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 COURSE SYLLABUS 

 

A Course Title  
& Number MTH 203 – CALCULUS III 

B Pre/Co-requisite(s) Prerequisite:  MTH 104 (Calculus II) 

C Number of credits 3-1-3 

D Faculty Name Ayman Badawi 

E Term/ Year Spring 2020 

F Sections 
 

Section 
Number 

Course Days Time Location* 

 MTH203 UTR 12 --  12: 50 pm Art Building 209 

  

G Instructor’s 
Information 

Instructor Office Email 

Ayman Badawi NAB 262 abadawi@aus.edu 

Office Hours:  My office hours are given in this table; others can be arranged through an 

advanced appointment. 

Sunday Monday Tuesday Wednesday Thursday 

 2-3 pm      
 

2-3 pm  
 

 

H Course Description 
from Catalog 

Covers calculus of functions of several variables, vectors and analytic geometry of three-

dimensional space, partial derivatives, gradients, directional derivatives, maxima and minima, 

multiple integrals, line and surface integrals, Green’s theorem, Divergence theorem and 

Stokes’ theorem.  Includes a computer laboratory component. 

I Course Learning 
Outcomes 

Upon completion of the course, students will be able to: 

Learning Outcomes 
Upon completion of this course, students will be able 
to: 

Assessment Instruments 

1. Use vector methods to analyze curves and                     Exam 1 
Surfaces in 3-dimensional space.  

2. Compute and interpret derivatives of vector                   Exam1, Exam2 or Final 
 functions, partial derivatives and gradients, 
 and use them in applications including optimization.  

3. Construct, evaluate and interpret multiple integrals      Exam2 or Final 
 in rectangular, polar, cylindrical and spherical  
Coordinates.  

4. Construct, evaluate, and interpret line and surface         Final 
 Integrals using vector calculus techniques. 

J Textbook and 
other Instructional 

Material and 
Resources  

(Optional)  Calculus Early Transcendentals, 8th Edition, by James Stewart, 2016, CENGAGE 
Learning, International Metric Version.  

Primary: Class notes. I-learn, and some old exams and quizzes on    my personal webpage   

   http://ayman-badawi.com/MTH%20203.html 

Problems with solutions from 7th edition will be posted on I-Learn. 
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 COURSE SYLLABUS 

 

K Teaching and 
Learning 

Methodologies 

This course is designed to help the students: 

 Utilize three-dimensional geometry to model science/engineering problems. 

 Use functions of several variables, their partial derivatives and their integration to 
solve real life problems. 

 Grasp the main concepts and theorems of vector calculus and how they relate to 
science applications.  
 

 

L Grading Scale, 
Grading 

Distribution, and 
Due Dates 

 

 

Cut-off (%) Grade Points  Cut-off (%) Grade Points 

93 ≤  A  ≤ 100 4.0  73 ≤  C+  < 76.99 2.3 

89  ≤  A-  < 92.99 3.7  67  ≤  C  < 72.99 2.0 

85  ≤  B+  < 88.99 3.3  61  ≤  C-  < 66.99 1.7 

81  ≤  B  < 84.99 3.0  45  ≤  D < 60.99 1.0 

77  ≤  B-  < 80.99 2.7  F < 44.99 0 

 

Assessment Weight Due Date and Remarks 

Quizzes 15% To be announced in class 

Recitation 5%                 Will be used for Quizzes/ problems with 
solutions (discussion)/ if needed, normal lecture 

(Attendance is crucial in this session) 

Test I 25%  Sunday, March 15,  2020,  5:30 pm-7pm 

Test II 25% Sunday, April  26,  2020,  5:30pm – 7pm 

Final Exam 30% As given by the registrar’s office 

Total 100%  
 

M Explanation of 
Assessments, 

Remarks, Rules and 
Regulations 

 
Exams and Quizzes: There will be 2 midterm exams, a final exam and quizzes. One quiz will be 
dropped.   There will be no make-up quizzes or exams under any circumstances.  
 
Laboratory component/Recitation: This course has 1 hour per week laboratory component. This 
hour will be used in the following variety of ways: to solve problems/examples/ normal lecture,  
Help: Students are encouraged to consult their instructor during his office hours or by 
appointment. 
 

Remarks, Rules and Regulations: 

 Material Sharing During Exams & Quizzes: Students are not allowed to share 

calculators or any other material during exams and quizzes. 

 Phones: Using phones in class is considered as a distracting factor and a disrespect to 

the instructor. Therefore, students are expected to keep their phones off during class.  

 Phones and smart devices during quizzes and exams:  All devices that can be used to 

violate the academic integrity policy are prohibited, and a violation of this policy can 

lead to severe actions against the student.  

 Make-up exams/quizzes: There will be no make-up exams/quizzes.   

 Incomplete Grades: Failing to show up in time for the final exam will result in a zero 

in that exam.  Only in exceptional cases of compelling medical or other emergencies 

certified by a medical or other professional and approved by the instructor, the Chair and 

the Dean; will the student be given an “Incomplete” grade.  In this case, the instructor 

will schedule a make-up exam within the first two weeks of the next semester.  It is the 

responsibility of the student to find out from his/her instructor the exact date, time and 

place of the make-up exam.  
 Final Grades: All students are treated equally. Tests and other graded assignments due 

dates are set.  No addendum, make-up exams, or extra assignments to improve grades 

will be given.   
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 COURSE SYLLABUS 

 

 

N Student Academic 
Integrity Code 

Statement 

All students are expected to abide by the Student Academic Integrity Code as 
articulated in the AUS undergraduate catalog.  
 

 

Tentative Weekly Schedule 

Week 
CHAPTER NOTES 

1 
12.1 Three-Dimensional Coordinate Systems   
12.2 Vectors  
12.3 The Dot Product  

 

2 
12.4 The Cross Product 
12.5 Equations of Lines and Planes 
12.6 Cylinders and Quadric Surfaces  

 

3 
13.1 Vector  Functions and Space Curves 
13.2 Derivatives and Integrals of Vector Functions 
13.3 Arc Length (curvature will not be examined) 

 

4 
13.4 Motion in Space: Velocity and Acceleration 
14.1 Functions of Several Variables 
14.2 Limits and Continuity   

 

5 14.3 Partial Derivatives 
14.4 Tangent Planes and Linear Approximations  

6 14.5 The Chain Rule 
14.6 Directional Derivatives and the Gradient Vector  

7 
14.7 Maximum and Minimum Values 
14.8 Lagrange Multipliers 

Test I: 12.1-12.6, 13.1-13.4, 14.1-14.4,14.5                               
Sunday, March 15,  2019, 5:30-7:00pm 

8 15.1   Double Integrals over rectangles 
15.2  Double Integrals over General Regions  

9 
15.3  Double Integrals in Polar Coordinates 
15.4   Applications of Double Integrals 
15.5  Surface Area 

 

10 15.6  Triple Integrals 
15.7  Triple Integrals  in Cylindrical Coordinates  

11 15.8  Triple Integrals  in Spherical Coordinates 
16.1 Vector Field  

12 16.2 Line Integrals 
16.3  The Fundamental Theorem for Line Integrals  

 

13 
16.4  Green’s Theorem 
16.5 Curl and Divergence  

Test II: 14.5- 14.8, 15.1-15.9, 16.1-16.2  
 Sunday, April 26,  2020,  5:30—

7:00pm 

14 
16.6 Parameterized Surfaces and Their Areas 
16.7 Surface Integrals  
16.8  Stokes’ Theorem 

 

15 16.9 The Divergence Theorem  

16 Final Exam  COMPREHENSIVE 

 

Homework Assignments - MTH203 : Problems with solutions from the 7th edition will be posted on I-Learn 
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 COURSE SYLLABUS 

 

A Course Title  
& Number MTH 203 – CALCULUS III 

B Pre/Co-requisite(s) Prerequisite:  MTH 104 (Calculus II) 

C Number of credits 3-1-3 

D Faculty Name Ayman Badawi 

E Term/ Year Spring 2020 

F Sections 
 

Section 
Number 

Course Days Time Location* 

 MTH203 UTR 12 --  12: 50 pm Art Building 209 

  

G Instructor’s 
Information 

Instructor Office Email 

Ayman Badawi NAB 262 abadawi@aus.edu 

Office Hours:   You are not restricted to a particular time.  JUST EMAIL ME 

H Course Description 
from Catalog 

Covers calculus of functions of several variables, vectors and analytic geometry of three-

dimensional space, partial derivatives, gradients, directional derivatives, maxima and minima, 

multiple integrals, line and surface integrals, Green’s theorem, Divergence theorem and 

Stokes’ theorem.  Includes a computer laboratory component. 

I Course Learning 
Outcomes 

Upon completion of the course, students will be able to: 

Learning Outcomes 
Upon completion of this course, students will be able 
to: 

Assessment Instruments 

1. Use vector methods to analyze curves and                    midterm, Final 
Surfaces in 3-dimensional space.  

2. Compute and interpret derivatives of vector                  midterm,  Final 
 functions, partial derivatives and gradients, 
 and use them in applications including optimization.  

3. Construct, evaluate and interpret multiple integrals       Final 
 in rectangular, polar, cylindrical and spherical  
Coordinates.  

4. Construct, evaluate, and interpret line and surface         Final 
 Integrals using vector calculus techniques. 

J Textbook and 
other Instructional 

Material and 
Resources  

(Optional)  Calculus Early Transcendentals, 8th Edition, by James Stewart, 2016, CENGAGE 
Learning, International Metric Version.  

Primary: Class notes. I-learn, and some old exams and quizzes on    my personal webpage   

   http://ayman-badawi.com/MTH%20203.html 

Problems with solutions from 7th edition will be posted on I-Learn. 

K Teaching and 
Learning 

Methodologies 

This course is designed to help the students: 

 Utilize three-dimensional geometry to model science/engineering problems. 

 Use functions of several variables, their partial derivatives and their integration to 
solve real life problems. 

 Grasp the main concepts and theorems of vector calculus and how they relate to 
science applications.  
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 COURSE SYLLABUS 

 

L Grading Scale, 
Grading 

Distribution, and 
Due Dates 

 

 

Cut-off (%) Grade Points  Cut-off (%) Grade Points 

93 ≤  A  ≤ 100 4.0  73 ≤  C+  < 76.99 2.3 

89  ≤  A-  < 92.99 3.7  67  ≤  C  < 72.99 2.0 

85  ≤  B+  < 88.99 3.3  61  ≤  C-  < 66.99 1.7 

81  ≤  B  < 84.99 3.0  45  ≤  D < 60.99 1.0 

77  ≤  B-  < 80.99 2.7  F < 44.99 0 

 

Assessment Weight Due Date and Remarks 

Quizzes 20% To be announced in class 

Recitation 5%                 Will be used for Quizzes/ problems with 
solutions (discussion)/ if needed, normal lecture 

(Attendance is crucial in this session) 

Midterm 35%  Sunday  , April   26,  2020, 1pm to 3pm 

Final Exam 40% As given by the registrar’s office 

Total 100%  
 

M Explanation of 
Assessments, 

Remarks, Rules and 
Regulations 

 
Exams and Quizzes: There will be one midterm exam, final exam and quizzes. One quiz will be 
dropped.   There will be no make-up quizzes or exams under any circumstances.  
 
Laboratory component/Recitation: This course has 1 hour per week laboratory component. This 
hour will be used in the following variety of ways: to solve problems/examples/ normal lecture,  
Help: Students are encouraged to consult their instructor during his office hours or by 
appointment. 
 

Remarks, Rules and Regulations: 

 Material Sharing During Exams & Quizzes: Students are not allowed to share 

calculators or any other material during exams and quizzes. 

 Phones and smart devices during quizzes and exams:  All devices that can be used to 

violate the academic integrity policy are prohibited, and a violation of this policy can 

lead to severe actions against the student.  

 Make-up exams/quizzes: There will be no make-up exams/quizzes.   

 Incomplete Grades: Failing to show up in time for the final exam will result in a zero 

in that exam.  Only in exceptional cases of compelling medical or other emergencies 

certified by a medical or other professional and approved by the instructor, the Chair and 

the Dean; will the student be given an “Incomplete” grade.  In this case, the instructor 

will schedule a make-up exam within the first two weeks of the next semester.  It is the 

responsibility of the student to find out from his/her instructor the exact date, time and 

place of the make-up exam.  
 Final Grades: All students are treated equally. Tests and other graded assignments due 

dates are set.  No addendum, make-up exams, or extra assignments to improve grades 

will be given.   

 

N Student Academic 
Integrity Code 

Statement 

All students are expected to abide by the Student Academic Integrity Code as 
articulated in the AUS undergraduate catalog.  
 

 

Tentative Weekly Schedule 

Week 
CHAPTER NOTES 

1 
12.1 Three-Dimensional Coordinate Systems   
12.2 Vectors  
12.3 The Dot Product  
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 COURSE SYLLABUS 

 

2 
12.4 The Cross Product 
12.5 Equations of Lines and Planes 
12.6 Cylinders and Quadric Surfaces  

 

3 
13.1 Vector  Functions and Space Curves 
13.2 Derivatives and Integrals of Vector Functions 
13.3 Arc Length (curvature will not be examined) 

 

4 
13.4 Motion in Space: Velocity and Acceleration 
14.1 Functions of Several Variables 
14.2 Limits and Continuity   

 

5 14.3 Partial Derivatives 
14.4 Tangent Planes and Linear Approximations  

6 14.5 The Chain Rule 
14.6 Directional Derivatives and the Gradient Vector  

7 14.7 Maximum and Minimum Values 
14.8 Lagrange Multipliers 

 

8 15.1   Double Integrals over rectangles 
15.2  Double Integrals over General Regions  

9 
15.3  Double Integrals in Polar Coordinates 
15.4   Applications of Double Integrals 
15.5  Surface Area 

 

10 15.6  Triple Integrals 
15.7  Triple Integrals  in Cylindrical Coordinates  

11 15.8  Triple Integrals  in Spherical Coordinates 
16.1 Vector Field  

12 16.2 Line Integrals 
16.3  The Fundamental Theorem for Line Integrals  

 

13 16.4  Green’s Theorem 
16.5 Curl and Divergence   

14 
16.6 Parameterized Surfaces and Their Areas 
16.7 Surface Integrals  
16.8  Stokes’ Theorem 

 

15 16.9 The Divergence Theorem  

16 Final Exam  COMPREHENSIVE 

 

Homework Assignments - MTH203 : Problems with solutions from the 7th edition will be posted on I-Learn 
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2.1.1 Questions with Solutions on Chapter 12.2



798 CHAPTER 12 VECTORS AND THE GEOMETRY OF SPACE

1. Homework Hints available at stewartcalculus.com

1. Are the following quantities vectors or scalars? Explain.
(a) The cost of a theater ticket
(b) The current in a river
(c) The initial flight path from Houston to Dallas
(d) The population of the world

2. What is the relationship between the point (4, 7) and the 
vector ? Illustrate with a sketch.

3. Name all the equal vectors in the parallelogram shown.

4. Write each combination of vectors as a single vector.

(a) AB
l

BC
l

(b) CD
l

DB
l

(c) DB
l

AB
l

(d) DC
l

CA
l

AB
l

�4, 7 �

B

E

A

D C

�

� � �

A

D
C

B

�

5. Copy the vectors in the figure and use them to draw the 
following vectors.
(a) (b)
(c) (d)
(e) (f )

6. Copy the vectors in the figure and use them to draw the 
following vectors.
(a) (b)
(c) (d)
(e) (f )

7. In the figure, the tip of and the tail of are both the midpoint
of . Express and in terms of and .

u � v u � w
v � w u � v

wvu

v � u � w u � w � v

a � b a � b
1
2 a �3b
a � 2b 2b � a

b a

c d
QR c d a b

b
a c

d

P

Q

R

12.2 Exercises

Equating components, we get

Solving the first of these equations for and substituting into the second, we get

So the magnitudes of the tensions are

and

Substituting these values in and , we obtain the tension vectors

� T2 �

� T1 � sin 50� � � T1� cos 50�

cos 32�
sin 32� � 100

� T1 � �
100

sin 50� � tan 32� cos 50�
� 85.64 lb

� T2 � � � T1 � cos 50�

cos 32�
� 64.91 lb

T1 � �55.05 i � 65.60 j T2 � 55.05 i � 34.40 j

�� T1 � cos 50� � � T2 � cos 32� � 0

� T1 � sin 50� � � T2 � sin 32� � 100

5 6

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.
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SECTION 12.2 VECTORS 799

8. If the vectors in the figure satisfy and
, what is ?

9–14 Find a vector with representation given by the directed line
segment AB

l
. Draw AB

l
and the equivalent representation starting at

the origin.

