Final Exam, MTH 213, Summer 2021

Ayman Badawi
 (Stop working at $\mathbf{4 : 0 0} \mathrm{pm} /$ submit your solution by $\mathbf{4 : 1 5} \mathrm{pm}$, DO NOT SUBMIT BY EMAIL)

QUESTION 1. (6 points)(SHOW THE WORK) Consider the following weighted graph of order 6 (i.e., number of vertices is 6). Use Dijkstra Algorithm and construct a minimum spanning tree.

QUESTION 2. (9 points)(SHOW THE WORK) Consider the below graph of order 7

(i) Is the graph Eulerian? explain. If yes, construct an Euler circuit.
(ii) Is the graph an Euler trail? explain. If yes, construct an Euler trail.
(iii) Is the graph Hamiltonian? explain. If yes, construct a Hamiltonian cycle (C_{7})

QUESTION 3. (SHOW THE WORK)(9 points)

(i) Let C be a circle with circumference equals to 16 cm . What is the minimum number of points that you should locate on the circle so that there are at least two points, say Q_{1}, Q_{2}, where the arch-length between Q_{1}, Q_{2} is strictly less than $\frac{1}{3}$.
(ii) Given 46 distinct integers. Then there are at least k integers out of the 46 numbers, say n_{1}, \ldots, n_{k}, such that $n_{1}(\bmod 6)=n_{2}(\bmod 6)=\cdots=n_{k}(\bmod 6)$. What is the maximum value of k.
(iii) Let $f=\left(\begin{array}{llllllllcc}1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 \\ 3 & 5 & 1 & 8 & 6 & 2 & 9 & 7 & 10 & 4\end{array}\right)$. Find the minimum positive integer n such that $f^{n}=I$ (the identity map)

QUESTION 4. (SHOW THE WORK)(12 points)

(i) Use math induction and prove that $2^{2 n}-1+n^{3}+8 n$ is divisible by 3 for every positive integer $n \geq 1$.
(ii) Use the 4th-method and prove that $\sqrt{29}$ is an irrational number (you may start by assuming that $\sqrt{29}=a / b$ where $\operatorname{gcd}(a, b)=1$ and a,b are odd integers.)
(iii) Given $a_{n}=3 a_{n-1}-2 a_{n-2}+3^{n}+5$. Find a general formula for a_{n}, where $a_{0}=6.5, a_{1}=21.5$.

QUESTION 5. (SHOW THE WORK)(8 points)

(i) Let x be the age of Ahmad. Given $14 \leq x \leq 60, x(\bmod 7)=4$ and $x(\bmod 4)=3$. Use the CRT and find x.
(ii) Let $A=\{1,3,8,9,11,12,13,14\}$ Define $"="$ on A such that for all $a, b \in A$, we have $a "=" b$ if and only if $(a-b)(\bmod 15) \in\{0,5,10\}$. Then " $="$ is an equivalence relation (do not show that). Find all distinct equivalence classes of " $="$. If we view " $="$ as a subset of $A \times A$, then how many elements does " $=$ " have?

QUESTION 6.)(SHOW THE WORK)(6 points) We have 5 men and 4 females. We need to form a committee of 3 persons.
(i) In how many ways can we form such committee where exactly two men are serving on the committee?
(ii) In how many ways can we form such committee where at least two females are serving on the committee?
(iii) Assume the names of the females are Mona, Ideal, Raneem, and Nada. In how many ways can we form such committee where Raneem, exactly one man, and one more female are serving on the committee?

Faculty information

Ayman Badawi, Department of Mathematics \& Statistics, American University of Sharjah, P.O. Box 26666, Sharjah, United Arab Emirates.
E-mail: abadawi@aus.edu, www.ayman-badawi.com

Daim Sharif
Q.)

Q2)i) No, because to be Eutherian every vertex in the graph should have an even degree. Here this is NOT the case for example degree $(F)=3$
ii) Yes, A Euler trial requires exactly 2 vertus vertices wilt odd degree degree of $F \& E$ are odd $=3$.

$$
F-A-B-F-G-B-C-G-E-D-C-E
$$

π ends at os e dance very \rightarrow ais at
iii) Yes it we start at varten resins, $C-B-A-F-G-E-D-C$ and that is C_{7}
$\left.Q_{3 i}\right)$

(anlages)
$\frac{16}{x}=\frac{1}{3} \Rightarrow x=48$ me reed 48 section have for the min. distance between 2 points te be $\frac{1}{3}$. $\operatorname{san} Q_{1}, Q_{2}$
And so at 48 points we have the min. distance bette 2 point t be $=\frac{1}{3}$ adding one more point te this will mean the min. distance between any 2 points $t o$ be $\angle \frac{1}{3} \quad 48+1=49$ points (arcligha)

