Z, or Z,[X]/(X?) by Anderson
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and Mulay (2007, Theorem 2.3). In this case, Nil(R) = {0} x Z, is not a prime ideal
of R. So we must have gr(I'(R)) = 3 or co. The “in particular” statement follows
from Theorem 2.5(3). The “moreover” statement follows from Anderson and Mulay
(2007, Theorem 2.5, Remark 2.6(a)). O

Remark 2.13. (a) I(R) is a finite star graph if and only if either R = TF, x Z, for
some finite field IF, (when R is reduced), or R is one of the 7 rings with gr(I'(R)) = oo
given in Theorem 2.11 (Anderson and Livingston, 1999, Theorem 2.13, DeMeyer
and Schneider, 2002, Corollary 1.11).

If T(R) is an infinite star graph, then either R = D x Z, for D an integral
domain (when R is reduced), or Nil(R) is a prime ideal of R with |Nil(R)*| =1 and
Z(R) is a prime ideal of R (DeMeyer and Schneider, 2002, Theorem 1.12 or Mulay,
2002, (2.1)). For example, if R = Z(+)Z, (= Z[X]/(2X, X?)), then I'(R) is an infinite
star graph with center (0, 1) and the prime ideals of R contained in Z(R) are linearly
ordered.

(b) The hypothesis that Nil(R) is a prime ideal of R is needed in
Theorem 2.12. For example, let R = Z; x Z,. Then Nil(R) C Z(R), Nil(R) is not a
prime ideal of R, and gr(I'(R)) = 4.

(c) It is instructive to give an elementary, self-contained proof of
Theorem 2.12. If |Nil(R)*| =1, then gr(I(R)) = oo since I'(R)\Nil(R) is totally
disconnected (Theorem 3.5(1)). So suppose that [Nil(R)*|>2, and let z e
Z(R)\Nil(R). Then there is a w € Nil(R)* with zw = 0. First suppose that w? # 0,
and let m (>3) be the least positive integer such that w™ = 0. Thus w"' # w, and
hence z — w — w™ ! —z is a cycle of length 3. Now suppose that w? =0, and let
d € Nil(R)*\{w}. Assume that wd # 0. Since wd and w are distinct and nonzero, we
conclude that z — w — wd — z is a cycle of length 3. Now assume that wd = 0 and
w? =0. If zd =0, then z —w—d — z is a cycle of length 3. Thus we may assume
that zd # 0. If zd = w, then zd*> = wd = 0, and hence w — 7> — d — w is a cycle of
length 3. Thus we assume that zd and w are distinct and nonzero. Let n be the least
positive integer such that zd" = 0. Assume n > 2. Then it is clear that d # zd"~!. If
zd" ' # w, then w —zd"™' —d — w is a cycle of length 3. Assume that zd"™' = w.
Then z2d"™ ! = zw = 0. Since zw = 0, d"~! and w are distinct and nonzero, and thus
w—z2 —d""!' — w is a cycle of length 3. Now assume that n = 2 and zd # w. Then
zd> = 0. If zd # d, then w—zd —d — w is a cycle of length 3. Thus assume that
zd = d. Hence d*> = zd*> = 0. Since zw = 0 and zd # 0, we have w + d # 0. Hence
w, d, and w+ d are all distinct. Since w* =d*=wd =0, w—w+d—d—w is a
cycle of length 3. Thus gr(I'(R)) = 3.

3. LINEARLY ORDERED PRIMES-II

In this section, we continue the investigation of I'(R) when the prime ideals
of R contained in Z(R) are linearly ordered. We show that for such rings R,
I'(R)\Nil(R) is totally disconnected, every finite set of vertices of I'(R)\Nil(R) is
adjacent to a common vertex of Nil(R)*, and I'(R)\Nil(R) is infinite when Nil(R) C
Z(R). We also determine diam(I'(R[X])) and gr(I'(R[X])). Our first goal is to show
that such a ring R is a McCoy ring, where a ring R is called a McCoy ring if every
finitely generated ideal of R contained in Z(R) has a nonzero annihilator.
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Lemma 3.1. Let R be a ring such that the prime ideals of R contained in Z(R) are
linearly ordered, and let z,,...,z, € Z(R). Then there is an integer i, 1 <i<n, a
positive integer m, and an s € R\Z(R) such that z; | sz}’ for every integer k, 1 < k < n.

Proof. Let T = T(R). Then the prime ideals of T are linearly ordered. Thus
Rad(z,T), ..., Rad(z,T) are prime ideals of 7, and hence are linearly ordered.
Thus there is an integer i, 1 <i <n, such that Rad(z,T) € Rad(z;,T) for every

integer k, 1 < k < n. Hence there are positive integers m,,...,m, and s,,...,s, €
R\Z(R) such that z; | 5,z forevery integerk, | < k < n.Lets =s,...s, € R\Z(R) and
m = max{m,, ..., m,}. Then z; | sz,” for every integer k, 1 < k < n, as desired. O

Theorem 3.2. Let R be a ring such that the prime ideals of R contained in Z(R) are
linearly ordered. Then R is a McCoy ring.

