MTH 313, Number Theory, Fall 2024, 1-3

HW III

Ayman Badawi

QUESTION 1. (a) Find two positive integers a, b such that $a^2 + b^2 = 41$

HINT: You may use this technique if you choose. First note that 41 = 4(10) + 1 is prime. By try and error find two integers, x, y such that $x^2 + y = 10$ and $4y + 1 = b^2$ for some integer b. Let x = 2 and y = 6. Then $41 = 4(10) + 1 = 4(2^2 + 6) + 1 = 4^2 + 4(6) + 1 = 4^2 + 5^2$.

(b) Find two positive integers a, b such that $a^2 + b^2 = 89$

HINT: First note that 89 = 4(22) + 1 is prime. By try and error, see my comments in (a). Let x = 4 and y = 6. Then $89 = 4(22) + 1 = 4(4^2 + 6) + 1 = 8^2 + 4(6) + 1 = 8^2 + 5^2$.

(c) Find two positive integers a, b such that $a^2 + b^2 = 23$

HINT: It is impossible since for every relatively prime positive integers, a, b, $a^2 + b^2 \pmod{4}$ must be 1, see HW2. However, 23 $\pmod{4} = 3$

(d) Is $33 = a^2 + b^2$ for some integers a, b?

HINT: No, note 33 is not prime, so this does not contradict Q1. 33 = 4(8) + 1, try and error, not equal $a^2 + b^2$.

(e) Is $45 = a^2 + b^2$ for some integers a, b?

HINT: yes, note 45 is not prime, 45 = 4(11) + 1, try and error, see my comments in (a), $45 = 4(11) + 1 = 4(3^2 + 2) + 1 = 6^2 + 8 + 1 = 6^2 + 3^2$

(f) Is $49 = a^2 + b^2$ for some integers a, b?

HINT: No, note 49 is not prime, so this does not contradict Q1. 49 = 4(12) + 1, try and error, not equal $a^2 + b^2$.

QUESTION 2. Let $n = 100(7^3)(5^4)(2^3)$. Let D be the set of all divisors of n.

(i) Find |D|. (note that the prime factorization of n is $(2^5)(5^6)(7^3)$, see class notes.)

(ii) Find $\sigma(n)$, i.e., the sum of all divisors of n. See class notes.

(iii) Let $F = \{d \in D, \text{ such that, } 100 \mid d\}$. Find |F|. Find $\sum_{f \in F} f$.

Hint. Let $f \in F$. Then f has the form $2^i 5^k 7^j$, where $2 \le i \le 5, 2 \le k \le 6, 0 \le j \le 3$ and see class notes

(iv) Let $F = \{d \in D, \text{ such that, } 10 = gcd(100, d)\}$. Find |D|. Find $\sum_{f \in F} f$.

Hint. Let $f \in F$. Then f has the form $(2)(5)7^j$, where $0 \le j \le 3$ and see class notes

(v) Let $F = \{d \in D, \text{ such that, } 70 = gcd(350, d)\}$. Find |F|. Find $\sum_{f \in F} f$.

Hint. Let $f \in F$. Then f has the form $2^i(5)7^j$, where $1 \le i \le 6, 1 \le j \le 3$ and see class notes

(vi) Let $F = \{d \in D, \text{ such that, } 25 = gcd(100, d)\}$. Find |F|. Find $\sum_{f \in F} f$.

Hint. Let $f \in F$. Then f has the form $5^i 7^j$, where $2 \le i \le 6, 0 \le j \le 3$ and see class notes

QUESTION 3. Assume that a, b, c are positive integers such that $a \mid bc$. Assume that gcd(a, b) = 1. Prove that $a \mid c$.

Hint: We know that (*) 1 = an + bm for some integers *n.m.* Multiply (*) by c, we get (**) c = can + cbm. By staring at (**), a is a factor of the right-hand side of (**), i.e., a|(can + cbm). Thus *a* is a factor of *c*. **QUESTION 4.** Let $n = d_1 d_2 \cdots d_m$, $m \ge 5$, where $1 \le d_1 \le 9$, and $0 \le d_i \le 9$ for every $2 \le i \le m$. Assume that $101 \mid n$. Prove that $101 \mid (d_1 \cdots d_{(m-2)} - d_{(m-1)}d_m)$. (see class notes, but multiply with 100)

QUESTION 5. Prove the converse of Q5.

Hint: Assume that $101 | (d_1 \cdots d_{(m-2)} - d_{(m-1)}d_m)$. It is clear that $101 | 100(d_1 \cdots d_{(m-2)} - d_{(m-1)}d_m)$. We show 101 | n. Now, $100(d_1 \cdots d_{(m-2)} - d_{(m-1)}d_m) = d_1 \cdots d_{(m-2)}00 - 100d_{(m-1)}d_m = d_1 \cdots d_{(m-2)}00 + d_{(m-1)}d_m - d_{(m-1)}d_m - 100d_{(m-1)}d_m = n - 101d_{(m-1)}d_m$. Hence $101 | (n - 101d_{(m-1)}d_m)$. By staring, since $101 | 101d_{(m-1)}d_m$, we conclude that 101 | n.

QUESTION 6. Show the work. Use the algorithm as in Q5 and Q6.

