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1 Introduction

Let R be a commutative ring with 1 # 0 and I be a proper ideal of R. Then [ is
called a 2-absorbing ideal of R as in [10] if whenever abc € I for some a, b, c €
R,thenab € I or bc € I or ac € I. Over the past 15 years, there has been
considerable attention in the literature to 2-absorbing ideals of commutative rings
and their generalizations, for example, see [1-5, 9-11, 13-21, 23-26, 30-38, 40—
56]. A more general concept than 2-absorbing ideals is the concept of n-absorbing
ideals. Let n > 1 be a positive integer. A proper ideal I of R is called an n-
absorbing ideal of R asin [2] if aj,as,...,an+1 € R and ajaz - - -ap+1 € I, then
there are n of the a;’s whose product is in /. In this article, we survey some recent
developments on conjectures (see, [2, 9], and [23]) concerning n-absorbing ideals
of commutative rings. We survey some classifications of factorization-commutative
rings in terms of absorbing ideals. We survey some properties of n-absorbing ideals
in ring extensions. We strongly recommend that the reader keeps the first survey
article [9] in hand while reading this paper.

2 Conjectures on n-Absorbing Ideals of Commutative Rings

Let I be a proper ideal of a commutative ring R. Then +/1 denoted the radical ideal
of R. A proper ideal of R is called a strongly n-absorbing ideal of R as in [2] if
whenever [y ---I,,11 € I forideals I, ..., I,4+1 of R, then the product of some
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n of the I;’s is contained in /. It is clear that a strongly-n-absorbing ideal of a
commutative ring R is an n-absorbing ideal of R.
Anderson and Badawi in [2] made the following conjectures:

Conjecture I  If / is an n-absorbing ideal of a commutative ring R, then /D"
I.

Conjecture I  If 7 is an n-absorbing ideal of a commutative ring R, then [ is a
strongly n-absorbing ideal of R.

Conjecture III  If / is an n-absorbing ideal of a commutative ring R, then /[X]
is an n-absorbing ideal of R[X].

Choi and Walker in [28] gave an affirmative answer for Conjecture I for any
positive integer n, and G. Donadze independently in [35] gave an alternative proof
of Conjecture I. It was shown in [10] that Conjecture II is correct for n = 2.
Conjectures II and III were verified in [2] for any positive integer n when R is a
Priifer domain. Also, Conjecture III was verified in [2] when n = 2. Laradji in [47]
proved that Conjectures II and III are valid for any positive integer n when R is an
arithmetical ring (e.g., if R is a Prufer domain). It was shown in [47] that if I[X] is
an n-absorbing ideal of R[X], then [ is a strongly n-absorbing ideal of R, and hence
if Conjecture III is true, then Conjecture II is true.

We recall that a commutative ring R is said to be a U-ring provided R has the
property that an ideal contained in a finite union of ideals must be contained in one
of those ideals. Recall that a Prufer domain is a U-ring. The authors in [53] proved
the following result.

Theorem 2.1 ([53, Theorem 2.4]) If R is a U-ring, then Conjecture Il holds.

We recall from [39] and [6] that an integral domain R is called a pseudo-valuation
domain (PVD) if R has exactly one maximal ideal M such that (M : M) is a
valuation domain. We recall that if f(x) = a,x" + -+ 4+ ap € R[x], then C(f) is
the ideal (ay, ..., ap)R. A ring R is called a Gaussian ring if C(fg) = C(f)C(g)
for every f, g € R[x]. The authors in [53] proved the following result.

Theorem 2.2

(1) [53, Theorem 2.6]. If R is a U-ring that is a Gaussian ring, then Conjecture 111
holds.

(2) [53, Theorem 2.7]. Let n > 2. Suppose that R is a PVD with maximal ideal M
and I is a proper ideal of R such that /T # M. Then I is an n-absorbing ideal
of R if and only if I[x] is an n-absorbing ideal of R[x].

Since if Conjecture III holds, then Conjecture II holds by [47, Theorem 2.9(i)],
in light of Theorem 2.2 we have the following result.