9. , 10. ,

11. , 12. ,

13. , 14. ,

15–18 Find the sum of the given vectors and illustrate 
geometrically.

15. , 16. ,

17. , 18. ,

19–22 Find a � b, 2a � 3b, , and .

19. ,

20. ,

21. ,

22. ,

23–25 Find a unit vector that has the same direction as the given
vector.

23. 24.

25.

26. Find a vector that has the same direction as but has
length 6.

27–28 What is the angle between the given vector and the positive
direction of the -axis?

27. 28.

29. If lies in the first quadrant and makes an angle with the
positive -axis and , find in component form.

30. If a child pulls a sled through the snow on a level path with a
force of 50 N exerted at an angle of above the horizontal,
find the horizontal and vertical components of the force.

31. A quarterback throws a football with angle of elevation and
speed . Find the horizontal and vertical components of
the velocity vector.

�u � � �v � � 1
u � v � w � 0 �w �

u

v

w

a

A��1, 1� B�3, 2� A��4, �1� B�1, 2�

B�0, 6�A�2, 1�B�2, 2�A��1, 3�

B�4, 2, 1�A�4, 0, �2�B�2, 3, �1�A�0, 3, 1�

��1, 5 ��3, �1 ��6, �2 ���1, 4 �

�0, 0, 6 ��1, 3, �2 ��0, 8, 0 ��3, 0, 1 �

� a � b �� a �
b � ��3, �6 �a � �5, �12 �

b � i � 2 ja � 4 i � j

b � �2 i � j � 5ka � i � 2 j � 3k

b � 2 j � ka � 2 i � 4 j � 4 k

��4, 2, 4 ��3 i � 7 j

8 i � j � 4k

��2, 4, 2 �

x

i � s3 j 8 i � 6 j

��3v
v� v � � 4x

38�

40�
60 ft�s

32–33 Find the magnitude of the resultant force and the angle it
makes with the positive -axis.

32. 33.

34. The magnitude of a velocity vector is called speed. Suppose
that a wind is blowing from the direction N W at a speed of
50 km�h. (This means that the direction from which the wind
blows is west of the northerly direction.) A pilot is steering
a plane in the direction N E at an airspeed (speed in still air)
of 250 km�h. The true course, or track, of the plane is the
direction of the resul tant of the velocity vectors of the plane
and the wind. The ground speed of the plane is the magnitude
of the resultant. Find the true course and the ground speed of
the plane.

35. A woman walks due west on the deck of a ship at 3 mi�h. The
ship is moving north at a speed of 22 mi�h. Find the speed and
direction of the woman relative to the surface of the water.

36. Ropes 3 m and 5 m in length are fastened to a holiday decora-
tion that is suspended over a town square. The decoration has 
a mass of 5 kg. The ropes, fastened at different heights, make
angles of and with the horizontal. Find the tension in
each wire and the magnitude of each tension.

37. A clothesline is tied between two poles, 8 m apart. The line 
is quite taut and has negligible sag. When a wet shirt with a
mass of 0.8 kg is hung at the middle of the line, the mid point 
is pulled down 8 cm. Find the tension in each half of the
clothesline.

38. The tension T at each end of the chain has magnitude 25 N
(see the figure). What is the weight of the chain?

39. A boatman wants to cross a canal that is 3 km wide and wants
to land at a point 2 km upstream from his starting point. The
current in the canal flows at and the speed of his boat
is .
(a) In what direction should he steer?
(b) How long will the trip take?

x

20 lb

16 lb

45°
0

y

x30°
300 N

200 N

60°
0

y

x

45�

45�
60�

52� 40�

3 m 5 m

52°
40°

37° 37°

3.5 km�h
13 km�h

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

16



242 ¤ CHAPTER 12 VECTORS AND THE GEOMETRY OF SPACE

The solid can include any additional points that do not extend beyond these

three "silhouettes" when viewed from directions parallel to the coordinate

axes. One possibility shown here is to draw the circular base and the vertical

square first. Then draw a surface formed by line segments parallel to the

-plane that connect the top of the square to the circle.

Problem 8 in the Problems Plus section at the end of the chapter illustrates another possible solid.

12.2 Vectors

1. (a) The cost of a theater ticket is a scalar, because it has only magnitude.

(b) The current in a river is a vector, because it has both magnitude (the speed of the current) and direction at any given

location.

(c) If we assume that the initial path is linear, the initial flight path from Houston to Dallas is a vector, because it has both

magnitude (distance) and direction.

(d) The population of the world is a scalar, because it has only magnitude.

2. If the initial point of the vector h4 7i is placed at the origin, then
h4 7i is the position vector of the point (4 7).

3. Vectors are equal when they share the same length and direction (but not necessarily location). Using the symmetry of the

parallelogram as a guide, we see that = , = , = , and = .

4. (a) The initial point of is positioned at the terminal point of , so by the Triangle Law the sum + is the vector

with initial point and terminal point , namely .

(b) By the Triangle Law, + is the vector with initial point and terminal point , namely .

(c) First we consider as + . Then since has the same length as but points in the opposite

direction, we have = and so = + = .

(d) We use the Triangle Law twice: + + = + + = + = .
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SECTION 12.2 VECTORS ¤ 243

5. (a) (b) (c)

(d) (e) (f )

6. (a) (b) (c)

(d) (e) (f )

7. Because the tail of d is the midpoint of we have = 2d, and by the Triangle Law,

a+ 2d = b 2d = b a d = 1
2
(b a) = 1

2
b 1

2
a. Again by the Triangle Law we have c+ d = b so

c = b d = b 1
2
b 1

2
a = 1

2
a+ 1

2
b.

8. We are given u+ v+w = 0, sow = ( u) + ( v). (See the figure.)

Vectors u, v, andw form a right triangle, so from the Pythagorean Theorem

we have | u|2 + | v|2 = |w|2. But | u| = |u| = 1 and | v| = |v| = 1 so |w| = | u|2 + | v|2 = 2.

9. a = h3 ( 1) 2 1i = h4 1i 10. a = h1 ( 4) 2 ( 1)i = h5 3i
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244 ¤ CHAPTER 12 VECTORS AND THE GEOMETRY OF SPACE

11. a = h2 ( 1) 2 3i = h3 1i 12. a = h0 2 6 1i = h 2 5i

13. a = h2 0 3 3 1 1i = h2 0 2i 14. a = h4 4 2 0 1 ( 2)i = h0 2 3i

15. h 1 4i+ h6 2i = h 1 + 6 4 + ( 2)i = h5 2i 16. h3 1i+ h 1 5i = h3 + ( 1) 1 + 5i = h2 4i

17. h3 0 1i+ h0 8 0i= h3 + 0 0 + 8 1 + 0i
= h3 8 1i

18. h1 3 2i+ h0 0 6i= h1 + 0 3 + 0 2 + 6i
= h1 3 4i

19. a+ b = h5 + ( 3) 12 + ( 6)i = h2 18i
2a+ 3b = h10 24i+ h 9 18i = h1 42i

|a| = 52 + ( 12)2 = 169 = 13

|a b| = |h5 ( 3) 12 ( 6)i| = |h8 6i| = 82 + ( 6)2 = 100 = 10
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SECTION 12.2 VECTORS ¤ 245

20. a+ b = (4 i+ j) + (i 2 j) = 5 i j

2a+ 3b = 2 (4 i+ j) + 3 (i 2 j) = 8 i+ 2 j+ 3 i 6 j = 11 i 4 j

|a| = 42 + 12 = 17

|a b| = |(4 i+ j) (i 2 j)| = |3 i+ 3 j| = 32 + 32 = 18 = 3 2

21. a+ b = (i+ 2 j 3k) + ( 2 i j+ 5k) = i+ j+ 2k

2a+ 3b = 2 (i+ 2 j 3k) + 3 ( 2 i j+ 5k) = 2 i+ 4 j 6k 6 i 3 j+ 15k = 4 i+ j+ 9k

|a| = 12 + 22 + ( 3)2 = 14

|a b| = |(i+ 2 j 3k) ( 2 i j+ 5k)| = |3 i+ 3 j 8k| = 32 + 32 + ( 8)2 = 82

22. a+ b = (2 i 4 j+ 4k) + (2 j k) = 2 i 2 j+ 3k

2a+ 3b = 2 (2 i 4 j+ 4k) + 3 (2 j k) = 4 i 8 j+ 8k+ 6 j 3k = 4 i 2 j+ 5k

|a| = 22 + ( 4)2 + 42 = 36 = 6

|a b| = |(2 i 4 j+ 4k) (2 j k)| = |2 i 6 j+ 5k| = 22 + ( 6)2 + 52 = 65

23. The vector 3 i+ 7 j has length | 3 i+ 7 j| = ( 3)2 + 72 = 58, so by Equation 4 the unit vector with the same

direction is 1

58
( 3 i+ 7 j) =

3

58
i+

7

58
j.

24. |h 4 2 4i| = ( 4)2 + 22 + 42 = 36 = 6, so u = 1
6
h 4 2 4i = 2

3
1
3

2
3
.

25. The vector 8 i j+ 4k has length |8 i j+ 4k| = 82 + ( 1)2 + 42 = 81 = 9, so by Equation 4 the unit vector with

the same direction is 1
9
(8 i j+ 4k) = 8

9
i 1

9
j+ 4

9
k.

26. |h 2 4 2i| = ( 2)2 + 42 + 22 = 24 = 2 6, so a unit vector in the direction of h 2 4 2i is u = 1

2 6
h 2 4 2i.

A vector in the same direction but with length 6 is 6u = 6 · 1

2 6
h 2 4 2i = 6

6

12

6

6

6
or 6 2 6 6 .

27. From the figure, we see that tan =
3

1
= 3 = 60 .
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246 ¤ CHAPTER 12 VECTORS AND THE GEOMETRY OF SPACE

28. From the figure we see that tan = 6
8
= 3

4
, so = tan 1 3

4
36 9 .

29. From the figure, we see that the -component of v is

1 = |v| cos( 3) = 4 · 1
2
= 2 and the -component is

2 = |v| sin( 3) = 4 · 3
2
= 2 3 Thus

v = h 1 2i = 2 2 3 .

30. From the figure, we see that the horizontal component of the

force F is |F| cos 38 = 50 cos 38 39 4 N, and the

vertical component is |F| sin 38 = 50 sin 38 30 8 N.

31. The velocity vector v makes an angle of 40 with the horizontal and

has magnitude equal to the speed at which the football was thrown.

From the figure, we see that the horizontal component of v is

|v| cos 40 = 60 cos 40 45 96 ft/s and the vertical component

is |v| sin 40 = 60 sin 40 38 57 ft/s.

32. The given force vectors can be expressed in terms of their horizontal and vertical components as

20 cos 45 i+ 20 sin 45 j = 10 2 i+ 10 2 j and 16 cos 30 i 16 sin 30 j = 8 3 i 8 j. The resultant force F

is the sum of these two vectors: F = 10 2 + 8 3 i+ 10 2 8 j 28 00 i+ 6 14 j. Then we have

|F| (28 00)2 + (6 14)2 28 7 lb and, letting be the angle F makes with the positive -axis,

tan =
10 2 8

10 2 + 8 3
= tan 1 10 2 8

10 2 + 8 3
12 4 .

33. The given force vectors can be expressed in terms of their horizontal and vertical components as 300 i and

200 cos 60 i+ 200 sin 60 j = 200 1
2
i+ 200 3

2
j = 100 i+ 100 3 j. The resultant force F is the sum of

these two vectors: F = ( 300 + 100) i+ 0 + 100 3 j = 200 i+ 100 3 j. Then we have

|F| ( 200)2 + 100 3
2
= 70,000 = 100 7 264 6 N. Let be the angle F makes with the
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806 CHAPTER 12 VECTORS AND THE GEOMETRY OF SPACE

1. Which of the following expressions are meaningful? Which are
meaningless? Explain.
(a) (b)

(c) (d)

(e) (f )

2–10 Find .

2. ,

3. ,

4. ,

5. ,

6. ,

7. ,

8. ,

9. ,  ,  the angle between and is 

10. ,  ,  the angle between and is 

11–12 If u is a unit vector, find and .

11. 12.

13. (a) Show that .
(b) Show that .

14. A street vendor sells hamburgers, hot dogs, and soft
drinks on a given day. He charges $2 for a hamburger, $1.50
for a hot dog, and $1 for a soft drink. If and

, what is the meaning of the dot product ?

15–20 Find the angle between the vectors. (First find an exact
expression and then approximate to the nearest degree.)

15. ,

16. ,

17. ,

18. ,

19. ,

20. ,

�a � b�c�a � b� � c

a � �b � c�� a � �b � c�

� a � � �b � c�a � b � c

a � b

b � �0.7, 1.2 �a � ��2, 3�

b � ��5, 12 �a � ��2, 1
3 �

b � �2, 5, �1 �a � �6, �2, 3�

b � �6, �3, �8 �a � �4, 1, 1
4 �

b � �2q, q, �q �a � �p, �p, 2p�

b � i � j � ka � 2 i � j

b � 4 i � 5ka � 3 i � 2 j � k

2��3ba� b � � 5� a � � 6

45�ba� b � � s6� a � � 3

u � wu � v

w

u

v

w

u v

i � j � j � k � k � i � 0
i � i � j � j � k � k � 1

cba

A � �a, b, c �
A � PP � �2, 1.5, 1 �

b � �2, �1 �a � �4, 3 �

b � �5, 12 �a � ��2, 5 �

b � ��2, 4, 3 �a � �3, �1, 5 �

b � �2, �1, 0 �a � �4, 0, 2 �

b � 2i � ka � 4i � 3j � k

b � 4 i � 3ka � i � 2 j � 2k

21–22 Find, correct to the nearest degree, the three angles of the
triangle with the given vertices.

21. ,  ,  

22. ,  ,  

23–24 Determine whether the given vectors are orthogonal, 
parallel, or neither.

23. (a) ,
(b) ,  
(c) ,
(d) ,

24. (a) ,
(b) ,
(c) ,

25. Use vectors to decide whether the triangle with vertices
, , and is right-angled.

26. Find the values of such that the angle between the vectors
, and is .

27. Find a unit vector that is orthogonal to both and .

28. Find two unit vectors that make an angle of with
.

29–30 Find the acute angle between the lines.

29. ,

30. ,

31–32 Find the acute angles between the curves at their points of
intersection. (The angle between two curves is the angle between
their tangent lines at the point of intersection.)

31. ,

32. ,  ,  

33–37 Find the direction cosines and direction angles of the vector.
(Give the direction angles correct to the nearest degree.)

33. 34.

35. 36.

37. ,  where 

38. If a vector has direction angles and , find the
third direction angle .

P�2, 0� Q�0, 3� R�3, 4�

A�1, 0, �1� B�3, �2, 0� C�1, 3, 3�

a � ��5, 3, 7 � b � �6, �8, 2 �
a � �4, 6 � b � ��3, 2 �
a � �i � 2 j � 5k b � 3 i � 4 j � k
a � 2 i � 6 j � 4k b � �3 i � 9 j � 6k

u � ��3, 9, 6 � v � �4, �12, �8�
u � i � j � 2k v � 2 i � j � k
u � �a, b, c � v � ��b, a, 0 �

P�1, �3, �2� Q�2, 0, �4� R�6, �2, �5�

x
�2, 1, �1 � �1, x, 0 � 45�

i � j i � k

60�
v � �3, 4 �

2x � y � 3 3x � y � 7

x � 2y � 7 5x � y � 2

y � x 2 y � x 3

y � sin x y � cos x 0 � x � ��2

�2, 1, 2 � �6, 3, �2 �

i � 2 j � 3k 1
2 i � j � k

�c, c, c � c � 0

� � ��4 	 � ��3



12.3 Exercises

1. Homework Hints available at stewartcalculus.com
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SECTION 12.3 THE DOT PRODUCT 807

39–44 Find the scalar and vector projections of onto .
39. ,

40. ,

41. ,

42. ,

43. ,

44. ,

45. Show that the vector is orthogonal to .
(It is called an orthogonal projection of .)

46. For the vectors in Exercise 40, find and illustrate by
drawing the vectors , , , and .

47. If , find a vector such that .

48. Suppose that and are nonzero vectors.
(a) Under what circumstances is ?
(b) Under what circumstances is ?

49. Find the work done by a force that moves
an object from the point to the point along
a straight line. The distance is measured in meters and the force
in newtons.

