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Abstract

The project is an application of graph theory to number theory and abstract algebra. Its
primary objective is to study the graphical manifestation of the algebraic properties of the ring
of integers modulo n, Zn. This report initiates by presenting basic concepts and terminology
from graph theory and abstract algebra. It delineates the construction of a graph associated
with the ring of integers modulo n, and studies its properties. These include conditions required
for the connectivity of the graph, as well as descriptions of components, vertices, edges and
paths in the graph. Emphasis is provided on the induced subgraph of units and zero divisors,
and the interplay between the additive and multiplicative operations of the ring and their
exhibition as properties of the subgraphs. Theorems pertaining to these are derived and proved
using concepts from abstract algebra and ring theory. The report then provides examples
of various graphs, classified based on connectivity. The results are verified using computer
simulations, and algorithms to construct graphs and test a variety of these properties are also
presented.
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1 Introduction

1.1 Basic Terminology

1.1.1 Graph Theory

� A graph, G = (V,E) consists of two sets, V and E, where:

– V is the set of vertices

– E is the set of edges (note that an edge is undirected line segment that connects two
vertices)

� If a vertex v ∈ V is an endpoint of an edge e ∈ E, then v is said to be incident on e.

� Let u, v ∈ V . u and v are said to be adjacent if u and v are joined by an edge, i.e. if (u, v) ∈ E.
Two adjacent vertices are sometimes referred to as neighbors [1].

� A Graph is said to be regular if each vertex of the graph has the same degree. More precisely,
if the degree of each vertex is d, then the graph is said to be d-regular.

� A graph is said to be simple if it has no loops and no multi-edges.

� A path in a graph is an alternating sequence of distinct vertices and distinct edges. For a
simple graph, this can simply be represented as a sequence of vertices, as there can be at most
one edge joining two vertices.

� The path can thus be represented as v0−v1− ...−vn, where the vi’s are distinct vertices such
that

– v0 is said to be the initial vertex.

– vn is said to be the final vertex.

– vi is said to be an internal vertex.

� A path is said to be closed if the initial and final vertex are the same.

� The length of a path is the number of edges that are traversed during the path, for example,
v1 − v2 − v3 is a path of length 2 and v1 − v2 − v3 − v4 is a path of length 3.

� A cycle is a closed path of length at least 3.

� The girth of a graph is the length of its smallest cycle and if a graph has no cycles, then we
say that the girth is infinity.

� The Complete Graph on n vertices is denoted as Kn, and consists of n vertices such that if
u, v ∈ V and u 6= v, then (u, v) ∈ E, i.e. u− v is an edge.

� A graph is said to be bipartite if its vertices can be partitioned into two sets in such a way
that no edge joins two vertices in the same set.

� The Complete Bipartite Graph on r, s vertices is denoted as Kr,s is a simple bipartite graph
in which V can be partitioned into V1 and V2 such that V1 ∪ V2 = V , V1 ∩ V2 = Φ, |V1| = r,
|V2| = s, and each element of V1 is adjacent to all elements of V2, and each element of V2 is
adjacent to all elements of V1, but no edge joins two vertices in V1 or V2.
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� The distance between two vertices in a graph is the length of the shortest path between them.
Let a, b be two distinct vertices in a graph. Then d(a, b) denotes the distance between a and
b.

� The diameter of a graph is defined as Max{d(u, v) | u, v are distinct vertices}.

� A graph is said to be connected if there exists a path between any two pairs of vertices, u and v.

� Two simple graphs, G and H are said to be isomorphic if ∃φ : VG → VH such that φ is bijective,
and such that ∀u, v ∈ VG, (u, v) ∈ EG ⇐⇒ (φ(u), φ(v)) ∈ EH . If such an isomorphism exists, we
denote it as G ∼= H.

� A subgraph H of a graph G is a graph such that VH ⊂ VG and EH ⊂ EG.

� An induced subgraph H of a graph G, on a vertex set W = {w1, w2, ..., wk} ⊆ VG has VH = W and
EH = {e ∈ EG | the end points of edge e are in W}.

� A component of a graph G is a connected subgraph H such that no subgraph of G that properly
contains H is connected. Hence, a component of a graph is a maximally connected subgraph.

� A path is said to be Hamiltonian if it traverses all the vertices v ∈ V such that no vertex is incident
twice. A closed Hamiltonian path has no repeated vertices except the initial and final vertex, and
is called a Hamiltonian cycle.

� A path is said to be Eulerian if it traverses all the edges e ∈ E such that no edge is incident twice.
Further, if the path is closed, then it is called an Eulerian cycle.

� The chromatic number of a graph G, denoted as χ(G) is the smallest number of colors required to
color G in such a way that no two neighbors share the same color.

� A graph is said to be planar if it can be embedded in a plane. In other words, it can be drawn in
such a way that no two edges intersect each other.

� The clique number of a graph G is the cardinality of the largest set W such that W ⊂ VG and the
induced subgraph on W is a complete graph. It is denoted as ω(G).

� The dominating number of a graph G is the cardinality of the smallest set B ⊂ V such that
∀v ∈ V ∃b ∈ B such that (b, v) ∈ EG. The set B which satisfies this is called a domminating set.
The dominating number is characteristic of the graph and is unique, but the dominating set need
not be unique.

� A tree is a connected graph with no cycles.

� A spanning subgraph, H of a graph G has its vertex set VH = VG.

� A spanning tree of a graph G is a subgraph of G which is a tree.
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1.1.2 Ring Theory and Number Theory

� A ring is an algebraic structure on a set A along with operations (+,×) referred to as addition
and multiplication where the following axioms are obeyed [2] [3]:

– A is an Abelian group under addition.

* A is closed under addition.

* Addition is associative, so that a+ (b+ c) = (a+ b) + c ∀a, b, c ∈ A.

* Additive Identity: ∃0 ∈ A such that 0 + a = a+ 0 ∀a ∈ A.

* Additive Inverse: ∀a ∈ A,∃ − a ∈ A such that a+ (−a) = 0.

* Abelian: a+ b = b+ a ∀a, b ∈ A.

– A is closed under multiplication.

– Multiplication is associative, so that a× (b× c) = (a× b)× c.
– Multiplication distributes over addition, so that a× (b+ c) = (a× b) + (a× c).
– (Multiplicative Identity): ∃1 ∈ A such that 1× a = a ∀a ∈ A.

� Examples of rings include:

– R, the set of real numbers

– C, the set of complex numbers

– Q, the set of rational numbers

– Z, the set of integers

– Zn, the set of integers (mod n).

� A subring of a ring A is a ring B such that B ⊂ A.

� A ring is said to be commutative if a× b = b× a ∀a, b ∈ A.

� An ideal B of a commutative ring A is a subring of A such that a × b ∈ B ∀b ∈ B and
∀a ∈ A.

� A principal ideal of a commutative ring A is an ideal that is generated by a single element,
p. It is denoted as (p) and defined as (p) = pA = {p× a | a ∈ A}.

� A ring A is said to be a Principal Ideal Domain (PID) if it is a commutative ring, and all its
ideals are principal ideals.

� Quotient Ring: If A is a ring, and B is an ideal of the ring, then the ring R = A/B is said to
be the quotient ring. Here, r ∈ R =⇒ r = a+B, where a ∈ A. Addition and Multiplication
are defined as:

– r1 + r2 = (a1 +B) + (a2 +B) = (a1 + a2) +B.

– r1 × r2 = (a1 +B)× (a2 +B) = (a1 × a2) +B.

� Cosets: The element r = a + B ∈ A/B is called the left coset of a. A right coset is similarly
defined, but for commutative rings, both are the same and we do not distinguish between
them.
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� A ring is said to be finite if |A| <∞.

� Let a ∈ A. Then a is said to be a

– Unit Element if ∃b ∈ A such that a× b = 1.

– Zero Divisor if ∃b ∈ A such that a× b = 0 and b 6= 0.

� A ring is said to be an integral domain if it is commutative and it has no non-zero zero-divisors.

� Euler’s φ(·) Function: Let A = Zn. Then φ(n) is the number of unit elements in Zn.

� Prime Ideals: An ideal P of a commutative ring R is said to be a prime ideal if it is a proper
ideal with the property that a× b ∈ P =⇒ a ∈ P or b ∈ P .

� Maximal Ideals: A proper ideal M of a commutative ring A is said to be maximal if there
exists no other proper ideal J of the ring A such that M ⊂ J . In finite commutative rings,
prime and maximal ideals are the same.

� Intersection of Ideals: If I1 and I2 are two ideals of a ring A, then I = I1 ∩ I2 consists of all
i ∈ A such that i ∈ I1 and i ∈ I2.

� Product of Ideals: If I1 and I2 are two ideals of a ring A, then I = I1I2 = {
∑n
j=0 i1i2 | i1 ∈

I1, i2 ∈ I2 for n = 1, 2, ...}.

� The Fundamental Theorem of Arithmetic: Each positive integer n can be written as a product
of primes in a unique way up to the order of factors.

� The Chinese Remainder Theorem: For a commutative ring A, if I1, I2,...Ik are pairwise
co-prime ideals of A (i.e., Ik + Il = R), then R/

⋂k
j=1 Ij = R/I1 × ...× R/Ik

� A Complete Reduced System of Residues (mod n): A set of integers A is said to be a complete
reduced system of residues (mod n) if every integer is congruent modulo n to exactly one
integer in A and |A| = n.

1.2 Graph Construction

This section delineates the construction of a graph whose vertex set is the ring of integers modulo
n. Consider the ring Zn with addition and multiplication modulo n. Construct the graph G(Zn) as
follows:

� Write n in terms of its unique prime factorization.

� Assign G(Zn) with the vertex set VG = Zn.

