MTH 733, Commutative Algebra, Spring 2025, 1-1

Exam I

Ayman Badawi

All rings are commutative with $1 \neq 0$

QUESTION 1. Let *M* be a *Z*-module. Assume (*) $0 \rightarrow M \rightarrow Z_{20} \rightarrow Z_4 \rightarrow 0$ is a short exact sequence. Prove that (*) is a split short exact sequence. (note we know that Z_{20}, Z_4 are *Z*-modules)

QUESTION 2. Let R be a Noetherian integral domain and I be a nonzero proper ideal of R. Assume M is a f.g. R-module that is torsion free. Prove that $\bigcap_{n=1}^{\infty} I^n M = \{0\}$ and $\bigcap_{n=1}^{\infty} I^n = \{0\}$

QUESTION 3. Let *M* be an *R*-module and *m* be a nonzero element of *M* such that whenever $n \in M$, $n \neq 0$ and $ann(m) \subseteq ann(n)$, then ann(m) = ann(n). Prove that ann(m) is a prime ideal of *R*.

QUESTION 4. (a) Let M be a f.g Z-module such that ann(M) = 11Z. Prove that $|M| < \infty$. Can you give a general formula for |M|?

(b) Give me an example a non-finitely generated Z-module M such that $ann(M) = \{0\}$.

(b) Give me an example a non-finitely generated Z-module M such that ann(M) = 2025Z.

QUESTION 5. (a) Let R be a GCD-domain with quotient field K. Prove that R is an integrally closed domain.

(b) Let R = Z[X] and K be the quotient field of R. Let $\alpha \in K - R$. prove that $R[\alpha]$ is not a finitely generated R-module.

(c) Give me an example of an integral domain R with quotient field K such that R is not integrally closed inside K.

QUESTION 6. Let M_1, M_2, M_3 be *R*-modules such that the short exact sequence $0 \rightarrow M_1 \rightarrow M_2 \rightarrow M_3 \rightarrow 0$ splits. Prove that M_2 and $M_1 \oplus M_3$ are isomorphic as *R*-modules.

Faculty information

Ayman Badawi, Department of Mathematics & Statistics, American University of Sharjah, P.O. Box 26666, Sharjah, United Arab Emirates.

E-mail: abadawi@aus.edu, www.ayman-badawi.com