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1 Introduction 

Let R be a commutative ring with .1 �= 0 and I be a proper ideal of R. Then I is 
called a 2-absorbing ideal of R as in [10] if whenever .abc ∈ I for some . a, b, c ∈
R, then .ab ∈ I or .bc ∈ I or .ac ∈ I . Over the past 15 years, there has been 
considerable attention in the literature to 2-absorbing ideals of commutative rings 
and their generalizations, for example, see [1–5, 9–11, 13–21, 23–26, 30–38, 40– 
56]. A more general concept than 2-absorbing ideals is the concept of n-absorbing 
ideals. Let .n ≥ 1 be a positive integer. A proper ideal I of R is called an n-
absorbing ideal of R as in [2] if .a1, a2, . . . , an+1 ∈ R and .a1a2 · · · an+1 ∈ I , then 
there are n of the . ai’s whose product is in I . In this article, we survey some recent 
developments on conjectures (see, [2, 9], and [23]) concerning n-absorbing ideals 
of commutative rings. We survey some classifications of factorization-commutative 
rings in terms of absorbing ideals. We survey some properties of n-absorbing ideals 
in ring extensions. We strongly recommend that the reader keeps the first survey 
article [9] in hand while reading this paper. 

2 Conjectures on n-Absorbing Ideals of Commutative Rings 

Let I be a proper ideal of a commutative ring R. Then .
√

I denoted the radical ideal 
of R. A proper ideal of R is called a strongly n-absorbing ideal of R as in [2] if  
whenever .I1 · · · In+1 ⊆ I for ideals .I1, . . . , In+1 of R, then the product of some 

A. Badawi (�) 
Department of Mathematics & Statistics, The American University of Sharjah, Sharjah, UAE 
e-mail: abadawi@aus.edu 

© Springer Nature Switzerland AG 2023 
J.-L. Chabert et al. (eds.), Algebraic, Number Theoretic, and Topological Aspects 
of Ring Theory, https://doi.org/10.1007/978-3-031-28847-0_4

51

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-28847-0protect T1	extunderscore 4&domain=pdf

 885 56845 a 885 56845 a
 
mailto:abadawi@aus.edu
mailto:abadawi@aus.edu
https://doi.org/10.1007/978-3-031-28847-0_4
https://doi.org/10.1007/978-3-031-28847-0_4
https://doi.org/10.1007/978-3-031-28847-0_4
https://doi.org/10.1007/978-3-031-28847-0_4
https://doi.org/10.1007/978-3-031-28847-0_4
https://doi.org/10.1007/978-3-031-28847-0_4
https://doi.org/10.1007/978-3-031-28847-0_4
https://doi.org/10.1007/978-3-031-28847-0_4
https://doi.org/10.1007/978-3-031-28847-0_4
https://doi.org/10.1007/978-3-031-28847-0_4
https://doi.org/10.1007/978-3-031-28847-0_4


52 A. Badawi

n of the . Ij ’s is contained in I . It is clear that a strongly-n-absorbing ideal of a 
commutative ring R is an n-absorbing ideal of R. 

Anderson and Badawi in [2] made the following conjectures: 

Conjecture I If I is an n-absorbing ideal of a commutative ring R, then . (
√

I )n ⊆
I . 

Conjecture II If I is an n-absorbing ideal of a commutative ring R, then I is a 
strongly n-absorbing ideal of R. 

Conjecture III If I is an n-absorbing ideal of a commutative ring R, then . I [X]
is an n-absorbing ideal of .R[X]. 
Choi and Walker in [28] gave an affirmative answer for Conjecture I for any 

positive integer n, and G. Donadze independently in [35] gave an alternative proof 
of Conjecture I. It was shown in [10] that Conjecture II is correct for .n = 2. 
Conjectures II and III were verified in [2] for any positive integer n when R is a 
Prüfer domain. Also, Conjecture III was verified in [2] when .n = 2. Laradji in [47] 
proved that Conjectures II and III are valid for any positive integer n when R is an 
arithmetical ring (e.g., if R is a Prufer domain). It was shown in [47] that if .I [X] is 
an n-absorbing ideal of .R[X], then I is a strongly n-absorbing ideal of R, and hence 
if Conjecture III is true, then Conjecture II is true. 