Q3ia)

$$
\begin{aligned}
& D=46 \text { imlegers } \\
& C=6 \text { posidbilities }(0-5) \quad\left[\frac{46}{6}\right]=8
\end{aligned}
$$

there are atleast 8 inlegers s.t. $\left.n_{1}(\bmod b)=n_{2} \bmod 6\right)=\ldots=n_{8}(\bmod 16)$

$$
\begin{aligned}
& \text { Q iuiu) }\left(\begin{array}{ll}
1 & 3
\end{array}\right) O\left(\begin{array}{ll}
2 & 5 \\
\text { zayde }
\end{array}\right) O\left(\begin{array}{ll}
487910)
\end{array}\right. \\
& 2 \text { ayde } \\
& \text { scyle } \\
& \text { 's cycle } \\
& \operatorname{LCM}(2,3,5) \\
& \begin{array}{l|l}
2 & 2,3,5 \\
\hline 3 & 1,35 \\
5 & 1,1,5 \\
& 1,1,1
\end{array} \\
& \text { or } \\
& \frac{2 x 3 \times s}{s \operatorname{cel}(2 x 3} . \\
& r=30 \quad f^{30}=I
\end{aligned}
$$

Qui). We prove for $n=1$
2. Assumane $2^{2 k}-1+k^{3}+8 k$ is dinsible bey 3 for some $n=k$
3. We show $2^{2(k+1)}-1+(k+1)^{3}+8(k+1)$ is dimisild by 3 also

$$
\begin{aligned}
& 2^{2 k} \cdot 2^{2}-1+k^{3}+3 k^{2}+3 k+1+8 k+8 \\
& 2^{2 k} \cdot 2^{2}-1+k^{3}+8 k+\left[3 k^{2}+3 k+9\right]-1 \cdot 2^{2}+\frac{1 \cdot 2^{2}-k^{3} \cdot 2^{2}+k^{3} \cdot 2^{2}-8 k \cdot 2^{2}+8 k \cdot 2^{2}}{3} \\
& {\left[2^{2 k} \cdot 2^{2}-1 \cdot 2^{2}+k^{3} \cdot 2^{2}+8 k \cdot 2^{2}\right]+\left[3 k^{2}+3 k+9\right]+\left[1 \cdot 2^{2}-1\right]+\left[k^{3}-k^{3} \cdot 2^{2}\right]+\left[8 k-8 k \cdot 2^{2}\right]}
\end{aligned}
$$

\therefore we proved $2^{2(k+1)}-1+(k+1)^{3}+8(k+1)$ is dimisibl by 3. And so through proving by induction we proved $2^{2 n}, 1+n^{3}+8 n$ is divissl by 3 for $n \geqslant 1$

Daim Snail
Q4ii) Reny. hence $\sqrt{29}$ is a ration \#

$$
\begin{aligned}
& \sqrt{29}=\frac{a}{b} \\
& 29=\frac{a^{2}}{b^{2}}
\end{aligned}\left\{\begin{array}{l}
29 b^{2} \\
\text { odd }
\end{array}=\frac{a^{2}}{\text { odd }}\right.
$$

for $\operatorname{gcd}(a, b)$ to be $1, a, b$ should either be both odd or one even ad other odd
let b, a be odd $\therefore b=2 k_{2}+1$ and $a=2 k_{2}+1$ for some $k_{1}, k_{2} \in z$

$$
\begin{align*}
& 29\left(2 k_{1}+1\right)^{2}=\left(2 k_{2}+1\right)^{2} \\
& 29\left(4 k_{1}^{2}+4 k_{1}+1\right)=4 k_{2}^{2}+4 k_{2}+1 \\
& 29 \times 4 k_{1}^{2}+29 \times 4 k_{1}+28=4 k_{2}^{2}+4 k_{2} \\
& \frac{29 k_{1}^{2}+29 k_{1}+7}{\text { even }}+\frac{k_{2}^{2}+k_{2}}{\text { even }}=\frac{\text { odd }}{2}=\text { con tradiction:. }
\end{align*}
$$

$\therefore \quad \sqrt{29}$ is irrational.
Q4 (i ni) for H :

$$
\begin{aligned}
& a_{n}-3 a_{n-1}+2 a_{n-2}=0 \\
& \alpha^{n}-3 \alpha^{n-1}+2 \alpha^{n-2}=0 \\
& \alpha^{2}-3 \alpha+2=0 \\
& \alpha=2,1
\end{aligned}
$$

