MTH 213, Discrete Math, Spring 2025, 1-1

O copyright Ayman Badawi 2025

Quiz VII

Ayman Badawi

QUESTION 1. (10 points) Let $A = \{1, 5, 9, 2, 6, 3, 15, 4, 12, 16, 20\}$. Define "=" on A such that for all $a, b \in A$, a" = "b if $(a \mod 4) = (b \mod 4)$. Then " = " is an equivalence relation.

(i) Find all distinct equivalence classes of " = ".

$$\overline{4} = \{1, 5, 9\}$$
 $\overline{3} = \{3, 15\}$
 $\overline{2} = \{2, 6\}$

4 mod 4 = 12 mod4 = 16 mod4 = 20 mod 4

(ii) if we view "=" as a subset of $A \times A$, how many elements does " = " have? Do NOT write the elements of " = ".

$$| " = " | = | 3^2 + 2^2 + 4^2 + 2^2$$

$$= 33$$

QUESTION 2. (10 points) The following is a partial order relation on the set $A = \{1, 2, 3, 4, 5, 6\}$

"
$$\leq$$
 " = {(1,1), (2,2), ..., (6,6), (4,1), (4,2), (4,3), (4,5), (4,6), (2,3), (3,5), (2,5), (1,3), (1,5), (6,5)}

(i) Draw Hesse diagram of "≤".

(ii) Find the minimum element of (A, \leq) and the maximum element of (A, \leq) .