We recall that a commutative ring R is said to be a U -ring provided R has the 
property that an ideal contained in a finite union of ideals must be contained in one 
of those ideals. Recall that a Prufer domain is a U -ring. The authors in [53] proved 
the following result. 

Theorem 2.1 ([53, Theorem 2.4]) If R is a U -ring, then Conjecture II holds. 

We recall from [39] and [6] that an integral domain R is called a pseudo-valuation 
domain (PVD) if R has exactly one maximal ideal M such that .(M : M) is a 
valuation domain. We recall that if .f (x) = anx

n + · · · + a0 ∈ R[x], then .C(f ) is 
the ideal .(an, . . . , a0)R. A ring  R is called a Gaussian ring if . C(fg) = C(f )C(g)

for every .f, g ∈ R[x]. The authors in [53] proved the following result. 

Theorem 2.2 

(1) [53, Theorem 2.6]. If R is a U -ring that is a Gaussian ring, then Conjecture III 
holds. 

(2) [53, Theorem 2.7]. Let .n ≥ 2. Suppose that R is a PVD with maximal ideal M 
and I is a proper ideal of R such that .

√
I �= M . Then I is an n-absorbing ideal 

of R if and only if .I [x] is an n-absorbing ideal of .R[x]. 
Since if Conjecture III holds, then Conjecture II holds by [47, Theorem 2.9(i)], 

in light of Theorem 2.2 we have the following result. 

Corollary 2.3 

(1) If R is a U -ring that is a Gaussian ring, then Conjectures II and III hold. 
(2) Let .n ≥ 2. Suppose that R is a PVD with maximal ideal M and I is a proper 

ideal of R such that .
√

I �= M . Then I is an n-absorbing ideal of R if and only if
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.I [x] is an n-absorbing ideal of .R[x], if and only if I is a strongly n-absorbing 
ideal of R. 

We recall from [33] and [12] that a commutative ring R is called a divided ring 
if .Q ⊂ xR for every prime ideal Q of R, and .x ∈ R \ Q and it is called a locally 
divided ring as in [15] if .RP is a divided ring for every prime ideal P of R. 

Recently, Choi in [27] proved the following result. 

Theorem 2.4 ([27, Corollary 13]) Let R be a locally divided ring. Then Conjec-
tures II and III hold. 

Since a PVD is a divided ring (and hence locally divided), we conclude that 
Corollary 2.3(ii) is a particular case of Theorem 2.4. 

We recall from [1] that the AF -dimension of a ring R, denoted by AF -dim(R), 
is the smallest positive integer n such that each proper ideal of R can be written as 
a finite product of n-absorbing ideals of R; if no such n exists, then AF -dim(R) = 
. ∞. A ring  R is an FAF -ring if AF -dim(R) . < . ∞. 

The following are examples of FAF -rings. 

Example 2.5 

(1) [1, Corollary 3.9]. Let .d ∈ Z−{0, 1} be a square-free integer such that . 4 | (d−1)

and .8 | (d − 5). Then .R = Z[√d] is an FAF -ring and AF -.dim(R) = 2. 
(2) [1, Corollary 4.4]. Let R be a finite direct product of fields. Then R and . R[X]

are FAF -rings. 

Choi in [27] proved the following result. 

Theorem 2.6 ([27, Theorem 39 (4)]) Assume that R is an FAF -ring. Then 
Conjectures II and III hold. 

3 2-AB-Rings and Factorization Rings 

We recall from [21] that a commutative ring R is called a 2-AB-ring if every 2-
absorbing ideal of R is prime. 