� Connect two distinct vertices a and b with an edge iff p | a+ b for some prime factor p of n.
Therefore, (a, b) ∈ EG iff a 6= b and ∃ p | a+ b such that p is a prime factor of n.

� The graph is undirected and simple. Hence, there are no multiedges and no loops.
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1.3 Notation

In this paper, the following terminology has been used in relation to the definitions presented in
Section 1.1:

� G(Zn) is the graph of the ring Zn.

� VG(Zn) = Zn = {0, 1, ..., n− 1} is the set of vertices of G(Zn).

� EG(Zn) = {(a, b) | a, b ∈ VG(Zn) and a and b are connected} is the set of edges of G(Zn).

� U(Zn) is the set of all Unit Elements of Zn.

� Z(Zn) is the set of all Zero Divisors of Zn.

� UG(Zn) is the name of the induced subgraph on U(Zn).

� ZG(Zn) is the name of the induced subgraph on Z(Zn).

� φ(n) = |U(Zn)|. It is used in the context of the number of vertices in UG(Zn).

� γ(n) is the degree of each of the φ(n) vertices in UG(Zn).

� If a1 and a2 are connected with an edge, then it is represented as a1 − a2. Similarly, by
extension, a path on n vertices is represented as a1 − a2 − ...− an.

� The degree of a vertex x is denoted as deg(x).

� The diameter of the graph is denoted as diam(G(Zn)).

� The girth of the graph is denoted as g(G(Zn)).

� The chromatic number of the graph is denoted as χ(G(Zn)).

� The clique number of the graph is denoted as ω(G(Zn)).

� Kn represents the complete graph with n vertices.

� Kp,q represents the complete bipartite graph with partitions V1 and V2 such that |V1| = p and
|V2| = q.

� (p) represents the principal ideal generated by p in the commutative ring of interest.

� In the figures, red vertices are the units, and blue vertices are the zero divsiors of the ring.

� In some of the graphs where n is large, the labels on the vertices have been removed for easier
visibility of the inherent patterns.

8



1.4 Objectives

This section outlines some of the objectives of this project.

� Determining the conditions on n so that G(Zn) is connected.

� Describing the components of G(Zn) when it is not connected.

� Assume a and b are two vertices. Find a path a− v1− v2− ...vm− b such that ∀i, 1 ≤ i ≤ m,
there is a prime factor p of n such that p | vi.

� Assume a and b are two vertices. Find a path a− v1− v2− ...vm− b such that ∀i, 1 ≤ i ≤ m,
there is no prime factor p of n such that p | vi.

� Determine the diameter of G(Zn) when it is connected.

� Determine the dominating number and dominating sets of G(Zn) when it is connected.

� Determine the structure of the induced subgraph of units, UG(Zn) and identify necessary and
sufficient conditions for its connectivity.

� Determine the structure of the induced subgraph of zero divisors, ZG(Zn) and identify nec-
essary and sufficient conditions for its connectivity.

� Determine the degrees of vertices in G(Zn), UG(Zn), and ZG(Zn).

� Determine traversability in G(Zn) with respect to Eulerian and Hamiltonian paths and cycles.

� Determine the conditions for planarity of the graph G(Zn).

� Illustrate each of the above statements using computer simulations.

� Present visual examples of G(Zn),UG(Zn) and ZG(Zn) through computer simulations.

� Present algorithms to construct and verify properties of the graph as pseudocode, with ex-
amples of implementation.
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2 Results

2.1 Results on Connectivity of G(Zn)

Theorem 2.1. If n = pα, where p is a prime number and α ∈ Z+, then G(Zn) is not connected.

Proof. consider (p) = pZn = {x ∈ Zn | x = kp and k ∈ Zn}. We show that the vertices in (p) are
not connected to any vertex outside (p).

Clearly, |(p)| = pα−1. Firstly, it is clear that a, b ∈ (p) =⇒ a and b are adjacent. This is true as
a = k1p and b = k2p. Thus, a+ b = (k1 + k2)p and hence, p | a+ b. Now, pick x ∈ (p) and y /∈ (p).
Such a y always exists as pα−1 < pα ∀ α ≥ 1. By definition of (p), we have x = pq1. Further, by
Euclid’s division lemma, y = pq2 + r where 0 ≤ r < p. Since y /∈ (p), we know that r 6= 0. Hence,
x + y = pq1 + pq2 + r = p(q1 + q2) + r and 0 < r < p. Clearly, p - x + y and p is the only prime
factor of n. Therefore, x and y are not connected.

Hence, the vertices in the ideal (p) are not connected to any vertex outside (p), and Zn\(p) 6= Φ.
Thus, G(Zn) is not connected. �

Theorem 2.2. G(Zn) is connected iff n 6= pm for some prime p. Furthermore, if G(Zn) is con-
nected, then its diameter is 2.

Proof. Since 0 and 1 are not connected, we conclude that diam(G(Zn)) 6= 1. We show that ∀x, y ∈
Zn,∃w ∈ Zn such that x− w − y.

Since n is neither prime nor a power of a prime, we can write the prime factorization of n as
n = pα1

1 pα2
2 ...pαkk , where k ≥ 2 and pi 6= pj∀i 6= j. Since gcd(p1, p2) = 1, we have 1 = m1p1 +m2p2

for some m1,m2 ∈ Zn.
Let x, y ∈ Zn such that x 6= y and x is not adjacent to y. Then x = x(m1p1 + m2p2) and
y = y(m1p1 +m2p2). Consider w = −xm1p1 − ym2p2.
Then, x + w = m2p2(x − y) and y + w = m1p1(y − x). Therefore, p2 | x + w and p1 | y + w and
hence, both x and y are connected to w.
Hence x − w − y and diam(G(Zn)) = 2. Since this argument works for all x, y ∈ Zn, we conclude
that n 6= pm =⇒ G(Zn) is connected.
From Theorem 2.1 and this result, we conclude that G(Zn) is connected iff n 6= pm, where p is
prime. �

2.2 Results on Disconnected Graphs

Theorem 2.3. Let n = pm, where p is a prime number, and m ∈ Z+. The following is a charac-
terization of the components of G(Zn):

1. If p = 2. Then G(Z2m) is a union of two (complete) Kpm−1 components.

2. If p 6= 2:

There are p+1
2 components of G(Zpm), namely:

(a) 1 Complete Graph: Kpm−1 .

(b) p−1
2 Complete Bipartite Graphs Kpm−1,pm−1 .

Proof. 1. If p = 2
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(a) The graph G(Z2m) has exactly 2m vertices. In the quotient ring Z2m/(2), where (2) is
the principal ideal generated by 2, let A = (2) and B = 1 + (2). We prove that the
subgraphs of G(Z2m) induced on A and B are the components of this graph, and are
complete graphs K2m−1 .
Note that ai = 2ki ∀ ai ∈ A and bi = 2ki + 1 ∀ bi ∈ B, where ki ∈ Z+.
Clearly, ai is connected to aj ∀ i, j as ai + aj = 2ki + 2kj = 2(ki + kj) = 2k is divisible
by 2. Therefore, the subgraph of G(Zn) induced on A, G(A), forms a complete graph.
Similarly, bi is connected to bj ∀ i, j as bi + bj = (2ki + 1) + (2kj + 1) = 2(ki + kj + 1) is
divisible by 2. Therefore, the subgraph of G(Zn) induced on B, G(B), forms a complete
graph.
Further, ai is not connected to bj for any i, j as ai + bj = 2ki + (2ki + 1) = 2(2ki) + 1 is
not divisible by 2.
Therefore A and B form the components of G(Zn).

Therefore G(A) ∼= G(B) ∼= K2m−1 .

2. If p 6= 2

(a) We show that the set of zero divisors of Zn, denoted Z(Zn) forms the complete graph
Kpm−1 . Since n = pm, the only zero divisors are Z(Zn) = (p) = {0, p, 2p, 3p, ..., n − p}.
Since |(p)| = pm

p = pm−1 and all the elements of (p) are connected to each other as

m1p+m2p = (m1 +m2)p is divisible by p, Z(Zn) forms the vertex set of the complete
graph Kpm−1 .

(b) We prove that the remaining p−1
2 components are isomorphic subgraphs which themselves

are complete bipartite graphs Kpm−1,pm−1 .

Consider the quotient ring D1 = Zpm/(p) with pm

pm−1 = p elements. Consider also the

modulo p equivalence relation on the set Zpm . Then, (p) = [0] and all the elements of
D1 uniquely correspond to one of the p equivalence classes. This partitions Zpm into p
cosets.
We show that for every coset V1, there exists a coset V2 such that each element of V1 is
connected to each element of V2, and that no element of V1 is connected to any other
element of any other coset.
Since V1 = a + (p) for some a ∈ Zpm , choose V2 = −a + (p), where −a is the additive
inverse of a in the ring Zpm . Then, since V1 +V2 = 0 in D1, it is clear that ∀a1 ∈ V1 and
∀a2 ∈ V2 , a1 + a2 ∈ (p) and hence a1 is connected to a2.
Since the additive inverse is unique for all elements in the quotient ring D1, no other
coset when added to V1 yields an element in (p). Since p is the only prime factor of
n, no element of V1 is connected to any other element of any coset except V2 = −V1.
Therefore, the sets V1 and V2 form the parts of the bipartite graph.
Therefore, the cosets can be paired up when connected to each other. Since |D1| = p 6= 2,
no element is the additive inverse of itself except for the identity element. This can be
proved by contradiction. Assume ∃ x 6= 0 ∈ D1 such that x = −x. Then, 2x = 0 in Zp
since 2 - p, we must conclude that x = 0. This is a contradiction.
Therefore, based on the above pairing mechanism, (p) is paired with itself, while the
remaining p−1 elements are paired distinctly and uniquely. This yields p−1

2 components,
each of which form a bipartite graph. Since the cosets of (p) have the same cardinality,
these bipartite graphs are isomorphic to Kpm−1,pm−1 and hence isomorphic to each other.
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�

Theorem 2.4. Let n = pm. If x ∈ VG(Zn), then:

1. If p = 2
deg(x) = 2m−1 − 1 ∀ x ∈ VG(Zn)

2. If p 6= 2
deg(x) = pm−1 − 1 ∀ x ∈ (p)
deg(x) = pm−1 ∀ x /∈ (p)

Proof. 1. If p = 2, then by Theorem 2.3, we have two isomorphic complete subgraphs K2m−1 as
the components. Pick any x in either component. Since the graph is complete, this vertex is
connected to all other vertices in the component. Therefore, deg(x) = 2m−1 − 1.

