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Abstract. Let R be a commutative ring with 1 ̸= 0, Z(R) be the set of all

zero-divisors of R, and n ≥ 1. This paper introduces the n-total graph of a

commutative ring R. The n-total graph of a commutative ring R, denoted
by n − T (R), is an undirected simple graph with vertex set R, such that two

vertices x, y in R are connected by an edge if xn + yn in Z(R). Note that

if n = 1, then the 1-total graph of R is the total graph of R in the sense of
Anderson-Badawi’s paper on the total graph of a commutative ring. In this

paper, we study some graph properties and theoretical ring structure.

1. Introduction

Graphs represent relations defined by taking ordered pairs from a set of ver-
tices. Such ordered pairs are called edges. Graphs are very beneficial in physical,
biological, and social applications. They are also used in computer scientific con-
texts like networks and data structure representations. In addition, Graphs are
utilized in other mathematical fields, such as knot theory, where each type of knot
can be associated with a graph.

Graphs over rings were first seriously researched during the late nineties of the
last century. While the discussion was mainly about graphs over rings, there has
been research on graphs over groups, semi-rings, modules over rings, etc. For a
recent reference on graphs from rings, see the book [AABC] by Anderson, Asir,
Badawi, and Chelvam. In the paper [BE] published in 1988 titled ’Colouring of
Commutative rings’ by Istvan Beck, the idea of the colouring of commutative rings
was presented. This idea established a connection between graph theory and com-
mutative ring theory that is evident in many studies such as [AN] and [SB]. The
paper establishes the graph of R by defining the relation x is adjacent to y if and
only if xy = 0 in a commutative R. The study is mainly concerned with character-
izing and discussing finitely colourable rings and presenting certain conditions for
which a ring R is finitely colourable. Anderson and Livingston introduce the zero
divisor graph Γ(R) of a commutative ring R in [AL] by defining the vertices of the
graph as V = Z(R)− {0} and defining the edges by the relation x ∈ V is adjacent
to y ∈ V if and only if xy = 0. The zero divisor graph was investigated in several
studies, such as [AAS], [ALS], and [M]. Another body of work that is well-studied
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in the field was the work of David F. Anderson and Ayman Badawi in [AB] on the
total graph of a commutative ring R defined by taking the vertices V = {x ∈ R}
and defining the edges by x is adjacent to y if and only if x+ y ∈ Z(R).

Let R be a commutative ring with 1 ̸= 0 and let n ≥ 1 be an integer. In this
paper, we define the n-total graph of R by taking the vertices V = R and defining
the edges by x ∈ V is adjacent to y ∈ V if and only if xn + yn ∈ Z(R). We denote
the n-total graph of R by n−T (R). The literature on graphs from rings is rich. We
cannot state them all; for example see [AAM]–[SB]. A complete list of references
up to 2021 that might interest the reader is [AABC].

We recall some definitions that are needed in this paper. Let G be a (simple)
graph. We say that G is connected if there is a path between any two distinct
vertices of G. At the other extreme, we say that G is totally disconnected if no two
vertices of G are adjacent (i.e., no vertices of G are connected by one edge). For
vertices x and y of G, the distance between x and y, denoted by d(x, y), is defined
to be the length of the shortest path from x to y (d(x, x) = 0 and if there is no path
between x and y, then d(x, y) = ∞). The diameter of G is diam(G) = sup{d(x, y) |
x and y are vertices of G}. The girth of G, denoted by gr(G), is the length of a
shortest cycle in G (gr(G) = ∞ if G contains no cycles). We denote the complete
graph on n vertices by Kn and the complete bipartite graph on m and n vertices
by Km,n (we allow m and n to be infinite cardinals). We say that a (induced)
subgraph G1 is a component of a graph G if G1 is connected and no vertex of G1

is adjacent (in G) to any vertex not in G1. If G is the union of m components,
we say G is a decomposition of m components, and we write G =

⊕m
i=1 Gi and if

G1 = · · · = Gm, then we write G =
⊕m

i=1 G1.
Throughout this paper, all rings are commutative with 1 ̸= 0. Let R be a

commutative ring. Then Z(R) denotes its set of all zero-divisor, Nil(R) denotes
its ideal of nilpotent elements, Reg(R) denotes its set of non-zero-divisors (i.e.,
Reg(R) = R \ Z(R)), and U(R) denotes its group of units. For A ⊆ R, let A∗ =
A − {0}. We say that R is reduced if Nil(R) = {0}. As usual, Z,Zn, and Fq

will denote the integers, integers modulo n, and the finite field with q elements,
respectively.