50. A tow truck drags a stalled car along a road. The chain makes
an angle of with the road and the tension in the chain is
1500 N. How much work is done by the truck in pulling the 
car 1 km?

51. A sled is pulled along a level path through snow by a rope. 
A 30-lb force acting at an angle of  above the horizontal
moves the sled 80 ft. Find the work done by the force.

52. A boat sails south with the help of a wind blowing in the direc-
tion S E with magnitude 400 lb. Find the work done by the
wind as the boat moves 120 ft.

53. Use a scalar projection to show that the distance from a point
to the line is

Use this formula to find the distance from the point to
the line .

54. If , and , show
that the vector equation represents a
sphere, and find its center and radius.

b a
a � ��5, 12 � b � �4, 6 �

a � �1, 4 � b � �2, 3 �

b � �1, 2, 3 �a � �3, 6, �2 �

b � �5, �1, 4 �a � ��2, 3, �6 �

b � j �
1
2 ka � 2 i � j � 4k

b � i � j � ka � i � j � k

aorth a b � b � proja b
b

orth a b
orth a bproja bba

comp a b � 2ba � �3, 0, �1 �

ba
comp a b � comp b a
proja b � projb a

F � 8 i � 6 j � 9k
�6, 12, 20��0, 10, 8�

30�

40�

36�

ax � by � c � 0P1�x1, y1�

� ax1 � by1 � c �
sa 2 � b 2

��2, 3�
3x � 4y � 5 � 0

b � �b1, b2, b3 �r � �x, y, z � , a � �a1, a2, a3 �
�r � a� � �r � b� � 0

55. Find the angle between a diagonal of a cube and one of its
edges.

56. Find the angle between a diagonal of a cube and a diagonal of
one of its faces.

57. A molecule of methane, , is structured with the four hydro-
gen atoms at the vertices of a regular tetrahedron and the car-
bon atom at the centroid. The bond angle is the angle formed
by the H— C—H combination; it is the angle between the
lines that join the carbon atom to two of the hydrogen atoms.
Show that the bond angle is about . Hint: Take the 
vertices of the tetrahedron to be the points , ,

, and , as shown in the figure. Then the centroid
is .

58. If , where , , and are all nonzero vectors,
show that bisects the angle between and .

59. Prove Properties 2, 4, and 5 of the dot product (Theorem 2).

60. Suppose that all sides of a quadrilateral are equal in length and
opposite sides are parallel. Use vector methods to show that the
diagonals are perpendicular.

61. Use Theorem 3 to prove the Cauchy-Schwarz Inequality:

62. The Triangle Inequality for vectors is

(a) Give a geometric interpretation of the Triangle Inequality.
(b) Use the Cauchy-Schwarz Inequality from Exercise 61 to

prove the Triangle Inequality. [Hint: Use the fact that
and use Property 3 of the

dot product.]

63. The Parallelogram Law states that 

(a) Give a geometric interpretation of the Parallelogram Law.
(b) Prove the Parallelogram Law. (See the hint in Exercise 62.)

64. Show that if and are orthogonal, then the vectors
and must have the same length.

CH4

109.5� [
�1, 0, 0� �0, 1, 0�

�0, 0, 1� �1, 1, 1�
( 1

2 , 1
2 , 1

2 ) ]
H

H
H

H

C

x

y

z

c � � a � b � � b � a a b c
c a b

� a � b � � � a � � b �

� a � b � � � a � � � b �

� a � b �2 � �a � b� � �a � b�

� a � b �2 � � a � b �2 � 2 � a �2 � 2 � b �2

u � v u � v
u v
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252 ¤ CHAPTER 12 VECTORS AND THE GEOMETRY OF SPACE

(d) Both a and b+ c are vectors, so the dot product a · (b+ c) has meaning.
(e) a · b is a scalar, but c is a vector, and so the two quantities cannot be added and a · b+ c has no meaning.
(f ) |a| is a scalar, and the dot product is defined only for vectors, so |a| · (b+ c) has no meaning.

2. a · b = h 2 3i · h0 7 1 2i = ( 2)(0 7) + (3)(1 2) = 2 2

3. a · b = 2 1
3
· h 5 12i = ( 2)( 5) + 1

3
(12) = 10 + 4 = 14

4. a · b = h6 2 3i · h2 5 1i = (6)(2) + ( 2) (5) + (3)( 1) = 12 10 3 = 1

5. a · b = 4 1 1
4
· h6 3 8i = (4)(6) + (1)( 3) + 1

4
( 8) = 19

6. a · b = h 2 i · h2 i = ( )(2 ) + ( )( ) + (2 )( ) = 2 2 =

7. a · b = (2 i+ j) · (i j+ k) = (2)(1) + (1)( 1) + (0)(1) = 1

8. a · b = (3 i+ 2 j k) · (4 i+ 5k) = (3)(4) + (2)(0) + ( 1)(5) = 7

9. By Theorem 3, a · b = |a| |b| cos = (6)(5) cos 2
3
= 30 1

2
= 15.

10. By Theorem 3, a · b = |a| |b| cos = (3) 6 cos 45 = 3 6 2
2

= 3
2
· 2 3 = 3 3 5 20.

11. u v andw are all unit vectors, so the triangle is an equilateral triangle. Thus the angle between u and v is 60 and

u · v = |u| |v| cos 60 = (1)(1) 1
2
= 1

2
Ifw is moved so it has the same initial point as u, we can see that the angle

between them is 120 and we have u ·w = |u| |w| cos 120 = (1)(1) 1
2
= 1

2
.

12. u is a unit vector, sow is also a unit vector, and |v| can be determined by examining the right triangle formed by u and v

Since the angle between u and v is 45 , we have |v| = |u| cos 45 = 2
2
. Then u · v = |u| |v| cos 45 = (1) 2

2
2
2
= 1

2
.

Since u andw are orthogonal, u ·w = 0.

13. (a) i · j = h1 0 0i · h0 1 0i = (1)(0) + (0)(1) + (0)(0) = 0. Similarly, j · k = (0)(0) + (1)(0) + (0)(1) = 0 and
k · i = (0)(1) + (0)(0) + (1)(0) = 0.

Another method: Because i, j, and k are mutually perpendicular, the cosine factor in each dot product (see Theorem 3)

is cos
2
= 0.

(b) By Property 1 of the dot product, i · i = |i|2 = 12 = 1 since i is a unit vector. Similarly, j · j = |j|2 = 1 and
k · k = |k|2 = 1.

14. The dot productA ·P is
h i · h2 1 5 1i = (2) + (1 5) + (1)

= (number of hamburgers sold)(price per hamburger)

+ (number of hot dogs sold)(price per hot dog)

+ (number of soft drinks sold)(price per soft drink)

so it is equal to the vendor’s total revenue for that day.
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SECTION 12.3 THE DOT PRODUCT ¤ 253

15. |a| = 42 + 32 = 5, |b| = 22 + ( 1)2 = 5, and a · b = (4)(2) + (3)( 1) = 5. From Corollary 6, we have

cos =
a · b
|a| |b| =

5

5 · 5
=

1

5
. So the angle between a and b is = cos 1 1

5
63 .

16. |a| = ( 2)2 + 52 = 29, |b| = 52 + 122 = 13, and a · b = ( 2) (5) + (5)(12) = 50. Using Corollary 6, we have

cos =
a · b
|a| |b| =

50

29 · 13 =
50

13 29
and the angle between a and b is = cos 1 50

13 29
44 .

17. |a| = 32 + ( 1)2 + 52 = 35, |b| = ( 2)2 + 42 + 32 = 29, and a · b = (3)( 2) + ( 1)(4) + (5)(3) = 5. Then

cos =
a · b
|a| |b| =

5

35 · 29
=

5

1015
and the angle between a and b is = cos 1 5

1015
81 .

18. |a| = 42 + 02 + 22 = 20, |b| = 22 + ( 1)2 + 02 = 5, and a · b = (4)(2) + (0)( 1) + (2)(0) = 8.

Then cos =
a · b
|a| |b| =

8

20 · 5
=
4

5
and = cos 1 4

5
37 .

19. |a| = 42 + ( 3)2 + 12 = 26, |b| = 22 + 02 + ( 1)2 = 5, and a · b = (4)(2) + ( 3)(0) + (1)( 1) = 7.

Then cos =
a · b
|a| |b| =

7

26 · 5
=

7

130
and = cos 1 7

130
52 .

20. |a| = 12 + 22 + ( 2)2 = 9 = 3, |b| = 42 + 02 + ( 3)2 = 25 = 5, and

a · b = (1)(4) + (2)(0) + ( 2)( 3) = 10. Then cos =
a · b
|a| |b| =

10

3 · 5 =
2

3
and = cos 1 2

3
48 .

21. Let , , and be the angles at vertices , , and respectively.

Then is the angle between vectors and , is the angle

between vectors and , and is the angle between vectors

and .

Thus cos =
·

=
h 2 3i · h1 4i

( 2)2 + 32 12 + 42
=

2 + 12

13 17
=

10

221
and = cos 1 10

221
48 . Similarly,

cos =
·

=
h2 3i · h3 1i
4 + 9 9 + 1

=
6 3

13 10
=

3

130
so = cos 1 3

130
75 and

180 (48 + 75 ) = 57 .

Alternate solution: Apply the Law of Cosines three times as follows: cos =

2 2 2

2
,

cos =

2 2 2

2
, and cos =

2 2 2

2
.
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254 ¤ CHAPTER 12 VECTORS AND THE GEOMETRY OF SPACE

22. Let , , and be the angles at vertices , , and . Then is the angle

between vectors and , is the angle between vectors and ,

and is the angle between vectors and .

Thus cos =
·

=
h2 2 1i · h0 3 4i

22 + ( 2)2 + 12 02 + 32 + 42
=
0 6 + 4

3 · 5 =
2

15
and = cos 1 2

15
98 .

Similarly, cos =
·

=
h 2 2 1i · h 2 5 3i
4 + 4 + 1 4 + 25 + 9

=
4 + 10 3

3 · 38
=

11

3 38
so = cos 1 11

3 38
54 and

180 (98 + 54 ) = 28 .

Alternate solution: Apply the Law of Cosines three times as follows:

cos =

2 2 2

2
cos =

2 2 2

2
cos =

2 2 2

2

23. (a) a · b = ( 5)(6) + (3)( 8) + (7)(2) = 40 6= 0, so a and b are not orthogonal. Also, since a is not a scalar multiple
of b, a and b are not parallel.

(b) a · b = (4)( 3) + (6)(2) = 0, so a and b are orthogonal (and not parallel).

(c) a · b = ( 1)(3) + (2)(4) + (5)( 1) = 0, so a and b are orthogonal (and not parallel).

(d) Because a = 2
3
b, a and b are parallel.

24. (a) Because u = 3
4
v, u and v are parallel vectors (and thus not orthogonal).

(b) u · v =(1)(2) + ( 1)( 1) + (2)(1) = 5 6= 0, so u and v are not orthogonal. Also, u is not a scalar multiple of v,
so u and v are not parallel.

(c) u · v =( )( ) + ( )( ) + ( )(0) = + + 0 = 0, so u and v are orthogonal (and not parallel).

25. = h 1 3 2i, = h4 2 1i, and · = 4+ 6 2 = 0. Thus and are orthogonal, so the angle of

the triangle at vertex is a right angle.

26. By Theorem 3, vectors h2 1 1i and h1 0i meet at an angle of 45 when

h2 1 1i · h1 0i = 4 + 1 + 1 1 + 2 + 0 cos 45 or 2 + 0 = 6 1 + 2 · 2
2

2 + = 3 1 + 2.

Squaring both sides gives 4 + 4 + 2 = 3 + 3 2 2 2 4 1 = 0. By the quadratic formula,

=
( 4)± ( 4)2 4(2)( 1)

2(2)
=
4± 24

4
=
4± 2 6

4
= 1± 6

2
. (You can verify that both values are valid.)

c° 2012 Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part.

NOT FOR SALE

°°cc 2012 Cengage Learning. All Rights Reserved. May not be scanned, copied, or2012 Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part.duplicated, or posted to a publicly accessible website, in whole or in part.

27



SECTION 12.3 THE DOT PRODUCT ¤ 255

27. Let a = 1 i+ 2 j+ 3 k be a vector orthogonal to both i+ j and i+ k. Then a · (i+ j) = 0 1 + 2 = 0 and

a · (i+ k) = 0 1 + 3 = 0, so 1 = 2 = 3. Furthermore a is to be a unit vector, so 1 = 2
1 +

2
2 +

2
3 = 3

2
1

implies 1 = ± 1

3
. Thus a = 1

3
i 1

3
j 1

3
k and a = 1

3
i+ 1

3
j+ 1

3
k are two such unit vectors.

28. Let u = h i be a unit vector. By Theorem 3 we need u · v = |u| |v| cos 60 3 + 4 = (1)(5) 1
2

= 5
8

3
4
. Since u is a unit vector, |u| = 2 + 2 = 1 2 + 2 = 1 2 + 5

8
3
4

2
= 1

25
16

2 15
16

+ 25
64
= 1 100 2 60 39 = 0 By the quadratic formula,

=
( 60)± ( 60)2 4(100)( 39)

2(100)
=
60± 19,200

200
=
3± 4 3

10
. If =

3 + 4 3

10
then

=
5

8

3

4

3 + 4 3

10
=
4 3 3

10
, and if =

3 4 3

10
then =

5

8

3

4

3 4 3

10
=
4 + 3 3

10
. Thus the two

unit vectors are 3 + 4 3

10

4 3 3

10
h0 9928 0 1196i and 3 4 3

10

4 + 3 3

10
h 0 3928 0 9196i.

29. The line 2 = 3 = 2 3 has slope 2, so a vector parallel to the line is a = h1 2i. The line 3 + = 7

= 3 + 7 has slope 3, so a vector parallel to the line is b = h1 3i. The angle between the lines is the same as the
angle between the vectors. Here we have a · b = (1)(1) + (2)( 3) = 5, |a| = 12 + 22 = 5, and

|b| = 12 + ( 3)2 = 10, so cos =
a · b
|a| |b| =

5

5 · 10
=

5

5 2
=

1

2
or 2

2
. Thus = 135 , and the

acute angle between the lines is 180 135 = 45 .

30. The line + 2 = 7 = 1
2
+ 7

2
has slope 1

2
, so a vector parallel to the line is a = h2 1i. The line

5 = 2 = 5 2 has slope 5, so a vector parallel to the line is b = h1 5i. The lines meet at the same
angle that the vectors meet at. Here we have a · b = (2)(1) + ( 1)(5) = 3, |a| = 22 + ( 1)2 = 5, and

|b| = 12 + 52 = 26, so cos =
a · b
|a| |b| =

3

5 · 26
=

3

130
and = cos 1 3

130
105 3 . The acute

angle between the lines is approximately 180 105 3 = 74 7 .

31. The curves = 2 and = 3 meet when 2 = 3 3 2 = 0 2( 1) = 0 = 0, = 1. We have

2 = 2 and 3 = 3 2, so the tangent lines of both curves have slope 0 at = 0. Thus the angle between the curves is

0 at the point (0 0). For = 1, 2

=1

= 2 and 3

=1

= 3 so the tangent lines at the point (1 1) have slopes 2 and

3. Vectors parallel to the tangent lines are h1 2i and h1 3i, and the angle between them is given by

cos =
h1 2i · h1 3i
|h1 2i| |h1 3i| =

1 + 6

5 10
=

7

5 2

Thus = cos 1 7

5 2
8 1 .
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256 ¤ CHAPTER 12 VECTORS AND THE GEOMETRY OF SPACE

32. The curves = sin and = cos meet when sin = cos tan = 1 = 4 [0 2]. Thus the

point of intersection is 4 2 2 . We have sin
= 4

= cos
= 4

=
2

2
and

cos
= 4

= sin
= 4

=
2

2
, so the tangent lines at that point have slopes 2

2
and 2

2
. Vectors parallel to

the tangent lines are 1
2

2
and 1

2

2
, and the angle between them is given by

cos =
1 2 2 · 1 2 2

1 2 2 1 2 2
=

1 1
2

3
2

3
2

=
1 2

3 2
=
1

3

Thus = cos 1 1
3

70 5 .