Proof. Let I =(z,,...,2,) be a nonzero finitely generated ideal of R contained
in Z(R). By Lemma 3.1, we may assume that there is a positive integer m and
an s € R\Z(R) such that z,|sz]' for every integer k, 2 <k <n. Let w e Z(R)*
such that zyw =0. Thus there is an integer m, >0 such that z;?w # 0 and
2, wz, = 0. Hence 0 # z3,?w € (0 : (23, z,)). Since z52wz, = 0 and z, | sz, there is an
integer m; > 0 such that z3°z5%w # 0 and z3°z5%wz; = 0. Thus 0 # z3°z5%w € (0 :
(21, 225 23)). Continuing in this manner, we can construct a 0 # z™z/ "' ---2)%w €

(0:(zy, 29,23, -.--»2,)). Hence R is a McCoy ring. |

Corollary 3.3. Let R be a ring such that the prime ideals of R contained in Z(R) are
linearly ordered, and let x,, ..., x, € Z(R)\Nil(R). Then there is a y € Nil(R)* such
that x;y = 0 for every integer i,1 <i < n.

Proof. There is a y € Z(R)* such that each x;y = 0 since R is a McCoy ring and
Z(R) is an ideal of R. Moreover, y € Nil(R) since x; ¢ Nil(R) and Nil(R) is a prime
ideal of R by Theorem 2.5(3). |

Remark 3.4. If R is a McCoy ring and Z(R) is an ideal of R, then clearly
diam(I'(R)) < 2. This observation, together with Theorem 3.2, gives another
proof of Theorem 2.7. However, note that R =7, x Z, is a McCoy ring with
diam(I'(R)) = 3 (cf. Example 2.10(b)).

We next show that the subgraph I'(R)\Nil/(R) of T'(R) is infinite and totally
disconnected when Ni/(R) is a prime ideal of R and Nil(R) C Z(R) (i.e., when
I'(R)\Nil(R) is nonempty). This fact gives another proof of the “moreover"
statement of Theorem 2.12, namely, that I'(R) is an infinite star graph when Nil(R)
is a prime ideal of R, Nil(R) C Z(R), and |Nil(R)*| = 1.

Theorem 3.5. Let R be a ring.

(1) T(R)\Nil(R) is totally disconnected if and only if Nil(R) is a prime ideal of R.
(2) If Nil(R) is a prime ideal of R and Nil(R) C Z(R), then Z(R)\Nil(R) is infinite.

In particular, T(R)\Nil(R) is infinite and totally disconnected when the prime
ideals of R contained in Z(R) are linearly ordered and Nil(R) C Z(R).
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Proof. (1) Suppose that I'(R)\Nil(R) is totally disconnected. Let xy € Nil(R) with
x,y & Nil(R). Then x"y" = 0 for some positive integer n. Thus x", y* € Z(R)\Nil(R)
and x" # y" since x,y € Nil(R). But then x" and y" are adjacent in I'(R)\Nil(R),
a contradiction. Hence Nil(R) is a prime ideal of R. The converse is clear.

(2) Let x € Z(R)\Nil(R). Suppose that x" = x™ for some integers n >
m > 1. Then x"(1 —x"™) =0 € Nil(R) and x ¢ Nil(R) implies 1 — x"™ € Nil(R)
since Nil(R) is prime. Thus x"" =1— (1 — x"™) € U(R), and hence x € U(R), a
contradiction. Thus Z(R)\Nil(R) is infinite.

The “in particular” statement holds since in this case Nil(R) is a prime ideal
of R by Theorem 2.5(3). |

Combining Lemma 2.1, Theorem 3.5, and Corollary 3.3, we have the following
structure theorem for I'(R) when the prime ideals of R contained in Z(R) are linearly
ordered. Then Nil/(R)* is a subgraph of I'(R) of diameter at most 2, I'(R)\Nil(R)
is infinite and totally disconnected when Nil(R) C Z(R), and for each finite set of
vertices Y C I'(R)\Nil(R), there is a vertex y € Nil(R)* which is adjacent to every
element of Y.

Our next goal is to investigate diam(I'(R[X])) when the prime ideals of R
contained in Z(R) are linearly ordered. The diameter of I'(R[X]) has recently been
studied in Axtel et al. (2005), Anderson and Mulay (2007), and Lucas (2006).
In particular, Lucas (2006, Theorems 3.4 and 3.6) give nice characterizations of
diam([(R[X])). If Z(R)*> = {0} (ie., I'(R) is a complete graph), then Z(R[X])> =
{0}; so I'(R[X]) is a complete graph with diam(I'(R[X])) = 1. McCoy’s Theorem
for polynomial rings states that f(X) € Z(R[X]) if and only if »f(X) = 0 for some
0#7reR, ie., Z(R[X]) € Z(R)[X]. Thus Z(R[X]) is an ideal of R[X] if and only if
R is a McCoy ring and Z(R) is an ideal of R (Lucas, 2006, Theorem 3.3), and in this
case, Z(R[X]) = Z(R)[X].

Theorem 3.6. Let R be a ring such that the prime ideals of R contained in Z(R) are
linearly ordered.

(1) Z(R[X]) is an (prime) ideal of R[X].
(2) If R is not an integral domain and Z(R)* = {0}, then diam(I'(R[X])) = 1.
(3) If Z(R)* # {0}, then diam(I'(R[X])) = 2.