The authors in [21] proved the following results. 

Theorem 3.1 ([21, Theorem 2.3]) Let R be a commutative ring with .1 �= 0. The 
following statements are equivalent. 

(1) R is a 2-AB-ring. 
(2) R has exactly one maximal ideal, say M , such that the prime ideals of R are 

linearly ordered (by inclusion) and .IM = P for every 2-absorbing ideal I of 
R and every minimal prime ideal P over I . 

(3) R has exactly one maximal ideal, say M , such that the prime ideals of R are 
linearly ordered (by inclusion) and P is the only minimal 2-absorbing ideal 
over . P 2 for every prime ideal P of R.
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Let .n ≥ 2 be a positive integer. The authors in [43] extended the concept of 2-
AB-rings to n-AB-rings. We recall from [43] that a commutative ring R is called 
an n-AB-ring if every n-absorbing ideal of R is a prime ideal of R. They obtained 
similar results to those in Theorem 3.1. 

Theorem 3.2 ([43, Theorem 2.13]) Let R be a commutative ring with .1 �= 0. The 
following statements are equivalent. 

(1) R is an n-AB-ring. 
(2) R has exactly one maximal ideal, say M , such that the prime ideals of R are 

linearly ordered (by inclusion) and .IM = P for every n-absorbing ideal I of 
R and every minimal prime ideal P over I . 

(3) R has exactly one maximal ideal, say M , such that the prime ideals of R are 
linearly ordered (by inclusion) and P is the only minimal n-absorbing ideal 
over . P n for every prime ideal P of R. 

4 Commutative Rings with 2-Absorbing Factorization 

Let R be a commutative ring with .1 �= 0. Then R is called a TAF-ring if every 
ideal of R is a finite product of 2-absorbing ideals. The authors in [50] obtained the 
following results. 

Theorem 4.1 ([50, Theorem 3.3]) Any T AF -ring is a finite direct product of 
one-dimensional domains and zero-dimensional quasi-local rings having nilpotent 
maximal ideal. In particular, a T AF -ring of dimension one having a unique height-
zero prime ideal is a domain. 

Theorem 4.2 ([50, Corollary 3.4]) Let R be a commutative ring. The following 
are equivalent. 

(1) .R[X] is a T AF -ring. 
(2) R is a von Neumann regular T AF -ring. 
(3) R is a finite direct product of fields. 

In view of Theorem 4.2, we have the following example. 

Example 4.3 Let .R = Z5 × Q × R × Z11. Then R and .R[X] are T AF -rings by 
Theorem 4.2. 

The authors in [22] proved the following result. 

Theorem 4.4 ([22, Theorem 2.3]) Let R be a commutative ring. Then .R[X] is a 
principal ideal ring if and only if R is ring-isomorphic to a finite direct product of 
fields. 

In view of Theorems 4.4 and 4.2, we have the following result. 

Corollary 4.5 Let R be a commutative ring. The following are equivalent.
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(1) .R[X] is a T AF -ring. 
(2) R is a von Neumann regular TAF-ring. 
(3) R is a finite direct product of fields. 
(4) .R[X] is a principal ideal ring. 
Let R be an integral domain. We recall the following definitions. 

(1) We say R has finite character if every .x ∈ R−{0} belongs to only finitely many 
maximal ideals of R. 

(2) R is called an atomic domain if every nonzero non-unit can be written in at least 
one way as a finite product of irreducible elements. 

(3) R is a discrete valuation ring (DVR) if R is a principal ideal domain (PID) with 
exactly one nonzero maximal ideal. 

(4) R is an ACCP-domain if there is no infinite strictly ascending chain of principal 
ideals. 

We recall from [50] that a proper ideal I of R is called a T A-ideal if I is a finite 
product of 2-absorbing ideals. 

Theorem 4.6 ([50, Theorem 4.3]) Let R be an integral domain that is not a field 
with exactly one maximal ideal M . The following are equivalent. 