33. Since |h2 1 2i| = 4 + 1 + 4 = 9 = 3, using Equations 8 and 9 we have cos = 2
3
, cos = 1

3
, and cos = 2

3
. The

direction angles are given by = cos 1 2
3

48 , = cos 1 1
3

71 , and = cos 1 2
3
= 48 .

34. Since |h6 3 2i| = 36 + 9 + 4 = 49 = 7, using Equations 8 and 9 we have cos = 6
7
, cos = 3

7
, and cos = 2

7
.

The direction angles are given by = cos 1 6
7

31 , = cos 1 3
7

65 , and = cos 1 2
7
= 107 .

35. Since | i 2 j 3k| = 1 + 4 + 9 = 14, Equations 8 and 9 give cos = 1

14
, cos = 2

14
, and cos = 3

14
, while

= cos 1 1

14
74 , = cos 1 2

14
122 , and = cos 1 3

14
143 .

36. Since 1
2 i+ j+ k = 1

4 + 1 + 1 =
9
4 =

3
2 , Equations 8 and 9 give cos = 1 2

3 2 =
1
3 , cos = cos = 1

3 2 =
2
3 , while

= cos 1 1
3

71 and = = cos 1 2
3

48 .

37. |h i| = 2 + 2 + 2 = 3 [since 0], so cos = cos = cos =
3
=

1

3
and

= = = cos 1 1

3
55 .

38. Since cos2 + cos2 + cos2 = 1, cos2 = 1 cos2 cos2 = 1 cos2
4

cos2
3
= 1 2

2

2
1
2

2
= 1

4
.

Thus cos = ± 1
2
and =

3
or = 2

3
.

39. |a| = ( 5)2 + 122 = 169 = 13. The scalar projection of b onto a is compa b =
a · b
|a| =

5 · 4 + 12 · 6
13

= 4 and the

vector projection of b onto a is proja b =
a · b
|a|

a

|a| = 4 ·
1
13
h 5 12i = 20

13
48
13
.

40. |a| = 12 + 42 = 17. The scalar projection of b onto a is compa b =
a · b
|a| =

1 · 2 + 4 · 3
17

=
14

17
and the vector

projection of b onto a is proja b =
a · b
|a|

a

|a| =
14

17
· 1

17
h1 4i = 14

17
56
17
.
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SECTION 12.3 THE DOT PRODUCT ¤ 257

41. |a| = 9 + 36 + 4 = 7 so the scalar projection of b onto a is compab =
a · b
|a| =

1
7
(3 + 12 6) = 9

7
. The vector

projection of b onto a is projab =
9

7

a

|a| =
9
7
· 1
7
h3 6 2i = 9

49
h3 6 2i = 27

49
54
49

18
49
.

42. |a| = 4 + 9 + 36 = 7 so the scalar projection of b onto a is compa b =
a · b
|a| =

1
7
( 10 3 24) = 37

7
, while the

vector projection is proja b =
37

7

a

|a| =
37
7
· 1
7
h 2 3 6i = 37

49
h 2 3 6i = 74

49
111
49

222
49

.

43. |a| = 4 + 1 + 16 = 21 so the scalar projection of b onto a is compa b =
a · b
|a| =

0 1 + 2

21
=

1

21
while the vector

projection of b onto a is proja b =
1

21

a

|a| =
1

21
· 2 i j+ 4k

21
= 1

21 (2 i j+ 4k) = 2
21 i

1
21 j+

4
21 k.

44. |a| = 1 + 1 + 1 = 3, so the scalar projection of b onto a is compa b =
a · b
|a| =

1 1 + 1

3
=

1

3
while the vector

projection of b onto a is proja b =
1

3

a

|a| =
1

3
· i+ j+ k

3
= 1

3
(i+ j+ k).

45. (ortha b) · a = (b proja b) · a = b · a (proja b) · a = b · a
a · b
|a|2 a · a = b · a

a · b
|a|2 |a|

2 = b · a a · b = 0.

So they are orthogonal by (7).

46. Using the formula in Exercise 45 and the result of Exercise 40, we have

ortha b = b proja b = h2 3i 14
17

56
17

= 20
17

5
17
.

47. compa b =
a · b
|a| = 2 a · b = 2 |a| = 2 10. If b = h 1 2 3i, then we need 3 1 + 0 2 1 3 = 2 10.

One possible solution is obtained by taking 1 = 0, 2 = 0, 3 = 2 10. In general, b = 3 2 10 , , R.

48. (a) compa b = compb a
a · b
|a| =

b · a
|b|

1

|a| =
1

|b| or a · b = 0 |b| = |a| or a · b = 0.

That is, if a and b are orthogonal or if they have the same length.

(b) proja b = projb a
a · b
|a|2 a =

b · a
|b|2 b a · b = 0 or a

|a|2 =
b

|b|2 .

But a

|a|2 =
b

|b|2
|a|
|a|2 =

|b|
|b|2 |a| = |b|. Substituting this into the previous equation gives a = b.

So proja b = projb a a and b are orthogonal, or they are equal.
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258 ¤ CHAPTER 12 VECTORS AND THE GEOMETRY OF SPACE

49. The displacement vector isD = (6 0) i+ (12 10) j+ (20 8)k = 6 i+ 2 j+ 12k so, by Equation 12, the work done is

= F ·D = (8 i 6 j+ 9k) · (6 i+ 2 j+ 12k) = 48 12 + 108 = 144 joules.

50. Here |D| = 1000 m, |F| = 1500 N, and = 30 . Thus

= F ·D = |F| |D| cos = (1500)(1000) 3
2

= 750,000 3 joules.

51. Here |D| = 80 ft, |F| = 30 lb, and = 40 . Thus

= F ·D = |F| |D| cos = (30)(80) cos 40 = 2400 cos 40 1839 ft-lb.

52. = F ·D = |F| |D| cos = (400)(120) cos 36 38,833 ft-lb

53. First note that n = h i is perpendicular to the line, because if 1 = ( 1 1) and 2 = ( 2 2) lie on the line, then

n · 1 2 = 2 1 + 2 1 = 0, since 2 + 2 = = 1 + 1 from the equation of the line.

Let 2 = ( 2 2) lie on the line. Then the distance from 1 to the line is the absolute value of the scalar projection

of 1 2 onto n. compn 1 2 =
|n · h 2 1 2 1i|

|n| =
| 2 1 + 2 1|

2 + 2
=
| 1 + 1 + |

2 + 2

since 2 + 2 = . The required distance is |(3)( 2) + ( 4)(3) + 5|
32 + ( 4)2

=
13

5
.

54. (r a) · (r b) = 0 implies that the vectors r a and r b are orthogonal.

From the diagram (in which , and are the terminal points of the vectors),

we see that this implies that lies on a sphere whose diameter is the line from

to . The center of this circle is the midpoint of , that is,

1
2
(a+ b) = 1

2
( 1 + 1)

1
2
( 2 + 2)

1
2
( 3 + 3) , and its radius is

1
2
|a b| = 1

2
( 1 1)2 + ( 2 2)2 + ( 3 3)2.

Or: Expand the given equation, substitute r · r = 2 + 2 + 2 and complete the squares.

55. For convenience, consider the unit cube positioned so that its back left corner is at the origin, and its edges lie along the

coordinate axes. The diagonal of the cube that begins at the origin and ends at (1 1 1) has vector representation h1 1 1i.
The angle between this vector and the vector of the edge which also begins at the origin and runs along the -axis [that is,

h1 0 0i] is given by cos =
h1 1 1i · h1 0 0i
|h1 1 1i| |h1 0 0i| =

1

3
= cos 1 1

3
55 .
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SECTION 12.3 THE DOT PRODUCT ¤ 259

56. Consider a cube with sides of unit length, wholly within the first octant and with edges along each of the three coordinate axes.

i+ j+ k and i+ j are vector representations of a diagonal of the cube and a diagonal of one of its faces. If is the angle

between these diagonals, then cos =
(i+ j+ k) · (i+ j)
|i+ j+ k| |i+ j| =

1 + 1

3 2
=

2

3
= cos 1 2

3
35 .

57. Consider the H—C—H combination consisting of the sole carbon atom and the two hydrogen atoms that are at (1 0 0) and

(0 1 0) (or any H—C—H combination, for that matter). Vector representations of the line segments emanating from the

carbon atom and extending to these two hydrogen atoms are 1 1
2
0 1

2
0 1

2
= 1

2
1
2

1
2
and

0 1
2
1 1

2
0 1

2
= 1

2
1
2

1
2
. The bond angle, , is therefore given by

cos =
1
2

1
2

1
2
· 1

2
1
2

1
2

1
2

1
2

1
2

1
2

1
2

1
2

=
1
4

1
4
+ 1

4

3
4

3
4

=
1

3
= cos 1 1

3
109 5 .

58. Let be the angle between a and c and be the angle between c and b. We need to show that = . Now

cos =
a · c
|a| |c| =

a · |a|b+ a · |b|a
|a| |c| =

|a|a · b+ |a|2 |b|
|a| |c| =

a · b+ |a| |b|
|c| . Similarly,

cos =
b · c
|b| |c| =

|a| |b|+ b · a
|c| . Thus cos = cos . However 0 180 and 0 180 , so = and

c bisects the angle between a and b.

59. Let a = h 1 2 3i and = h 1 2 3i.
Property 2: a · b = h 1 2 3i · h 1 2 3i = 1 1 + 2 2 + 3 3

= 1 1 + 2 2 + 3 3 = h 1 2 3i · h 1 2 3i = b · a

Property 4: ( a) · b = h 1 2 3i · h 1 2 3i = ( 1) 1 + ( 2) 2 + ( 3) 3

= ( 1 1 + 2 2 + 3 3) = (a · b) = 1( 1) + 2( 2) + 3( 3)

= h 1 2 3i · h 1 2 3i = a · ( b)

Property 5: 0 · a = h0 0 0i · h 1 2 3i = (0)( 1) + (0)( 2) + (0)( 3) = 0

60. Let the figure be called quadrilateral . The diagonals can be represented by and . = + and

= + = = (Since opposite sides of the object are of the same length and parallel,

= .) Thus

· = + · = · + ·

= ·
2

+
2

· =
2 2

But
2

=
2

because all sides of the quadrilateral are equal in length. Therefore · = 0, and since both of

these vectors are nonzero this tells us that the diagonals of the quadrilateral are perpendicular.

61. |a · b| = |a| |b| cos = |a| |b| |cos |. Since |cos | 1, |a · b| = |a| |b| |cos | |a| |b|.
Note: We have equality in the case of cos = ±1, so = 0 or = , thus equality when a and b are parallel.
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260 ¤ CHAPTER 12 VECTORS AND THE GEOMETRY OF SPACE

62. (a) The Triangle Inequality states that the length of the longest side of

a triangle is less than or equal to the sum of the lengths of the two

shortest sides.

(b) |a+ b|2 = (a+ b) · (a+ b) = (a · a) + 2(a · b) + (b · b) = |a|2 + 2(a · b) + |b|2

|a|2 + 2 |a| |b|+ |b|2 [by the Cauchy-Schwartz Inequality]

= (|a|+ |b|)2

Thus, taking the square root of both sides, |a+ b| |a|+ |b|.

63. (a) The Parallelogram Law states that the sum of the squares of the

lengths of the diagonals of a parallelogram equals the sum of the

squares of its (four) sides.

(b) |a+ b|2 = (a+ b) · (a+ b) = |a|2 + 2(a · b) + |b|2 and |a b|2 = (a b) · (a b) = |a|2 2(a · b) + |b|2.
Adding these two equations gives |a+ b|2 + |a b|2 = 2 |a|2 + 2 |b|2.

64. If the vectors u+ v and u v are orthogonal then (u+ v) · (u v) = 0. But

(u+ v) · (u v) = (u+ v) · u (u+ v) · v by Property 3 of the dot product

= u · u+ v · u u · v v · v by Property 3

= |u|2 + u · v u · v |v|2 by Properties 1 and 2

= |u|2 |v|2

Thus |u|2 |v|2 = 0 |u|2 = |v|2 |u| = |v| [since |u|, |v| 0].

12.4 The Cross Product

1. a× b=
i j k

6 0 2

0 8 0

=
0 2

8 0
i

6 2

0 0
j +

6 0

0 8
k

= [0 ( 16)] i (0 0) j+ (48 0)k = 16 i+ 48k

Now (a× b) · a = h16 0 48i · h6 0 2i = 96 + 0 96 = 0 and (a× b) · b = h16 0 48i · h0 8 0i = 0 + 0 + 0 = 0, so
a× b is orthogonal to both a and b.

2. a× b=
i j k

1 1 1

2 4 6

=
1 1

4 6
i

1 1

2 6
j +

1 1

2 4
k

= [6 ( 4)] i [6 ( 2)] j+ (4 2)k = 10 i 8 j+ 2k

Now (a× b) · a = h10 8 2i · h1 1 1i = 10 8 2 = 0 and (a× b) · b = h10 8 2i · h2 4 6i = 20 32 + 12 = 0,
so a× b is orthogonal to both a and b.
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3. a× b =
i j k

1 3 2

1 0 5

=
3 2

0 5
i

1 2

1 5
j +

1 3

1 0
k

= (15 0) i (5 2) j+ [0 ( 3)]k = 15 i 3 j+ 3k

Since (a× b) · a = (15 i 3 j+ 3k) · (i+ 3 j 2k) = 15 9 6 = 0, a× b is orthogonal to a.

Since (a× b) · b = (15 i 3 j+ 3k) · ( i+ 5k) = 15 + 0 + 15 = 0, a× b is orthogonal to b.

4. a× b =
i j k

0 1 7

2 1 4

=
1 7

1 4
i

0 7

2 4
j +

0 1

2 1
k

= [4 ( 7)] i (0 14) j+ (0 2)k = 11 i+ 14 j 2k

Since (a× b) · a = (11 i+ 14 j 2k) · (j+ 7k) = 0 + 14 14 = 0, a× b is orthogonal to a.

Since (a× b) · b = (11 i+ 14 j 2k) · (2 i j+ 4k) = 22 14 8 = 0, a× b is orthogonal to b.

5. a× b =
i j k

1 1 1

1
2

1 1
2

=
1 1

1 1
2

i
1 1

1
2

1
2

j +
1 1

1
2

1
k

= 1
2

( 1) i 1
2

( 1
2
) j+ 1 ( 1

2
) k = 1

2
i j+ 3

2
k

Now (a× b) · a = 1
2
i j+ 3

2
k · (i j k) = 1

2
+ 1 3

2
= 0 and

(a× b) · b = 1
2
i j+ 3

2
k · 1

2
i+ j+ 1

2
k = 1

4
1 + 3

4
= 0, so a× b is orthogonal to both a and b.

6. a× b =
i j k

cos sin

1 sin cos

=
cos sin

sin cos
i

sin

1 cos
j +

cos

1 sin
k

= [cos2 ( sin2 )] i ( cos sin ) j+ ( sin cos )k = i+ (sin cos ) j+ ( sin cos )k

Since

(a× b) · a= [ i+ (sin cos ) j+ ( sin cos )k ] · ( i+ cos j+ sin k)

= + sin cos cos2 sin2 sin cos

= cos2 + sin2 = 0

a× b is orthogonal to a.
Since

(a× b) · b= [ i+ (sin cos ) j+ ( sin cos )k ] · (i sin j+ cos k)

= 1 sin2 + sin cos sin cos cos2

= 1 sin2 + cos2 = 0

a× b is orthogonal to b.
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262 ¤ CHAPTER 12 VECTORS AND THE GEOMETRY OF SPACE

7. a× b =
i j k

1 1

2 2 1

=
1 1

2 1
i

1

2 1
j +

1

2 2
k

= (1 ) i ( ) j+ ( 3 2)k = (1 ) i+ ( 3 2)k

Since (a× b) · a = 1 0 3 2 · h 1 1 i = 2 + 0 + 2 = 0, a× b is orthogonal to a.

Since (a× b) · b = 1 0 3 2 · 2 2 1 = 2 3 + 0 + 3 2 = 0, a× b is orthogonal to b.