这 $-x^{n-2}$

$$
3^{n-1}=3^{n} \cdot 3^{-1}=\frac{3^{n}}{3}
$$

$$
H: c_{1} 2^{n}+c_{2} 1^{n}
$$

for $p: f(n)=A 3^{n}+B n^{2}$

$$
\begin{aligned}
& a_{n}-3 a_{n-1}+2 a_{n-2}=3^{n}+5 \\
& A 3^{n}+B n-3\left(A 3^{n-1}+B(n-1)\right)+2\left(A 3^{n-2}+B(n-2)\right)=3^{n}+5 \\
& A 3^{n}+\beta_{n}-\frac{Z A B^{n}}{8}-3 \beta \beta_{n}+3 B+\frac{2 A 3^{n}}{9}+2 \beta_{n}-4 B=3^{n}+5 \\
& \frac{2}{9} A 3^{n}-B=3^{n}+5 \\
& \begin{array}{l}
\frac{2}{a} A 3^{-X}=3^{n} \\
\frac{2}{a} A=1
\end{array}\left\{\begin{array}{l}
-B=5 \\
B=-5
\end{array}\right. \\
& \frac{2}{9} A=1 \\
& A=\frac{9}{2} \\
& P: f(n)=\frac{9}{2} 3^{n} n-5 n
\end{aligned}
$$

$$
\begin{aligned}
& a_{n}=c_{1} 2^{n}+c_{2}+\frac{a}{2} \cdot 3^{n}-5 n \\
& a_{0}=6.5=c_{1}+c_{2}+\frac{a}{2} \quad\left\{\begin{array}{r}
a_{1}=21.5=c_{1} 2^{\prime}+c_{2}+\frac{a}{2} \cdot 3^{1}-5 \\
21.5=2 c_{1}+c_{2}+\frac{17}{2}
\end{array}\right. \\
& 2=c_{1}+c_{2} \\
& 13=2 c_{1}+c_{2} \\
& \begin{array}{l}
2=c_{1}+c_{2} \\
13=2 c_{1}+c_{2} \\
11=c_{1}
\end{array} \quad\left\{\begin{array}{l}
2=11+c_{2} \\
2-11=c_{2} \\
-9=c_{2}
\end{array}\right. \\
& a_{n}=11\left(2^{n}\right)-9+\frac{9}{2}\left(3^{n}\right)-5 n \\
& Q_{\text {si }} \Rightarrow a_{1}=4 \\
& a_{2}=3 \\
& m_{1}=7 \quad m_{2}=z_{1} \\
& \left.\operatorname{gcd} \text { (betwrea } m_{i}^{\prime} s\right)=1 \therefore \text { we can we CRT } \\
& m=m_{1} \times m_{2}=7 \times 4=28 \\
& n_{1}=\frac{m}{m_{1}}=\frac{7 \times 4}{7}=4 \quad\left\{\quad n_{2}=\frac{m}{m_{2}}=\frac{7 \times 4}{4}=7\right. \\
& \Rightarrow n_{1}=4, n_{2}=7 \\
& n_{1}^{-1}\left(\bmod m_{1}\right) \quad \int n_{2}^{-1}\left(\bmod \operatorname{mi}_{2}\right) \\
& u^{-1}(\bmod 7)=2
\end{aligned}
$$

$$
\begin{aligned}
& \Rightarrow n_{1}^{-1}=2 \quad n_{2}^{-1}=3 \\
& x=\sum_{i=1}^{2} a_{i} n_{i} n_{i}^{-1}=(4)(4)(2)+(3)(7)(3)=95 \\
& x=95(\bmod 28)=11
\end{aligned}
$$

ansumen is in the form $11+m k \Rightarrow 11+28 k$ where $h \in \mathbb{N}$

$$
11+28(1)=39
$$

$$
n=39
$$

$$
\text { Qi) } \begin{aligned}
{[1]=\{1,311\} } & \Rightarrow 2^{2} \\
{[3]=\{3,8,13\} } & \Rightarrow 3^{2} \\
{[9]=\{9,14\} } & \Rightarrow 2^{2} \\
{[12]=\{12\} } & \Rightarrow 1
\end{aligned}
$$