(1) R is a T AF -domain. 
(2) R is one-dimensional and every principal ideal of R is a T A-ideal. 
(3) R is atomic, one-dimensional and every atom of R generates a T A-ideal. 
(4) R is atomic and .M2 is universal (i.e. .M2 ⊆ aR for each atom .a ∈ R). 
(5) R is an atomic PVD. 
(6) R is a PVD which satisfies ACCP. 
(7) .(M : M) is a DVR with maximal ideal M . 

Furthermore, if R is Noetherian, then the integral closure . R′ of R is a DVR 
with maximal ideal M . 

Theorem 4.7 ([50, Theorem 4.4]) 
Let R be an integral domain. The following are equivalent. 

(1) R is a T AF -domain. 
(2) R has finite character and .RM is a TAF-domain for each maximal ideal M of R. 
(3) R has finite character and .RM is an atomic PVD for each maximal ideal M 

of R. 
(4) R has finite character and .RM is an ACCP PVD for each maximal ideal M 

of R. 
(5) R is a one-dimensional domain which has finite character and every principal 

ideal of R is a TA-ideal. 
(6) R is a one-dimensional ACCP-domain that has finite character and every 

principal ideal generated by an atom is a TA-ideal. 

If R is a Noetherian domain, then we have the following result.
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Theorem 4.8 ([50, Corollary 4.5]) For a Noetherian domain R that is not a field, 
the following are equivalent. 

(1) R is a TAF-domain. 
(2) .RM is a TAF-domain for each maximal ideal M of R. 
(3) .RM is a PVD for each maximal ideal M of R. 
(4) .R′

M is a DVR with maximal ideal .MRM for each maximal ideal M of R. 
(5) R is one-dimensional and every principal ideal generated by an atom is a TA-

ideal. 

Theorem 4.9 

(1) [50, Corollary 4.7]. Let R be a Noetherian domain. If R is a TAF-domain, then 
so is every overring of R. 

(2) [50, Corollary 4.8]. Let .K ⊆ L be a field extension. Then .K + XL[X] is a 
TAF-domain. 

(3) [50, Corollary 4.11]. Let .d ∈ Z − {0, 1} be a square-free integer such that 
.4 | (d − 1). Then .Z[√d] is a TAF-domain if and only if .8 | (d − 5). 

5 Commutative Rings with Absorbing Factorization 

We recall from [1] that the AF -dimension of a ring R, denoted by AF -dim(R), is 
the smallest positive integer n such that each proper ideal of R can be written as a 
finite product of n-absorbing ideals of R; if no such n exists, then AF -dim(R) = . ∞. 
A ring R is an FAF -ring if AF -dim(R) . < . ∞. Recall that a ZPI-ring is a ring whose 
proper ideals can be written as a product of prime ideals. Hence, . AF − dim(R)

measures, in some sense, how far R is from being a ZPI-ring. 
The following is a structure theorem for the FAF-rings. 

Theorem 5.1 ([1, Theorem 4.2]) Any FAF-ring is a finite direct product of one-
dimensional domains and zero-dimensional local rings with nilpotent maximal 
ideal. In particular, an FAF-ring of Krull dimension one having unique height-zero 
prime ideal is a domain. 

Recall that a ring R is said to be special primary if R has exactly one maximal 
ideal M and every proper ideal of R is a power of M . Note that if R is a ZPI ring, 
then R is a special primary ring. 

Recall that R is called a chained ring if .a | b or .b | a for every .a, b ∈ R. 

Theorem 5.2 ([1, Proposition 3.4]) A chained ring R is an FAF-ring if and only if 
R is a special primary ring. 

The next result says that the AF-dimension of a factor (resp. fraction) ring is 
bounded above by the AF-dimension of the ring. 