Corollary 2.3

(1) If R is a U-ring that is a Gaussian ring, then Conjectures Il and III hold.
(2) Let n > 2. Suppose that R is a PVD with maximal ideal M and I is a proper
ideal of R such that /T # M. Then I is an n-absorbing ideal of R if and only if
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I[x] is an n-absorbing ideal of R[x], if and only if I is a strongly n-absorbing
ideal of R.

We recall from [33] and [12] that a commutative ring R is called a divided ring
if @ C xR for every prime ideal Q of R, and x € R\ Q and it is called a locally
divided ring as in [15] if Rp is a divided ring for every prime ideal P of R.

Recently, Choi in [27] proved the following result.

Theorem 2.4 ([27, Corollary 13]) Let R be a locally divided ring. Then Conjec-
tures Il and 111 hold.

Since a PVD is a divided ring (and hence locally divided), we conclude that
Corollary 2.3(ii) is a particular case of Theorem 2.4.

We recall from [1] that the A F-dimension of a ring R, denoted by A F-dim(R),
is the smallest positive integer n such that each proper ideal of R can be written as
a finite product of n-absorbing ideals of R; if no such n exists, then A F-dim(R) =
co. Aring R is an FAF-ring if AF-dim(R) < oco.

The following are examples of F'A F-rings.

Example 2.5

(1) [1,Corollary 3.9]. Letd € Z—{0, 1} be a square-free integer such that4 | (d—1)
and 8 | (d —5). Then R = Z[\/E] isan FAF-ring and AF-dim(R) = 2.

(2) [1, Corollary 4.4]. Let R be a finite direct product of fields. Then R and R[X]
are FAF-rings.

Choi in [27] proved the following result.

Theorem 2.6 ([27, Theorem 39 (4)]) Assume that R is an FAF-ring. Then
Conjectures Il and III hold.

3 2-AB-Rings and Factorization Rings

We recall from [21] that a commutative ring R is called a 2-AB-ring if every 2-
absorbing ideal of R is prime.
The authors in [21] proved the following results.

Theorem 3.1 ([21, Theorem 2.3]) Let R be a commutative ring with 1 # 0. The
following statements are equivalent.

(1) Risa?2-AB-ring.

(2) R has exactly one maximal ideal, say M, such that the prime ideals of R are
linearly ordered (by inclusion) and IM = P for every 2-absorbing ideal I of
R and every minimal prime ideal P over I.

(3) R has exactly one maximal ideal, say M, such that the prime ideals of R are
linearly ordered (by inclusion) and P is the only minimal 2-absorbing ideal
over P? for every prime ideal P of R.
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Let n > 2 be a positive integer. The authors in [43] extended the concept of 2-
AB-rings to n-AB-rings. We recall from [43] that a commutative ring R is called
an n-A B-ring if every n-absorbing ideal of R is a prime ideal of R. They obtained
similar results to those in Theorem 3.1.

Theorem 3.2 ([43, Theorem 2.13]) Let R be a commutative ring with 1 #£ 0. The
following statements are equivalent.

(1) Risann-AB-ring.

(2) R has exactly one maximal ideal, say M, such that the prime ideals of R are
linearly ordered (by inclusion) and IM = P for every n-absorbing ideal I of
R and every minimal prime ideal P over I.

(3) R has exactly one maximal ideal, say M, such that the prime ideals of R are
linearly ordered (by inclusion) and P is the only minimal n-absorbing ideal
over P" for every prime ideal P of R.

4 Commutative Rings with 2-Absorbing Factorization

Let R be a commutative ring with 1 # 0. Then R is called a TAF-ring if every
ideal of R is a finite product of 2-absorbing ideals. The authors in [50] obtained the
following results.

Theorem 4.1 ([50, Theorem 3.3]) Any TAF-ring is a finite direct product of
one-dimensional domains and zero-dimensional quasi-local rings having nilpotent
maximal ideal. In particular, a T A F-ring of dimension one having a unique height-
zero prime ideal is a domain.

Theorem 4.2 ([50, Corollary 3.4]) Let R be a commutative ring. The following
are equivalent.

(1) R[X]isaTAF-ring.
(2) R is avon Neumann regular T AF -ring.
(3) R is a finite direct product of fields.

In view of Theorem 4.2, we have the following example.

Example 4.3 Let R = Zs x Q x R x Z1;. Then R and R[X] are T AF-rings by
Theorem 4.2.

The authors in [22] proved the following result.

