Exam Three, MTH 213, Summer 2021

Ayman Badawi
 (Stop working at 13:00 pm/submit your solution by 13:12 pm, DO NOT SUBMIT BY EMAIL)
 QUESTION 1. (10 points)(SHOW THE WORK)

(i) Use Math. Induction and prove that $\sum_{i=1}^{i=n} i^{2}=1+4+9+\cdots+n^{2}=\frac{n(n+1)(2 n+1)}{6}$ for all integers $n \geq 1$.
(ii) Use Math. Induction and prove that $2^{(4 n+1)}+13$ is divisible by 15 for all integers $n \geq 1$.

QUESTION 2. (11 points)(SHOW THE WORK)

(i) Consider the linear recurrence $a_{n}=9 a_{n-2}+2^{n}$ such that $a_{0}=2.20$ and $a_{1}=1.40$. Find the general formula for a_{n}.
(ii) Use the formula $a_{n}=9 a_{n-2}+2^{n}$ and calculate a_{2}. Then use the formula that you discovered in (i) and find a_{2} and a_{4}
(iii) Consider the linear recurrence $a_{n}=a_{n-1}+2 n+3$ such that $a_{0}=3$. Find the general formula for a_{n}.

QUESTION 3. (SHOW THE WORK)(6 points)
Let $A=\{-8,-4,-3,-2,-1,0,1,2,3,4,8\}$. Define " $=$ " on A such that for all $a, b \in A$ we have $a "=" b$ if and only if $a(\bmod 7)=b(\bmod 7)$. Then $"="$ is an equivalence relation (DO NOT SHOW THAT).
(i) Find all equivalence classes of " $="$.
(ii) As in the class notes, we can view " $=$ " as a subset of $A \times A$. How many elements does " $="$ have? (you do not need to find the set " $=$ ")

QUESTION 4. (SHOW THE WORK)(5 points) Given " $=$ " is a relation on $A=\{0,2,3,5,8\}$ such that $"="=$ $\{(0,0),(2,2),(3,3),(5,5),(8,8),(2,5),(5,2),(3,5),(3,2),(2,3)\}$. Stare at " $="$ and answer the following:
(i) Is "=" a reflexive? Explain briefly
(ii) Is "=" symmetric? Explain briefly
(iii) Is "=" transitive? Explain briefly
(iv) Is "=" an equivalence relation? Explain briefly
(v) Is "=" a partial order relation ? Explain briefly

QUESTION 5. (SHOW THE WORK)(4 points)

Define " \leq " on $A=\{2,8,9,11,13\}$ such that for all $a, b \in A$ we have $a " \leq " b$ if and only if $b-a \in\{-4,-1,1,0\}$. Then " \leq " is not a partial order relation on A. By example, explain which axioms fail (i.e., check all AXIOMS and tell me which one is valid and which one is invalid).

QUESTION 6. (SHOW THE WORK)(6 points) Consider the following code

```
For \(i=2\) to \(\left(n^{2}+1\right)\)
\(S=i^{4}+B * C-3 * i\)
    For \(k=1\) to \(i\)
        \(L=k^{5}+i^{3}-2\)
    next k
next i
```

(i) Find the exact number of arithmetic operations that the code will execute.
(ii) What is the complexity of the code? i.e., find O (code).

Faculty information

Ayman Badawi, Department of Mathematics \& Statistics, American University of Sharjah, P.O. Box 26666, Sharjah, United Arab Emirates.
E-mail: abadawi@aus.edu, www.ayman-badawi.com

Exam 3 MTH 213
Masigon Allured

$$
\frac{n(n+1)(2 n+1)}{6}=\frac{1(2)(3)}{6}=1
$$

A spume that $\sum_{i=1}^{k} i^{2}=\frac{k(k+1)(2 k+1)}{6}$ for some integer $k=n$.