Proof. Part (1) follows from Theorem 3.2 and Lucas (2006, Theorem 3.3). We have
already observed part (2) above. Part (3) follows from Theorem 3.2, Corollary 2.9,
and Lucas (2006, Theorem 3.4(3)). O

Corollary 3.7. If R is any of the following types of rings with Z(R)* # {0}, then
diam(T(R[X])) = 2.

(1) R is a ring such that the prime ideals of R are linearly ordered.
(2) R is a divided ring.

(3) R is a PVR.

(4) R is a ¢-PVR.

(5) R is a chained ring.
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Corollary 3.8. Let R be a nonreduced ring such that the prime ideals of R contained
in Z(R) are linearly ordered. Then exactly one of the following four cases must occur:

(1) |Z(R)*| = 1. In this case, R is isomorphic to Z, or Z,[Y]/(Y?), diam(I'(R)) = 0,
and diam(I'(R[X])) = 1;

(2) |Z(R)*| =2, Z(R) = Nil(R), and Z(R)*=1{0}. In this case, diam(I(R)) =
diam(I'(R[X])) = 1;

(3) Z(R) = Nil(R) and Z(R)? # {0). In this case, diam(I'(R)) = diam(I'(R[X])) = 2;

(4) Nil(R) € Z(R). In this case, diam(I'(R)) = diam(I'(R[X])) = 2.

Proof. This follows directly from Theorems 2.2 and 3.6. |

The following example illustrates the four cases stated in Corollary 3.8. In each
case, the ring R is actually a chained ring. The routine details are left to the reader.

Example 3.9. (a) Let R=1Z,. Then R is a chained ring with |Z(R)*| = 1. Thus
diam(I'(R)) = 0 and diam(I'(R[X])) = 1.

(b) Let R =Z,. Then R is a chained ring with |Z(R)*| = 2, Z(R) = Nil(R) =
N(R), and Z(R)* = {0}. Thus diam(I'(R)) = diam(I'(R[X])) = 1.

(c) Let R=7Z, Then R is a chained ring with N(R) C Nil(R) = Z(R) and
Z(R)* # {0}. Thus diam(I'(R)) = diam([(R[X])) = 2.

(d) Let D=7Z, +XQ[[X]] and I = XDZ;X + X*Q[[X]]. Set R=D/I.
Then D is a valuation domain; so R is a chained ring. Note that Z(R) =
(2Z ) + XQ[[X]])/I =2R and N(R) = Nil(R) = XQ[[X]]/1; so Nil(R) C Z(R) and
Nil(R)? = {0}. Thus diam(I(R)) = diam(I'(R[X])) = 2.

Unlike the case for the diameter of the zero-divisor graph of a polynomial ring
as in Corollary 3.8, the girth case is very easy. The girth of I'(R[X]) and T'(R[[X]])
has been studied in Axtel et al. (2005) and Anderson and Mulay (2007), and a
complete characterization is given in Anderson and Mulay (2007, Theorem 3.2).
For any nonreduced ring R, we always have gr(I'(R[X])) = gr(I(R[[X]])) = 3 by
Anderson and Mulay (2007, Lemma 3.1) (since aX — aX? — aX? —aX forms a
triangle for any a € N(R)*).

4. CHAINED RINGS

In this section, we investigate I'(R) when R is a chained ring. This is probably
the nicest case where the prime ideals of R contained in Z(R) are linearly ordered
since in a chained ring all the ideals are linearly ordered. A typical example of a
chained ring is a homomorphic image of a valuation domain. In particular, Z, is
a chained ring if and only if n is a prime power. In fact, it was an open question
(attributed to Kaplansky) if every chained ring is the homomorphic image of a
valuation domain (cf. Huckaba, 1988, Chapter V). However, an example in Fuchs
and Salce (1985) shows that this is not true in general. It will turn out that the
subset N(R) = {x € R| x> = 0} of Nil(R) will play a major role in describing I'(R)
when R is a chained ring. Note that if R is a chained ring, then N(R) = {0} if and
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only if Z(R) = {0}. Also note that for any ring R, we have N(R) = Nil/(R) when
Nil(R)?> = {0}, and N(R) = {0} if and only if Nil(R) = {0}. We start with several
lemmas. In some cases, these results are special cases of ones from previous sections;
however, the proofs are much easier in the chained ring setting.

Lemma 4.1. Let R be a ring, N(R) = {x € R| x> =0}, and x € Nil(R)\N(R). Then
xy = 0 for some y € N(R)*\{x}.

Proof. Let n (>3) be the least positive integer such that x" = 0, and let y = x"~!.
Then xy=x"=0, y=x""#£0, and y> = (x"')? = x*2 =0 because 2n —2 > n
since n > 3. Clearly x # y since x* # 0. O

Thus any vertex of the subgraph Ni/(R)\N(R) of I'(R) is adjacent to a vertex
of N(R)*. We next show, among other things, that for a chained ring R, any vertex
of T'(R)\N(R) is adjacent to a vertex of N(R)* and any two vertices of N(R)* are
adjacent.

Lemma 4.2. Let R be a chained ring, N(R) = {x € R|x* =0}, and x,y € R.

(1) If xy =0, then either x € N(R) or y € N(R).

(2) If x,y € N(R), then xy = 0.

(3) If x,y € Z(R)\N(R), then xy # 0.