2. If p 6= 2, each element of (p) is connected to all elements of (p) (Complete Graph). By the
same reasoning as item (1) above, deg(x) = pm−1 − 1.
For all vertices outside (p), the vertex belongs to the bipartite graph Kpm−1,pm−1 . Since no
vertex here is connected to itself, we have deg(x) = pm−1.

�

Theorem 2.5. If G(Zn) is disconnected, it is planar iff n is prime, or n = 4 or n = 8.

Proof. Since the graph is disconnected, we have n = pm for some prime p. If m = 1, the graph is
always planar as deg(a) = 1 ∀ a ∈ Z∗p and deg(p) = 0.

If p = 2, it is clear from Figure 1 that the graphs with VD = Z4, Z8 are planar. But, for n = 2m,
m ≥ 4, we have the subgraph with vertices {2, 4, 6, 8, 10} which is isomorphic to the complete graph
K5. Hence the graph is not planar.

If p = 3, then the graph with VD = Z9 is not planar as it contains the subgraph isomorphic to
K3,3. Here, the parts are V1 = {1, 4, 7} and V2 = {2, 5, 8}. This leaves the case when n = 3m for
m > 2. But all such graphs contain K5 as a subgraph with V = {3, 6, 9, 12, 15}.

Finally, if p > 3 and m > 1, then the graph with VD = Zpm is never planar because the subgraph
with vertices {p, 2p, 3p, 4p, 5p} is isomorphic to K5 as 5p ≤ pm ∀ m ≥ 2.

12
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(a) G(Z4) is planar
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4
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1
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5
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(b) G(Z8) is planar

Figure 1: Disconnected Planar Graphs

�

Theorem 2.6. If n = pm (p is prime and m is a positive integer), then UG(Zn) is a regular graph.

Proof. Recall that UG(Zn) is the induced subgraph on the unit elements of the ring Zn. �

Theorem 2.7. Let n = pα. Then UG(Zn) is connected iff p = 2 or p = 3.

Proof. If p = 2, then by the proof of Theorem 2.3(1), UG(Zn) is K2m−1 .
If p = 3, then by Theorem 2.3(2)(b) and its proof, we have UG(Zn) is Kpm−1,pm−1 .

If p 6= 2 and p 6= 3, then from Theorem 2.3, ∃ p−1
2 Bipartite graphs Kpm−1,pm−1 . Since p > 3, we

have p−1
2 > 1, and therefore UG(Zn) is not connected. �

2.3 Results on Connected Graphs

This section deals with connected graphs, G(Zn). Here, the prime factorization of n is n =
pα1
1 pα2

2 ...pαkk and k ≥ 2.

Theorem 2.8. Let a ∈ Zn.

1. If n is even, deg(a) = n− φ(n)− 1.

2. If n is odd, deg(a) =

{
n− φ(n) a ∈ U(Zn)

n− φ(n)− 1 a ∈ Z(Zn)

Proof. 1. Case I: n is Even
Let a ∈ Zn. a is connected to b iff a + b ∈ Z(Zn). In other words, a is connected to
b iff b = x − a and b 6= a for some x ∈ Z(Zn). Since |Z(Zn)| = n − φ(n), and since
a+ a = 2a ∈ Z(Zn) ∀a ∈ Zn, we conclude that deg(a) = n− φ(n)− 1 ∀a ∈ Zn.
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2. Case II: n is Odd
We use the same line of reasoning as in Case I. Note that the following condition still holds
true: a is connected to b iff b = x− a and b 6= a for some x ∈ Z(Zn).

(a) If a ∈ U(Zn), then x−a 6= a ∀x ∈ Z(Zn). This is true as gcd(2, n) = 1 and gcd(a, n) = 1
implies gcd(2a, n) = 1, and hence, a+ a ∈ U(Zn). Thus, deg(a) = n− φ(n).

(b) If a ∈ Z(Zn), then a+ a ∈ Z(Zn). Thus, ∃x ∈ Z(Zn) such that a = x− a. Accounting
for this, we conclude that deg(a) = n− φ(n)− 1.

�

Corollary 2.8.1. G(Zn) is regular iff n is even.

Theorem 2.9. The girth of G(Zn), g(G(Zn)) = 3.

Proof. g(G(Zn)) 6= 1 as G(Zn) has no loops.
g(G(Zn)) 6= 2 as G(Zn) has no multiedges.
Hence, g(G(Zn)) is atleast 3.

Since n = pα1
1 pα2

2 ...pαkk , with k ≥ 2, we have p2 ≥ 3. Now consider the set A = {p1, 2p1, 3p1}.
Clearly, A ⊂ Zn. But the induced subgraph on A is a cycle of length 3.

Hence, g(G(Zn)) = 3. �

Corollary 2.9.1. The girth of ZG(Zn), g(ZG(Zn)) is 3.

Theorem 2.10. Let n be odd and write n = pα1
1 pα2

2 ...pαkk , k ≥ 2 and p1 < p2 < ... < pk. Then,
∃a, b ∈ U(Zn) such that a is not adjacent to b.

Proof. Assume p1 6= 3 and let a ∈ U(Zn). Then ∃b = 2a ∈ U(Zn) and hence a and b are not
adjacent.

Now assume p1 = 3 and let a, b ∈ U(Zn). If a (mod 3) = b (mod 3), then it is clear that a and b
are not adjacent. Hence we may assume that a = 1 (mod 3) and b = 2 (mod 3). Then 2a ∈ U(Zn)
and hence 2a and b are not adjacent. �

Theorem 2.11. The induced subgraph of units, UG(Zn), is a connected graph with diameter,

diam(UG(Zn)) =

{
1, n is even

2, n is odd

Proof. Case I: n is even
Since every unit is an odd number, the sum of any two units is even. Thus, G(Zn) is isomorphic to
Kφ(n) where φ(n) = |U(Zn)|.

Case II: n is odd
Let a, b ∈ U(Zn) and assume a and b are not adjacent. Note that such a,b exist by Theorem 2.10.
It is clear that pi - a and pi - b ∀1 ≤ i ≤ k. Hence, n − a, n − b ∈ U(Zn). Let m = n

p
αk
k

, and note

that gcd(m, pαkk ) = 1.
By the Chinese Remainder Theorem, ∃a, c ∈ Zn such that c ∼= n − a (mod m) and c ∼= n − b (
mod pαkk ). Since n − a, n − b ∈ U(Zn), we conclude that c ∈ U(Zn). It is clear that m | (c + a),
in particular, p1 | (c + a) and pk | (c + b). Thus we have the path a − c − b, and the diameter of
UG(Zn) is 2. �
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Theorem 2.12. Let n = pα1
1 pα2

2 ...pαkk where k ≥ 2. Then UG(Zn) is connected iff G(Zn) is
connected.

Proof. This follows directly from Theorem 2.7 and Theorem 2.11. �

Theorem 2.13. UG(Zn) is a regular graph. Therefore, the degree of each element in UG(Zn) is
the same.

Proof. Let f : Zn → Zp1 × Zp2 × ... × Zpk be a surjective map such that f(a) = (a (mod p1), a (
mod p2), ..., a (mod pk)) = (a1, a2, ..., ak). Let a ∈ U(Zn) so that f(a) = (a1, a2, ..., ak). Clearly,
ai 6= 0 ∀i. Furthermore, we know that

n = pα1
1 pα2

2 ...pαkk =⇒ |U(Zn)| = φ(n) = pα1
1

(
1− 1

p1

)
pα2
2

(
1− 1

p2

)
· · · pαkk

(
1− 1

pk

)
.

Clearly, a is not connected to another unit b iff f(a+b) = (c1, c2, ..., ck) =⇒ ci 6= 0 ∀i. Therefore, if
b ∈ U(Zn) and a and b are not adjacent, then f(b) = (b1, b2, ..., bk) where bi 6= 0 ∀i and bi 6= pi−ai ∀i.
Thus we have m =

∏k
i=1(pi − 2)pαi−1i units not connected to a. Therefore,

deg(a) = γ(n) = φ(n)−m =

k∏
i=1

(pi−1)pαi−1i −
k∏
i=1

(pi−2)pαi−1i =

[ k∏
i=1

pαi−1i

][ k∏
i=1

(pi−1)−
k∏
i=1

(pi−2)

]
.

Since this number is independent of a, the same argument holds for all units and we conclude that
the degree of each unit is the same in UG(Zn).

Note also that if n is even, then m = 0. This is clear from the definition of m, as well as from
the fact that UG(Zn) is a complete graph when n is even. We account for the fact that a is not
connected to itself when n is even, and hence,

deg(a) in UG(Zn) =

{
φ(n)− 1, n is even

φ(n)−m, n is odd

�

Corollary 2.13.1. Each unit element is adjacent to the same number of zero divisors.

Proof. Let a ∈ U(Zn), and δ(a) represent the number of zero divisors that a is adjacent to. Hence,
δ(a) = |A|, where A = {z ∈ Z(Zn) | a is adjacent to z}.