$$
\begin{aligned}
\sum_{i=1}^{k+1} i^{2}=\sum_{i=1}^{k} i^{2}+(k+1)^{2} & =\frac{k(k+1)(2 k+1)}{6}+(k+1)^{2} \\
& =(k+1)\left[\frac{2 k^{2}+k+6 k+6}{6}\right] \\
& =(k+1)\left[\frac{2 k^{2}+7 k+6}{6}\right] \\
& =(k+1)(k+2)(2 k+3)
\end{aligned}
$$

$$
\therefore \sum_{i=1}^{k+1}{ }^{2}=(k+1)(k+2)(2 k, 3) \text { and by math. induction, }
$$

$$
\sum_{i=1}^{n} i^{2}=\frac{n(n+1)^{6}(2 n+1)}{6}
$$

ii) At $n=1$,
$2^{4 n+1}+13=2^{4+1}+13=32+13=45$ which is divisible by 15 .
Assume that $2^{4 k+1}+13$ is divisible by 15 for some integer $k=n$.
We prove that $2^{4(k+1)+1}+13$ is also divisble then.

$$
\begin{aligned}
2^{4(k+1)+1}+13=2^{4 k+5}+13 & =2^{4 k+1} \cdot 2^{4}+13 \\
& =2^{4 k+1} \cdot 2^{4}+13+13\left(2^{4}\right)-13\left(2^{4}\right) \\
& =2^{4}\left(2^{4 k+1}+13-13+\frac{13}{2^{4}}\right) \\
& =2^{4}\left(2^{4 k+1}+13\right)-13 \cdot 2^{4}+13 \text { Typo }
\end{aligned}
$$

$=2_{\text {divisible by }}^{15}\left(2_{\text {divisible }}^{24 k+1}+13\right)-195$
$\therefore 2^{4(k+1)+1}+13$ is divisible by 15.
Hence, by math. induction, $2^{4 n+1}+13$
is divisible by $15 \quad \forall n \geqslant 1$.

150

$$
a_{n}-9 a_{n-2}=2^{n}
$$

$$
H: \quad \alpha^{n}-9 \alpha^{n-2}=0
$$

$$
\begin{aligned}
& \alpha^{2}-9=0 \\
& \alpha= \pm 3
\end{aligned}
$$

$$
H=c_{1} 3^{n} 0+c_{2}(-3)^{n}
$$

$$
P=A_{2}{ }^{n}
$$

$$
a_{n}-9 a_{n-2}=2^{n}
$$

$$
A Z^{n}-9 A Z^{n-2}=2^{n}
$$

$$
A 2^{n}-9 A 2^{n} \cdot 2^{-2}=2^{n}
$$

$$
2^{n}\left(A-\frac{a A}{4}\right)=2^{n}
$$

$$
A-\frac{9 A}{4}=1
$$

$$
4 A-9 A=4
$$

$$
-5 A=u
$$

$$
A=-4 / 5
$$

$\therefore \quad \therefore \quad a_{n}=c_{1} 3^{n}+c_{2}(-3)^{n}-\frac{4}{5} 2^{n}$

$$
\begin{aligned}
& a_{0}=c_{1}+c_{2}-\frac{4}{5}=2.2 \\
& a_{1}=3 c_{1} 0-3 c_{2}-\frac{8}{5}=1.4
\end{aligned}
$$

$0 \times 3+$ (2)
$3 c_{1}+3 c_{2}-\frac{12}{5}=6.6$
$3 c_{1}-3 c_{2} \quad \frac{8}{5}=1.4$
$6 c_{1}-4=$
$6 c_{1}=12$
$c_{1}=2$