4) If x € Z(R)*, then xy = 0 for some y € N(R)*.

) If x\,...,x, € Z(R)*, then there is a y € N(R)* such that x;y =0 for every
integer i, 1 <i <n.

(6) N(R) is an ideal of R.

(7) N(R) is a prime ideal of R if and only if N(R) = Nil(R).

Proof. (1) Suppose that x|y. Then y = rx for some r € R; so y* = rxy = 0.
(2) Suppose that x|y. Then y = rx for some r € R, and hence xy = rx? = 0.

(3) This follows from part (1).

(4) If x € N(R)*, then let y =x. If x € Z(R)\N(R), then xy =0 for some
0 # y € R. By part (3) above, we must have y € N(R).

(5) Thereis an integer j, 1 < j < n, such that X, | x; for alli, 1 <i < n. By part
(4) above, there is a y € N(R)* such that x;y = 0; so x;y = O forall i, 1 <i < n.

(6) Clearly, xN(R) € N(R) for all x € R; so we need only show that N(R) is
closed under addition. Let x,y € N(R). Then x*> = y> =0, and xy = 0 by part (2)
above. Thus (x + y)? = x? 4+ 2xy + y* = 0, and hence x + y € N(R).

(7) This is clear since Nil(R) is the unique minimal prime ideal of R. d

One can ask if part (5) above extends to any subset of Z(R)*. Of course,
if X € xR and yx =0, then yX = {0}. So if X € Z(R)* and X C xR for some x €
Z(R)*, then yX = {0} for some y € N(R)*. Our next remark addresses this question.

Remark 4.3. (a) Let D=V + XK[[X]], where V is a valuation domain with
nonzero maximal ideal M and quotient field K; so D is also a valuation domain.
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Let I = XD = VX + X*K[[X]], and set R = D/I. Then R is a chained ring with
maximal ideal Z(R) = (M + XK[[X]])/I and N(R) = Nil(R) = XK[[X]]]/I. Note
that there is a y € N(R)* such that yZ(R) = {0} if and only if there isa y € M~'\V.
(So for dim(V) = 1, this happens if and only if V is a DVR.)

(b) If R is a chained ring, then N(R) = {x € R| x> =0} is an ideal of R by
Lemma 4.2(6). In general, N(R) need not be an ideal of R (see Examples 5.5 and
5.6). However, if char(R) = 2, then N(R) is an ideal of R. Also note that if 2 € U(R)
and N(R) is an ideal of R, then xy = 0 for all x, y € N(R).

By Theorem 3.5(1), I'(R)\Ni/(R) is totally disconnected when R is a chained
ring. Lemma 4.2(3) yields the following stronger result (also see Example 5.5).

Theorem 4.4. Let R be a chained ring and N(R) ={x € R|x*=0}. Then
I'(R)\N(R) is totally disconnected.

Our next result is a special case of Theorem 2.7, but we give a proof in the
spirit of this section. We can also explicitly say when diam(I'(R)) is 0, 1, or 2.

Theorem 4.5. Let R be a chained ring. Then diam(I'(R)) < 2.

Proof. We may assume that |Z(R)*| > 2. Let N(R) = {x € R|x*> =0}, and let x, y €
Z(R)* be distinct. If x, y € N(R), then xy = 0 by Lemma 4.2(2), and thus d(x, y) = 1.
If x € N(R) and y ¢ N(R), then yz = 0 for some z € N(R)* by Lemma 4.2(4), and
hence xz = 0 by Lemma 4.2(2). Thus d(x, y) < 2. Finally, let x ¢ N(R) and y ¢ N(R).
Then xz = yz = 0 for some z € N(R)* by Lemma 4.2(5). Thus d(x, y) < 2, and hence
diam(I'(R)) < 2. O

Theorem 4.6. Let R be a chained ring with Z(R) # {0}, and let N(R) = {x € R| x* =
0}. Then exactly one of the following three cases must occur:

(1) |Z(R)*| = 1. In this case, R is isomorphic to Z, or Z,[X]/(X?), and diam(I(R)) =
0;

(2) |Z(R)*| = 2 and N(R) = Z(R). In this case, diam(I'(R)) = 1;

(3) N(R) € Z(R). In this case, diam(I'(R)) = 2.

Proof. The first part follows from Beck (1988, Proposition 2.2). The other two
follow directly from Lemma 4.2 and Theorem 4.5. a

Let R be a chained ring with N(R) = {x € R|x* = 0}. It is now easy to describe
the structure of I'(R). First, observe that N(R)* is a complete subgraph of I'(R) by
Lemma 4.2(2), I'(R)\N(R) is totally disconnected by Lemma 4.2(3), and I'(R)\N(R)
is infinite if Nil(R) € Z(R). Moreover, for any finite set of vertices ¥ C I'(R)\N(R),
there is a vertex z € N(R)* adjacent to every element in ¥ by Lemma 4.2(5).
In particular, I'(R) is complete if and only if Z(R) = N(R). Note that this description
of T'(R) recovers Theorem 4.6. Also note that Nil(R)* need not be a complete
subgraph of I'(R) (e.g., when R is the chained ring Z,;).