2. Results and Analysis

Let n ≥ 2. First, we will show that the n-total graph of a ring differs from
the total graph of a ring, as in the Anderson-Badawi paper. We have the following
examples.

Example 2.1. The total graph of Z49 is a decomposition of four components,
K7 ⊕K7,7 ⊕K7,7 ⊕K7,7. Meanwhile, the 3-total graph of Z49 is a decomposition
of two components, K7 ⊕K21,21.

Example 2.2. The total graph of Z7 has 4 components, while the 3 − T (Z7)
has 2 components, and the 2− T (Z7) has 7 components

Example 2.3. The total graph of Z13 has 7 components, the 6-total graph of
Z13 has 2 components, and the 2 total graph of Z13 has 4 components

2.1. The Case Where Z(R) is an Ideal.
Let R be a commutative ring such that Z(R) is an ideal of R. Then Z(R)

is a prime ideal of R; therefore, R/Z(R) is an integral domain. Moreover, when
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R is a finite commutative ring, R/Z(R) becomes a field as Z(R) = Nil(R) is the
only maximal ideal of the ring. Trivially, the induced subgraph n − T (Z(R)) is a
complete component of the n−T (R). Thus, the main focus of this section will be on
n− T (Reg(R)). We will generalize the results seen in [AB] for finite commutative
rings where Z(R) is an ideal of R. The following two lemmas are known; we omit
their proofs.

Lemma 2.4. Let Fq be a finite field. Then, U(Fq) = F ∗
q is a cyclic group.

Furthermore, for each positive integer m ≥ 1, if the equation xm = a has a solution
in F ∗

q for some a ∈ F ∗
q , then there are precisely gcd(m, |F ∗

q |) distinct solutions in
F ∗
q .

Lemma 2.5. Let Fq be a finite field, a ∈ F ∗
q , and m ≥ 1 be an integer. Then

xm = a has a solution in Fq if and only if a ∈ Sm = {bm | b ∈ F ∗
q }. Furthermore,

Sm is a cyclic subgroup of F ∗
q of order

|F∗
q |

gcd(m,|F∗
q |) .

The following theorem generalizes [AB, Theorem 2.2 (1)] for finite commutative
rings.

Theorem 2.6. Let R be a finite commutative ring such that Z(R) is an ideal
of R and 2 ∈ Z(R). Let n ≥ 1 be an integer, |Z(R)| = α, |R/Z(R)| = β, γ =

α · gcd(n, β − 1), and d = β−1
gcd(n,β−1) . Then the n− T (R) = Kα ⊕

⊕d
i=1 Kγ . Note

that |R| = αβ.

Proof. Let n ≥ 1 be an integer. Assume that 2 ∈ Z(R), and let x ∈ Reg(R)
(i.e., x ∈ U(R)). Since 2 ∈ Z(R), (x + z1)

n + (x + z2)
n = 2xn + z3 ∈ Z(R) for

some z3 ∈ Z(R) for all z1, z2 ∈ Z(R). Hence, each coset x + Z(R) elements form
a Kα subgraph of the n − T (R). Since F = |R/Z(R)| is a finite field, for each
a ∈ Sn(F ) = {bn | b ∈ F ∗}, the set Cn(a) = {w ∈ F ∗ | wn = a} has exactly
gcd(n, β − 1) cosets of Z(R) by Lemma 2.4 and Lemma 2.5. Let Da = ∪v∈Cn(a)v.
Then Da is a subset of R, |Da| = γ, and every two vertices in Da are adjacent since
2 ∈ Z(R). Hence, Da is a Kγ component of the n − T (R). Since |Sn(F )| = d by
Lemma 2.5 and Z(R) forms a Kα component of the n − T (R), we conclude that

the n− T (R) = Kα ⊕
⊕d

i=1 Kγ .
□

Example 2.7. Let p = 2, m = 2i, c = 2i−1, and let n ≥ 1 be an integer. The
n− T (Zm) = Kc ⊕Kc where the n− T (Reg(Zm)) = Kc.

Example 2.8. Let R = Z8. We have 2 ∈ Z(R), |Z(R)| = 4 and |R/Z(R)| = 2.
The 2-total graph of Z8 is K4 ⊕ K4. Figure 1 shows the n-total graph of Z8 for
every integer n ≥ 1.