Let a1 = deg(a) in G(Zn), and a2 = deg(a) in UG(Zn). Since both a1 and a2 are independent
of the choice of a, the claim follows immediately.

In particular,

δ(a) = a1 − a2 =

{
(n− φ(n)− 1)− (φ(n)− 1) = n− 2φ(n), n is even

(n− φ(n))− (φ(n)−m) = n− 2φ(n) +m, n is odd

where m is as defined in Theorem 2.13. Substituting these values gives:

δ(a) =


[
k∏
i=1

pαi−1i

] [
k∏
i=1

pi − 2
k∏
i=1

(pi − 1)

]
, n is even[

k∏
i=1

pαi−1i

] [
k∏
i=1

pi − 2
k∏
i=1

(pi − 1) +
k∏
i=1

(pi − 2)

]
, n is odd

,
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which is independent of a, provided that a ∈ U(Zn). Thus, we conclude that each unit element is
adjacent to the same numbr of zero divisors. �

Theorem 2.14. Let n = pα1
1 pα2

2 ...pαkk with k ≥ 2. ZG(Zn) is not regular, but there are at most
2k − 1 choices for the degree of a ∈ Z(Zn).

Proof. Consider the map f such that f(a) = (a1, ..., ak) where ai = a (mod pi). We partition Zn
into 2k classes as follows.

Each class is defined by the number and position aj such that aj = 0. For example, if only
p2 and pk divide a, but no other prime factor of n does, then f(a) = (a1, 0, a3, ..., ak−1, 0) where
ai 6= 0 ∀i. We say that a ∈ the {1, 0, 1, ..., 1, 0} class.

Clearly, this is a base 2 representation which tells exactly which prime factors divide a.
Vertices in class {1, 1, ..., 1} are the units and hence do not belong to ZG(Zn). The claim is that

all the vertices in a given class have the same degree.
Let x be an arbitrary element from a given class. Then, f(x) = (x1, x2, ..., xk). Since we know

the class of x, we know all j such that xj = 0. We illustrate the remainder of this proof by assuming
that the given class is {0, 0, 1, 1, ..., 1} without loss of generality.

Since f(x) = (0, 0, x3, ..., xk) ∀x in the class, and since x is connected to y ∈ Z(Zn) iff f(y) =
(y1, ..., yk) has yi = 0 for some 1 ≤ i ≤ k and yj = pj − xj for some 1 ≤ j ≤ k. However, the
number of such y is fixed and independent of the choice of xj , j ≥ 3 provided xj 6= 0 ∀j ≥ 3. But
this is exactly the definition of the class in which x belongs, and thus the degree of x is the same
for all x in the given class.

Since different classes can have the same degree and there are 2k − 1 classes (accounting for the
class of units), we conclude that a ∈ Z(Zn) =⇒ deg(a) ∈ B, where |B| ≤ 2k − 1.

Remark: The exact degree for each class, and hence the set B, can be calculated using com-
binatorial calculations. However, such a procedure is not pursued in this thesis. �

Theorem 2.15. If G(Zn) is connected, n = pα1
1 pα2

2 ...pαkk with p1 < p2 < ... < pk, the dominating
number is p1. Any complete reduced system of residues (mod p1) forms a dominating set, one of
which is D = Zp1 .

Proof. Let m ∈ Zn. Then m = ap1 + b for some positive integer a and for some b ∈ D. Since
y = p1 − b ∈ D, we have m+ y = (a+ 1)p1 and thus p1 | m+ y. Hence, D is a dominating set.

Now we show that the dominating number is |D| = p1. Assume that F = a1, ..., ai is a domi-
nating set. We show that |F | ≥ p1. Deny. Hence |F | < p1.

Let f : Zn → Z1×Z2× ...×Zk such that f(x) = (x (mod p1), x (mod p2), ..., x (mod pk)) ∀ x ∈
Zn. It is clear that f is a surjective ring-homomorphism. Hence f(aj) = (cj1, cj2, ..., cjk) ∀ aj ∈
F, 1 ≤ j ≤ i.

For each 1 ≤ h ≤ k, let Fh = c1h, c2h, ..., cih. Then Fh ⊂ Zph ∀ 1 ≤ h ≤ k. Since |F | < p1
(i.e., i < p1) and p1 < pj ∀ 2 ≤ j ≤ k, we conclude that Fh 6= Zph , for each 1 ≤ h ≤ k. Thus,
∀ 1 ≤ h ≤ k, ∃ ch ∈ Zph \ Fh.

Now let W = (p1 − c1, p2 − c2, ..., pk − ck) ∈ Zp1 × Zp2 × ...× Zpk . Since ch /∈ Fh ∀ 1 ≤ h ≤ k,
we conclude that ∀ j, 1 ≤ j ≤ i, and ∀ h, 1 ≤ h ≤ k, we have ph − ch + cjh 6= 0 in Zph . Since f is
surjective, ∃ T ∈ Zn such that f(T ) = W . We show that ph - (T + aj) ∀ aj ∈ F , where 1 ≤ h ≤ k.

Assume that for some 1 ≤ h ≤ k and for some 1 ≤ j ≤ i, we have ph | (T + aj). Hence,
f(T + aj) = f(T ) + f(aj) = W + f(aj) = (p1 − c1 + cj1, ..., ph − ch + cjh) = (0, ..., pk − ck + cjk).
This is impossible since ph − ch + cjh 6= 0 ∈ Zph . Thus, our denial is invalid, and hence |F | ≥ p1.
Since D is a dominating set and |D| = p1, we conclude that the dominating number is p1.
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Remark: Given an arbitrary set A ⊂ Zn, the proof provides an algorithm to determine all x ∈ Zn
such that x is not adjacent to a ∀a ∈ A. This is presented in Section 4. �

Theorem 2.16. Maximal ideals inside the ring Zn manifest as induced complete subgraphs in
G(Zn).

Proof. Since Zn is a principal ideal domain (PID), any ideal is of the form (k) where k ∈ Zn. For
the ideal to be maximal, k = pi, where pi | n. Hence (pi) = {piz|z ∈ Zn}.

Choose any a, b ∈ (pi) (not necessarily distinct). Since a + b ∈ (pi) as (pi) is closed under
addition, we conclude that pi | (a + b) and hence any two elements in (pi) are connected. Since
|(pi)| = n

pi
, we conclude that the induced subgraph with vertex set V = (pi) is isomorphic to the

complete graph, K n
pi

. �

Theorem 2.17. G(Z6) is the only connected planar graph.

Proof. Let n =
∏k
i=1 p

αi
i , k ≥ 2 with pi < pi+1 ∀ 1 ≤ i < k, if n ≥ 5p1, then the subgraph with

vertices V = {p, 2p, 3p, 4p, 5p} is isomorphic to K5 and cannot be planar. Therefore, we solve for

n =
∏k
i=1 p

αi
i < 5p1. Since k ≥ 2, it is clear that pi < 5. The only value of n which satisfies this is

n = 6, making it a candidate for being planar.
From Figure 2, it is clear that G(Z6) is planar, and the result follows.

3

1

5

6

2

4

Figure 2: Z6 is the only connected planar graph.

�

2.4 Results on Traversability

Theorem 2.18. If G(Zn) is connected, it has no Eulerian cycles and no Eulerian paths.
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Proof. A connected graph is said to have an Eulerian iff there exists a path such that each edge
is traversed once and only once. Further, if this path starts and ends at the same vertex, it is an
Eulerian cycle.

We show that G(Zn) has no Eulerian paths, and hence has no Eulerian cycles, by showing that
the graph always has more than two vertices with odd degree. In this case, all edges cannot be
traversed once and only once because of the following reasoning: One edge is used to enter a node
and another is used to exit it, and hence, an odd degree at a vertex necessitates that the vertex is
an end point. However, an Eulerian path can have atmost two end points.

Case I: n is Odd
Let a ∈ Zn. Recall that

deg(a) =

{
n− φ(n) a ∈ U(Zn)

n− φ(n)− 1 a ∈ Z(Zn)

Since the graph is connected and n is odd, we have n ≥ 15. But ∀ odd n > 2, we have
φ(n) =

∏k
i=1 p

αi−1
i (pi− 1) = 2k for some k ∈ Z because pi− 1 is always even when n is odd. Hence

n−φ(n) is always odd, i.e. The degree of each unit is odd. Clearly, 1, 2, 4 ∈ U(Zn) ∀ n ≥ 15 when n
is odd. Therefore, we have atleast three vertices with odd degree, and no graph with this property
can have an Eulerian path.
Case II: n is Even
Recall that deg(a) = n−φ(n)−1 ∀ a ∈ VD. Since the graph is connected, ∃ pi | n such that pi 6= 2.
Therefore, φ(n) is always even when n > 2. Hence, n− φ(n)− 1 is always odd, and every node in
the graph has an odd degree. Therefore, G(Zn) is never has an Eulerian path, and hence never has
an Eulerian cycle. �

Theorem 2.19. If n is even, G(Zn) is Hamiltonian.

Proof. Recall that a graph is said to have a Hamiltonian path if there exists a path in the graph
which traverses all the vertices once and only once. Further, if this path has the same initial and
final vertex, it is said to be a Hamiltonian cycle.

From graph theory, it is known that for a graph G, if ∀x, y ∈ VG , deg(x) + deg(y) ≥ n, where
n = |VG |, then G is Hamiltonian.

Since n is even, we know that G(Zn) is a regular graph with deg(x) = n − φ(n) − 1 ∀x ∈ Zn.
Hence, a, b ∈ Zn =⇒ deg(a) + deg(b) = 2n− 2φ(n)− 2. We now show that 2n− 2φ(n)− 2 ≥ n.

