MTH 733, Commutative Algebra, Spring 2025, 1-1

HW II

Ayman Badawi

QUESTION 1. Let R be a commutative ring with $1 \neq 0$ and M be a nonzero vector space over R (i.e., M is an R-module). Consider the trivial ring extension A of R, called the idealization of R with M, A = R(+)M, Where $(r,m) + (r_1,m_1) = (r+r_1,m+m_1)$ and $(r,m)(r_1,m_1) = (rr_1,r_1m+rm_1)$. We know (class notes) that A is a ring with identity (1,0). Prove

(i) $Nil(A) = \{(n, m) \mid n \in Nil(R), \text{ and } m \in M\}$

(ii) $Spec(A) = \{P(+)M \mid P \text{ is a prime ideal of } R\}$

(iii) $Max(A) = \{L(+)M \mid L \text{ is a maximal ideal of } R\}$

(iv) $U(A) = \{(u, m) \mid u \text{ is a unit in } \mathbb{R} \text{ and } m \in M\}$ [Hint: Note that a unit + nilpotent is a unit]

QUESTION 2. Let $A \subset B$ be an integral ring extension such that B is an integral domain. Assume A is a field. Prove that B is a field. (In class, we proved that if B is a field, then A is a field)

QUESTION 3. Prove that $Q[\sqrt{2} + \sqrt{3}]$ is a field.

QUESTION 4. Find the integral closure of $R = Z[\frac{1}{2}]$ inside $R[\sqrt[5]{\frac{1}{2}}]$

QUESTION 5. Give a Theatricality PROOF of the statement: Exists at least one element in $Q[\sqrt{0.5}]$ that is not integral over Z[0.5].

Faculty information

Ayman Badawi, Department of Mathematics & Statistics, American University of Sharjah, P.O. Box 26666, Sharjah, United Arab Emirates. E-mail: abadawi@aus.edu, www.ayman-badawi.com