Theorem 5.3 ([1, Proposition 3.5]) Let R be an FAF-ring and T a factor or a 
fraction ring of R. Then .AF − dim(T ) ≤ AF − dim(R).
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Theorem 5.4 ([1, Proposition 3.6]) Let .R1, . . . , Rk be FAF-rings and . R = R1 ×
· · · × Rk . Then .AF − dim(R) = max{AF − dim(Ri) | 1 ≤ i ≤ k}. 

Denote by .Min(I) the set of minimal prime ideals over an ideal I . 

Theorem 5.5 ([1, Proposition 3.7]) Let R be an FAF-ring and I a proper ideal. 
Then .Min(I) is finite. 

Theorem 5.6 ([1, Proposition 3.8]) Let R be a finite ring of order . m such that 
.pn+2

� m for each prime p. Then .AF − dim(R) ≤ n. Moreover, . AF −
dim(Zpn+1 [X]/(X2, pX)) = n + 1. 

Recall that if R is a ring, then .Spec(R) = {P | P is a prime ideal of . R}. 
Theorem 5.7 ([1, Theorem 5.4]) Let R be a commutative Noetherian one-
dimensional domain with nonzero conductor .(R : R′), where . R′ is the integral 
closure of R. The following are equivalent. 

(1) R is an FAF-domain. 
(2) .RM is an FAF-domain for each maximal ideal M of R. 
(3) The spectral map .Spec(R′) → Spec(R) is bijective. 

In view of Theorem 5.7, we have the following example. 

Example 5.8 ([1, Example 5.5]) 

(1) .AF − dim(Z[2i]) = 3. 
(2) .R = Z[ 3

√
4] is an FAF-ring. Since .R′ = Z[ 3

√
2] and .R ⊆ R′ is a root extension 

(i.e., .z2 ∈ R for each .z ∈ R′), the map .Spec(R′) → Spec(R) is bijective. 
Hence R is an FAF-domain by Theorem 5.7. 

(3) .R = Z[ 3
√

10] is not an FAF-ring. Note that .R′ = Z[t] with .t = 1+ 3√10+ 3√100
3 . 

Furthermore, .(3, t) and .(3, t −1) are two distinct prime ideals lying over . (3, 1−
3
√

10) in .Z[ 3
√

10]. Thus R is not an FAF-ring by Theorem 5.7. 
(4) Let K be a field. Consider the Noetherian one-dimensional domains . A =

K + X(X − 1)K[X] and .B = K + XnK[X] for some .n ≥ 2. Their integral 
closure is .K[X]. Consider the spectral maps .Spec(K[X]) → Spec(A) and 
.Spec(K[X]) → Spec(B). Since only the second one is bijective, we get that B 
is an FAF-domain while A is not. 

Theorem 5.9 ([1, Corollary 4.4]) Let R be a commutative ring. The following are 
equivalent. 

(1) .R[X] is an FAF-ring. 
(2) R is a von Neumann regular FAF-ring. 
(3) R is a finite direct product of fields. 
(4) .R[X] is a ZPI-ring. 

Since .R[X] is a T FT -ring if and only if R is a finite direct product of fields by 
Corollary 4.5 if and only if R is an FAF-ring by Theorem 5.9, we have the following 
result.
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Corollary 5.10 Let R be a commutative ring. The following are equivalent. 

(1) .R[X] is a T AF -ring. 
(2) R is a von Neumann regular TAF-ring. 
(3) R is a finite direct product of fields. 
(4) .R[X] is a principal ideal ring. 
(5) .R[X] is an FAF-ring. 
(6) R is a von Neumann regular FAF-ring. 
(7) .R[X] is a ZPI-ring. 
For a one-dimensional domain R, we have the following result. 

Theorem 5.11 ([1, Theorem 4.3]) Let R be a one-dimensional domain. The 
following are equivalent. 

(1) R is an FAF-domain. 
(2) R has finite character and there is some positive integer d such that . AF −

dim(RM) ≤ d for each maximal ideal M of R. 

Acknowledgments The author would like to thank the referee for a careful reading of the paper. 
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