2n− 2φ(n)− 2 ≥ n =⇒ φ(n) ≤ n

2
− 1

Since n = 2ml for some odd l, we use the multiplicative property of the φ(·) function to write
φ(n) = φ(2ml) = φ(2m)φ(l) = 2m−1φ(l).
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Now n = 2mpα1
1 pα2

2 ...pαkk =⇒ l = pα1
1 pα2

2 ...pαkk . Hence,

φ(n) = 2m−1φ(l) =
2m

2

[
k∏
i=1

pαii

][
k∏
i=1

(
pi − 1

pi
)

]

=
n

2

[
k∏
i=1

(
pi − 1

pi
)

]
<
n

2

≤ n

2
− 1

Since this condition is sufficient for the graph to be Hamiltonian, we conclude that G(Zn) is Hamil-
tonian when n is even. �

Theorem 2.20. ZG(Zn) is always Hamiltonian.

Proof. We prove that ZG(Zn) always has a Hamiltonian cycle, and hence a Hamiltonian path, by
constructing it.

We view Z(Zn) as the union of all prime ideals in Zn. Let the initial vertex of the path be p1.
Let {x1, x2, ..., xr} represent the path x1 − x2 − ...− xr. Consider the following sequence of paths:

A1,1 : {p1, 2p1, ..., n− p1} \
⋃
j>1

(pj) ; A1 = A1,1 ∪ {p1p2}

A2,1 : {p2, 2p2, ..., (p1 − 1)p2, (p1 + 1)p2, ...(n− p2)} \
⋃
j>2

(pj) ; A2 = A2,1 ∪ {p2p3}

A3,1 : {p3, 2p3, ..., (p2 − 1)p3, (p2 + 1)p3, ..., (n− p3)} \
⋃
j>3

(pj) ;A3 = A3,1 ∪ {p3p4}

...

Ak−1,1 : {pk−1, 2pk−1, ..., (pk−2−1)pk−1, (pk−2+1)pk−1, ..., (n−pk−1)} \(pk) ; Ak−1 = Ak−1,1∪{pk−1pk}

Ak : {pk, 2pk, ..., (n− 1)pk, 0}

Since pi divides all the vertices in Ai, each Ai is a valid path in ZG(Zn).
Further, i 6= j =⇒ Ai and Aj do not share any common vertex.
Now, we concatenate these paths to define the path A : A1 − A2 − ...− Ak. This is possible as

the final vertex of Ai is adjacent to the initial vertex of Ai+1 ∀1 ≤ i < k, as pi+1 | pi+1pi + pi+1.
Further, A contains all the vertices in Z(Zn) once and only once.

Lastly, since the final vertex and initial vertex of A, namely 0 and p1 are connected as p1 | 0+p1,
we connect them to form the Hamiltonian cycle as required. �
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3 Examples

3.1 n = p, where p is prime

  1   2   3

  4  5  6

  7

(a) G(Z7)

  1   2   3

  4  5  6

  7

(b) UG(Z7) and ZG(Z7).

  1   2   3   4   5   6   7   8   9   10   11   12   13   14   15

  16  17  18  19  20  21  22  23  24  25  26  27  28  29  30

  31

(c) G(Z31)

  1   2   3   4   5   6   7   8   9   10  11  12  13  14  15

  16  17  18  19  20  21  22  23  24  25  26  27  28  29  30

  31

(d) UG(Z31) and ZG(Z31).

(e) G(Z139)

  1

  2

  3

  4

  5

  6

  7

  8

  9

  10

  11

  12

  13

  14

  15

  16

  17

  18

  19

  20

  21

  22

  23

  24

  25

  26

  27

  28

  29

  30

  31

  32

  33

  34

  35

  36

  37

  38

  39

  40

  41

  42

  43

  44

  45

  46

  47

  48

  49

  50

  51

  52

  53

  54

  55

  56

  57

  58

  59

  60

  61

  62

  63

  64

  65

  66

  67

  68

  69

  70

  71

  72

  73

  74

  75

  76

  77

  78

  79

  80

  81

  82

  83

  84

  85

  86

  87

  88

  89

  90

  91

  92

  93

  94

  95

  96

  97

  98

  99

  100

  101

  102

  103

  104

  105

  106

  107

  108

  109

  110

  111

  112

  113

  114

  115

  116

  117

  118

  119

  120

  121

  122

  123

  124

  125

  126

  127

  128

  129

  130

  131

  132

  133

  134

  135

  136

  137

  138

  139

(f) UG(Z139) and ZG(Z139).

Figure 3: Examples of Disconnected Graphs with n prime.
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3.2 n = pm, where m > 1

  1   2

  3   4

  5   6

  7   8

  9   10

  11   12

  13   14

  15   16

(a) G(Z16)

  1

  3

  5

  7

  9

  11

  13

  15

  2

  4

  6

  8

  10

  12

  14

  16

(b) UG(Z16) and ZG(Z16).

  1

  2

  3

  4

  5

  6

  7

  8

  9

  10

  11

  12

  13

  14

  15

  16

  17

  18

  19

  20

  21

  22

  23

  24

  25

(c) G(Z25)

  1  2

  3   4   6  7

  8   9

  11  12

  13   14

  16  17

  18   19

  21  22

  23   24

  5

  10

  15

  20

  25

(d) UG(Z25) and ZG(Z25).

  1

  2

  3

  4

  5

  6

  7

  8

  9

  10

  11

  12

  13

  14

  15

  16

  17

  18

  19

  20

  21

  22

  23

  24   25

  26

  27

  28

  29

  30

  31

  32

  33

  34

  35

  36

  37

  38

  39

  40

  41

  42

  43

  44

  45

  46

  47

  48

  49

(e) G(Z49)

  1

  2

  3

  4

  5

  6
  8

  9

  10

  11

  12

  13

  15

  16

  17

  18

  19

  20

  22

  23

  24   25

  26

  27

  29

  30

  31

  32

  33

  34

  36

  37

  38

  39

  40

  41

  43

  44

  45

  46

  47

  48
  7

  14

  21

  28

  35

  42

  49

(f) UG(Z49) and ZG(Z49).

Figure 4: Examples of Disconnected Graphs with n not prime.

21



  1

  2

  3

  4

  5

  6

  7

  8

  9

  10

  11

  12

  13

  14

  15

  16

  17

  18

  19

  20
  21

  22

  23

  24

  25   26

  27

  28
  29

  30

  31

  32
  33

  34

  35

  36

  37

  38

  39

  40

  41

  42

  43

  44

  45

  46

  47

  48  49

  50
  51

  52

  53

  54

  55

  56

  57

  58

  59

  60
  61

  62

  63

  64

  65

  66

  67

  68

  69

  70

  71

  72

  73

  74

  75

  76

  77

  78

  79

  80

  81

(a) G(Z81)

  1

  2

  4

  5

  7

  8

  10

  11

  13

  14

  16

  17

  19

  20

  22

  23

  25

  26

  28

  29

  31

  32

  34

  35

  37

  38

  40

  41

  43

  44

  46

  47

  49

  50

  52

  53

  55   56

  58

  59

  61

  62

  64

  65

  67

  68

  70

  71

  73

  74
  76

  77

  79

  80

  3

  6

  9

  12

  15

  18
  21

  24

  27

  30

  33

  36

  39

  42

  45

  48

  51

  54

  57

  60

  63
  66

  69

  72

  75

  78

  81

(b) UG(Z81) and ZG(Z81).

(c) G(Z125)

  1

  2

  3  4

  6   7

  8

  9

  11

  12

  13

  14

  16

  17

  18
  19

  21

  22

  23

  24

  26

  27

  28

  29

  31

  32

  33

  34

  36

  37

  38
  39

  41

  42

  43

  44

  46   47

  48

  49

  51

  52

  53

  54

  56

  57

  58

  59

  61

  62

  63

  64

  66

  67

  68

  69

  71   72

  73

  74

  76

  77

  78
  79

  81
  82

  83

  84

  86
  87

  88

  89

  91

  92

  93

  94

  96

  97

  98

  99

  101

  102

  103

  104

  106   107

  108

  109

  111

  112

  113  114

  116

  117

  118

  119

  121

  122

  123  124

  5

  10

  15

  20

  25

  30

  35

  40

  45

  50

  55

  60

  65

  70

  75

  80

  85

  90

  95

  100

  105   110

  115

  120

  125

(d) UG(Z125) and ZG(Z125).

(e) G(Z289)

  17

  34

  51

  68

  85

  102

  119   136

  153

  170

  187

  204  221

  238

  255

  272

  289

(f) UG(Z289) and ZG(Z289).

Figure 5: Examples of Disconnected Graphs with n not prime.
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3.3 Connected Graphs: n = pα1
1 pα2

2 ...pαk
k , k ≥ 2

  1

  2

  3

  4

  5

  6

(a) G(Z6)

  1

  5

  2

  3

  4

  6

(b) UG(Z6) and ZG(Z6).

  1

  2

  3

  4

  5

  6

  7

  8

  9

  10

(c) G(Z10)

  1

  3

  7

  9

  2

  4

  5

  6

  8

  10

(d) UG(Z10) and ZG(Z10).

  1

  2

  3

  4

  5

  6

  7

  8

  9

  10

  11

  12

  13

  14

  15

(e) G(Z15)

  1

  2

  4

  7

  8

  11

  13

  14

  3

  5

  6

  9

  10

  12

  15

(f) UG(Z15) and ZG(Z15).

