Exam Two, MTH 213, Fall 2021

Ayman Badawi

(Stop working at $13: 00 \mathrm{pm} /$ submit your solution by $13: 12 \mathrm{pm}$, DO NOT SUBMIT BY EMAIL) 42

QUESTION 1. (9 points)(SHOW THE WORK)

(i) Let $n=108$. Find $\phi(n)$. (SHOW THE WORK)
(ii) Find $(5)^{36003}$ (\bmod 108) (Show the work)
(iii) Let $n=11^{3} \cdot 7^{5} \cdot 5^{11}$ and k be the number of all positive integers $<n$ such that $\operatorname{gcd}($ integer, $n)=77$. Find the value of k. (Show the work)

QUESTION 2. (6 points)(SHOW THE WORK)

(i) Convert the number 124 (base 10) to base 5
(ii) Find $(235)_{6}+(155)_{6}$ (Do not convert to base 10 then back to base 6 , do it as I explained in the class, so you enjoy the beauty of math!)

QUESTION 3. (SHOW THE WORK)(6 points)

(i) Let D be a square 2×2 (i.e., each side is 2 cm). What is the minimum number of points that you can locate on the sides of D (randomly), so that there are at least two points of them, say Q_{1}, Q_{2}, such that the distance between Q_{1} and Q_{2} is strictly less than $<1 / 5$
(ii) A group consists of 111 persons. The age of each person in the group is either 17 years or 18 years or 19 years or 20 years. There are at least m persons in the group that have the same age. Find the maximum value of m.

QUESTION 4. (SHOW THE WORK)(9 points)

(i) Let $F:(-\infty, 0] \rightarrow(a, 2]$ be a bijective function such that $F(x)=b e^{x}-7$. Find the values of a, b. You may draw $F(x)$
(ii) In two to three lines, convince me that $A=(Q \cap[3,7]) \cup\{1,7,9,11,20\}$ is a countable set. Can we claim that $|A|=|Q|$? explain briefly note Q is the set of all rational numbers
(iii) Let F be a bijective function such that $F=\left[\begin{array}{lllllllll}1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\ 3 & 4 & 7 & 6 & 2 & 8 & 1 & 5 & 9\end{array}\right]$ Find the smallest positive integer n such that $f^{n}=f$ of $o \cdots o f=I$ (the identity map)

QUESTION 5. (SHOW THE WORK)(3 points)

Use the TRUTH table and convince me that $(\bar{B}+A) \cdot A=\bar{B} \cdot A+A$
QUESTION 6. (6 points). Let $A=\{1,2,\{2\}, 3,4\}, B=\{\{2\}, 1,7,8,9\}$, and $U=\{1,2,\{2\}, 3,4,5,6,7,8,9,20\}$ be the universal set.
(i) Find $A-B$
(ii) Find \bar{B}
(iii) How many elements does $P(A)$ have? (note $P(A)$ is the power set of A)
(iv) How many elements does $A \times B$ have? (note $A \times B$ is the Cartesian product of A with B)
(v) Let A, B as above. WRITE DOWN T or F (no need for justification).
a. $(2,\{2\}) \in B \times A$.
b. $\{3,7\} \in P(A \times B)$
c. $\{7,8,1\} \subset P(B)$
d. $\{2\} \in P(A)$
e. $\{\{2\},\{3\}\} \subset P(A)$
f. $\{\phi,\{3\},\{2\}\} \subset P(A)$

QUESTION 7.)(3 points) Write down T or F (no need for justification)
(i) If $\exists!\mathrm{x} \in Z$ such that $x^{2}+0.7 x=0$, then $\exists y \in Q$ such that $y^{2}+2=5$.
(ii) $\exists!y \in Q^{*}$ such that $x y=1 \forall x \in Q^{*}$
(iii) $\forall x \in Q^{*}, \exists!y \in R^{*}$ such that $x=y^{2}$

$$
\text { Q 1) i) } \begin{aligned}
n=108 & =2 \times 2 \times 27=2 \times 2 \times 3 \times 3 \times 3=2^{2} \times 3^{3} \\
\phi(108) & =(2-1) 2^{1} \times(3-1)\left(3^{2}\right)=36
\end{aligned}
$$

ii) $5^{36003}(\bmod 108)$

$$
\begin{aligned}
& =5^{36000}(\bmod 108) \times 5^{3}(\bmod 108) \\
& =5^{36 \times 1000}(\bmod 108) \times 125(\bmod 108)=17
\end{aligned}
$$

by euler Fermat them
iii)

$$
\begin{aligned}
& n=11^{3} \cdot 7^{5} \cdot 5^{-11}=77 \cdot 11^{2} \cdot 7^{4} \cdot 5^{11} \\
& \phi\left(\frac{n}{77}\right)=(11-1)(11) \cdot(7-1)\left(7^{3}\right) \cdot(5-1)\left(5^{10}\right) \approx 8.843 \times 10^{12}
\end{aligned}
$$

Q2) i) $(124)_{10} \rightarrow$ base 5

$$
\begin{aligned}
& \begin{array}{ccc}
\frac{24}{124} & \frac{5 \sqrt{24}}{\frac{20}{4}} & \frac{5 \sqrt{4}}{4}
\end{array} \\
& (444)_{5} \\
& \text { ii) } \begin{array}{l}
(101 \\
(235)_{6} \\
\frac{(155)_{6}}{(434)_{6}}
\end{array} \\
& 10=\pi \times 6+4 \\
& g=1 \times 6+3
\end{aligned}
$$

Q3) i)

equally divided points on each side with distances between them adding up to 2 cm

$$
9 \times 4=36
$$

lat least 37 number of points
ii) 111 people, D

4 age groups, R

$$
m=\left\lceil\frac{111}{4}\right\rceil=28
$$

Q4)i) Fir bijective $(-\infty, 0] \rightarrow(a, 2]$

ii) $[3,7]$ is a subset of Q, so its countable The n of two countable sets is countable, $\{1,7,9,11,20\}$ i) a Pinite set go it is also countable the U of tho countralde sets is countable.

The cardinality of a countable infinite set is equal to the cardinality of another countable infinite set so $|A|=|Q|$ is correct.

$$
\begin{aligned}
& \text { iii) } f=(137) \circ(24685) \\
& 3 \text { cycle } 5^{\circ} \text { cycle } \\
& n=\operatorname{LCM}(3,5)=\frac{3 \times 5}{\operatorname{gcd}(3,5)}=15 \\
& P^{15}=I
\end{aligned}
$$

Q5) $(\bar{B}+A) \cdot A=\bar{B} \cdot A+A$
Two variable, $2^{2}=4$

B	A	\bar{B}	$\bar{B}+A$	$(\bar{B}+A) \cdot A$	$(\bar{B} \cdot A)$	$(\bar{B} \cdot A+A)$
1	1	0	1	1	0	1
1	0	0	0	0	0	0
0	1	1	1	1	1	1
0	0	1	1	0	0	0

The same
(6) i)

$$
A-B=\{2,3,4\}
$$

ii) $\bar{B}=U-B=\{2,3,4,5,6,20\}$
iii) \# of elements in $P(A)=2^{5}=32$
iv)

$$
|A \times B|=|A| \times|B|=5 \times 5=25
$$

v) a) F
b) F
c) F
d) T
e) T
f) T

QT)