The following theorem generalizes [AB, Theorem 2.2 (2)] for finite commutative
rings.

Theorem 2.9. Let n ≥ 1 be an integer and R be a finite commutative ring
such that Z(R) is an ideal of R and 2 ̸∈ Z(R). Let |Z(R)| = α, |R/Z(R)| = β,

γ = α · gcd(n, β − 1), and d = β−1
gcd(n,β−1) . Then

(1) The n− T (Reg(R)) is totally disconnected if and only if d is odd.

(2) If d is even, then the n − T (Reg(R)) =
⊕d/2

i=1 Kγ,γ , and hence the n −
T (R) = Kα ⊕

⊕d/2
i=1 Kγ,γ .
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Figure 1. n− T (Z8) for every integer n ≥ 1

Proof. Let n ≥ 1 be an integer. Note that F = R/Z(R) is a finite field and
aβ−1 = 1 + Z(R) for every a ∈ F ∗.

(1). Suppose the n − T (Reg(R)) is totally disconnected. Assume that d is
even. Then Sn(F ) = {bn | b ∈ F ∗} is the unique cyclic subgroup of F ∗ of order d
by Lemma 2.5. Since d is even, −1 + Z(R) ∈ Sn(F ). Since 2 ̸∈ Z(R), 1 + Z(R) ̸=
−1+Z(R). Hence there are x = a+Z(R), y = b+Z(R) ∈ F ∗ for some a, b ∈ Reg(R)
such that xn + yn = (an + bn) + Z(R) = Z(R) in F . Thus an + bn ∈ Z(R); a
contradiction since the n− T (R) is totally disconnected.

For the converse, suppose d is odd. Note that dn = k · (β − 1) for some integer
k ≥ 1. Assume that the n − T (Reg(R)) is not totally disconnected. Then, there
exist x, y ∈ Reg(R) such that xn+yn ∈ Z(R). Thus xn+Z(R) = −yn+Z(R) in F .
Hence (xn)d+Z(R) = (−yn)d+Z(R) in F . Thus xnd+Z(R) = (−1d ·ynd)+Z(R)
in F . Since nd = k(β − 1) and d is odd, we have 1 + Z(R) = −1 + Z(R) in F .
Hence 2 ∈ Z(R), a contradiction. Thus the n− T (R) is totally disconnected.

(2). Let a ∈ Reg(R). Since 2 ̸∈ Z(R), an+an = 2an ̸∈ Z(R). Therefore, no two
vertices in a+ Z(R) are connected in the n− T (Reg(R)). Since Sn(F ) = {bn | b ∈
F ∗} is the unique cyclic subgroup of F ∗ of order d by Lemma 2.5 and d is even, we
conclude that −a ∈ Sn(F ) for every a ∈ Sn(F ). Since F = |R/Z(R)| is a finite field,
for each a ∈ Sn(F ) = {bn | b ∈ F ∗}, the set Cn(a) = {w ∈ F ∗ | wn = a} has exactly
gcd(n, β − 1) cosets of Z(R) by Lemma 2.4 and Lemma 2.5. Let A = ∪v∈Cn(a)v
and B = ∪w∈Cn(−a)w. Then A ∪ B is a subset of Reg(R), and |A| = |B| = γ.
Note that every two vertices of A are not adjacent, and every two vertices of B
are not adjacent. However, every vertex in A is adjacent to every vertex in B.
Thus A ∪ B elements form a Kγ,γ component of the n − T (Reg(R)). Thus the

n − T (Reg(R)) =
⊕d/2

i=1 Kγ,γ . Since Z(R) elements form a Kα component of the

n− T (R). We conclude that the n− T (R) = Kα ⊕
⊕d/2

i=1 Kγ,γ □

Example 2.10. Let n ≥ 1 be an integer, p be an odd prime, m = pi, R = Zm,
α = pi−1 = |Z(Zm)|, β = |R/Z(R)|, γ = gcd(n, β−1)α, and d = (β−1)/gcd(n, β−
1) = (p− 1)/gcd(n, p− 1).

(1) The n− T (Reg(Zm)) is totally disconnected if and only if d is odd.

(2) If d is even, then the n − T (Reg(R)) =
⊕d/2

i=1 Kγ,γ , and hence the n −
T (R) = Kα ⊕

⊕d/2
i=1 Kγ,γ .