The structure of T'(R) described in the preceding paragraph also extends
to I'(R[X]) when R is a chained ring. Note that when R is a chained
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ring, we have N(R[X]) = N(R)[X], Nil(R[X]) = Nil(R)[X], and Z(R[X]) = Z(R)[X]
(of course, Nil(R[X]) = Nil(R)[X] holds for any ring R). These statements are easy
to verify directly, or just note that for any 0 # f € R[X], we have f = af*, where
a € R and f* € R[X] has unit content. Then f € N(R[X]) (resp., Nil(R[X]), Z(R[X]))
if and only if a € N(R) (resp., Nil(R), Z(R)). Thus N(R[X])* is a complete subgraph
of I'(R[X]), I(R[X])\N(R[X]) is totally disconnected, and for any finite set of vertices
Y € I(R[X])\N(R[X]), there is a vertex f € N(R[X])* which is adjacent to every
element in ¥ when R is a chained ring. Moreover, N(R[X])* and ['(R[X])\N(R[X])
are both infinite when R is a nonreduced chained ring. This observation shows that
diam(T(R[X])) = 1 when Z(R)? = {0} and diam([(R[X])) = 2 when Z(R)? # {0}.

The above description of I'(R) also enables us to easily determine gr(I'(R))
when R is a chained ring (cf. Theorem 2.12). Note that I'(R) is a finite star graph in
the first three cases of the next theorem, but it is not possible to have I'(R) be an
infinite star graph when R is a chained ring (cf. Theorem 2.12).

Theorem 4.7. Let R be a chained ring with N(R) = {x € R|x*> = 0} # {0}. Then
exactly one of the following five cases must occur:

(1) |N(R)*| = 1 and N(R) = Z(R). In this case, R is isomorphic to Z, or Z,[X]/(X?),
and gr(I'(R)) = oo;

(2) |IN(R)*| = 1 and N(R) € Z(R). In this case, R is isomorphic to Zg, Z,[X]/(X?), or
Z,[X]/(2X, X* —2), and gr(T(R)) = oo;

(3) |N(R)*| =2 and N(R) = Z(R). In this case, R is isomorphic to Zy or Z;[X]/(X?),
and gr(I(R)) = oo;

(4) IN(R)*| =2 and N(R) C Z(R). In this case, gr(I'(R)) = 3;

(5) IN(R)*| = 3. In this case, gr(I'(R)) = 3.

Proof. If |N(R)*| > 3, then clearly gr(I'(R)) =3 by Lemma 4.2(2). Suppose that
IN(R)*| = 2; say N(R)* = {x, y}. If y £ —x, then x + y is a third nonzero element
of N(R), a contradiction. Thus y = —x; so anng(x) = anng(y). If there is a z €
Z(R)\N(R), then x —y —z —x is a triangle by Lemma 4.2(4); so gr(I'(R)) = 3.
Otherwise, Z(R) = N(R), and thus gr(I'(R)) = co. Finally, suppose that |[N(R)*| =
1, say N(R) = {0, x}. If Z(R) = N(R), then R = Z, or Z,[X]/(X?) by Beck (1988,
Proposition 2.2). In this case, gr(I'(R)) = oo. So suppose that N(R) C Z(R). By parts
(3) and (4) of Lemma 4.2, I'(R) is a star graph with center x. Thus |R| =8, |R| =9,
or |R| > 9 and Nil(R) = {0, x} by Anderson et al. (2003, Lemma 3.7). The |R| > 9
case cannot happen. For in this case, Nil(R) = N(R) = xR is a prime ideal of R.
Let y € Z(R)*\{x}. Then xR C yR; so x = yr for some 0 # r € R. Hence r € xR =
{0, x} since xR is a prime ideal of R; so r = x. Thus x = yx, and hence x(1 — y) =0.
But R is quasilocal; so 1 —y € U(R), and thus x = 0, a contradiction. If |R| =8,
then R = Zg, Z,[X]/(X?), or Z,[X]/(2X, X* —2); and if |R| =9, then R=Z, or
Z,[X]/(X?) by Anderson et al. (2003, Corollary 3.11). As each of these rings is a
chained ring, the result follows. d

We close this section with several examples.

Example 4.8. (a) Let R be the (nonreduced) chained ring Z,., where p is prime
and n > 2. Then diam(I'(R)) = 0 if and only if p =2 and n = 2, diam(I'(R)) = 1 if
and only if p > 2 and n = 2, and diam(I'(R)) = 2 if and only if n > 3.
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We have gr(I'(R)) = o if either p=2 and 2<n <3 or p=3 and n=2;
otherwise, gr(I'(R)) = 3.

(b) We have N(R) C Nil(R) € Z(R) for any ring R. We give examples to
show that all four cases for inclusion or proper inclusion are possible when
R is a chained ring. The easy details are left to the reader. Recall that {0} #
Nil(R) C Z(R) forces a chained ring R to be infinite, and thus so is I(R).
(i) Let R=1Z,. Then N(R) = Nil(R) = Z(R). (ii) Let R = (Z;, + XQ[[X]])/(X).
Then N(R) = Nil(R) C Z(R). (iii) Let R = Z;. Then N(R) C Nil(R) = Z(R). (iv) Let
R = (Zy) + XQI[X]])/(X*). Then N(R)  Nil(R) < Z(R).