Qi)

$$
\begin{gathered}
M=5 \quad F=4 \\
\binom{5}{2}\binom{4}{1}_{5}=40
\end{gathered}
$$

ii) $\left(\begin{array}{l}4 \\ 2 \\ 2\end{array}\right)\binom{5}{1}+\binom{4}{3}\binom{5}{0}=34$
iii) $1 \times 5 \times 3=15$

Lina Salman g00088708
Page 1
Qi]

L

Minimum

Q2] (i) No it is not Eulerian because not all of its vertices have even degrees
(ii) Yes it is an Euler trail because there are exactly 2 vertices with odd degrees.
Euler trail example: $F-A-B-F-G-B-C-G-E-D-C-E$ (iii) Yes it is Hamiltonian because you can construct a cycle of the same order as the graph in which every vertex is visited exactly once:

$$
\left(C_{7}\right): A-F-G-E-D-C-B-A
$$

Page 2:
Q3] 1
First divide the circumference into 48 equal parts. $\quad\left(16 x=\frac{1}{3}, x=\frac{1}{48}\right)$
Then, to have at least 2 points strictly less than $\frac{1}{3}$, add 1 more point. $48+1=49{ }^{3}$ Place at least 49 points
(ii) $\left\lceil\frac{46}{6}\right\rceil=\lceil 7.6\rceil=8$, at least 8 values/integers out of the 46 numbers satisfy $n_{1}(\bmod 6)=n_{2}(\bmod 6) \ldots$ $\left(\begin{array}{l}46 \\ n=46 \\ \frac{2}{3} \\ \frac{2}{2}\end{array}\right)_{n=6}$
(iii) $f^{n}=I$

$$
\begin{aligned}
& f: \frac{(1,3)}{(1-\text { cycles }} \circ \frac{(2,5,6)}{(2 \text { cycles }} \cdot(\underbrace{(4,8,7,9,10)} \\
& \operatorname{LCM}[2,3,5]=\frac{2 \times 3 \times 5}{\operatorname{gcd}(2,3,5)}=30
\end{aligned}, f^{30}=I
$$

Q4] $2^{2 n}-1+n^{3}+8 n$ is divisible by $3 \forall n \geqslant 1$:

1) Prove for $n=1: \quad 2^{2}-1+(1)^{3}+8(1)=4+8=12 \quad 3 \mid 12$
2) Assume $2^{2 k}-1+k^{3}+8 k$ is div. by 3 for some $n=k \quad$
3) Prove: $2^{2(k+1)}-1+(k+1)^{3}+8 k$ is div. by 3 for $n=k+1$

$$
\begin{aligned}
& 2^{2 k+2}-1+(k+1)^{3}+8 k \\
= & 2^{2 k} \cdot 2^{2}-1+k^{3}+3 k^{2}+3 k+1+8 k \\
= & 2^{2 k} \cdot 2^{2}+k^{3}+3 k^{2}+11 k
\end{aligned}
$$

Now add \& subtract: $2^{2}, 2^{2} k^{3}, 2^{2} .8 k$

$$
\begin{aligned}
& =2^{2 k} \cdot 2^{2}+2^{2}-2^{2}+2^{2} k^{3}-2^{2} k^{3}+2^{2} \cdot 8 k-2^{2} \cdot 8 k+k^{3}+3 k^{2}+11 k \\
& =2^{2}\left(2^{2 k}-1+k^{3}+8 k\right)+2^{2}-2^{2} k^{3}-2^{2} 8 k+k^{3}+3 k^{2}+11 k \\
& =2^{2}\left(2^{2 k}-1+k^{3}+8 k\right)-3 k^{3}+3 k^{2}-2 k k+2^{2} \\
& =2^{2}\left(2^{2 k}-1+k^{3}+8 k\right)+3\left(-k^{3}+k^{2}-7 k+\frac{4}{3}\right)
\end{aligned}
$$

by step \#2 it is
div. by 3 div. by 3 all div. by 3
factor of 3
So whole statement is div. by 3 .

Qu]
(ii) Deny: $\sqrt{29}$ is rational so:
$\sqrt{29}=\frac{a}{b}\left\{\begin{array}{l}a, b \in z \\ g c d(a, b)=1 \\ b \neq 0\end{array} \quad\right.$ Assume a, b are odd s.t:

$$
\begin{aligned}
& 29 b^{2}=a^{2} \quad b=2 m \\
& 29(2 m+1)^{2}=(2 n+1)^{2} \quad\left[4 n^{2}+4 n+1\right] \\
& 29\left[4 m^{2}+4 m+1\right]=\left[4 m^{2}+29.4 m+29=4 n^{2}+4 n+1\right. \\
& 29.4 m^{2}+29.4 m^{2}+29.4 m+28=4 n^{2}+4 n
\end{aligned}
$$

$$
b=2 m+1, m \in z
$$

Now divide by 4:

$$
29 m^{2}+29 m+7=n^{2}+n
$$

even +7 , even odd \neq even \rightarrow contradiction $\therefore \sqrt{29}$ is irrational.