(3) Let R = Z169 and n = 3. Let α, β, γ, and d as in Theorem 2.9. Then
α = β = 13, γ = 39, and d = 4. Then the 3−T (R) = K39,39⊕K39,39⊕K13.
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Example 2.11. Let R = Z9 and n = 2. We have α = |Z(R)| = 3, β =
|R/Z(R)| = 3, γ = gcd(n, β − 1)α = 3gcd(2, 2) = 6, and d = (β − 1)/gcd(n, β −
1) = 2/2 = 1. Then the 2 − T (Reg(R)) is a totally disconnected graph with 6
vertices. However, The total graph of Reg(R) = 1− T (Reg(R)) = K3,3. Thus the
2− T (R) = K3,3 ⊕K3

Corollary 2.12. Let n ≥ 1 be an integer and R be a finite commutative ring
such that 2 ̸∈ Z(R). Let |Z(R)| = α, |R/Z(R)| = β, and γ = α·gcd(n, β−1) = (β−
1)/2. Then the n−T (Reg(R)) is connected if and only if gcd(n, β−1) = (β−1)/2.
Furthermore, if the n− T (Reg(R)) is connected, then the n− T (R) = Kα ⊕Kγ,γ ,
where the n− T (Reg(R)) = Kγ,γ is connected.

Proof. Let d = (β − 1)/gcd(n, β − 1). Suppose that the gcd(n, β − 1) =
(β − 1)/2. Then d = 2. Hence by Theorem 2.9, the n − T (Reg(R)) = Kγ,γ

is connected. Conversely, suppose the n − T (Reg(R)) is connected. Since the

n − T (Reg(R)) =
⊕d/2

i=1 Kγ,γ by Theorem 2.9, we conclude that d = 2. Thus the
gcd(n, β − 1) = (β − 1)/2. □

Example 2.13. Let n ≥ 1 be an integer, p be an odd prime, m = pi, R = Zm,
α = pi−1 = |Z(Zm)|, β = |R/Z(R)| = p, γ = gcd(n, β − 1)α = gcd(n, p − 1)α,
and d = (β − 1)/gcd(n, β − 1) = (p− 1)/gcd(n, p− 1). Then the n− T (Reg(R)) is
connected if and only if gcd(n, p−1) = (p−1)/2. Furthermore, if the n−T (Reg(R))
is connected, then the n− T (R) = Kα ⊕Kγ,γ , where the n− T (Reg(R)) = Kγ,γ is
connected.

Example 2.14. The 2−T (Reg(Z25)) is connected since gcd(2, 5−1) = 2. This
is unlike 1 − T (Reg(Z25)), which is not connected and has two complete bipartite
components.

The following theorem generalizes [AB, Theorem 2.5] for finite commutative
rings.

Theorem 2.15. Let n ≥ 1 be an integer and R be a finite commutative ring
such that Z(R) is an ideal of R. Then

(1) diam(n− T (Reg(R))) = 0, 1, 2, or ∞.
(2) gr(n− T (Reg(R))) = 3, 4, or ∞.

Proof. (1) Suppose the n − T (Reg(R)) is connected. Then the n −
T (Reg(R)) is a singleton, a complete graph, or a complete bipartite graph
by Theorem 2.6 and Theorem 2.9. Therefore, diam(n− T (R)) ≤ 2.

(2) Suppose the n − T (Reg(R)) has a cycle. Then the n − T (Reg(R)) is a
complete graph or a disjoint union of complete bipartite graphs by Theo-
rem 2.6 and Theorem 2.9. Hence, if a component of the n − T (Reg(R))
has more than two vertices, then gr(n − T (Reg(R)) = 3 or 4. If each
component of the n − T (Reg(R)) has two vertices or fewer, then gr(n −
T (Reg(R)) = ∞.

□

Example 2.16. Let n ≥ 1 be an integer. Then

(1) diam(2−T (Reg(Z2))) = 0 and gr(n−T (Reg(Z2))) = ∞ as Reg(Z2) = {1}
is a singleton.

(2) diam(2 − T (Reg(Z8))) = 1, gr(n − T (Reg(Z8))) = 3, and the gr(2 −
T (Reg(Z25))) = 4.
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2.2. The Case Where Z(R) is not an Ideal.