8. a× b =
i j k

1 0 2

0 1 1

=
0 2

1 1
i

1 2

0 1
j +

1 0

0 1
k

= 2 i j+ k

9. According to the discussion preceding Theorem 11, i× j = k, so (i× j)× k = k× k = 0 [by Example 2].

10. k× (i 2 j) = k× i+ k× ( 2 j) by Property 3 of Theorem 11

= k× i+ ( 2) (k× j) by Property 2 of Theorem 11

= j+ ( 2)( i) = 2 i+ j by the discussion preceding Theorem 11

11. (j k)× (k i) = (j k)× k+ (j k)× ( i) by Property 3 of Theorem 11

= j× k+ ( k)× k+ j× ( i) + ( k)× ( i) by Property 4 of Theorem 11

= (j× k) + ( 1)(k× k) + ( 1)(j× i) + ( 1)2(k× i) by Property 2 of Theorem 11

= i+ ( 1)0+ ( 1)( k) + j = i+ j+ k by Example 2 and
the discussion preceeding Theorem 11

12. (i+ j)× (i j) = (i+ j)× i+ (i+ j)× ( j) by Property 3 of Theorem 11

= i× i+ j× i+ i× ( j) + j× ( j) by Property 4 of Theorem 11

= (i× i) + (j× i) + ( 1)(i× j) + ( 1)(j× j) by Property 2 of Theorem 11

= 0+ ( k) + ( 1)k+ ( 1)0 = 2k by Example 2 and
the discussion preceeding Theorem 11

13. (a) Since b× c is a vector, the dot product a · (b× c) is meaningful and is a scalar.

(b) b · c is a scalar, so a× (b · c) is meaningless, as the cross product is defined only for two vectors.

(c) Since b× c is a vector, the cross product a× (b× c) is meaningful and results in another vector.

(d) b · c is a scalar, so the dot product a · (b · c) is meaningless, as the dot product is defined only for two vectors.

c° 2012 Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part.

NOT FOR SALE

°°cc 2012 Cengage Learning. All Rights Reserved. May not be scanned, copied, or2012 Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part.duplicated, or posted to a publicly accessible website, in whole or in part.

35



SECTION 12.4 THE CROSS PRODUCT ¤ 263

(e) Since (a · b) and (c · d) are both scalars, the cross product (a · b)× (c · d) is meaningless.

(f ) a× b and c× d are both vectors, so the dot product (a× b) · (c× d) is meaningful and is a scalar.

14. Using Theorem 9, we have |u× v| = |u| |v| sin = (4)(5) sin 45 = 20 · 2

2
= 10 2. By the right-hand rule, u× v is

directed out of the page.

15. If we sketch u and v starting from the same initial point, we see that the

angle between them is 60 . Using Theorem 9, we have

|u× v| = |u| |v| sin = (12)(16) sin 60 = 192 · 3

2
= 96 3.

By the right-hand rule, u× v is directed into the page.

16. (a) |a× b| = |a| |b| sin = 3 · 2 · sin
2
= 6

(b) a× b is orthogonal to k, so it lies in the -plane, and its -coordinate is 0.

By the right-hand rule, its -component is negative and its -component

is positive.

17. a×b =
i j k

2 1 3

4 2 1

=
1 3

2 1
i

2 3

4 1
j +

2 1

4 2
k = ( 1 6) i (2 12) j+[4 ( 4)]k = 7 i+10 j+8k

b×a =
i j k

4 2 1

2 1 3

=
2 1

1 3
i

4 1

2 3
j +

4 2

2 1
k = [6 ( 1)] i (12 2) j+( 4 4)k = 7 i 10 j 8k

Notice a× b = b× a here, as we know is always true by Property 1 of Theorem 11.

18. b× c =
i j k

2 1 1

0 1 3

=
1 1

1 3
i

2 1

0 3
j +

2 1

0 1
k = 4 i 6 j+ 2k so

a× (b× c) =
i j k

1 0 1

4 6 2

=
0 1

6 2
i

1 1

4 2
j +

1 0

4 6
k = 6 i+ 2 j 6k.

a× b =
i j k

1 0 1

2 1 1

=
0 1

1 1
i

1 1

2 1
j +

1 0

2 1
k = i+ 3 j+ k so

(a× b)× c =
i j k

1 3 1

0 1 3

=
3 1

1 3
i

1 1

0 3
j +

1 3

0 1
k = 8 i+ 3 j k.

Thus a× (b× c) 6= (a× b)× c.
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264 ¤ CHAPTER 12 VECTORS AND THE GEOMETRY OF SPACE

19. By Theorem 8, the cross product of two vectors is orthogonal to both vectors. So we calculate

h3 2 1i × h 1 1 0i =
i j k

3 2 1

1 1 0

=
2 1

1 0
i

3 1

1 0
j +

3 2

1 1
k = i j+ 5k.

So two unit vectors orthogonal to both are ± h 1 1 5i
1 + 1 + 25

= ±h 1 1 5i
3 3

, that is, 1

3 3

1

3 3

5

3 3

and 1

3 3

1

3 3

5

3 3
.

20. By Theorem 8, the cross product of two vectors is orthogonal to both vectors. So we calculate

(j k)× (i+ j) =
i j k

0 1 1

1 1 0

=
1 1

1 0
i

0 1

1 0
j +

0 1

1 1
k = i j k

Thus two unit vectors orthogonal to both given vectors are± 1

3
(i j k), that is, 1

3
i 1

3
j 1

3
k and

1

3
i+ 1

3
j+ 1

3
k.

21. Let a = h 1 2 3i. Then

0× a =
i j k

0 0 0

1 2 3

=
0 0

2 3

i
0 0

1 3

j +
0 0

1 2

k = 0,

a× 0 =
i j k

1 2 3

0 0 0

=
2 3

0 0
i

1 3

0 0
j +

1 2

0 0
k = 0.

22. Let a = h 1 2 3i and b = h 1 2 3i.

(a× b) · b = 2 3

2 3

1 3

1 3

1 2

1 2

· h 1 2 3i =
2 3

2 3

1

1 3

1 3

2 +
1 2

1 2

3

= ( 2 3 1 3 2 1) ( 1 3 2 3 1 2) + ( 1 2 3 2 1 3) = 0

23. a× b = h 2 3 3 2 3 1 1 3 1 2 2 1i
= h( 1)( 2 3 3 2) ( 1)( 3 1 1 3) ( 1)( 1 2 2 1)i
= h 2 3 3 2 3 1 1 3 1 2 2 1i = b× a

24. a = h 1 2 3i, so
( a)× b = h 2 3 3 2 3 1 1 3 1 2 2 1i

= h 2 3 3 2 3 1 1 3 1 2 2 1i = (a× b)
= h 2 3 3 2 3 1 1 3 1 2 2 1i
= h 2( 3) 3( 2) 3( 1) 1( 3) 1( 2) 2( 1)i
= a× b
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SECTION 12.4 THE CROSS PRODUCT ¤ 265

25. a× (b+ c) = a× h 1 + 1 2 + 2 3 + 3i
= h 2( 3 + 3) 3( 2 + 2) , 3( 1 + 1) 1( 3 + 3) , 1( 2 + 2) 2( 1 + 1)i
= h 2 3 + 2 3 3 2 3 2, 3 1 + 3 1 1 3 1 3, 1 2 + 1 2 2 1 2 1i
= h( 2 3 3 2) + ( 2 3 3 2) , ( 3 1 1 3) + ( 3 1 1 3) , ( 1 2 2 1) + ( 1 2 2 1)i
= h 2 3 3 2 3 1 1 3 1 2 2 1i+ h 2 3 3 2 3 1 1 3 1 2 2 1i
= (a× b) + (a× c)

26. (a+ b)× c = c× (a+ b) by Property 1 of Theorem 11

= (c× a+ c× b) by Property 3 of Theorem 11

= ( a× c+ ( b× c)) by Property 1 of Theorem 11

= a× c+ b× c by Property 2 of Theorem 11

27. By plotting the vertices, we can see that the parallelogram is determined by the

vectors = h2 3i and = h4 2i. We know that the area of the parallelogram
determined by two vectors is equal to the length of the cross product of these vectors.

In order to compute the cross product, we consider the vector as the three-

dimensional vector h2 3 0i (and similarly for ), and then the area of

parallelogram is

× =

i j k

2 3 0

4 2 0

= |(0) i (0) j+ ( 4 12)k| = | 16k| = 16

28. The parallelogram is determined by the vectors = h0 1 3i and = h2 5 0i, so the area of parallelogram is

× =

i j k

0 1 3

2 5 0

= |( 15) i ( 6) j+ ( 2)k| = | 15 i+ 6 j 2k| = 265 16 28

29. (a) Because the plane through , , and contains the vectors and , a vector orthogonal to both of these vectors

(such as their cross product) is also orthogonal to the plane. Here = h 3 1 2i and = h3 2 4i, so

× = h(1)(4) (2)(2) (2)(3) ( 3)(4) ( 3)(2) (1)(3)i = h0 18 9i

Therefore, h0 18 9i (or any nonzero scalar multiple thereof, such as h0 2 1i) is orthogonal to the plane through , ,

and .

(b) Note that the area of the triangle determined by , , and is equal to half of the area of the

parallelogram determined by the three points. From part (a), the area of the parallelogram is

× = |h0 18 9i| = 0 + 324 + 81 = 405 = 9 5, so the area of the triangle is 1
2
· 9 5 = 9

2
5.
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266 ¤ CHAPTER 12 VECTORS AND THE GEOMETRY OF SPACE

30. (a) = h4 2 3i and = h3 3 4i, so a vector orthogonal to the plane through , , and is

× = h(2)(4) (3)(3) (3)(3) (4)(4) (4)(3) (2)(3)i = h 1 7 6i (or any nonzero scalar mutiple
thereof).

(b) The area of the parallelogram determined by and is × = |h 1 7 6i| = 1 + 49 + 36 = 86,

so the area of triangle is 1
2
86.

31. (a) = h4 3 2i and = h5 5 1i, so a vector orthogonal to the plane through , , and is

× = h(3)(1) ( 2)(5) ( 2)(5) (4)(1) (4)(5) (3)(5)i = h13 14 5i [or any scalar mutiple thereof ].

(b) The area of the parallelogram determined by and is

× = |h13 14 5i| = 132 + ( 14)2 + 52 = 390, so the area of triangle is 1
2
390.

32. (a) = h1 2 1i and = h5 0 2i, so a vector orthogonal to the plane through , , and is

× = h(2)( 2) (1)(0) (1)(5) (1)( 2) (1) (0) (2)(5)i = h 4 7 10i [or any scalar multiple thereof ].

(b) The area of the parallelogram determined by and is × = |h 4 7 10i| = 16 + 49 + 100 = 165,

so the area of triangle is 1
2

165.

33. By Equation 14, the volume of the parallelepiped determined by a, b, and c is the magnitude of their scalar triple product,

which is a · (b× c) =
1 2 3

1 1 2

2 1 4

= 1
1 2

1 4
2

1 2

2 4
+ 3

1 1

2 1
= 1(4 2) 2( 4 4) + 3( 1 2) = 9.

Thus the volume of the parallelepiped is 9 cubic units.

34. a · (b× c) =
1 1 0

0 1 1

1 1 1

= 1
1 1

1 1
1
0 1

1 1
+ 0

0 1

1 1
= 0 + 1 + 0 = 1.

So the volume of the parallelepiped determined by a, b, and c is 1 cubic unit.

35. a = = h4 2 2i, b = = h3 3 1i, and c = = h5 5 1i.

a · (b× c) =
4 2 2

3 3 1

5 5 1

= 4
3 1

5 1
2
3 1

5 1
+ 2

3 3

5 5
= 32 16 + 0 = 16,

so the volume of the parallelepiped is 16 cubic units.
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36. a = = h 4 2 4i, b = = h2 1 2i and c = = h 3 4 1i.

a · (b× c) =
4 2 4

2 1 2

3 4 1

= 4
1 2

4 1
2

2 2

3 1
+ 4

2 1

3 4
= 36 + 8 + 44 = 16, so the volume of the

parallelepiped is 16 cubic units.

37. u · (v×w) =
1 5 2

3 1 0

5 9 4

= 1
1 0

9 4
5
3 0

5 4
+ ( 2)

3 1

5 9
= 4 + 60 64 = 0, which says that the volume

of the parallelepiped determined by u, v andw is 0, and thus these three vectors are coplanar.

38. u = = h2 4 4i, v = = h4 1 2i and w = = h2 3 6i.

u · (v×w) =
2 4 4

4 1 2

2 3 6

= 2
1 2

3 6
( 4)

4 2

2 6
+ 4

4 1

2 3
= 24 80 + 56 = 0, so the volume of the

parallelepiped determined by u, v andw is 0, which says these vectors lie in the same plane. Therefore, their initial and

terminal points , , and also lie in the same plane.

39. The magnitude of the torque is | | = |r×F| = |r| |F| sin = (0 18 m)(60 N) sin(70 + 10) = 10 8 sin 80 10 6 N·m.

40. |r| = 42 + 42 = 4 2 ft. A line drawn from the point to the point of application of the force makes an angle of

180 (45 + 30) = 105 with the force vector. Therefore,

| | = |r×F| = |r| |F| sin = 4 2 (36) sin 105 197 ft-lb.

41. Using the notation of the text, r = h0 0 3 0i and F has direction h0 3 4i. The angle between them can be determined by

cos =
h0 0 3 0i · h0 3 4i
|h0 0 3 0i| |h0 3 4i| cos =

0 9

(0 3)(5)
cos = 0 6 53 1 . Then | | = |r| |F| sin

100 = 0 3 |F| sin 53 1 |F| 417 N.

42. Since |u× v| = |u| |v| sin , 0 , |u× v| achieves its maximum value for sin = 1 =
2
, in which case

|u× v| = |u| |v| = 15 The minimum value is zero, which occurs when sin = 0 = 0 or , so when u, v are

parallel. Thus, when u points in the same direction as v, so u = 3 j, |u× v| = 0. As u rotates counterclockwise, u× v is
directed in the negative -direction (by the right-hand rule) and the length increases until = 2 , in which case u = 3 i and

|u× v| = 15. As u rotates to the negative -axis, u× v remains pointed in the negative -direction and the length of u× v
decreases to 0 after which the direction of u× v reverses to point in the positive -direction and |u× v| increases. When
u = 3 i (so = 2 ), |u× v| again reaches its maximum of 15, after which |u× v| decreases to 0 as u rotates to the positive
-axis.
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43. From Theorem 9 we have |a× b| = |a| |b| sin , where is the angle between a and b, and from Theorem 12.3.3 we have

a · b = |a| |b| cos |a| |b| = a · b
cos

. Substituting the second equation into the first gives |a× b| = a · b
cos

sin , so

|a× b|
a · b = tan . Here |a× b| = |h1 2 2i| = 1 + 4 + 4 = 3, so tan =

|a× b|
a · b =

3

3
= 3 = 60 .

44. (a) Let v = h 1 2 3i. Then

h1 2 1i × v =
i j k

1 2 1

1 2 3

=
2 1

2 3

i
1 1

1 3

j +
1 2

1 2

k = (2 3 2) i ( 3 1) j+ ( 2 2 1)k.

If h1 2 1i × v = h3 1 5i then h2 3 2 1 3 2 2 1i = h3 1 5i 2 3 2 = 3 (1), 1 3 = 1 (2),

and 2 2 1 = 5 (3). From (3) we have 2 = 2 1 5 and from (2) we have 3 = 1 1; substitution into (1) gives

2 ( 1 1) (2 1 5) = 3 3 = 3, so this is a dependent system. If we let 1 = then 2 = 2 5 and

3 = 1, so v is any vector of the form h 2 5 1i.

(b) If h1 2 1i × v = h3 1 5i then 2 3 2 = 3 (1), 1 3 = 1 (2), and 2 2 1 = 5 (3). From (3) we have

2 = 2 1 + 5 and from (2) we have 3 = 1 1; substitution into (1) gives 2 ( 1 1) (2 1 + 5) = 3 7 = 3,

so this is an inconsistent system and has no solution.

Alternatively, if we use matrices to solve the system we could show that the determinant is 0 (and hence the system has no

solution).