$$
\begin{array}{ll}
\text { (iii) } a_{n}=3 a_{n-1}-2 a_{n-2}+3^{n}+5 & a_{0}=6.5, a_{1}=21.5 \\
a_{n}-3 a_{n-1}+2 a_{n-2}=3^{n}+5 & \text { so } \\
a_{n}=H+P:
\end{array}
$$

H:

$$
\begin{aligned}
& \frac{\alpha^{n}-3 x^{n-1}+2 \alpha^{n-2}}{\alpha^{n-2}}=\frac{0}{\alpha^{n-2}} \\
& \alpha^{2}-3 \alpha+2=0 \\
& \alpha=2 \quad(\alpha=1) \\
& \frac{H_{i}(2)^{n}+c_{2}(1)^{n}}{c_{1}(2)^{n}+c_{2}}
\end{aligned}
$$

P:

$$
\begin{aligned}
& f(n)=A 3^{n}+B n \\
& A 3^{n}+B n-3\left[A 3^{n-1}+B(n-1)\right]+2\left[A 3^{n-2}+B(n-2)\right]=3^{n}+5 \\
& A 3^{n}+B n-A 3^{n}-3 B_{n}+3 B+\frac{2}{9} A 3^{n}+2 B_{n}-4 B=3^{n}+5 \\
& \frac{2}{9} A 3^{n}-B=3^{n}+5 \\
& \frac{2}{9} A 3^{n}=3^{n} \quad-B=5 \\
& A=\frac{9}{2} \quad B=-5
\end{aligned}
$$

Now: $a_{n}=c_{1} 2^{n}+c_{2}+\frac{9}{2} 3^{n}-5 n$
for a_{5}
$6.5=c_{1}+c_{2}+\frac{9}{2} \rightarrow c_{1}+c_{2}=2$
for $a_{1}: 21.5=2 c_{1}+c_{2}+\frac{(2)(3)}{2}-5$
So $c_{1}=11, c_{2}=-9$

$$
\longleftrightarrow 2 c_{1}+c_{2}=13
$$

$$
\text { So } c_{1}=11, c_{2}=-9
$$

$$
\therefore a_{n}=11 \cdot 2^{n}-9+\frac{9}{2} \cdot 3^{n}-5 n
$$

Page 4:
Q5
(i) $14 \leqslant x \leqslant 60$
$x \equiv 4(\bmod 7) \quad \operatorname{gcd}(7,4)=1$ so C.R.T applies
$x \equiv 3(\bmod 4)$

$$
\begin{aligned}
& m=7 \times 4=28 \\
& n_{1}=\frac{28}{7}=4 \quad n_{2}=\frac{28}{4}=7 \\
& n_{1}^{-1}=4^{-1}(\bmod 7)=2 \quad n_{2}^{-1}=7^{-1}(\bmod 4)=3 \\
& n=(4 \times 4 \times 2)+(3 \times 7 \times 3)=95(\bmod 28)=11 \rightarrow \text { smallest tire int. } \\
& x+m k \rightarrow 11+28 k, k \in z
\end{aligned}
$$

let $k=1, \quad 11+28=39$ Ahmad is 39 years old

$$
14 \leqslant x \leqslant 60
$$

(iii) $A=\{1,3,8,9,11,12,13,14\} \quad a "=" b$ if $(a-b)(\bmod 15) \in$

All classes:

$$
\{0,5,10\}
$$

$$
\begin{array}{ll}
\bar{T}=\{1,11\} & \text { \# of elements for " }=" \text { " as a subset of } A \times A \text { : } \\
\overline{3}=\{3,8,13\} & =2^{2}+3^{2}+2^{2}+1^{2} \\
\overline{9}=\{9,14\} & =18 \\
\overline{12}=\{12\} &
\end{array}
$$

Q6] 5 men, 4 female committer of 3:
(i) exactly 2 men: $5 C 2 \times 4 C 1=40$
(ii) at least 2 females: $(4 C 2 \times 5 C 1)+(4 C 3 \times 5 C 0)=34$
(iii) Raneem, exactly 1 man, 1 other female: $1 \times 5 \mathrm{Cl} \times 3 \mathrm{Cl}$

$$
=(15
$$