Theorem 2.17. Suppose R is a commutative ring such that Z(R) is not an
ideal of R. Let n ≥ 1 be an integer. Then the n− T (R) is connected if and only if
there exists a path from 0 to 1 in the n− T (R).

Proof. If the n − T (R) is connected, then there is a path from 0 to 1. Con-
versely, suppose there exists a path from 0 to 1 in the n − T (R), say 0 − w1 −
w2 − · · · − wq = 1. Then for any wi − wj , w

n
i + wn

j ∈ Z(R). Let v ∈ R∗. Then
(vwi)

n+(vwj)
n = vnwn

i +vnwn
j = vn(wn

i +wn
j ) ∈ Z(R). Hence, 0−vw1−· · ·−vwq =

v is a path from 0 to v for all v in R, and therefore, there is a path between any
two vertices in R. Therefore, the n− T (R) is connected. □

The next result generalizes [AB, Theorem 3.1, (3)] for odd integers.

Theorem 2.18. Let R be a commutative ring such that Z(R) is not an ideal
of R. Let n ≥ 1 be an odd integer. If the n − T (Reg(R)) is connected, then the
n− T (R) is connected.

Proof. Suppose the n− T (Reg(R)) is connected. Since Z(R) is not an ideal
of R, there are w, z ∈ Z(R) such that w − z = r ∈ Reg(R). Therefore, we have

(w − z)n = rn =
∑n

k=1

(
n
k

)
(−1)kwkzn−k =

∑n−1
k=1

(
n
k

)
(−1)kwkzn−k − zn = wq − zn

for some q ∈ R. Therefore, we have rn + zn = wq ∈ Z(R). Since 0, z ∈ Z(R),
every vertex of Z(R) is connected to z. Since z is connected to r ∈ Reg(R) and
the n− T (Reg(R)) is connected, we conclude the n− T (R) is connected. □

Example 2.19. The 3 − T (Z6) is connected, as shown in figure 3. Note that
the 3− T (Reg(Z6)) is connected, as shown in Figure 2.

1

3

5

Figure 2. 3− T (Reg(Z6))

0

12

3

4 5

Figure 3. 3− T (Z6)

The next result generalizes [AB, Theorem 3.1, (3)] for even integers with an
extra condition.

Theorem 2.20. Let n ≥ 2 be an even integer, R be a commutative ring such
that Z(R) is not an ideal of R and suppose there is a u ∈ R such that un = −1. If
the n− T (Reg(R)) is connected, then the n− T (R) is connected.
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Proof. Suppose the n− T (Reg(R)) is connected. Since Z(R) is not an ideal
of R, there are w, v ∈ Z(R) such that w + v = r ∈ Reg(R). Let z = u−1v. Hence,
w+uz = r ∈ Reg(R). Therefore, we have (w+uz)n = rn =

∑n
k=1

(
n
k

)
ukwkzn−k =∑n−1

k=1

(
n
k

)
ukwkzn−k − zn = wq− zn for some q ∈ R. Therefore, we have rn + zn =

wq ∈ Z(R). Since 0, z ∈ Z(R), every vertex of Z(R) is connected to z. Since z
is connected to r ∈ Reg(R) and the n− T (Reg(R)) is connected, we conclude the
n− T (R) is connected. □

Example 2.21. The condition un = −1 is sufficient but unnecessary for this
to hold. Let R = Z14. The 2− T (Reg(R))) is connected (and thus the 2− T (R) is
connected). However, we do not have any element u ∈ R such that u2 = −1.

The next result generalizes [AB, Theorem 3.3] for odd integers.

Theorem 2.22. Let R be a commutative ring such that Z(R) is not an ideal
of R, and n ≥ 1 be an odd integer. The n − T (R) is connected if and only if
R = (z1, z2, ..., zm) where zi ∈ Z(R) for each 1 ≤ i ≤ m.

Proof. Suppose the n−T (R) is connected. Then there is a path 0−w1−w2−
·−wq−1 in n−T (R). This implies that wn

1 , w
n
1 +wn

2 , ..., w
n
q−1+wn

q , w
n
q +1 ∈ Z(R).