(c) Let R, and R, be chained rings and R = R, x R,. Then N(R) = N(R,) X
N(R,) and R is never a chained ring since the ideals (1, 0)R and (0, 1)R are not
comparable. Note that N(R)* is still a complete subgraph of I'(R) and any (x, y) €
I'(R) is still adjacent to some element of N(R)*, but I'(R)\N(R) is not totally
disconnected since (0, 1) and (1, 0) are adjacent.

(d) We have already observed that for a chained ring R, its zero-divisor
graph I'(R) is complete if and only if Z(R) = N(R). However, if R is not a chained
ring, then Z(R) = N(R) does not imply that I'(R) is complete. For example, let
RZ,[X, Y]/(X?, Y?) = Z,[x, y]. Then R is not a chained ring since the ideals xR and
YR are not comparable. However, N(R) = Nil(R) = Z(R) = {0, x, y, x + y, xy, x +
xy,y+ xy, x +y+ xy}, but I'(R) is not complete since xy # 0. Note that the prime
ideals of R are (trivially) linearly ordered, diam(I'(R)) = 2, and gr(I'(R)) = 3.

(e) A ring R such that Nil(R)*(= N(R)*) is a complete subgraph of I'(R) and
I'(R)\Nil(R) is totally disconnected, but R is not a chained ring. Let D be an integral
domain which is not a valuation domain, and let K be the quotient field of D.
Set R = D(+)(K/D); for example, let R = Z(+)(Q/Z). Note that N(R) = Nil(R) =
{0}(+)(K/D) € Z(R) = (D\U(D))(+)(K/D) and Nil(R)*> = {0}. Thus one can easily
verify that R satisfies the desired conditions.

5. T(R) WHENR ¢ %

In this final section, we are interested in the case where the ring R satisfies
{0} # Nil(R) C zR for all z € Z(R)\Nil/(R). In particular, this condition holds when
R € # is not an integral domain (i.e., when Nil(R) is a nonzero divided prime ideal
of R; so {0} # Nil(R) C zR for all z € R\Nil(R)). We start by showing that if {0} #
Nil(R) C zR for all z € Z(R)\Nil(R), then Nil(R) is a prime ideal of R (cf. the proof
of Anderson and Badawi, 2001, Proposition 5.1), and that Nil(R) is a divided prime
ideal of R when Nil(R) C Z(R).

Theorem 5.1. Let R be a ring with {0} # Nil(R) C zR for all z € Z(R)\Nil(R).

(1) Nil(R) is a prime ideal of R.
(2) Nil(R) € N, 2"R for all z € Z(R)\Nil(R).
(3) If Nil(R) € Z(R), then Nil(R) is a divided prime ideal of R.

Proof. (1) If Nil(R) = Z(R), then Nil(R) is a prime ideal of R. So we may
assume that Nil(R) C Z(R) and Nil(R) C zR for all z € Z(R)\Nil(R). Suppose that
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Nil(R) is not prime. Then there are x,y € Z(R)\Nil(R) with xy € Nil(R). Thus
x* € Z(R)\Nil(R), and hence Nil(R) C x*R. Thus xy = x’d for some d € R, and
hence y —xd ¢ Nil(R) since xd € Nil(R) and y & Nil(R). Since (y — xd)x0, we
have y — xd € Z(R)\Nil(R). Thus Nil(R) € (y — xd)R, and hence xNil(R) C x(y —
xd)R = {0}. Let 0+ z € Nil(R) € x*R. Then z = x’r for some r € R, and xr €
Nil(R). Thus z = x(xr) = 0, a contradiction. Hence Nil(R) is a prime ideal of R.

(2) Let z € Z(R)\Nil(R). Then z" € Z(R)\Nil(R) for all integers n > 1 since
Nil(R) is a prime ideal of R by part (1), and thus Nil(R) C z"R for all integers n > 1.
Hence Nil(R) € (> Z"R.

(3) Let z € R\Nil(R) and w € Z(R)\Nil(R). Then wz € Z(R)\Nil(R), and
thus Nil(R) € wzR C zR. Hence Nil(R) is a divided prime ideal of R. d

Corollary 5.2. The following statements are equivalent for a ring R:

(1) {0} # Nil(R) C zR for all z € Z(R)\Nil(R) and Nil(R) C Z(R);
(2) R € # and Nil(R) C Z(R).

The simplest example of a ring R with {0} # Nil(R) € zR for all z €
Nil(R)\Nil(R) and Nil(R) € Z(R) is a nondomain chained ring R with dim(R) > 1.
We next give two examples to show that the condition {0} # Nil(R) C zR for all
z € Z(R)\Nil(R) neither implies nor is implied by the condition that the prime ideals
of R contained in Z(R) are linearly ordered. We also show that the Nil(R) C Z(R)
hypothesis is needed in part (3) of Theorem 5.1.

Example 5.3. (a) Let R = Z(+)Z,. Then N(R) = Nil(R) = {0}(+)Z, and Z(R) =
2Z(+)Z,. Thus the prime ideals of R contained in Z(R), namely Nil(R) and Z(R),
are linearly ordered, but Nil(R) € (2, 0)R for (2, 0) € Z(R)\Nil(R).

