Exam One, MTH 213, Fall 2021

Ayman Badawi

(Stop working at 13:00 pm/ submit your solution by 13:12 pm) 28

QUESTION 1. (9 points)(SHOW THE WORK)

(i) Use the 4-method and prove that $\sqrt{35}$ is irrational. [Hint: you may start by assuming $\sqrt{35}=a / b$ where a, b are odd integers and $\operatorname{gcd}(a, b)=1]$.
(ii) By contradiction, show that $\sqrt{5}+\sqrt{7}$ is irrational. [Hint: you may use (i) above]
(iii) Assume that m, n are POSITIVE integers such that $m=n^{2}$. Use contradiction and prove that it is impossible that $m+2=k^{2}$ for some positive integer k.

QUESTION 2. (SHOW THE WORK)(4 points)

(i) Find $3(\bmod 8)$
(ii) Find $-14(\bmod 23)$

QUESTION 3. (SHOW THE WORK)(3 points) Solve $12 x=8$ over planet Z_{20}.
QUESTION 4. (SHOW THE WORK)(3 points) Solve $7 x=5$ over planet Z_{10}
QUESTION 5. (SHOW THE WORK)(6 points) Let X be the number of students in class A, where $0<X<100$. Given $X(\bmod 7)=5, X(\bmod 9)=8$, and $X(\bmod 4)=2$. Find X.

QUESTION 6. (SHOW THE WORK)(3 points) Use the division algorithm and find $\operatorname{gcd}(204,120)$

Faculty information

Ayman Badawi, Department of Mathematics \& Statistics, American University of Sharjah, P.O. Box 26666, Sharjah, United Arab Emirates.
E-mail: abadawi@aus.edu, www.ayman-badawi.com

Q1) i) Deny. Hence $\sqrt{3 S}$ is rational

$$
\begin{aligned}
& \sqrt{3 S}=\frac{a}{b} \\
& 3 S=\frac{a^{2}}{b^{2}}
\end{aligned}
$$

$35 b^{2}=\underset{\text { add }}{a^{2}}$ we claim b^{2} and a are odd because it b is even $35 \times$ (even) in even and gid $(a, b) \neq 1$

Since b and a are odd, $b=2 k+1, a=2 m+1$ for some

$$
\begin{aligned}
& k, m \in Z \\
& 35(2 k+1)^{2}=(2 m+1)^{2} \\
& 35\left(4 k^{2}+4 k+1\right)=4 m^{2}+4 m+1 \\
& 35 \times 4 k^{2}+35 \times 4 k+34=4 m^{2}+4 m \quad \therefore 4 \text { on both side }
\end{aligned}
$$

$$
\frac{35 k^{2}+35 k+\left(\frac{17}{2}\right)}{\notin z}=\frac{k^{2}+m}{\text { Integer sinecm } t z}
$$

c contradiction
\therefore dreate the contradiction we conclude $\sqrt{35}$ is irrational.
Q1) ii) Deny. Hence $\sqrt{5}+\sqrt{7}$ is national

$$
\begin{aligned}
& \sqrt{5}+\sqrt{7}=\frac{a}{b} \text { where } a, b \in z, b \neq 0, \operatorname{ged}(a, b)=1 \\
& (\sqrt{5}+\sqrt{7})^{2}=\frac{a^{2}}{b^{2}} \\
& 5+\sqrt{35}+7=\frac{a^{2}}{b^{2}} \\
& \frac{\sqrt{3 S}}{\ell Q}=\frac{a^{2}}{b^{2}}-\frac{12}{1} \in Q
\end{aligned}
$$

LHS is viratioinal while the RHS is rational $:$ due to this contradiction we conclude $\sqrt{5}+\sqrt{7}$ is irrational

Qu ii)
Deny. Hence it is possible that $m+2=h^{2}$ for some positive integer k

$$
\begin{aligned}
& m+2=k^{2} \\
& m-k^{2}-2 \\
& n^{2}+2=k^{2} \\
& n^{2}+2=k^{2}
\end{aligned}
$$

Assume n^{2} is odd \therefore logically k^{k} should also be odd G $0 d d \times \operatorname{dd}=$ odd)

$$
\begin{equation*}
\because \quad \text { odd }+2 \text { (even) }=\text { odd } \tag{Cdd}
\end{equation*}
$$

since n, k are odd, $n=2 a+1, k=2 b+1$ for $a, b \in Z^{+}$

$$
\begin{aligned}
& n^{2}+2=k^{2} \\
& (2 a+1)^{2}+2=(2 b+1)^{2} \\
& 4 a^{2}+4 a+3=4 b^{2}+4 b+1 \\
& 4 a^{2}+4 a+2=4 b^{2}+4 b \\
& \frac{a^{2}+a+\frac{1}{2}}{t z^{+}}=\frac{b^{2}+b}{E z^{+}}<4 \text { on both sides }
\end{aligned}
$$