Hence, 1 ∈ (w1, w
n
1 + wn

2 , ..., w
n
q−1 + wn

q , w
n
q + 1) ⊆ (Z(R)). Hence, R = (Z(R))

Conversely, suppose that (Z(R)) = R. Then, we must show a path from 0 to
x in n − T (R) for any nonzero x in R. By hypothesis, we have x = v1 + · · · + vq
for some v1, ..., vq ∈ Z(R). Let w0 = 0 and wj = (−1)q+j(v1 + · · · + vj) for each

integer 1 ≤ j ≤ q. Since n is odd, we have (−1)n(q+j) = (−1)q+j and hence we have
wn

j = (−1)q+j(v1 + · · ·+ vj)
n = wn

j +wn
j+1 = vj+1y ∈ Z(R) for some y ∈ R. Thus,

0 − w1 − w2 − · · · − wq = x is a path from 0 to x in n − T (R). Let 0 ̸= a, b ∈ R.
By the previous argument, there are paths from a to 0 and from 0 to b. Therefore,
there is a path from a to b in n− T (R); hence, n− T (R) is connected.

□

Remark 2.23. In view of the proof of Theorem 2.25, if the n−T (R) is connected
for some integer n ≥ 1, then R = (z1, z2, ..., zm), where zi ∈ Z(R) for each 1 ≤ i ≤
m.

The next result generalizes [AB, Theorem 3.3] for even integers with an extra
condition.

Theorem 2.24. Suppose R is a commutative ring such that Z(R) is not an
ideal of R. Let n be an even integer, and suppose there is u ∈ R such that un = −1.
Then the n− T (R) is connected if and only if R = (z1, z2, ..., zm), where zi ∈ Z(R)
for each 1 ≤ i ≤ m.

Proof. Suppose the n−T (R) is connected. By Remark 2.23, R = (z1, z2, ..., zm),
where zi ∈ Z(R) for each 1 ≤ i ≤ m. Suppose that (Z(R)) = R. It suffices to
show a path from 0 to 1 in the n− T (R). By hypothesis, we have 1 = v1 + · · ·+ vq
for some v1, ..., vq ∈ Z(R). Let w0 = 0 and wj = uq+j(v1 + · · · + vj) for each

integer 1 ≤ j ≤ q. Since un = −1, we have (u)n(q+j) = (−1)q+j and hence we have
wn

j = (−1)q+j(v1 + · · ·+ vj)
n = vnj + vnj+1 = vj+1y ∈ Z(R) for some y ∈ R. Thus,

0 − w1 − w2 − · · · − wq = 1 is a path from 0 to 1 in the n − T (R). Hence, the
n− T (R) is connected.

□
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The next result generalizes [AB, Theorem 3.4] for odd integers.

Theorem 2.25. Let R be a commutative ring such that Z(R) is not an ideal
of R, and n be an odd integer. Suppose that R = (Z(R)) (i.e. the n − T (R) is
connected). Then diam(n− T (R)) = m, where m is the minimum number of zero
divisors z1, ..., zm such that (z1, ...zm) = R. Moreover, diam(n− T (R)) = d(0, 1).

Proof. First, we show that any path from 0 to 1 in R has a length of at leastm.
Suppose that 0−b1−· · ·−bk−1−1 is a path from 0 to 1 in n−T (R) of length k. Then
bn1 , b

n
1 + bn2 , ..., b

n
k−1 + 1 ∈ Z(R) and hence 1 ∈ (bn1 , b

n
1 + bn2 , ..., b

n
k−1 + 1) ⊆ (Z(R)).

Thus, k ≥ m. Let x and y be distinct elements in R. We will show that there is
a path in R with a length less than or equal to m. Let 1 = z1 + z2 + · + zm for
z1, ...zm ∈ Z(R). If m is even, define z = x + y. If m is odd, define z = x − y. In
any case, let d0 = x. For each 1 ≤ k ≤ m let dk = −(x + z(z1 + · + zk)) if k is
odd, and dk = x+ z(z1 + ·+ zk) if k is even. Then dnk + dnk+1 = zk+1q ∈ Z(R) for
some q ∈ R. Also, dm = y. Therefore, x − d1 − · − dm − 1 − y is a path of length
at most m. In particular, a shortest path between 0 and 1 would have length m.
Therefore, diam(n− T (R)) = m.

□

The next result generalizes [AB, Theorem 3.4] for even integers with an extra
condition.

Theorem 2.26. Let R be a commutative ring such that Z(R) is not an ideal of
R. and n be an even integer. Suppose that R = (Z(R)) and there exists u ∈ R such
that un = −1. Then diam(n−T (R)) = m where m is the minimum number of zero
divisors z1, ..., zm such that (z1, ...zm) = R. Moreover, diam(n− T (R)) = d(0, 1).