(b) Let R=7Z(+)(Q/Z). Then N(R) = Nil(R) = {0}(+)(Q/Z) and Z(R) =
(Z\{1, —1})(+)(Q/Z). Thus the prime ideals of R contained in Z(R) are not linearly
ordered, but Nil(R) C zR for all z € Z(R)\Nil(R); so R € #. We have diam(I'(R)) =
3 since d((2,0), (3,0)) = 3. Also note that R is a McCoy ring, gr(I'(R)) = 3, and
R =(Z + XQ[[X]])/(X).

(¢) Let R=Z,[X] (or Z,[[X]]). Then N(R) = Nil(R) = Z(R) = 2R; so {0} #
Nil(R) C zR for all z € Z(R)\Nil(R). But Nil(R) is not divided since Nil(R) = 2R €
XR.

Suppose that R € # with Nil(R) C Z(R). Then we have already observed that
Z(R)\Nil(R) must be infinite (Theorem 3.5(2)). In fact, both Nil(R) and Z(R)\Nil(R)
are infinite.

Theorem 5.4. Let R € # with Nil(R) C Z(R).

(1) If xy =0 for x € Z(R)\Nil(R) and y € R, then y € N(R) C Nil(R) and yNil(R) =
{0}. Thus anng(x) C anngz(Nil(R)).

(2) Nil(R) is infinite.

(3) T(R)\Nil(R) is infinite and totally disconnected.
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Proof. (1) Suppose that xy = 0 for x € Z(R)\Nil(R) and y € R. Then y € Nil(R)
since Nil(R) is a prime ideal of R. Then Nil(R) C xR since Nil(R) is a divided prime
ideal, and thus yNil(R) € xyR = {0}. In particular, y*> = 0; so y € N(R).

(2) Let x € Z(R)\Nil(R). We have xz =0 for some z € Nil(R)*. Then for
each integer n > 1, we have z = z,x" for some z, € R by Theorem 5.1(2). Note
that z, € Nil(R)* since Nil(R) is a prime ideal of R and x" &€ Nil(R). If z, = z,
for some integers n > m > 1, then z = x"z, = x"z,, = x" "(x"z,) =x""z=0, a
contradiction. Thus Ni/(R) is infinite.

(3) Since Nil(R) is a prime ideal of R, the graph I'(R)\Nil(R) is totally
disconnected by Theorem 3.5(1) and infinite by Theorem 3.5(2). O

We can now describe the structure of I'(R) when R € # and Nil(R) C Z(R).
The subgraph T'(R)\Nil(R) is infinite and totally disconnected, Nil(R)* is infinite,
and for each vertex x € I'(R)\Nil(R), there is a vertex y € Nil(R)* such that y is
adjacent to x and to all other elements of Nil(R)*.

Since N(R) C Nil(R), the graph T'(R)\Nil(R) is totally disconnected when
I'(R)\N(R) is totally disconnected (so this happens when R is a chained ring).
However, our next example shows that we may have I'(R)\Nil(R) totally
disconnected, but I'(R)\N(R) is not totally disconnected for a ring R € # with the
prime ideals of R contained in Z(R) linearly ordered.

Example 5.5. Let D =Z;, + XR[[X]] and [=X?D =Z,X*+ X*R[[X]]. Set
R =D/I. Then R is quasilocal with maximal ideal Z(R) = (2Z,,) + XR[[X]])/] =
2R and Nil(R) = XIR[[X]]/I. Note that R is not a chained ring and the prime ideals
of R contained in Z(R), namely Nil(R) and Z(R), are linearly ordered. Let f = nX +
Iand g =n'X + 1. Then f, g € Nil(R)\N(R), but fg = X>+ 1 = 0; so I'(R)\N(R) is
not totally disconnected. Also N(R) is not an ideal of R and N(R)? # {0}(and hence
Nil(R)? # {0}) since f = v2X 4+ 1, g =/3X +1 € N(R), but f + g ¢ N(R) and fg =
V6X* 41 #0. It is easy to check that R € %.

The next example shows that Theorem 5.4(1) need not hold if we only assume
that the prime ideals of R contained in Z(R) are linearly ordered.

Example 5.6. Let D= Q[X, Y, Z]xy, and I = (X*,Y?, XZ)xy,. Set R=D/I =
Q[x, y, z]. Then Nil(R) = (x,y) C (x,y, z) = Z(R). The prime ideals of R contained
in Z(R), namely, Nil(R) and Z(R), are linearly ordered. Then z € Z(R)\Nil/(R) and
xz =0, but xNil(R) # {0} since xy # 0. Note that N(R) is not an ideal of R and
Nil(R)* # {0}.

Observe that if R € # and Nil(R) C Z(R), then Ker(¢) = {w € Nil(R) |zw =0
for some z € Z(R)\Nil(R)} € Nil(R). Thus Ker(¢)* is precisely the set of vertices of
I'(R) which are adjacent to some vertex of I'(R)\Nil(R). Clearly, Nil(R) C Ker(¢)
when ¢(R) is an integral domain, and thus Ker(¢) = Nil(R) when ¢(R) is an
integral domain.

Corollary 5.7. Let R € # with Nil(R) C Z(R). Then Nil(R)Ker(¢) = {0}, and thus
Ker(¢)? = {0} (so Ker(¢p) € N(R)). In particular, when ¢(R) is an integral domain,
then Nil(R)*> = {0}, and hence Nil(R)* is a complete subgraph of T(R).