$c_{2}=2.2+\frac{4}{5}-2$
$=\frac{11+4-10}{5}=1$

$\therefore a_{n}=2 \cdot 3^{n}+(-3)^{n}-\frac{4}{5} 2^{n}$

$$
\begin{aligned}
a_{n} & =9 a_{n-2}+2^{n} \\
a_{2} & =9 a_{0}+2^{2}=9(2.2)+4=23.8 \\
a_{2} & =2.3^{2}+(-3)^{2}-\frac{4}{5} 2^{2} \\
& =18+9-\frac{16}{5}=23.8
\end{aligned}
$$

$$
\begin{align*}
a_{4} & =2 \cdot 3^{4}+(-3)^{4}-\frac{4}{5} 2^{4} \tag{O}\\
& =162+81-\frac{64}{5} \\
& =230.2
\end{align*}
$$

$$
\begin{aligned}
A n^{2}+B n-\overline{A n} 2-A+2 A n-B n+B=2 n+3 & -2 a b \\
& -2 n 1 \\
& -2 n
\end{aligned}
$$

$$
\theta \quad 2 A n+B-A=2 n+3
$$

$$
\begin{aligned}
& 2 A=2 \Rightarrow A=1 \\
& B-A=3 \\
& B=3+A=4
\end{aligned}
$$

$$
\therefore \quad a_{n}=c_{1}+n^{2}+4 n
$$

$$
a_{0}=c_{1}=3
$$

$$
\therefore \quad a_{n}=3+n^{2}+4 n
$$

3.

$$
a \text { " }=\text { " } b \text { iff } a(\bmod 7)=b(\bmod 7) .
$$

i)

$$
\begin{aligned}
{[0] } & =\{0\} \\
{[1] } & =\{1,8\} \\
{[2] } & =\{2\} \\
{[3] } & =\{3,-4\} \\
{[4] } & =\{4,-3\} \\
{[-1] } & =\{6-1\} \\
{[-2] } & =\{-2\} \\
{[-8] } & =\{-1,-8\}
\end{aligned}
$$

!o equivalence classes are $\overline{0}, \overline{1}, \overline{2}, \overline{3}, \overline{4}, \overline{-1}, \overline{-2}$, 鄑-
ii) It will have $1+2^{\wedge} 2+1+2^{\wedge} 2+2^{\wedge} 2+2^{\wedge} 2+2^{\wedge} 2+1=19$
L. i) $L_{\text {. }}$, since each clement in A "equals" itself

ㄲ) No, since $3^{\prime \prime}=" 5$ but $5^{\prime \prime} \neq " 3$
iii) Yes, since $3^{\prime \prime}=" 5,5 "=" 2$ and $3^{\prime \prime}=" 2$. Since " $=$ " is not symmetric, it is not an equivalence relation.
v) Since " $="$ is not anti symmetric (ego $2 "={ }^{n} 3$ and $3^{\prime \prime}="^{\prime 2}$) it cannot be a partial order relation.
5. Reflexive:
$" \leq "$ is reflexive sing $a-a=0 \in\{-4,-1,1,0\}$ $\forall a \in A$.

Sg or Anti-symmetric:
choose $a=8, b=9$
we can see $a-b=8-9=-1 \in\{-4,-1,1,0\}, 0 . b \leq a$ but, $b-a=a-8=1 \in\{-4,-1,10\} . \operatorname{i} a \leq b$.
\therefore This relation is not antisymmetric.

Transitive:

There core no three
Let $a=8, b=9, c=13$
$b \leqslant a \quad a \Leftarrow \rightarrow$ from above

$$
\begin{aligned}
& b-c=a-13=-4 \in\{-4,-1,1,0\} \\
& \therefore \quad c \leq b
\end{aligned}
$$

But $c \leq a \quad$: $\quad a-c=8-13=-5 \notin\{-4,-1,1,0\}$
\therefore " $\leq "$ is mot transitive.

6. i) Outer loop | | Outer loop operations | Inner loop operations |
| :---: | :---: | :---: |
| 2 | 7 | 2×88 |
| $n^{2}+1$ | | |

No of times outer loop will rum

$$
=n^{2}+1-2+1=n^{2}
$$

Total no. of operations $=n^{2} \cdot 8+n^{2}\left(\frac{16+8\left(n^{2}+1\right)}{2}\right)$
ii) $O($ code $)=n^{4}$