Proof. First, we show that any path from 0 to 1 in R has a length of at leastm.
Suppose that 0−b1−·−bk−1−1 is a path from 0 to 1 in n−T (R) of length k. Then
bn1 , b

n
1 + bn2 , ..., b

n
k−1 + 1 ∈ Z(R) and hence 1 ∈ (bn1 , b

n
1 + bn2 , ..., b

n
k−1 + 1) ⊆ (Z(R)).

Thus, k ≥ m. Let x and y be distinct elements in R. We will show that there is
a path in R with a length less than or equal to m. Let 1 = z1 + z2 + · + zm for
z1, ...zm ∈ Z(R). If m is even, define z = x + y. If m is odd, define z = x − y. In
any case, let d0 = x. For each 1 ≤ k ≤ m let dk = u(x + z(z1 + · + zk)) if k is
odd and dk = x + z(z1 + · + zk) if k is even. Then dnk + dnk+1 = zk+1q ∈ Z(R) for
some q ∈ R. Also, dm = y. Therefore, x− d1 − · · · − dm − 1− y is a path of length
at most m. In particular, a shortest path between 0 and 1 would have length m.
Therefore, diam(n− T (R)) = m.

□

The following results generalizes [AB, Corollary 3.5].

Corollary 2.27. Let R be a commutative ring such that Z(R) is not an ideal
of R. if diam(n− T (R)) = m, then diam(n− T (Reg(R))) ≥ m− 2

Proof. Since diam(n− T (R)) = d(0, 1) = m, let 0− b1 − · · · − bm−1 − 1 be a
path from 0 to 1 in R. Clearly, b1 ∈ Z(R). Suppose that for some 2 ≤ i ≤ m−1 we
have bi in Z(R). Therefore, we can have the path 0−bi−· · ·−1 in n−T (R) of length
less than m. This is a contradiction. Thus, bi ∈ Reg(R) for each 2 ≤ i ≤ m − 1
and hence b2 − · · · − 1 is a shortest path between b2 and 1 in the n− T (Reg(R)) of
length m− 2. Therefore diam(n− T (Reg(R))) ≥ m− 2. □
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Example 2.28. Let R = Z21. Every x ∈ Reg(R), x is not connected to any
other element in R. Hence, The 2− T (R) is not connected.

Example 2.29. It is not necessary to have x ∈ R such that xn = −1 for
n − T (R) to be connected when n is even. Let R = Z6. There is no x ∈ R such
that x2 = −1. However, the 2−T (R) is connected as shown in Figure 4. Note that
d(0, 1) = 2, but diam(2− T (R)) = 3 ̸= d(0, 2).

0

12

3

4 5

Figure 4. 2− T (Z6)

Theorem 2.30. Let R = R1×·×Rk for some k ≥ 2 where Ri is a commutative
ring with 1 ̸= 0 for each 1 ≤ i ≤ k. If n ≥ 1 is an odd integer, then the n − T (R)
is connected. Moreover, diam(n− T (R)) = 2.

Proof. Suppose x, y ∈ R. Then x = (x1, ..., xk) and y = (y1, ..., yk). Since n is
odd, xn

i +(−xi)
n = 0 (Similarly ynj +(−yj)

n = 0). Let r = (r1, ..,−xi, ...,−yj , ..., rk).
Then clearly, xn + rn is a zero divisor, and rn + yn is a zero divisor. Hence,
x− r − y is always a path in the n− T (R). Therefore, the n− T (R) is connected
and diam(n− T (R)) = 2. □

Theorem 2.31. Let n ≥ 2 be an even integer and R = R1 × · · · ×Rk for some
k ≥ 2 where Ri is a commutative ring with 1 ̸= 0 for each 1 ≤ i ≤ k. Then the
n − T (R) is connected if and only if there is an x in Rj for some 1 ≤ j ≤ k such
that xn + 1 ∈ Z(Rj). Furthermore, if there exists a u ∈ R such that un = −1 ∈ R
(i.e., un+1 = 0 ∈ Z(R)), then the n−T (R) is connected and diam(n−T (R)) = 2.