Figure 6: Examples of Connected Graphs.
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  1

  2

  3

  4

  5

  6

  7  8

  9

  10  11

  12

  13

  14

  15

  16

  17

  18
  19

  20

  21

  22

  23

  24

  25
  26

  27

  28

  29

  30

  31

  32

  33

  34

  35

  36

  37

  38

  39

  40

  41

  42

  43

  44

  45

(a) G(Z45)

  1

  2
  4

  7

  8

  11

  13

  14

  16

  17

  19

  22

  23

  26

  28

  29

  31

  32

  34

  37

  38

  41
  43

  44

  3

  5

  6

  9

  10

  12

  15

  18

  20

  21

  24

  25

  27

  30

  33

  35

  36

  39

  40

  42

  45

(b) UG(Z45) and ZG(Z45).

  1

  2

  3

  4

  5

  6

  7

  8

  9

  10

  11
  12

  13

  14

  15

  16

  17   18

  19

  20

  21   22

  23

  24

  25

  26

  27

  28

  29

  30

  31

  32

  33

  34

  35   36

  37

  38  39

  40

  41

  42

  43

  44

  45

  46

  47

  48

  49

  50

  51

  52

  53

  54

  55
  56

  57

  58

  59

  60

  61

  62

  63

  64

  65   66

  67

  68

  69

  70

  71

  72

  73

  74  75

  76

  77

(c) G(Z77)

  1

  2

  3

  4

  5

  6

  8
  9

  10

  12
  13

  15

  16

  17

  18

  19

  20

  23

  24

  25

  26

  27

  29

  30

  31

  32

  34

  36

  37

  38

  39  40

  41

  43

  45
  46

  47

  48

  50

  51

  52

  53

  54

  57

  58

  59

  60

  61

  62

  64

  65

  67

  68   69

  71

  72

  73

  74

  75

  76

  7

  11

  14

  21

  22

  28

  33

  35
  42

  44

  49

  55

  56

  63

  66

  70

  77

(d) UG(Z77) and ZG(Z77).

  1

  2

  3
  4

  5
  6

  7

  8

  9

  10

  11

  12

  13

  14

  15   16

  17

  18

  19

  20

  21

  22

  23

  24

  25

  26

  27

  28

  29

  30

  31

  32

  33

  34

  35

  36

  37

  38

  39

  40

  41

  42

  43

  44

  45
  46

  47

  48

  49

  50

  51

  52

  53

  54

  55

  56

  57

  58

  59

  60

  61

  62

  63

  64

  65

  66

  67

  68

  69

  70

  71

  72

  73

  74

  75

  76

  77

  78

  79

  80

  81

  82

  83

  84

  85

  86

  87

  88

  89

  90

  91

  92

  93

  94

  95
  96

  97

  98

  99

  100

(e) G(Z100)

  1

  3

  7

  9

  11

  13

  17

  19

  21

  23

  27

  29

  31

  33

  37

  39

  41

  43

  47

  49
  51

  53

  57

  59

  61

  63

  67

  69

  71

  73

  77

  79

  81
  83

  87

  89

  91

  93

  97

  99

  2

  4

  5

  6

  8

  10

  12

  14

  15

  16

  18

  20

  22

  24

  25

  26

  28

  30

  32

  34

  35

  36

  38

  40

  42   44

  45

  46

  48   50

  52   54

  55

  56

  58

  60

  62

  64

  65

  66
  68

  70

  72

  74

  75

  76

  78

  80

  82

  84

  85

  86

  88

  90

  92  94

  95

  96

  98

  100

(f) UG(Z100) and ZG(Z100).

Figure 7: Examples of Connected Graphs.
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(a) G(Z245)

  5

  7

  10

  14

  15

  20

  21

  25

  28

  30

  35

  40

  42

  45

  49

  50

  55

  56

  60

  63

  65

  70

  75

  77

  80

  84

  85

  90

  91

  95

  98

  100   105

  110

  112

  115

  119

  120

  125

  126

  130

  133

  135

  140

  145

  147

  150

  154

  155

  160

  161

  165

  168

  170

  175

  180

  182

  185

  189

  190
  195

  196

  200

  203

  205
  210

  215

  217

  220

  224

  225

  230

  231

  235

  238

  240

  245

(b) UG(Z245) and ZG(Z245).

(c) G(Z323)

  17

  19

  34

  38

  51

  57

  68

  76

  85

  95

  102

  114

  119

  133

  136

  152

  153

  170

  171

  187

  190

  204

  209

  221

  228

  238

  247

  255

  266

  272

  285

  289

  304

  306

  323

(d) UG(Z323) and ZG(Z323).

(e) G(Z605) (f) UG(Z605) and ZG(Z605).

Figure 8: Examples of Connected Graphs.
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4 Algorithms

This section contains proposed computer algorithms for the construction of the presented graphs,
as well as the verification of certain properties presented in Section 2.

4.1 Algorithm to Construct G(Zn)

Algorithm 1: Algorithm to construct G(Zn)

Inputs: n
Steps :

1 Create n Nodes and label them 0, 1, 2, ..., n− 1;
2 Factorize n into its prime factors, P = {p1, p2, ..., pk};
3 for i = 1, 2, ..., n do
4 for j = i+ 1, i+ 2, ..., n do
5 for k = p1, p2, ..., pk do
6 if k | (i+ j) then
7 Add Edge between i and j
8 end

9 end

10 end

11 end

4.1.1 Description

Algorithm 1 provides a straightforward and simplistic method to construct G(Zn) as a pseudocode.
The set of instructions intuitively relies on construction by definition.

The underlying principle is to first create n nodes and label them, after which the prime factor-
ization of n is obtained. Then, each element a is tested with b to see if a prime factor p of n divides
a+ b. If this condition returns a logical true, then an edge is added to the graph.

In order to avoid duplication, and to ensure that a − b and b − a are not treated as separate
edges, as well as to ensure that no self-loops are added, the condition that b > a is also imposed
as evident from Line 4 of the pseudocode. This is required to uphold the imposed condition that
G(Zn) is undirected and simple.
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4.2 Algorithm to Construct UG(Zn) and ZG(Zn)

Algorithm 2: Algorithm to construct UG(Zn) and ZG(Zn)

Inputs: n
Steps :

1 Create n Nodes and label them N = {0, 1, 2, ..., n− 1};
2 Factorize n into its prime factors, P = {p1, p2, ..., pk};
3 j = 1;
4 for i = P do
5 k = 1;
6 while k × i ≤ n do
7 Z(j) = k × i;
8 end

9 end
10 Obtain set of Units as U = N \ Z;
11 for i = Z do
12 for j = Z do
13 for k = p1, p2, ..., pk do
14 if k | (i+ j) then
15 Add Edge between i and j in ZG(Zn)
16 end

17 end

18 end

19 end
20 for i = U do
21 for j = U do
22 for k = p1, p2, ..., pk do
23 if k | (i+ j) then
24 Add Edge between i and j in UG(Zn)
25 end

26 end

27 end

28 end

4.2.1 Description

The algorithm invokes the definitions of UG(Zn) and ZG(Zn) to construct them. The underlying
principle is similar to Algorithm 1, but the vertex set is changed according to the graph of interest.

The set of zero divisors, Z is first created by finding all the multiples of the prime factors of n
that are less than or equal to n. The set difference between Zn and Z are then saved as the units,
U . The condition for connectivity is then tested separately on both sets to construct UG(Zn) and
ZG(Zn).
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4.3 Algorithm to Find Hamiltonian Cycle in ZG(Zn)

Algorithm 3: Algorithm to construct Hamiltonian cycle in ZG(Zn)

Inputs: n
Steps :

1 Obtain prime factorization of n, P = {p1, p2, ..., pk};
2 Obtain set of zero divisors and ZG(Zn);
3 Set Initial Vertex as p1;
4 Define A1,1 = (p1) \

⋃
j>1(pj);

5 Define A1 = A1,1 ∪ {p1p2};
6 for i = 2, 3, ..., k − 1 do
7 Define Ai,1 = {pi, 2pi, ..., (pi−1 − 1)pi, (pi−1 + 1)pi, ..., (n− pi)} \

⋃
j>i(pj);

8 Define Ai = Ai,1 ∪ pipi+1

9 end
10 Define Ak = {pk, 2pk, ..., (n− 1)pk, 0};
11 Define A = {A1, A2, ..., Ak};
12 A is a Hamiltonian Path where {a1, a2, ..., am} represents the path a1 − a2 − ...− am.

Hence, although set notation is used, the order matters and the ideals are always in
increasing order;

13 Connect the final vertex of A, (0) to the initial vertex of A, (p1) to get the Hamiltonian
cycle;

4.3.1 Description

This algorithm is based on the proof presented in Theorem 2.20, and provides a simple and fast
method to obtain a Hamiltonian cycle and Hamiltonian path in ZG(Zn).

It relies on the fact that Z(Zn) can be expressed as a union of all principal ideals in Zn. Clearly,
all the elements in an ideal are adjacent to each other by Theorem 2.16. However, to find a
Hamiltonian Cycle, we must ensure that no vertex is incident twice. Therefore, we remove all the
intersecting ideals as shown in Line 7 of the Algorithm. To ensure that the final vertex of Ai is
connected to the initial vertex of Ai+1, we make an exception to this removal of intersections as
shown in Line 8.