45. (a) The distance between a point and a line is the length of the perpendicular

from the point to the line, here = . But referring to triangle ,

= = sin = |b| sin . But is the angle between = b

and = a. Thus by Theorem 9, sin =
|a× b|
|a| |b|

and so = |b| sin =
|b| |a× b|
|a| |b| =

|a× b|
|a| .

(b) a = = h 1 2 1i and b = = h1 5 7i. Then

a× b = h( 2)( 7) ( 1)( 5) ( 1)(1) ( 1)( 7) ( 1)( 5) ( 2)(1)i = h9 8 7i.

Thus the distance is =
|a× b|
|a| = 1

6
81 + 64 + 49 = 194

6
= 97

3
.

46. (a) The distance between a point and a plane is the length of the perpendicular from

the point to the plane, here = . But is parallel to b× a (because

b× a is perpendicular to b and a) and = = the absolute value of the

scalar projection of c along b× a, which is |c| |cos |. (Notice that this is the same
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SECTION 12.4 THE CROSS PRODUCT ¤ 269

setup as the development of the volume of a parallelepiped with = |c| |cos |). Thus = |c| |cos | = =

where = |a× b|, the area of the base. So finally = =
|a · (b× c)|
|a× b| .

(b) a = = h 1 2 0i, b = = h 1 0 3i and c = = h1 1 4i. Then

a · (b× c) =
1 2 0

1 0 3

1 1 4

= ( 1)
0 3

1 4
2

1 3

1 4
+ 0 = 17

and a× b =
i j k

1 2 0

1 0 3

=
2 0

0 3
i

1 0

1 3
j+

1 2

1 0
k = 6 i+ 3 j+ 2k

Thus =
|a · (b× c)|
|a× b| =

17

36 + 9 + 4
=
17

7
.

47. From Theorem 9 we have |a× b| = |a| |b| sin so

|a× b|2 = |a|2 |b|2 sin2 = |a|2 |b|2 1 cos2

= |a|2 |b|2 (|a| |b| cos )2 = |a|2 |b|2 (a · b)2

by Theorem 12.3.3.

48. If a+ b+ c = 0 then b = (a+ c), so

a× b = a× [ (a+ c)] = [a× (a+ c)] by Property 2 of Theorem 11 (with = 1)

= [(a× a) + (a× c)] by Property 3 of Theorem 11

= [0+ (a× c)] = a× c by Example 2

= c× a by Property 1 of Theorem 11

Similarly, a = (b+ c) so

c× a= c× [ (b+ c)] = [c× (b+ c)]
= [(c× b) + (c× c)] = [(c× b) + 0]
= c× b = b× c

Thus a× b = b× c = c× a.

49. (a b)× (a+ b) = (a b)× a+ (a b)× b by Property 3 of Theorem 11

= a× a+ ( b)× a+ a× b+ ( b)× b by Property 4 of Theorem 11

= (a× a) (b× a) + (a× b) (b× b) by Property 2 of Theorem 11 (with = 1)

= 0 (b× a) + (a× b) 0 by Example 2

= (a× b) + (a× b) by Property 1 of Theorem 11

= 2(a× b)
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270 ¤ CHAPTER 12 VECTORS AND THE GEOMETRY OF SPACE

50. Let a = h 1 2 3i, b = h 1 2 3i and c = h 1 2 3i, so b× c = h 2 3 3 2 3 1 1 3 1 2 2 1i and
a× (b× c) = h 2( 1 2 2 1) 3( 3 1 1 3), 3( 2 3 3 2) 1( 1 2 2 1),

1( 3 1 1 3) 2( 2 3 3 2)i
= h 2 1 2 2 2 1 3 3 1 + 3 1 3, 3 2 3 3 3 2 1 1 2 + 1 2 1

1 3 1 1 1 3 2 2 3 + 2 3 2i
= h( 2 2 + 3 3) 1 ( 2 2 + 3 3) 1, ( 1 1 + 3 3) 2 ( 1 1 + 3 3) 2,

( 1 1 + 2 2) 3 ( 1 1 + 2 2) 3i

( ) = h( 2 2 + 3 3) 1 ( 2 2 + 3 3) 1 + 1 1 1 1 1 1,

( 1 1 + 3 3) 2 ( 1 1 + 3 3) 2 + 2 2 2 2 2 2,

( 1 1 + 2 2) 3 ( 1 1 + 2 2) 3 + 3 3 3 3 3 3i
= h( 1 1 + 2 2 + 3 3) 1 ( 1 1 + 2 2 + 3 3) 1,

( 1 1 + 2 2 + 3 3) 2 ( 1 1 + 2 2 + 3 3) 2,

( 1 1 + 2 2 + 3 3) 3 ( 1 1 + 2 2 + 3 3) 3i
= ( 1 1 + 2 2 + 3 3) h 1 2 3i ( 1 1 + 2 2 + 3 3) h 1 2 3i
= (a · c)b (a · b)c

( ) Here we look ahead to see what terms are still needed to arrive at the desired equation. By adding and subtracting the
same terms, we don’t change the value of the component.

51. a× (b× c) + b× (c× a) + c× (a× b)
= [(a · c)b (a · b)c] + [(b · a)c (b · c)a] + [(c · b)a (c · a)b] by Exercise 50

= (a · c)b (a · b)c+ (a · b)c (b · c)a+ (b · c)a (a · c)b = 0

52. Let c× d = v. Then
(a× b) · (c× d) = (a× b) · v = a · (b× v) by Property 5 of Theorem 11

= a · [b× (c× d)] = a · [(b · d)c (b · c)d] by Exercise 50

= (b · d)(a · c) (b · c)(a · d) by Properties 3 and 4 of the dot product

=
a · c b · c
a · d b · d

53. (a) No. If a · b = a · c, then a · (b c) = 0, so a is perpendicular to b c, which can happen if b 6= c. For example,
let a = h1 1 1i, b = h1 0 0i and c = h0 1 0i.

(b) No. If a× b = a× c then a× (b c) = 0, which implies that a is parallel to b c, which of course can happen

if b 6= c.

(c) Yes. Since a · c = a · b, a is perpendicular to b c, by part (a). From part (b), a is also parallel to b c. Thus since

a 6= 0 but is both parallel and perpendicular to b c, we have b c = 0, so b = c.
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54. (a) k is perpendicular to v if 6= by the definition of k and Theorem 8.

(b) k1 · v1 = v2 × v3
v1 · (v2 × v3) · v1 =

v1 · (v2 × v3)
v1 · (v2 × v3) = 1

k2 · v2 = v3 × v1
v1 · (v2 × v3) · v2 =

v2 · (v3 × v1)
v1 · (v2 × v3) =

(v2 × v3) · v1
v1 · (v2 × v3) = 1 [by Property 5 of Theorem 11]

k3 · v3 = (v1 × v2) · v3
v1 · (v2 × v3) =

v1 · (v2 × v3)
v1 · (v2 × v3) = 1 [by Property 5 of Theorem 11]

(c) k1 · (k2 × k3) = k1 · v3 × v1
v1 · (v2 × v3) ×

v1 × v2
v1 · (v2 × v3) =

k1

[v1 · (v2 × v3)]2
· [(v3 × v1)× (v1 × v2)]

=
k1

[v1 · (v2 × v3)]2
· ([(v3 × v1) · v2]v1 [(v3 × v1) · v1]v2) [by Exercise 50]

But (v3 × v1) · v1 = 0 since v3 × v1 is orthogonal to v1, and
(v3 × v1) · v2 = v2 · (v3 × v1) = (v2 × v3) · v1 = v1 · (v2 × v3). Thus

k1 · (k2 × k3) = k1

[v1 · (v2 × v3)]2
· [v1 · (v2 × v3)]v1 = k1 · v1

v1 · (v2 × v3) =
1

v1 · (v2 × v3) [by part (b)]

DISCOVERY PROJECT The Geometry of a Tetrahedron

1. Set up a coordinate system so that vertex is at the origin, = (0 1 0), = ( 2 2 0), = ( 3 3 3).

Then = h0 1 0i, = h 2 2 0i, = h 3 3 3i, = h 2 1 2 0i, and = h 3 2 3 2 3i.
Let

v = × = ( 1 3 2 3) i+ 2 3 j+ ( 2 3 3 1 + 3 2 + 2 1)k

Then v is an outward normal to the face opposite vertex . Similarly,

v = × = 2 3 i 2 3 j+ ( 2 3 3 2)k, v = × = 1 3 i+ 3 1 k, and

v = × = 2 1 k v + v + v + v = 0. Now

|v |= area of the parallelogram determined by and

= 2 (area of triangle ) = 2|v1|

So v = 2v1, and similarly v = 2v2, v = 2v3, v = 2v4. Thus v1 + v2 + v3 + v4 = 0.

2. (a) Let = ( 0 0 0), = ( 1 1 1), = ( 2 2 2), = ( 3 3 3) be the four vertices. Then

Volume= 1
3 (distance from to plane )× (area of triangle )

= 1
3

N ·
|N| · 1

2
×
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272 ¤ CHAPTER 12 VECTORS AND THE GEOMETRY OF SPACE

whereN is a vector which is normal to the face . ThusN = × . Therefore

= 1
6

× · =
1

6

0 0 1 0 1

2 1 2 1 2 1

3 1 3 1 3 1

(b) Using the formula from part (a), =
1

6

1 1 1 2 1 3

1 1 1 2 2 3

3 1 1 2 2 3

=
1

6
2(1 2) =

1

3
.

3. We define a vector v1 to have length equal to the area of the face opposite vertex , so we can say |v1| = , and direction

perpendicular to the face and pointing outward, as in Problem 1. Similarly, we define v2, v3, and v4 so that |v2| = ,

|v3| = , and |v4| = and with the analogous directions. From Problem 1, we know v1 + v2 + v3 + v4 = 0

v4 = (v1 + v2 + v3) |v4| = | (v1 + v2 + v3)| = |v1 + v2 + v3| |v4|2 = |v1 + v2 + v3|2

v4 · v4 = (v1 + v2 + v3) · (v1 + v2 + v3)
= v1 · v1 + v1 · v2 + v1 · v3 + v2 · v1 + v2 · v2 + v2 · v3 + v3 · v1 + v3 · v2 + v3 · v3

Since the vertex is trirectangular, we know the three faces meeting at are mutually perpendicular, so the vectors

v1, v2, v3 are also mutually perpendicular. Therefore, v · v = 0 for 6= and , {1 2 3}. Thus we have

v4 · v4 = v1 · v1 + v2 · v2 + v3 · v3 |v4|2 = |v1|2 + |v2|2 + |v3|2 2 = 2 + 2 + 2.

Another method: We introduce a coordinate system, as shown. Recall that

the area of the parallelogram spanned by two vectors is equal to the length

of their cross product, so since

u× v = h 0i × h 0 i = h i, we have

|u× v| = ( )2 + ( )2 + ( )2, and therefore

2 = 1
2
|u× v| 2 = 1

4
[( )2 + ( )2 + ( )2]

= 1
2

2
+ 1

2

2
+ 1

2

2
= 2 + 2 + 2.

A third method: We draw a line from perpendicular to , as shown.

Now = 1
2

, so 2 = 1
4
2 2. Substituting 2 = 2 + 2, we get

2 = 1
4
2 2 + 2 = 1

4
2 2 + 1

4
2 2. But = 1

2 , so

2 = 1
4
2 2 + 2. Now substituting 2 = 2 + 2 gives

2 = 1
4

2 2 + 1
4

2 2 + 2 = 2 + 2 + 2.
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12.5 Equations of Lines and Planes

1. (a) True; each of the first two lines has a direction vector parallel to the direction vector of the third line, so these vectors are

each scalar multiples of the third direction vector. Then the first two direction vectors are also scalar multiples of each

other, so these vectors, and hence the two lines, are parallel.

(b) False; for example, the - and -axes are both perpendicular to the -axis, yet the - and -axes are not parallel.

(c) True; each of the first two planes has a normal vector parallel to the normal vector of the third plane, so these two normal

vectors are parallel to each other and the planes are parallel.

(d) False; for example, the - and -planes are not parallel, yet they are both perpendicular to the -plane.

(e) False; the - and -axes are not parallel, yet they are both parallel to the plane = 1.

(f ) True; if each line is perpendicular to a plane, then the lines’ direction vectors are both parallel to a normal vector for the

plane. Thus, the direction vectors are parallel to each other and the lines are parallel.

(g) False; the planes = 1 and = 1 are not parallel, yet they are both parallel to the -axis.

(h) True; if each plane is perpendicular to a line, then any normal vector for each plane is parallel to a direction vector for the

line. Thus, the normal vectors are parallel to each other and the planes are parallel.

(i) True; see Figure 9 and the accompanying discussion.

( j) False; they can be skew, as in Example 3.

(k) True. Consider any normal vector for the plane and any direction vector for the line. If the normal vector is perpendicular

to the direction vector, the line and plane are parallel. Otherwise, the vectors meet at an angle , 0 90 , and the

line will intersect the plane at an angle 90 .

2. For this line, we have r0 = 6 i 5 j+ 2k and v = i + 3 j 2
3
k, so a vector equation is

r = r0 + v = (6 i 5 j+ 2k) + i+ 3 j 2
3
k = (6 + ) i+ ( 5 + 3 ) j+ 2 2

3
k and parametric equations are

= 6 + , = 5 + 3 , = 2 2
3 .

3. For this line, we have r0 = 2 i+ 2 4 j + 3 5k and v = 3 i+ 2 j k, so a vector equation is

r = r0 + v = (2 i+2 4 j+3 5k) + (3 i+2 j k) = (2+ 3 ) i+ (2 4+ 2 ) j+ (3 5 )k and parametric equations are

= 2 + 3 , = 2 4 + 2 , = 3 5 .

4. This line has the same direction as the given line, v = 2 i 3 j+ 9k. Here r0 = 14 j 10k, so a vector equation is

r = (14 j 10k) + (2 i 3 j+ 9k) = 2 i+ (14 3 ) j+ ( 10 + 9 )k and parametric equations are = 2 ,

= 14 3 , = 10 + 9 .

5. A line perpendicular to the given plane has the same direction as a normal vector to the plane, such as

n = h1 3 1i. So r0 = i + 6k, and we can take v = i + 3 j + k. Then a vector equation is
r = (i+ 6k) + (i+ 3 j+ k) = (1 + ) i+ 3 j+ (6 + )k, and parametric equations are = 1 + , = 3 , = 6 + .
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274 ¤ CHAPTER 12 VECTORS AND THE GEOMETRY OF SPACE

6. The vector v = h4 0 3 0 1 0i = h4 3 1i is parallel to the line. Letting 0 = (0 0 0), parametric equations are

= 0 + 4 · = 4 , = 0 + 3 · = 3 , = 0 + ( 1) · = , while symmetric equations are
4
=
3
=

1
or

4
=
3
= .

7. The vector v = 2 0 1 1
2

3 1 = 2 1
2

4 is parallel to the line. Letting 0 = (2 1 3), parametric equations

are = 2 + 2 , = 1 + 1
2
, = 3 4 , while symmetric equations are 2

2
=

1

1 2
=

+ 3

4
or

2

2
= 2 2 =

+ 3

4
.

8. v = h2 6 1 0 1 2 2 4 0 3 4 6i = h1 6 1 2 4 3i, and letting 0 = (1 0 2 4 4 6), parametric equations are

= 1 0 + 1 6 , = 2 4 1 2 , = 4 6 4 3 , while symmetric equations are 1 0

1 6
=

2 4

1 2
=

4 6

4 3
.

9. v = h3 ( 8) 2 1 4 4i = h11 3 0i, and letting 0 = ( 8 1 4), parametric equations are = 8 + 11 ,

= 1 3 , = 4 + 0 = 4, while symmetric equations are + 8

11
=

1

3
, = 4. Notice here that the direction number

= 0, so rather than writing 4

0
in the symmetric equation we must write the equation = 4 separately.

10. v = (i+ j)× ( j+ k) =
i j k

1 1 0

0 1 1

= i j+ k is the direction of the line perpendicular to both i+ j and j+ k.

With 0 = (2 1 0), parametric equations are = 2 + , = 1 , = and symmetric equations are 2 =
1

1
=

or 2 = 1 = .

11. The line has direction v = h1 2 1i. Letting 0 = (1 1 1), parametric equations are = 1 + , = 1 + 2 , = 1 +

and symmetric equations are 1 =
+ 1

2
= 1.