Theorem 4.4 ([22, Theorem 2.3]) Let R be a commutative ring. Then R[X] is a
principal ideal ring if and only if R is ring-isomorphic to a finite direct product of
fields.

In view of Theorems 4.4 and 4.2, we have the following result.

Corollary 4.5 Let R be a commutative ring. The following are equivalent.
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(1) R[X]isaTAF-ring.

(2) R is a von Neumann regular TAF-ring.
(3) R is a finite direct product of fields.
(4) R[X] is a principal ideal ring.

Let R be an integral domain. We recall the following definitions.

(1) We say R has finite character if every x € R — {0} belongs to only finitely many
maximal ideals of R.

(2) R s called an atomic domain if every nonzero non-unit can be written in at least
one way as a finite product of irreducible elements.

(3) R is adiscrete valuation ring (DVR) if R is a principal ideal domain (PID) with
exactly one nonzero maximal ideal.

(4) R is an ACCP-domain if there is no infinite strictly ascending chain of principal
ideals.

We recall from [50] that a proper ideal I of R is called a T A-ideal if I is a finite
product of 2-absorbing ideals.

Theorem 4.6 ([50, Theorem 4.3]) Let R be an integral domain that is not a field
with exactly one maximal ideal M. The following are equivalent.

(1) RisaTAF-domain.
(2) R is one-dimensional and every principal ideal of R is a T A-ideal.
(3) R is atomic, one-dimensional and every atom of R generates a T A-ideal.
(4) R is atomic and M? is universal (i.e. M*> C aR for each atom a € R).
(5) R is an atomic PVD.
(6) R is a PVD which satisfies ACCP.
(7) (M : M) is a DVR with maximal ideal M.
Furthermore, if R is Noetherian, then the integral closure R’ of R is a DVR
with maximal ideal M.

Theorem 4.7 ([50, Theorem 4.4])
Let R be an integral domain. The following are equivalent.

(1) Risa TAF-domain.

(2) R has finite character and Ry is a TAF-domain for each maximal ideal M of R.

(3) R has finite character and Ry is an atomic PVD for each maximal ideal M
of R.

(4) R has finite character and Ry is an ACCP PVD for each maximal ideal M
of R.

(5) R is a one-dimensional domain which has finite character and every principal
ideal of R is a TA-ideal.

(6) R is a one-dimensional ACCP-domain that has finite character and every
principal ideal generated by an atom is a TA-ideal.

If R is a Noetherian domain, then we have the following result.
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Theorem 4.8 ([50, Corollary 4.5]) For a Noetherian domain R that is not a field,
the following are equivalent.

(1) R is a TAF-domain.

(2) Ry is a TAF-domain for each maximal ideal M of R.

(3) Ry is a PVD for each maximal ideal M of R.

(4) R}, is a DVR with maximal ideal M Ry for each maximal ideal M of R.

(5) R is one-dimensional and every principal ideal generated by an atom is a TA-
ideal.

Theorem 4.9

(1) [50, Corollary 4.7]. Let R be a Noetherian domain. If R is a TAF-domain, then
so is every overring of R.

(2) [50, Corollary 4.8]. Let K C L be a field extension. Then K + XL[X] is a
TAF-domain.

) [50, Corollary 4.11]. Let d € Z — {0, 1} be a square-free integer such that
4| (d —1). Then Z[\/E] is a TAF-domain if and only if 8 | (d — 5).

S Commutative Rings with Absorbing Factorization

We recall from [1] that the A F-dimension of a ring R, denoted by A F-dim(R), is
the smallest positive integer n such that each proper ideal of R can be written as a
finite product of n-absorbing ideals of R; if no such n exists, then A F-dim(R) = co.
Aring R is an FAF-ring if AF-dim(R) < oo. Recall that a ZPI-ring is a ring whose
proper ideals can be written as a product of prime ideals. Hence, AF — dim(R)
measures, in some sense, how far R is from being a ZPI-ring.

The following is a structure theorem for the FAF-rings.

Theorem 5.1 ([1, Theorem 4.2]) Any FAF-ring is a finite direct product of one-
dimensional domains and zero-dimensional local rings with nilpotent maximal
ideal. In particular, an FAF-ring of Krull dimension one having unique height-zero
prime ideal is a domain.