4.3.2 Example

Let n = 105 so that the prime factorization of n is 3 × 5 × 7. Clearly, Z(Z105) = (3) ∪ (5) ∪ (7),
where (·) is the principal ideal of the respective argument. Hence, we have:

A1 = {a1 = 3k | k ≥ 1, 5 - a1, 7 - a1, a1 < 105}

A2 = {a2 = 5k | k ≥ 1, 7 - a2, a2 < 105}
A3 = {a3 = 7k | k ≥ 1} ∪ {0}

Now consider

A = {3, 6, 9, 12, 18, 21, 24..., 102, 15, 5, 10, 20, 25, 30, 40, ..., 100, 35, 7, 14, 28, 42, 49, 56, ..., 98, 0, 3}

obtained by concatenating Ai with Ai+1. Clearly, considering A in sequential order yields a Hamil-
tonian cycle.
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4.4 Algorithm to Find a Walk a− v1 − ...− vm − b for vi ∈ ZG(Zn), given a
and b

Algorithm 4: Algorithm to find a walk 1− v1 − v2 − ...− vm − b with vi ∈ ZG(Zn)

Inputs: n,a,b
Steps :

1 Obtain prime factorization of n, P = {p1, p2, ..., pk};
2 Apply the map f such that f(x) = (x1, x2, ..., xk), where xj = x (mod pj) to a and b;
3 Set initial vertex as a = (a1, a2, ..., ak);
4 Store b = (b1, b2, ..., bk) as final vertex;
5 Choose v1 and vm such that f(v1) = (0, a2, a3, ..., ak−1,−ak) and

f(vm) = (0, b2, b3, ..., bk−1,−bk);
6 for i = 2, 3, ...,m− 1 do
7 Choose vi such that f(vi) = (0, x2, x3, ..., xk) where xj ∈ Zpj ;
8 Since f need not be one-to-one, any choice of vi satisfying this condition works;

9 end
10 The path v1 − v2 − ...− vm is a walk in ZG(Zn);
11 Since a is adjacent to v1 and vm is adjacent to b, we get the walk as required;

4.4.1 Description

This algorithm relies on the manifestation of principal ideals as complete subgraphs. It first finds
two zero divisors connected to a and b and then finds a path between the two zero divisors in
ZG(Zn). Alternately, such a path can be found using Algorithm 3 because:

� If a, b ∈ Z(Zn), then the path from a to b can be regarded as a sub-path of the Hamiltonian
path in ZG(Zn).

– If a appears in the path before b, we are done.

– If b appears in the path before a, we can simply trace the Hamiltonian path in reverse
order as the graph is undirected.

� If a and b are not both in Z(Zn), then we rely on the fact that every unit element is connected
to atleast one zero divisor. This is true as a ∈ U(Zn) =⇒ f(a) = (a1, a2, ..., ak) where k ≥ 2
and ai 6= 0 ∀1 ≤ i ≤ k. Since k ≥ 2, we can always find v such that f(v) = (0,−a2, v3, ...vk).
Clearly, p1 | v and hence v ∈ Z(Zn). Further, p2 | a+ v and hence a and v are adjacent.

This reasoning is extended to all the vertices and we get the walk as desired.

4.4.2 Example

Let n = 45 so that G(Zn) is connected. The result of a computer algorithm implemented in
MATLAB is presented below when a = 14 and b = 5, in Figure 9. Observe that each internal
vertex is a zero divisor.
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Figure 9: Walk between 14 and 5 in ZG(Z45)

4.5 Algorithm to Find a Walk a− v1 − ...− vm − b for vi ∈ UG(Zn), given a
and b

First, note that such a path is not possible when a = 0 or b = 0 because u ∈ U(Zn) =⇒ (0, u) /∈ E.

Algorithm 5: Algorithm to find a walk 1− v1 − v2 − ...− vm − b with vi ∈ UG(Zn)

Inputs: n,a,b
Steps :

1 Obtain prime factorization of n, P = {p1, p2, ..., pk};
2 Apply the map f such that f(x) = (x1, x2, ..., xk), where xj = x (mod pj) to a and b;
3 Set initial vertex as a = (a1, a2, ..., ak);
4 Store b = (b1, b2, ..., bk) as final vertex;
5 if a == 0 or b == 0 then
6 Display Error Message: ”Walk not possible”;
7 End Program;

8 end
9 Let ax 6= 0 and by 6= 0 for some 1 ≤ x, y ≤ n;

10 Choose v1 such that f(v1) = (1, ..., 1,−ax, 1, ..., 1);
11 Choose v2 such that f(v2) = (p1 − 1, 1, ..., 1, py − by, 1, ..., 1);
12 for i = 3, 4, ...,m do
13 Let f(vi) = (vi,1, ..., vi,k);
14 Choose vi such that:

� vi,y = py − by;

� vi,j 6= 0 ∀1 ≤ j ≤ k;

� For atleast one j, j 6= y, vi,j = −vi−1,j (mod pj);

Since f need not be one-to-one, any choice of vi satisfying this condition works;
15 end
16 The path v1 − v2 − ...− vm is a walk in UG(Zn);
17 Since a is adjacent to v1 and vm is adjacent to b, we get the walk as required;

4.5.1 Description

This algorithm relies on the fact that UG(Zn) is connected whenever G(Zn) is connected. Hence, it
finds two units v1 and vm adjacent to a and b respectively. This is always possible when a 6= 0, b 6= 0.
Then, it finds a path from v1 to vm in UG(Zn).
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4.5.2 Example

Let n = 45 so that G(Zn) is connected. The result of a computer algorithm implemented in
MATLAB is presented when a = 14 and b = 5 in Figure 10. Observe that each internal vertex is a
unit element.

Figure 10: Walk between 14 and 5 in UG(Z45)

Note that the Algorithms 4 and Algorithm 5 find a walk between a given a and b such that
each internal vertex is either a zero divisor or a unit, respectively. However, no constraint has
been placed on repetition of vertices. Consequently, the results from MATLAB show some internal
vertices being traversed more than once.

For example, in Figure 9, vertex 15 appears more than once, whereas in Figure 10, vertex 1
appears more than once.

It is possible to impose further constraints to ensure that the walk is a path, and hence, no
vertices are repeated. This can be done simply by checking conditionally if a vertex has been
traversed in every loop iteration.
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4.6 Algorithm to find the set of elements not connected to any element
of a given non-dominating set, A

Algorithm 6: Algorithm to find all elements not connected to any element of A

Inputs: n, A
Steps :

1 Obtain prime factorization of n, P = {p1, p2, ..., pk};
2 Define n1 =

∏k
i=1 pi;

3 Define m = |A| < p1. Hence A = a1, a2, ..., am;
4 for j = 1, 2, ..., k do
5 Define Wj,1 = A (mod pj);
6 Find Wj,2 = Zpj \Wj,1;
7 Find Wj,3 = −Wj,2 (mod pj);

8 end
9 Consider the sets Wj,3, 1 ≤ j ≤ k;

10 Define W = W1,3 ×W2,3 × ...×Wm,3, where × represents the Cartesian product;
11 Initialize X as an empty set;
12 for i = 1, 2, ..., length(W ) do
13 We have W (i) = (bi1, bi2, ..., bim);
14 Apply the Chinese Remainder Theorem to W (i) as follows:
15 Find bi such that:
16 for j = 1, 2, ...,m do
17 bij = bi (mod pj) ∀1 ≤ j ≤ m;
18 end
19 X = X ∪ {bi};
20 y = 1;
21 while bi + yn1 ≤ n do
22 X = X ∪ {bi + yn1};
23 y = y + 1;

24 end

25 end
26 X is the set of all elements not connected to A;

4.6.1 Description

In Theorem 2.15, it was proved that any complete reduced system of residues (mod p1) forms a
dominating set, and that the dominating number is p1, where p1 is the smallest prime factor of n.

In other words, a set A ⊂ Zn is a dominating set iff A ∼= Zp1 . However, no set with |A| < p1
can satisfy this property. Algorithm 6 presents an elegant method to find all the elements in Zn
that are not adjacent to any a ∈ A. The algorithm imitates the proof of the theorem, and is best
illustrated with an example as follows.

4.6.2 Example

Let n = 385 so that the prime factorization of n is 5 × 7 × 11. We know by Theorem 2.15 that
any set, A such that |A| ≤ 4 cannot be a dominating set. Let us arbitrarily choose an A with 4
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elements to illustrate the algorithm, and to find all the elements in Z385 which are not adjacent to
any a ∈ A.

Suppose A = {11, 28, 140, 202}. Then we follow the algorithm and find the equivalence classes
of each a ∈ A.

Step I: Find Wi,1 ∀i

Table 1: Wj,1 for j = 1, 2, 3

A mod 5 mod 7 mod 11
11 1 4 0
28 3 0 6
140 0 0 8
202 2 6 4

Thus we have

W1,1 = {1, 3, 0, 2}
W2,1 = {4, 0, 0, 6}
W3,1 = {0, 6, 8, 4}

Step II: Find Wi,2 ∀i
We find Wj,2 = Zpj \Wj,1 for j = 1, 2, 3. Hence,

W1,2 = {4}
W2,2 = {1, 2, 3, 5}
W3,2 = {1, 2, 3, 5, 7, 9, 10}

Step III: Find Wi,3 ∀i
We find Wj,3 = −Wj,2 (mod pj) for j = 1, 2, 3, and hence,

W1,3 = {1}
W2,3 = {6, 5, 4, 2}
W3,3 = {10, 9, 8, 6, 4, 2, 1}

Step IV: Find W
Next, we define W = {1} × {2, 4, 5, 6} × {1, 2, 4, 6, 8, 9, 10}. Note that W is a set of cartesian
triples, and |W | = 1 × 4 × 7 = 28. We can immediately infer that there are 28 elements in Z385

not connected to A. This is valid as n1 = n in this example, where the notation is as used in the
algorithm.

Step V: Apply Chinese Remainder Theorem to W
The next step is to Apply the Chinese Remainder Theorem to all elements in W . For the sake
of illustration, we randomly pick w ∈ W . Suppose that w = (1, 5, 8) ∈ W . This is equivalent to
solving the following system: We find b such that:

b = 1 ( mod 5)

b = 5 ( mod 7)

b = 8 ( mod 11)
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Since n = 5 × 7 × 11, there is a unique solution b ∈ Z385. Note that we consider all the solutions
had they not been unique. Solving, we get b = 96. It is easy to verify that b indeed satisfies the
system.