Proof. Suppose the n − T (R) is connected. Then there exists a path from
(0, ..., 0) to (1, ..., 1) in the n − T (R), say (0, ..., 0) − · · · − (x1, ..., xk) − (1, ..., 1).
Hence xn

i + 1 ∈ Z(Ri) for some 1 ≤ i ≤ k.
Conversely, suppose there is an x in Rj for some 1 ≤ j ≤ k such that xn +

1 ∈ Z(Rj). Without the loss of generality, we may assume that j = 1. Thus,
(0, ..., 0)− (x, 0, ..., 0)− (1, ..., 1) is a path of length 2 in the n− T (R). Hence, the
n− T (R) is connected by Theorem 2.17.

Now, suppose that there exists a u ∈ R such that un = −1 ∈ R. Since
R = ((1, 0, · · · , 0), (0, 1, · · · , 1)), the n− T (R) is connected and diam(n− T (R)) =
d((0, ..., 0), (1, ..., 1)) = 2 by Theorem 2.26. □

Corollary 2.32. Let n ≥ 2 be an even integer and R = R1 × · · · × Rk for
some k ≥ 2 where Ri is an integral domain for each 1 ≤ i ≤ k. Then the n− T (R)
is connected if and only if there is an x in Rj for some 1 ≤ j ≤ k such that
xn = −1 ∈ Rj (i.e. xn+1 = 0 ∈ Z(Rj)). Furthermore, if the n−T (R) is connected
and there exists a u ∈ U(R) such that un = −1 ∈ R (i.e., un+1 = 0 ∈ Z(R)), then
diam(n− T (R)) = 2.

Proof. This follows directly from Theorem 2.31 and the fact that Ri has no
zero divisors except for 0 for each 1 ≤ i ≤ k. □



10 DJAMILA AITELHADI AND AYMAN BADAWI

See Example 2.29, R = Z6 is ring-isomorphic to A = Z2 × Z3. Note that
d((0, 0), (1, 1)) = 2 in the 2− T (A), but diam(2− T (A)) = 3.

Example 2.33. R = Z3 × Z3. There is no x ∈ R such that x2 = −1, and the
2−T (R) is not connected. See figure 5. However, the 2−T (Z14) is connected, and
there is no x ∈ Z14 such that x2 = −1.

(0,0)

(0,1)(0,2)

(1,0)(2,0) (2,2) (2,1)

(1,1) (1,2)

Figure 5. 2− T (Z3 × Z3)

In view of Example 2.33, we have the following result.

Corollary 2.34. Let n be an even integer and R = R1 × · × Rk for some
k ≥ 2 where Ri is an integral domain for each 1 ≤ i ≤ k. Then the n − T (R) is
connected if and only if there is an x in Rj for some 1 ≤ j ≤ k such that xn = −1
in Rj (i.e., xn + 1 = 0 ∈ Z(R)).

Proof. This follows directly from Theorem 2.31 and the fact that Ri has no
zero divisors except for 0 for each 1 ≤ i ≤ k. □

Example 2.35. The 2−T (Z5×Z3) is connected, since in Z5 we have 22 = 4 =
−1 ∈ Z5.

Example 2.36. The 2−T (Z2×Z2) is connected, since in Z2 we have 12 = 1 =
−1 ∈ Z2. This is shown in Figure 6.

(0,0) (1,0)

(0,1) (1,1)

Figure 6. 2− T (Z2 × Z2)

In the following result, we generalize [AB, Example 3.8] but our proof differs
entirely from that in [AB]

Theorem 2.37. For any integer m ≥ 2, there exists a ring R such that for
every integer n ≥ 1, the n− T (R) is connected and diam(n− T (R)) = m.

Proof. Let n ≥ 1, A = Z2[X1, X2, ..., Xm−1,W1,W2, ...,Wm],
I = (W1X1, ...,Wm−1Xm−1,Wm(X1 + ·+Xm−1 +1), {WiWj |1 ≤ i < j ≤ m}),

and R = A/I. Denote xi = Xi + I ∈ R and wi = Wi + I ∈ R. Then (−1)n = 1.
We can construct the following path from 0 to 1 in the n− T (R)

(2.1) 0− x1 − (x1 + x2)− · · · − (x1 + x2 + ·+ xm−1)− 1
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Note that this is the shortest path from 0 to 1 of length m in the n − T (R) since
any sum of the xi’s is not a zero divisor in R, and thus we can not make a shorter
path. Therefore, by Theorem 2.25 (In the case of odd n) and Theorem 2.26 (In the
case of even n), diam(n− T (R)) = m. □
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