Recall that a ring R is said to be special primary if R has exactly one maximal
ideal M and every proper ideal of R is a power of M. Note that if R is a ZPI ring,
then R is a special primary ring.

Recall that R is called a chained ring ifa | b or b | a for every a, b € R.

Theorem 5.2 ([1, Proposition 3.4]) A chained ring R is an FAF-ring if and only if
R is a special primary ring.

The next result says that the AF-dimension of a factor (resp. fraction) ring is
bounded above by the AF-dimension of the ring.

Theorem 5.3 ([1, Proposition 3.5]) Let R be an FAF-ring and T a factor or a
fraction ring of R. Then AF — dim(T) < AF — dim(R).
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Theorem 5.4 ([1, Proposition 3.6]) Let Ry, ..., Ry be FAF-rings and R = R X
-+ X Ry. Then AF — dim(R) = max{AF —dim(R;) | 1 <i <k}.

Denote by Min([) the set of minimal prime ideals over an ideal /.

Theorem 5.5 ([1, Proposition 3.7]) Let R be an FAF-ring and I a proper ideal.
Then Min(I) is finite.

Theorem 5.6 ([1, Proposition 3.8]) Let R be a finite ring of order m such that
P2t m for each prime p. Then AF — dim(R) < n. Moreover, AF —
dim(Z 1 [X1/(X?, pX)) =n+ 1.

Recall that if R is a ring, then Spec(R) = {P | P is a prime ideal of R}.

Theorem 5.7 ([1, Theorem 5.4]) Let R be a commutative Noetherian one-
dimensional domain with nonzero conductor (R : R'), where R’ is the integral
closure of R. The following are equivalent.

(1) R is an FAF-domain.
(2) Ry is an FAF-domain for each maximal ideal M of R.
(3) The spectral map Spec(R’) — Spec(R) is bijective.

In view of Theorem 5.7, we have the following example.
Example 5.8 ([1, Example 5.5])

() AF —dim(Z[2i]) = 3.

(2) R = Z[V/4] is an FAF-ring. Since R’ = Z[~/2] and R C R’ is a root extension
(i.e., z2 € R for each z € R’), the map Spec(R’) — Spec(R) is bijective.
Hence R is an FAF-domain by Theorem 5.7.

3 3

(3) R = Z[/10] is not an FAF-ring. Note that R’ = Z[¢] with ¢ = 1=¥/10+ V100
Furthermore, (3, ¢) and (3,  — 1) are two distinct prime ideals lying over‘(3, 1—
J10) in Z[+/10]. Thus R is not an FAF-ring by Theorem 5.7.

(4) Let K be a field. Consider the Noetherian one-dimensional domains A =
K 4+ X(X — 1D)K[X]and B = K + X"K[X] for some n > 2. Their integral
closure is K[X]. Consider the spectral maps Spec(K[X]) — Spec(A) and
Spec(K[X]) — Spec(B). Since only the second one is bijective, we get that B
is an FAF-domain while A is not.

Theorem 5.9 ([1, Corollary 4.4]) Let R be a commutative ring. The following are
equivalent.

(1) R[X]isan FAF-ring.

(2) R is a von Neumann regular FAF-ring.
(3) R is a finite direct product of fields.
(4) R[X]isaZPI-ring.

Since R[X]is a T FT-ring if and only if R is a finite direct product of fields by
Corollary 4.5 if and only if R is an FAF-ring by Theorem 5.9, we have the following
result.
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Corollary 5.10 Let R be a commutative ring. The following are equivalent.

(1) R[X]isaTAF-ring.

(2) R is a von Neumann regular TAF-ring.
(3) R is a finite direct product of fields.
(4) R[X] is a principal ideal ring.

(5) R[X]is an FAF-ring.

(6) R is a von Neumann regular FAF-ring.
(7) R[X]isaZPI-ring.

For a one-dimensional domain R, we have the following result.

Theorem 5.11 ([1, Theorem 4.3]) Let R be a one-dimensional domain. The
following are equivalent.

(1) R is an FAF-domain.
(2) R has finite character and there is some positive integer d such that AF —
dim(Ry) < d for each maximal ideal M of R.

Acknowledgments The author would like to thank the referee for a careful reading of the paper.
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