12. Setting = 0 we see that (1 0 0) satisfies the equations of both planes, so they do in fact have a line of intersection.

The line is perpendicular to the normal vectors of both planes, so a direction vector for the line is

v = n1 × n2 = h1 2 3i × h1 1 1i = h5 2 3i. Taking the point (1 0 0) as 0, parametric equations are = 1 + 5 ,

= 2 , = 3 , and symmetric equations are 1

5
=
2
=

3
.

13. Direction vectors of the lines are v1 = h 2 ( 4) 0 ( 6) 3 1i = h2 6 4i and

v2 = h5 10 3 18 14 4i = h 5 15 10i, and since v2 = 5
2
v1, the direction vectors and thus the lines are parallel.

14. Direction vectors of the lines are v1 = h3 3 1i and v2 = h1 4 12i. Since v1 · v2 = 3 + 12 12 6= 0, the vectors and
thus the lines are not perpendicular.
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15. (a) The line passes through the point (1 5 6) and a direction vector for the line is h 1 2 3i, so symmetric equations for

the line are 1

1
=

+ 5

2
=

6

3
.

(b) The line intersects the -plane when = 0, so we need 1

1
=

+ 5

2
=
0 6

3
or 1

1
= 2 = 1,

+ 5

2
= 2 = 1. Thus the point of intersection with the -plane is ( 1 1 0). Similarly for the -plane,

we need = 0 1 =
+ 5

2
=

6

3
= 3, = 3. Thus the line intersects the -plane at (0 3 3). For

the -plane, we need = 0
1

1
=
5

2
=

6

3
= 3

2
, = 3

2
. So the line intersects the -plane

at 3
2
0 3

2
.

16. (a) A vector normal to the plane + 3 = 7 is n = h1 1 3i, and since the line is to be perpendicular to the plane, n is
also a direction vector for the line. Thus parametric equations of the line are = 2 + , = 4 , = 6 + 3 .

(b) On the -plane, = 0. So = 6 + 3 = 0 = 2 in the parametric equations of the line, and therefore = 0

and = 6, giving the point of intersection (0 6 0). For the -plane, = 0 so we get the same point of interesection:

(0 6 0). For the -plane, = 0 which implies = 4, so = 6 and = 18 and the point of intersection is (6 0 18).

17. From Equation 4, the line segment from r0 = 2 i j + 4k to r1 = 4 i + 6 j + k is

r( ) = (1 ) r0 + r1 = (1 )(2 i j+ 4k) + (4 i+ 6 j+ k) = (2 i j+ 4k) + (2 i+ 7 j 3k), 0 1.

18. From Equation 4, the line segment from r0 = 10 i+ 3 j+ k to r1 = 5 i+ 6 j 3k is

r( ) = (1 ) r0 + r1 = (1 )(10 i+ 3 j+ k) + (5 i+ 6 j 3k)

= (10 i+ 3 j+ k) + ( 5 i+ 3 j 4k), 0 1.

The corresponding parametric equations are = 10 5 , = 3 + 3 , = 1 4 , 0 1.

19. Since the direction vectors h2 1 3i and h4 2 5i are not scalar multiples of each other, the lines aren’t parallel. For the
lines to intersect, we must be able to find one value of and one value of that produce the same point from the respective

parametric equations. Thus we need to satisfy the following three equations: 3 + 2 = 1 + 4 , 4 = 3 2 ,

1 + 3 = 4 + 5 . Solving the last two equations we get = 1, = 0 and checking, we see that these values don’t satisfy the

first equation. Thus the lines aren’t parallel and don’t intersect, so they must be skew lines.

20. Since the direction vectors are v1 = h 12 9 3i and v2 = h8 6 2i, we have v1 = 3
2
v2 so the lines are parallel.

21. Since the direction vectors h1 2 3i and h1 3 7i aren’t scalar multiples of each other, the lines aren’t parallel. Parametric
equations of the lines are 1: = 2+ , = 3 2 , = 1 3 and 2: = 3+ , = 4+ 3 , = 2 7 . Thus, for the

lines to intersect, the three equations 2+ = 3+ , 3 2 = 4+ 3 , and 1 3 = 2 7 must be satisfied simultaneously.

Solving the first two equations gives = 2, = 1 and checking, we see that these values do satisfy the third equation, so the

lines intersect when = 2 and = 1, that is, at the point (4 1 5).

c° 2012 Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part.

NOT FOR SALE

°°cc 2012 Cengage Learning. All Rights Reserved. May not be scanned, copied, or2012 Cengage Learning. All Rights Reserved. May not be scanned, copied, duplicated, or posted to a publicly accessible website, in whole or in part.licated, or posted to a publicly accessible website, in whole or in par

48



276 ¤ CHAPTER 12 VECTORS AND THE GEOMETRY OF SPACE

22. The direction vectors h1 1 3i and h2 2 7i are not parallel, so neither are the lines. Parametric equations for the lines are
1: = , = 1 , = 2 + 3 and 2: = 2 + 2 , = 3 2 , = 7 . Thus, for the lines to interesect, the three

equations = 2+ 2 , 1 = 3 2 , and 2 + 3 = 7 must be satisfied simultaneously. Solving the last two equations gives

= 10, = 4 and checking, we see that these values don’t satisfy the first equation. Thus the lines aren’t parallel and

don’t intersect, so they must be skew.

23. Since the plane is perpendicular to the vector h1 2 5i, we can take h1 2 5i as a normal vector to the plane.
(0 0 0) is a point on the plane, so setting = 1, = 2, = 5 and 0 = 0, 0 = 0, 0 = 0 in Equation 7 gives

1( 0) + ( 2)( 0) + 5( 0) = 0 or 2 + 5 = 0 as an equation of the plane.

24. 2 i+ j k = h2 1 1i is a normal vector to the plane and (5 3 5) is a point on the plane, so setting = 2, = 1, = 1

0 = 5, 0 = 3, 0 = 5 in Equation 7 gives 2( 5) + 1( 3) + ( 1)( 5) = 0 or 2 + = 8 as an equation of the

plane.

25. i+ 4 j+ k = h1 4 1i is a normal vector to the plane and 1 1
2
3 is a point on the plane, so setting = 1, = 4, = 1

0 = 1, 0 =
1
2
, 0 = 3 in Equation 7 gives 1[ ( 1)] + 4 1

2
+ 1( 3) = 0 or + 4 + = 4 as an equation of

the plane.

26. Since the line is perpendicular to the plane, its direction vector h3 1 4i is a normal vector to the plane. The point (2 0 1) is
on the plane, so an equation of the plane is 3( 2) + ( 1)( 0) + 4( 1) = 0 or 3 + 4 = 10.

27. Since the two planes are parallel, they will have the same normal vectors. So we can take n = h5 1 1i, and an equation of
the plane is 5( 1) 1[ ( 1)] 1[ ( 1)] = 0 or 5 = 7.

28. Since the two planes are parallel, they will have the same normal vectors. A normal vector for the plane = + or

+ = 0 is n = h1 1 1i, and an equation of the desired plane is 1( 2) + 1( 4) 1( 6) = 0 or

+ = 0 (the same plane!).

29. Since the two planes are parallel, they will have the same normal vectors. So we can take n = h1 1 1i, and an equation of the

plane is 1( 1) + 1 1
2
+ 1 1

3
= 0 or + + = 11

6 or 6 + 6 + 6 = 11.

30. First, a normal vector for the plane 5 + 2 + = 1 is n = h5 2 1i. A direction vector for the line is v = h1 1 3i, and
since n · v = 0 we know the line is perpendicular to n and hence parallel to the plane. Thus, there is a parallel plane which
contains the line. By putting = 0, we know that the point (1 2 4) is on the line and hence the new plane. We can use the

same normal vector n = h5 2 1i, so an equation of the plane is 5( 1) + 2( 2) + 1( 4) = 0 or 5 + 2 + = 13.

31. Here the vectors a = h1 0 0 1 1 1i = h1 1 0i and b = h1 0 1 1 0 1i = h1 0 1i lie in the plane, so
a× b is a normal vector to the plane. Thus, we can take n = a× b = h1 0 0 + 1 0 + 1i = h1 1 1i. If 0 is the point

(0 1 1), an equation of the plane is 1( 0) + 1( 1) + 1( 1) = 0 or + + = 2.
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32. Here the vectors a = h2 4 6i and b = h5 1 3i lie in the plane, so
n = a× b = h 12 6 30 6 2 + 20i = h 18 24 22i is a normal vector to the plane and an equation of the plane is
18( 0) + 24( 0) + 22( 0) = 0 or 18 + 24 + 22 = 0.

33. Here the vectors a = h8 3 2 ( 1) 4 2i = h5 3 2i and b = h 1 3 2 ( 1) 3 2i = h 4 1 5i lie in
the plane, so a normal vector to the plane is n = a× b = h 15 + 2 8 + 25 5 + 12i = h 13 17 7i and an equation of
the plane is 13( 3) + 17[ ( 1)] + 7( 2) = 0 or 13 + 17 + 7 = 42.

34. If we first find two nonparallel vectors in the plane, their cross product will be a normal vector to the plane. Since the given

line lies in the plane, its direction vector a = h3 1 1i is one vector in the plane. We can verify that the given point (1 2 3)
does not lie on this line, so to find another nonparallel vector b which lies in the plane, we can pick any point on the line and

find a vector connecting the points. If we put = 0, we see that (0 1 2) is on the line, so

b = h1 0 2 1 3 2i = h1 1 1i and n = a× b = h1 + 1 1 3 3 1i = h2 4 2i. Thus, an equation of the plane
is 2( 1) 4( 2) + 2( 3) = 0 or 2 4 + 2 = 0. (Equivalently, we can write 2 + = 0.)

35. If we first find two nonparallel vectors in the plane, their cross product will be a normal vector to the plane. Since the given

line lies in the plane, its direction vector a = h 2 5 4i is one vector in the plane. We can verify that the given point (6 0 2)

does not lie on this line, so to find another nonparallel vector b which lies in the plane, we can pick any point on the line and

find a vector connecting the points. If we put = 0, we see that (4 3 7) is on the line, so

b = h6 4 0 3 2 7i = h2 3 9i and n = a× b = h 45 + 12 8 18 6 10i = h 33 10 4i. Thus, an
equation of the plane is 33( 6) 10( 0) 4[ ( 2)] = 0 or 33 + 10 + 4 = 190.

36. Since the line = 2 = 3 , or =
1 2

=
1 3

, lies in the plane, its direction vector a = 1 1
2

1
3
is parallel to the plane.

The point (0 0 0) is on the line (put = 0), and we can verify that the given point (1 1 1) in the plane is not on the line.

The vector connecting these two points, b = h1 1 1i, is therefore parallel to the plane, but not parallel to h1 2 3i. Then

a× b = 1
2
+ 1

3
1
3

1 1 1
2
= 5

6
2
3

3
2
is a normal vector to the plane, and an equation of the plane is

5
6
( 0) 2

3
( 0) 3

2
( 0) = 0 or 5 4 9 = 0.

37. A direction vector for the line of intersection is a = n1 × n2 = h1 1 1i × h2 1 3i = h2 5 3i, and a is parallel to the
desired plane. Another vector parallel to the plane is the vector connecting any point on the line of intersection to the given

point ( 1 2 1) in the plane. Setting = 0, the equations of the planes reduce to = 2 and + 3 = 1 with

simultaneous solution = 7
2
and = 3

2
. So a point on the line is 0 7

2
3
2
and another vector parallel to the plane is

1 3
2

1
2
. Then a normal vector to the plane is n = h2 5 3i × 1 3

2
1
2
= h 2 4 8i and an equation of

the plane is 2( + 1) + 4( 2) 8( 1) = 0 or 2 + 4 = 1.
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278 ¤ CHAPTER 12 VECTORS AND THE GEOMETRY OF SPACE

38. The points (0 2 5) and ( 1 3 1) lie in the desired plane, so the vector v1 = h 1 5 4i connecting them is parallel to
the plane. The desired plane is perpendicular to the plane 2 = 5 + 4 or 5 + 4 2 = 0 and for perpendicular planes,

a normal vector for one plane is parallel to the other plane, so v2 = h5 4 2i is also parallel to the desired plane.
A normal vector to the desired plane is n = v1 × v2 = h 10 + 16 20 2 4 25i = h6 22 29i.
Taking ( 0 0 0) = (0 2 5), the equation we are looking for is 6( 0) 22( + 2) 29( 5) = 0 or

6 22 29 = 101.

39. If a plane is perpendicular to two other planes, its normal vector is perpendicular to the normal vectors of the other two planes.

Thus h2 1 2i × h1 0 3i = h3 0 2 6 0 1i = h3 8 1i is a normal vector to the desired plane. The point
(1 5 1) lies on the plane, so an equation is 3( 1) 8( 5) ( 1) = 0 or 3 8 = 38.

40. n1 = h1 0 1i and n2 = h0 1 2i. Setting = 0, it is easy to see that (1 3 0) is a point on the line of intersection of

= 1 and + 2 = 3. The direction of this line is v1 = n1 × n2 = h1 2 1i. A second vector parallel to the desired
plane is v2 = h1 1 2i, since it is perpendicular to + 2 = 1. Therefore, a normal of the plane in question is

n = v1 × v2 = h4 1 1 + 2 1 + 2i = h3 3 3i, or we can use h1 1 1i. Taking ( 0 0 0) = (1 3 0), the equation we are

looking for is ( 1) + ( 3) + = 0 + + = 4.

41. To find the -intercept we set = = 0 in the equation 2 + 5 + = 10

and obtain 2 = 10 = 5 so the -intercept is (5 0 0). When

= = 0 we get 5 = 10 = 2, so the -intercept is (0 2 0).

Setting = = 0 gives = 10, so the -intercept is (0 0 10) and we

graph the portion of the plane that lies in the first octant.

42. To find the -intercept we set = = 0 in the equation 3 + + 2 = 6

and obtain 3 = 6 = 2 so the -intercept is (2 0 0). When

= = 0 we get = 6 so the -intercept is (0 6 0). Setting = = 0

gives 2 = 6 = 3, so the -intercept is (0 0 3). The figure shows

the portion of the plane that lies in the first octant.

43. Setting = = 0 in the equation 6 3 + 4 = 6 gives 6 = 6

= 1, when = = 0 we have 3 = 6 = 2, and = = 0

implies 4 = 6 = 3
2 , so the intercepts are (1 0 0), (0 2 0), and

(0 0 3
2
). The figure shows the portion of the plane cut off by the coordinate

planes.
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SECTION 12.5 EQUATIONS OF LINES AND PLANES ¤ 279

44. Setting = = 0 in the equation 6 + 5 3 = 15 gives 6 = 15

= 5
2
, when = = 0 we have 5 = 15 = 3, and = = 0

implies 3 = 15 = 5, so the intercepts are (5
2
0 0), (0 3 0),

and (0 0 5). The figure shows the portion of the plane cut off by the

coordinate planes.

45. Substitute the parametric equations of the line into the equation of the plane: (3 ) (2 + ) + 2(5 ) = 9

8 = 8 = 1. Therefore, the point of intersection of the line and the plane is given by = 3 1 = 2, = 2 + 1 = 3,

and = 5(1) = 5 that is, the point (2 3 5).

46. Substitute the parametric equations of the line into the equation of the plane: (1 + 2 ) + 2(4 ) (2 3 ) + 1 = 0

13 = 0 = 0. Therefore, the point of intersection of the line and the plane is given by = 1 + 2(0) = 1,

= 4(0) = 0, and = 2 3(0) = 2 that is, the point (1 0 2).

47. Parametric equations for the line are = , = 1 + , = 1
2
and substituting into the equation of the plane gives

4( ) (1 + ) + 3 1
2

= 8 9
2
= 9 = 2. Thus = 2, = 1 + 2 = 3, = 1

2
(2) = 1 and the point of

intersection is (2 3 1).

48. A direction vector for the line through (1 0 1) and (4 2 2) is v = h3 2 1i and, taking 0 = (1 0 1), parametric

equations for the line are = 1 + 3 , = 2 , = 1 + . Substitution of the parametric equations into the equation of the

plane gives 1+ 3 2 +1+ = 6 = 2. Then = 1+3(2) = 7, = 2(2) = 4, and = 1+2 = 3 so the point

of intersection is (7 4 3).