- (i) Is 5,656 divisible by 101?
- (ii) Is 12,423 divisible by 101?
- (iii) Is 54,134 divisible by 101?

QUESTION 7. Let $n = d_1 d_2 \cdots d_m$, $m \ge 4$, where $1 \le d_1 \le 9$, and $0 \le d_i \le 9$ for every $2 \le i \le m$. Assume that $27 \mid n$. Prove that $27 \mid (d_1 \cdots d_{(m-1)} - 8d_m)$. (see class notes)

QUESTION 8. Prove the converse of Q8.(see the proof of Q6, maybe you need to multiply with 10)

QUESTION 9. Let $n = d_1 d_2 \cdots d_m$, $m \ge 4$, where $1 \le d_1 \le 9$, and $0 \le d_i \le 9$ for every $2 \le i \le m$. Assume that for some positive integer k > 1, $k \mid n$ if and only if $k \mid (d_1 \cdots d_{(m-1)} - 8d_m)$. Find all possibilities of k. Think, it is not hard.

QUESTION 10. Show the work. Use the algorithm as in Q8 and Q9.

- (i) Is 2, 862 divisible by 27?
- (ii) Is 50,301 divisible by 27?
- (iii) Is 16, 252 divisible by 27?

QUESTION 11. Find the largest positive integer n such that $(n + 8) | (n^3 + 80)$. (Answer: n = 424, see class notes)

QUESTION 12. Find the largest positive integer n such that $(n+9) | (n^2+90)$.(Answer: n = 162, see class notes)

QUESTION 13. Find the largest positive integer n such that $(n + 29) | (n^2 + n + 23)$.(Answer: n = 806, see class notes)

QUESTION 14. Find the largest positive integer n such that $(n + 21) | (3n^4 + 5n + 10)$.(Answer: n = 583327, see class notes)

QUESTION 15. Find the largest positive integer n such that $(n + 37) | (n + 37)^{12} + 547$.(Answer: n = 510, see class notes)

QUESTION 16. Consider U(26).

(a) can we generate U(26) by one element? If yes find a generator.

HINT: Yes/ see class notes, 26 = 2(13). $|U(26)| = \phi(26) = 12$. Since 4 | 12, find a in U(26) such that $a^6 = -1 = 25 \pmod{26}$ and $a^4 \neq 1$, 5 will not work since $a^6 = 25 \pmod{26}$, but $5^4 = 1 \pmod{26}$, a = 7 will generate U(26).

(b) Find 4 - R(U(26)). Note that $4 - R(U(26)) = C(3) \subset U(26) = \{7^4, (7^4)^2, (7^4)^3 = 1\} = \{9, 3, 1\}.$

(c) Solve for x over U(26), $x^4 = 3$.

HINT: Find C(4) in U(26), $C(4) = \{7^3, (7^3)^2, (7^3)^3, (7^3)^4 = 1\} = \{5, 25, 21, 1\}$. Now from (a), it is clear that $x = 7^2 = 23$ is a solution for $x^4 = 3$. Hence the solution set in U(26) is $23C(4) = \{11, 3, 15, 23\}$

(d) Find all integers over Z, say x, such that gcd(x, 26) = 1 and $x^4 \pmod{26} = 3$. No comments, use (c).

QUESTION 17. Consider U(49).

(a) can we generate U(49) by one element? If yes find a generator.

HINT: Yes/ see class notes, $49 = 7^2$). $|U(49)| = \phi(49) = 42$. Since $4 \nmid 42$, find a in U(49) such that $a^{21} = -1 = 48 \pmod{49}$, a = 3 will generate U(49).

(b) Find 6 - R(U(26)). Note that $6 - R(U(49)) = C(7) \subset U(49)$. See Q17

(c) Solve for x over U(49), $x^6 = 43$. See Q17

(d) Find all integers over Z, say x, such that gcd(x, 49) = 1 and $x^6 \pmod{49} = 43$. No comments, use (c).

(e) Is $18 \in 7 - R(U(49))$? (yes if $18^6 = 1$, see HW2). Is $31 \in 7 - R(U(49))$?. Is $9 \in 21 - R(U(49))$?

QUESTION 18. Prove that $(p-1)! \pmod{p} = p-1$ for every odd prime positive integer. (see class notes)

QUESTION 19. Find all positive prime integers, say p, such that $p \mid (389^p + 1)$. (see class notes)

QUESTION 20. Let m > 1 be an integer and $f(n) = n^m + a_{m-1}n^{m-1} + ... + a_1n + a_0$, where all the a'_is are integers and $n \in Z$. Given $f(b_1) = f(b_2) = 22$ for some distinct $b_1, b_2 \in Z$. Prove that $f(k) \neq 23$ for every $k \in Z$. (see class notes)

QUESTION 21. Prove that for each integer n > 1, $(2^n - 1)$ is never a factor of $x^2 + 1$ for every $x \in Z$. (see class notes)

QUESTION 22. Let $n, m \ge 1$ be positive integers and $x \in Z^+$. Show that $3^n + 3^m + 1 \ne x^2$; (i.e., Show that $3^n + 3^m + 1$ is never a perfect square.)

Faculty information

Ayman Badawi, Department of Mathematics & Statistics, American University of Sharjah, P.O. Box 26666, Sharjah, United Arab Emirates. E-mail: abadawi@aus.edu, www.ayman-badawi.com