Therefore, 96 is not adjacent to a ∀a ∈ A.
Step VI: Verify

96 + 11 = 107 5, 7, 11 - 107

96 + 28 = 124 5, 7, 11 - 124

96 + 140 = 236 5, 7, 11 - 236

96 + 202 = 298 5, 7, 11 - 298

The same argument works for all w ∈W , and the resultant numbers are all the vertices in Z385

which are not adjacent to any a ∈ A.
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5 Conclusion and Future Work

This thesis is a summary of the work done in MTH 490 - Senior Project in partial fulfillment of
the requirements for the degree of Bachelor of Science in Mathematics. It establishes relationships
between abstract algebra and graph theory by examining the graphical manifestation of algebraic
properties of the ring of integers, modulo n. In particular, results pertaining to the connectivity,
planarity and traversablity are derived for G(Zn). Further, results on UG(Zn) and ZG(Zn) are
derived, and experimentally verified using computer simulations. Algorithms to construct and
verify a wide variety of properties are also presented with examples.

With regard to the study of relationships between properties of the ring and its corresponding
graph, scope for future work includes proofs and disproofs of the conjectures presented in the
Appendix of the report. Theorems pertaining to the clique number and chromatic number of the
graph and their relationship to the ring can provide a deeper insight into the structural properties
associated with these graphs. The Appendix also provides interesting patterns and anomalies
observed in the degree of vertices in the induced subgraph of units. These patterns are unexplained,
but their inherent structure suggests something more than coincidence. Further, spanning trees
in G(Zn) as presented in the Appendix suggestively possess properties worth exploring. Similar
questions regarding the complement of the graph can establish relationships between the clique
number and independent number of the graph.

Graphs that arise from different conditions for adjacency between matrices can provide alternate
ways to associate a visual representation of rings. A very interesting takeaway for future research
would be to establish relationships between polynomial rings and the Cartesian product of G(Zn)
with itself. This can also be an interesting tool to study irreducible polynomials, their structure
and occurence within polynomial rings.
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A Appendix

A.1 Conjectures

This section contains claims that have not been proven as of yet. They are a result of computer
simulations which suggest that they are true.

Conjecture A.1. A connected Zn graph is always a Hamiltonian graph.

Conjecture A.2. The clique number, ω(n), of G(Zn) with n =
∏k
i=1 p

αi
i and p1 < pi ∀ i is n

p1

By Theorem 2.16, it is clear that G(Zn) has K n
p1

as a subgraph, and each vertex of K n
p1

is

connected to every vertex except itself. Thus, n
p1

is a lower bound for ω(G(Zn)). The claim is that

ω(G(Zn)) = n
p1

.

Conjecture A.3. Let n = pα1
1 pα2

2 ...pαkk , with p1 < p2 < ... < pk. The chromatic number of G(Zn),
denoted by χ(G(Zn)) = n

p1
.

Since the clique number is atleast n
p1

, the chromatic number too is atleast n
p1

because χ(G) ≥
ω(G). The claim is that χ(G) = n

p1
. This is illustrated using two examples.

� n = 15: Here, n
p1

= 5.
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  14

  15

15- (15)-1 = 6

Figure 11: A Coloring of G(Z15) using 5 Colors

37



� n = 35: Here n
p1

= 7.
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35- (35)-1 = 10

Figure 12: A Coloring of G(Z35) using 7 Colors

Conjecture A.4. Let n = pα1
1 pα2

2 ...pαkk with p1 < p2 < ... < pk and k ≥ 2. Then the diameter of
the minimum spanning tree of G(Zn) is p1 + 1.

Recall that a spanning tree is a spanning subgraph of G which is also a tree, i.e. has no cycles.
This conjecture is based on computer simulations of a large set of choices for n. The idea is to

first construct the minimum spanning tree of G(Zn) and display it. The distance from the root to
the leaf of the tree is seen to be p1 + 1 in all cases, which also coincides with the diameter of the
tree based on the structure.

Some examples of spanning trees for G(Zn) are provided in Figures 13 - 16 to illustrate this.
The computer simulations show that the diameter of the spanning tree is p1 + 1 in all cases.
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Figure 13: Spanning Tree of G(Z15)
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Figure 14: Spanning Tree of G(Z35)
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Figure 15: Spanning Tree of G(Z77)

Figure 16: Spanning Tree of G(Z221)
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A.2 The Degree of Vertices in UG(Zn)

Theorem 2.4 found an explicit formula for the degree of a vertex in the regular graph UG(Zn). This
was given by the γ(n) function as defined in the Theorem.
Visualizing the γ(n) Function:
Let γ(n) represent the degree of each vertex of UG(Zn). Then we can plot γ(n) with respect to n
as shown in Figure 4. It is worth noticing the following:

50 100 150 200 250 300 350 400 450 500
0

200

400

600

50 100 150 200 250 300 350 400 450 500
0

100

200

300

Figure 17: Euler’s φ(n) function and the γ(n) Function.

1. The graphs are actually discrete plots but the points have been linearly interpolated for easy
visualization.

2. The φ(n) function is upper bounded by the line φ(n) = n− 1 as this is the maximum number
of units that is possible inside Zn and occurs when n is prime. By a well known result from
number theory, there is no linear lower bound for this function. The lower limit of the Euler
φ(n) graph is proportional to n

log logn .

3. γ(n) = 1 whenever n is prime. This is clear as whenever n is prime, a 6= 0 =⇒ a ∈ U(Zn).
Since Z(Zn) = {0}, a is adjacent only to −a (mod p). Hence the lower bound for γ(n) is
γ(n) = 1.
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4. The values of n for which φ(n) equals its upper bound are the same n for which γ(n) attains
its lower bound. These are the prime numbers.

5. The γ(n) function is upper bounded by the line γ(n) = n
2 .

6. The γ(n) function follows an interesting pattern. The reader is referred to the appendix for
more on this.

Since γ(n) is fixed for a given n, we plot γ(n) as a discrete plot with respect to n, as shown in
Figure 18.
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10 20 30 40 50 60 70 80 90 100

Figure 18: γ(n) vs. n: Discrete

Although we can observe some linear trends in periodic intervals, it is not easy to resolve these
differences. Hence, we interpolate between the discretized plots to make the image easier to read.
This is presented in Figure 19

This yields an interesting pattern. Nowhere in the window frame can we observe two consecutive
increases or two consecutive decreases. The function seems to be following an Up-Down-Up-Down
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Figure 19: γ(n) vs. n: Interpolated

pattern, except at certain indices where it is constant (Refer to n = 69 and n = 70).
There is no immediate analytical answer to this behaviour, in this range. This is due to the

fact that the γ(n) function depends, not just on the value of n, but also on the prime factors of n.
Since there is no direct relationship between the prime factors of n and the prime factors of n+ 1,
we cannot establish a direct relationship between γ(n) and γ(n+ 1).

It is interesting to observe what happens as we increase n. Since we have a direct formula for
γ(n), we can directly use it instead of constructing UG(Zn) and finding the degree of the vertices.

The following observations are made:

� The Up-Down-Up-Down pattern continues beyond n = 100. It continues until n = 769 where
it is broken. Figure 20 shows a breakdown in this pattern at n = 769.

� Since γ(769) < γ(770) < γ(771) and we need three vertices to detect two consecutive increases,
let us save the first of these indices (i.e 769) as the first occurence of a pattern breakdown.

� Interestingly, there is a pattern breakdown immediately after n = 769, at n = 770.
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Figure 20: γ(n) vs. n: 750 ≤ n ≤ 770

� The Up-Down-Up Pattern resumes after this, until it is broken again in the same fashion at
n = 908, and followed immediately by n = 909. This is easily seen from Figure 21.

� This seems to suggest that the Up-Down-Up-Down pattern persists unless it is broken by
consecutive increases or consecutive decreases. Further, if there is a consecutive increase (or
decrease) with initial vertex n, then there is a consecutive increase (or decrease) with intiial
vertex n+ 1. This claim is tested using a computer algorithm for n upto 1 million.

� This pattern does hold for n upto atleast 1 million. A total of 3802 breakdowns with respect
to increase, and 3808 breakdowns with respect to decrease are recorded for 1 ≤ n ≤ 106. The
first few indices for which the pattern is broken are presented in Figure 22 and Figure 23.

� There seems to be a pattern in the breakdown of the Up-Down-Up-Down pattern. More
specifically, the breakdowns are consecutive.

� A question that arises immediately is regarding the frequency of these breakdowns, i.e. How
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Figure 21: γ(n) vs. n: 900 ≤ n ≤ 920

far apart are these breakdowns? Pairing each pair of consecutive increases and each pair
of consecutive decreases as one, the pairwise difference between two breakdowns is shown
separately with respect to increases and decreases in Figures 24 and 25 respectively.

� It seems at first sight, that the difference between two consecutive breakdowns, whether
with respect to increase or decrease, are integer multiples of 210. However, there are some
exceptions. Figures 26 and 27 display this difference in breakdown modulo 210.

� This pattern seems interesting and is highlighted through the course of this project. It has
not been investigated in any greater detail due to it being beyond the scope of this project.
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Figure 22: Pattern Breakdown: Initial Indices of Two Consecutive Increases

Figure 23: Pattern Breakdown: Initial Indices of Two Consecutive Decreases
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Figure 24: Pattern Breakdown (Increase): Difference between Two Consecutive Breakdowns

Figure 25: Pattern Breakdown (Decrease): Difference between Two Consecutive Breakdowns
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Figure 26: Pattern Breakdown (Increase): Difference between Two Consecutive Pattern Break-
downs (mod 210)

Figure 27: Pattern Breakdown (Decrease): Difference between Two Consecutive Pattern Break-
downs (mod 210)
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