$\because \frac{1}{2}$ is rota integer
Hence due ton contradiction, found conclude its umposible that $m+2=k^{2}$ for some positive integer K
if n is oxen \therefore logially k should be even to 0 since, $n=2 h, k=2 y$ for $h, y z^{*}$

$$
\begin{align*}
& r^{2}+2=m^{2} \\
& 4 x^{2}+2=4 y^{2} \\
& \frac{h^{2}+\frac{1}{2}}{\not z^{+}}=\frac{y^{2}}{\epsilon z^{+}}
\end{align*}
$$

c arother contradiction

$$
\begin{aligned}
& \text { (Q2)i) } 3(\bmod 8) \\
& \begin{array}{r}
8 \sqrt{3} \\
\frac{-0}{3}=3 \\
3+8
\end{array} \\
& \left.Q_{2}\right)_{i i}-14(\bmod 23) \\
& \begin{aligned}
-14(\bmod 23) & =23-(14 \bmod 23)) \\
& =23-14
\end{aligned} \\
& =23-14 \\
& =9
\end{aligned}
$$

Qu) $12 n=8$ over planet Z_{20}
meanis: find all possible $x, 0 \leq x \leq 19$ s.t. $12 x(\bmod 20)=8$

$$
\begin{gathered}
a=12, m=20, b=8 \\
d=\operatorname{gcd}(a, m)=\operatorname{gcd}(12,20)=\mu
\end{gathered}
$$

is $d \mid b ? \Rightarrow$ yes $4 \mid 8 \therefore$ we conclucle there are exactly 4 solution

$$
12 n(\bmod 20)=8
$$

suralleat $n=\eta$

$$
\left\{\begin{array}{r}
y=\frac{m}{d}=\frac{20}{4}=5 \\
0
\end{array}\right.
$$

other solutions in the form

$$
\begin{aligned}
x & =\{4,4+5(1), 4+5(2), 4+5(3)\} \\
& =\{4,9,14,19\}
\end{aligned}
$$

Qu) $7 x=5$ over Z_{10}
meaning: find all $x, 0 \leq x \leq 9$, st. $7 x(\bmod (0)=5$

$$
\begin{gathered}
a=7, m=10, b=5 \\
d=\operatorname{gcd}(a, m)=\operatorname{gcd}(7,10)=1
\end{gathered}
$$

Is $d \mid b$? \Rightarrow yes $1 / s \therefore$ we conclucle then is ane enact solution

$$
\operatorname{Tan}(\operatorname{mad} y 0)=5 \quad 35 \bmod 10=5
$$

$n=5$

Qt)

$$
\begin{aligned}
& x(\bmod 7)=5 \\
& x(\bmod 9)=8 \\
& x(\bmod 4)=2
\end{aligned}
$$

$$
\begin{array}{lll}
, a_{1}=5 & a_{2}=8 & a_{3}=2 \\
\cdot m_{1}=7 & m_{2}=9 & m_{3}=4
\end{array}
$$

$\operatorname{gcd}\left(\right.$ between every $\left.m_{i} ' s\right)=1 \quad \therefore$ CRT can be applied

$$
\begin{aligned}
& \text { - } m=7 \times 9 \times 4=252 \\
& \text { - } n_{1}=\frac{m}{m_{1}}=36 \quad \cdot n_{2}=\frac{m}{m_{2}}=28 \quad \cdot n_{3}=\frac{m}{m_{3}}=63
\end{aligned}
$$

$$
\begin{aligned}
& \text { - } n_{3}^{-1}\left(\bmod m_{3}\right)=63^{-1}(\bmod 4) \\
& 63 \times n(\bmod 4)=1 \\
& x=3 \\
& X=\left[\sum_{i=0}^{3} a_{i} n_{i} n_{i}^{-1}\right] \operatorname{modm} \\
& =[5 \times 36 \times 1+8 \times 28 \times 1+2 \times 63 \times 3] \bmod 252 \\
& =782 \bmod 252)=26 \\
& \begin{array}{c}
3 \\
252 \begin{array}{r}
782 \\
\frac{-756}{26}
\end{array}
\end{array}
\end{aligned}
$$

Q6) $\operatorname{ged}(204,120)$

$$
\begin{array}{r}
\frac{1}{204} \\
\frac{-120}{84} \\
\frac{84 \sqrt{120}}{\frac{-84}{36}} \\
\frac{36}{84} \\
\frac{-72}{12} \\
\hline
\end{array}
$$

- (12) $\begin{array}{r}36 \\ -36 \\ -10\end{array}$
-

$$
\operatorname{gcd}(204,120)=12
$$