3090 ANDERSON AND BADAWI

Proof. Let y e Ker(¢). Then there is a z € Z(R)\Nil(R) with zy =0. Thus
yNil(R) = {0} by Theorem 5.4(1), and hence Nil(R) = Ker(¢) = {0}. Thus
Ker(¢)* = {0} since Ker(¢) C Nil(R). Now suppose that ¢(R) is an integral domain.
Then Nil(R)Ker(¢), and hence Nil(R)?> = {0}. Thus Nil(R)* is a complete subgraph
of T'(R). O

Remark 5.8. The proof of Theorem 5.4(2) actually shows that Ker(¢) is infinite
since z and each z, are in Ker(¢). Thus by the above corollary, Ker(¢)* is an infinite
complete subgraph of I'(R) when R € # and Nil(R) C Z(R). Also Ker(¢) € N(R) C
Nil(R); so all three are infinite when R € # and Nil(R) C Z(R).

The following is an example of a ring R € # with Nil(R) C Z(R) and
Nil(R)* = {0}, but ¢(R) is not an integral domain.

Example 5.9. Let R =Z(+)(R/Zy). Then N(R) = Nil(R) = {0}(+)(R/Z,)),
Nil(R)* = {0}, Z(R) = 2Z(+)(R/Z ), and Ker(¢) = {0}(+)(Q/Z ). Thus R € #
and Ker(¢p) C Nil(R) € Z(R); so ¢(R) is not an integral domain. In fact, ¢p(R) =
R/Ker(¢) = Z(+)(R/@Q). Note that Nil(R)* (and hence Ker(¢)*) is a complete
subgraph of I'(R), and TI'(R)\Nil(R) is totally disconnected by Theorem 5.4(3).
However, I'(R)\Ker(¢) is not totally disconnected; for example, (0,7 + Z,)) and
(0, n' + Zy)) are adjacent in [(R)\Ker(¢) (cf. Theorem 5.10).

We next give another characterization for when ¢(R) is an integral domain in
terms of complete and totally disconnected subgraphs of I'(R).

Theorem 5.10. The following statements are equivalent for a ring R € # with
Nil(R) € Z(R):

(1) ¢(R) is an integral domain;

(2) Nil(R) = Ker(¢);

(3) Ker(¢)* is a complete subgraph of I'(R) and T'(R)\Ker(¢) is totally disconnected;
(4) T(R)\Ker(¢p) is totally disconnected.

Proof. (1) & (2) This is clear.

(2) = (3) This follows from Theorem 5.4(3) and Corollary 5.7.
(3) = (4) This is also clear.

(4) = (2) We always have Ker(¢) € Nil(R) since R € #. Suppose that there
is a we Nil(R)\Ker(¢), and let z € Z(R)\Nil(R). Then zw € Nil(R)\Ker(¢); so
zw # 0. For if zw € Ker(¢), then tzw =0 for some 7 € Z(R)\Nil(R). Thus w €
Ker(¢) since tz € Z(R)\Nil(R), a contradiction. Also zw # w. For if zw = w, then
(z=1Dw=0, and hence z —1 € Z(R)*. Also z—1 ¢ Nil(R) since z — 1 € Nil(R)
implies that z =14 (z — 1) € U(R), a contradiction. But then z — 1 € Z(R)\Nil(R)
and (z — 1)w = 0; so w € Ker(¢), a contradiction. If w? = 0, then w — zw is an edge
in T(R)\Ker(¢), a contradiction. Hence we may assume that w? # 0. Let m (>3)
be the least positive integer such that w” = 0. If w"' & Ker(¢), then w — w™ ! is
an edge in I'(R)\Ker(¢), which is again a contradiction. Thus let k,1 <k <m — 1,
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be the least positive integer such that w* € Ker(¢), and let d € Z(R)\Nil(R) such
that dw® = 0. Then k > 2 since w ¢ Ker(¢). Also dw*™! ¢ Ker(¢). For if dw* ! €
Ker(¢), then tdw*~! = 0 for some t € Z(R)\Nil(R). Hence w*~! € Ker(¢) since td €
Z(R)\Nil(R), a contradiction. Since w # dw*~' because w? # 0, we have that w —
dw*~" is an edge in ['(R)\Ker(¢), a contradiction. Hence Ker(¢p) = Nil(R). O

Example 5.3(b) shows that a ring R e # with Nil(R) C Z(R) may have
diam(I'(R)) = 3. Thus any of the possible diameters, 0, 1, 2, or 3, may be realized
by a ring in #. However, if R € # and Nil(R) C Z(R), then diam(I(R)) is either 2
or 3. For if diam(I'(R)) = 0 or 1, then Z(R)*> = {0}, and thus Nil(R) = Z(R).

We end the article with the analog of Theorem 2.12 for rings in #. Note that
the gr(I'(R)) = oo case is not possible since I'(R) cannot be an infinite star graph.

Theorem 5.11. Let R € # with Nil(R) C Z(R). Then gr(I'(R)) = 3.

Proof. The theorem follows directly from Theorems 2.12 and 5.4(2). O

As an alternate proof of the above theorem, just note that Ker(¢)* is an
infinite complete subgraph of I'(R) when R € # and Nil(R) C Z(R) by Remark 5.8;
so gr(I'(R)) = 3.
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