49. Setting = 0, we see that (0 1 0) satisfies the equations of both planes, so that they do in fact have a line of intersection.

v = n1 × n2 = h1 1 1i × h1 0 1i = h1 0 1i is the direction of this line. Therefore, direction numbers of the intersecting
line are 1, 0, 1.

50. The angle between the two planes is the same as the angle between their normal vectors. The normal vectors of the

two planes are h1 1 1i and h1 2 3i. The cosine of the angle between these two planes is

cos =
h1 1 1i · h1 2 3i
|h1 1 1i| |h1 2 3i| =

1+ 2 + 3

1 + 1 + 1 1 + 4 + 9
=

6

42
=

6

7
.

51. Normal vectors for the planes are n1 = h1 4 3i and n2 = h 3 6 7i, so the normals (and thus the planes) aren’t parallel.
But n1 · n2 = 3 + 24 21 = 0, so the normals (and thus the planes) are perpendicular.

52. Normal vectors for the planes are n1 = h 1 4 2i and n2 = h3 12 6i. Since n2 = 3n1, the normals (and thus the

planes) are parallel.

53. Normal vectors for the planes are n1 = h1 1 1i and n2 = h1 1 1i. The normals are not parallel, so neither are the planes.
Furthermore, n1 · n2 = 1 1 + 1 = 1 6= 0, so the planes aren’t perpendicular. The angle between them is given by

cos =
n1 · n2
|n1| |n2| =

1

3 3
=
1

3
= cos 1 1

3
70 5 .

c° 2012 Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part.

NOT FOR SALE

°°cc 2012 Cengage Learning. All Rights Reserved. May not be scanned, copied, or2012 Cengage Learning. All Rights Reserved. May not be scanned, copied, duplicated, or posted to a publicly accessible website, in whole or in part.licated, or posted to a publicly accessible website, in whole or in par

52



280 ¤ CHAPTER 12 VECTORS AND THE GEOMETRY OF SPACE

54. The normals are n1 = h2 3 4i and n2 = h1 6 4i so the planes aren’t parallel. Since n1 · n2 = 2 18 + 16 = 0, the

normals (and thus the planes) are perpendicular.

55. The normals are n1 = h1 4 2i and n2 = h2 8 4i. Since n2 = 2n1, the normals (and thus the planes) are parallel.

56. The normal vectors are n1 = h1 2 2i and n2 = h2 1 2i. The normals are not parallel, so neither are the planes.
Furthermore, n1 · n2 = 2 2 + 4 = 4 6= 0, so the planes aren’t perpendicular. The angle between them is given by

cos =
n1 · n2
|n1| |n2| =

4

9 9
=
4

9
= cos 1 4

9
63 6 .

57. (a) To find a point on the line of intersection, set one of the variables equal to a constant, say = 0. (This will fail if the line of

intersection does not cross the -plane; in that case, try setting or equal to 0.) The equations of the two planes reduce

to + = 1 and + 2 = 1. Solving these two equations gives = 1, = 0. Thus a point on the line is (1 0 0).

A vector v in the direction of this intersecting line is perpendicular to the normal vectors of both planes, so we can take

v = n1 × n2 = h1 1 1i × h1 2 2i = h2 2 1 2 2 1i = h0 1 1i. By Equations 2, parametric equations for the
line are = 1, = , = .

(b) The angle between the planes satisfies cos =
n1 · n2
|n1| |n2| =

1 + 2 + 2

3 9
=

5

3 3
. Therefore = cos 1 5

3 3
15 8 .

58. (a) If we set = 0 then the equations of the planes reduce to 3 2 = 1 and 2 + = 3 and solving these two equations

gives = 1, = 1. Thus a point on the line of intersection is (1 1 0). A vector v in the direction of this intersecting line

is perpendicular to the normal vectors of both planes, so let v = n1 × n2 = h3 2 1i × h2 1 3i = h5 11 7i. By
Equations 2, parametric equations for the line are = 1 + 5 , = 1 + 11 , = 7 .

(b) cos =
n1 · n2
|n1| |n2| =

6 2 3

14 14
=
1

14
= cos 1 1

14
85 9 .

59. Setting = 0, the equations of the two planes become 5 2 = 1 and 4 + = 6. Solving these two equations gives

= 1, = 2 so a point on the line of intersection is (1 2 0). A vector v in the direction of this intersecting line is

perpendicular to the normal vectors of both planes. So we can use v = n1 × n2 = h5 2 2i × h4 1 1i = h0 13 13i or

equivalently we can take v = h0 1 1i, and symmetric equations for the line are = 1, 2

1
=
1
or = 1, 2 = .

60. If we set = 0 then the equations of the planes reduce to 2 5 = 0 and 4 + 3 5 = 0 and solving these two

equations gives = 2, = 1. Thus a point on the line of intersection is (2 1 0). A vector v in the

direction of this intersecting line is perpendicular to the normal vectors of both planes, so take

v = n1 ×n2 = h2 1 1i × h4 3 1i = h4 2 10i or equivalently we can take v = h2 1 5i. Symmetric equations for

the line are 2

2
=

+ 1

1
=
5
.

61. The distance from a point ( ) to (1 0 2) is 1 = ( 1)2 + 2 + ( + 2)2 and the distance from ( ) to

(3 4 0) is 2 = ( 3)2 + ( 4)2 + 2. The plane consists of all points ( ) where 1 = 2
2
1 =

2
2
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( 1)2 + 2 + ( + 2)2 = ( 3)2 + ( 4)2 + 2

2 2 + 2 + 2 + 4 + 5 = 2 6 + 2 8 + 2 + 25 4 + 8 + 4 = 20 so an equation for the plane is

4 + 8 + 4 = 20 or equivalently + 2 + = 5.

Alternatively, you can argue that the segment joining points (1 0 2) and (3 4 0) is perpendicular to the plane and the plane

includes the midpoint of the segment.

62. The distance from a point ( ) to (2 5 5) is 1 = ( 2)2 + ( 5)2 + ( 5)2 and the distance from ( )

to ( 6 3 1) is 2 = ( + 6)2 + ( 3)2 + ( 1)2. The plane consists of all points ( ) where 1 = 2

2
1 =

2
2 ( 2)2 + ( 5)2 + ( 5)2 = ( + 6)2 + ( 3)2 + ( 1)2

2 4 + 2 10 + 2 10 + 54 = 2 + 12 + 2 6 + 2 2 + 46 16 + 4 + 8 = 8 so an equation

for the plane is 16 + 4 + 8 = 8 or equivalently 4 + + 2 = 2.

63. The plane contains the points ( 0 0), (0 0) and (0 0 ). Thus the vectors a = h 0i and b = h 0 i lie in the

plane, and n = a× b = h 0 0 + 0 + i = h i is a normal vector to the plane. The equation of the plane is
therefore + + = + 0 + 0 or + + = . Notice that if 6= 0, 6= 0 and 6= 0 then we can

rewrite the equation as + + = 1. This is a good equation to remember!

64. (a) For the lines to intersect, we must be able to find one value of and one value of satisfying the three equations

1+ = 2 , 1 = and 2 = 2. From the third we get = 1, and putting this in the second gives = 0. These values

of and do satisfy the first equation, so the lines intersect at the point 0 = (1 + 1 1 1 2(1)) = (2 0 2).

(b) The direction vectors of the lines are h1 1 2i and h 1 1 0i, so a normal vector for the plane is

h 1 1 0i × h1 1 2i = h2 2 0i and it contains the point (2 0 2). Then an equation of the plane is

2( 2) + 2( 0) + 0( 2) = 0 + = 2.

65. Two vectors which are perpendicular to the required line are the normal of the given plane, h1 1 1i, and a direction vector for

the given line, h1 1 2i. So a direction vector for the required line is h1 1 1i × h1 1 2i = h3 1 2i. Thus is given

by h i = h0 1 2i+ h3 1 2i, or in parametric form, = 3 , = 1 , = 2 2 .

66. Let be the given line. Then (1 1 0) is the point on corresponding to = 0. is in the direction of a = h1 1 2i

and b = h 1 0 2i is the vector joining (1 1 0) and (0 1 2). Then

b proja b = h 1 0 2i h1 1 2i · h 1 0 2i
12 + ( 1)2 + 22

h1 1 2i = h 1 0 2i 1
2
h1 1 2i = 3

2
1
2
1 is a direction vector

for the required line. Thus 2 3
2

1
2
1 = h 3 1 2i is also a direction vector, and the line has parametric equations = 3 ,

= 1 + , = 2 + 2 . (Notice that this is the same line as in Exercise 65.)
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282 ¤ CHAPTER 12 VECTORS AND THE GEOMETRY OF SPACE

67. Let have normal vector n . Then n1 = h3 6 3i, n2 = h4 12 8i, n3 = h3 9 6i, n4 = h1 2 1i. Now n1 = 3n4,

so n1 and n4 are parallel, and hence 1 and 4 are parallel; similarly 2 and 3 are parallel because n2 = 4
3
n3. However, n1

and n2 are not parallel (so not all four planes are parallel). Notice that the point (2 0 0) lies on both 1 and 4, so these two

planes are identical. The point 5
4
0 0 lies on 2 but not on 3, so these are different planes.

68. Let have direction vector v . Rewrite the symmetric equations for 3 as
1

1 2
=

1

1 4
=

+ 1

1
; then v1 = h6 3 12i,

v2 = h2 1 4i, v3 = 1
2

1
4
1 , and v4 = h4 2 8i. v1 = 12v3, so 1 and 3 are parallel. v4 = 2v2, so 2 and 4 are

parallel. (Note that 1 and 2 are not parallel.) 1 contains the point (1 1 5), but this point does not lie on 3, so they’re not

identical. (3 1 5) lies on 4 and also on 2 (for = 1), so 2 and 4 are the same line.

69. Let = (1 3 4) and = (2 1 1), points on the line corresponding to = 0 and = 1. Let

= (4 1 2). Then a = = h1 2 3i, b = = h3 2 6i. The distance is

=
|a× b|
|a| =

|h1 2 3i × h3 2 6i|
|h1 2 3i| =

|h6 3 4i|
|h1 2 3i| =

62 + ( 3)2 + 42

12 + ( 2)2 + ( 3)2
=

61

14
=

61

14
.

70. Let = (0 6 3) and = (2 4 4), points on the line corresponding to = 0 and = 1. Let

= (0 1 3). Then a = = h2 2 1i and b = = h0 5 0i. The distance is

=
|a× b|
|a| =

|h2 2 1i × h0 5 0i|
|h2 2 1i| =

|h5 0 10i|
|h2 2 1i| =

52 + 02 + ( 10)2

22 + ( 2)2 + 12
=

125

9
=
5 5

3
.

71. By Equation 9, the distance is =
| 1 + 1 + 1 + |

2 + 2 + 2
=
|3(1) + 2( 2) + 6(4) 5|

32 + 22 + 62
=
|18|
49
=
18

7
.

72. By Equation 9, the distance is =
|1( 6) 2(3) 4(5) 8|

12 + ( 2)2 + ( 4)2
=
| 40|
21

=
40

21
.

73. Put = = 0 in the equation of the first plane to get the point (2 0 0) on the plane. Because the planes are parallel, the

distance between them is the distance from (2 0 0) to the second plane. By Equation 9,

=
|4(2) 6(0) + 2(0) 3|

42 + ( 6)2 + (2)2
=

5

56
=

5

2 14
or 5 14

28
.

74. Put = = 0 in the equation of the first plane to get the point (0 0 0) on the plane. Because the planes are parallel the

distance between them is the distance from (0 0 0) to the second plane 3 6 + 9 1 = 0. By Equation 9,

=
|3(0) 6(0) + 9(0) 1|

32 + ( 6)2 + 92
=

1

126
=

1

3 14
.

75. The distance between two parallel planes is the same as the distance between a point on one of the planes and the other plane.

Let 0 = ( 0 0 0) be a point on the plane given by + + + 1 = 0. Then 0 + 0 + 0 + 1 = 0 and the
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distance between 0 and the plane given by + + + 2 = 0 is, from Equation 9,

=
| 0 + 0 + 0 + 2|

2 + 2 + 2
=

| 1 + 2|
2 + 2 + 2

=
| 1 2|
2 + 2 + 2

.

76. The planes must have parallel normal vectors, so if + + + = 0 is such a plane, then for some 6= 0,
h i = h1 2 2i = h 2 2 i. So this plane is given by the equation + 2 2 + = 0, where = . By

Exercise 75, the distance between the planes is 2 = |1 |
12 + 22 + ( 2)2

6 = |1 | = 7 or 5. So the

desired planes have equations + 2 2 = 7 and + 2 2 = 5.

77. 1: = = = (1). 2: + 1 = 2 = 3 + 1 = 2 (2). The solution of (1) and (2) is

= = 2. However, when = 2, = = 2, but + 1 = 3 = 3, a contradiction. Hence the

lines do not intersect. For 1, v1 = h1 1 1i, and for 2, v2 = h1 2 3i, so the lines are not parallel. Thus the lines are skew
lines. If two lines are skew, they can be viewed as lying in two parallel planes and so the distance between the skew lines

would be the same as the distance between these parallel planes. The common normal vector to the planes must be

perpendicular to both h1 1 1i and h1 2 3i, the direction vectors of the two lines. So set
n = h1 1 1i × h1 2 3i = h3 2 3 + 1 2 1i = h1 2 1i. From above, we know that ( 2 2 2) and ( 2 2 3)

are points of 1 and 2 respectively. So in the notation of Equation 8, 1( 2) 2( 2) + 1( 2) + 1 = 0 1 = 0 and

1( 2) 2( 2) + 1( 3) + 2 = 0 2 = 1.

By Exercise 75, the distance between these two skew lines is =
|0 1|
1 + 4 + 1

=
1

6
.

Alternate solution (without reference to planes): A vector which is perpendicular to both of the lines is

n = h1 1 1i × h1 2 3i = h1 2 1i. Pick any point on each of the lines, say ( 2 2 2) and ( 2 2 3), and form the

vector b = h0 0 1i connecting the two points. The distance between the two skew lines is the absolute value of the scalar

projection of b along n, that is, =
|n · b|
|n| =

|1 · 0 2 · 0 + 1 · 1|
1 + 4 + 1

=
1

6
.

78. First notice that if two lines are skew, they can be viewed as lying in two parallel planes and so the distance between the skew

lines would be the same as the distance between these parallel planes. The common normal vector to the planes must be

perpendicular to both v1 = h1 6 2i and v2 = h2 15 6i, the direction vectors of the two lines respectively. Thus set
n = v1 × v2 = h36 30 4 6 15 12i = h6 2 3i. Setting = 0 and = 0 gives the points (1 1 0) and (1 5 2).

So in the notation of Equation 8, 6 2 + 0 + 1 = 0 1 = 4 and 6 10 6 + 2 = 0 2 = 10.

Then by Exercise 75, the distance between the two skew lines is given by =
| 4 10|
36 + 4 + 9

=
14

7
= 2.

Alternate solution (without reference to planes): We already know that the direction vectors of the two lines are

v1 = h1 6 2i and v2 = h2 15 6i. Then n = v1 × v2 = h6 2 3i is perpendicular to both lines. Pick any point on
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each of the lines, say (1 1 0) and (1 5 2), and form the vector b = h0 4 2i connecting the two points. Then the
distance between the two skew lines is the absolute value of the scalar projection of b along n, that is,

=
|n · b|
|n| =

1

36 + 4 + 9
|0 8 6| = 14

7
= 2.

79. A direction vector for 1 is v1 = h2 0 1i and a direction vector for 2 is v2 = h3 2 2i. These vectors are not parallel so
neither are the lines. Parametric equations for the lines are 1: = 2 , = 0, = , and 2: = 1 + 3 , = 1 + 2 ,

= 1 + 2 . No values of and satisfy these equations simultaneously, so the lines don’t intersect and hence are skew. We

can view the lines as lying in two parallel planes; a common normal vector to the planes is n = v1 × v2 = h2 7 4i. Line

1 passes through the origin, so (0 0 0) lies on one of the planes, and (1 1 1) is a point on 2 and therefore on the other

plane. Equations of the planes then are 2 7 + 4 = 0 and 2 7 + 4 13 = 0, and by Exercise 75, the distance

between the two skew lines is =
|0 ( 13)|
4 + 49 + 16

=
13

69
.

Alternate solution (without reference to planes): Direction vectors of the two lines are v1 = h2 0 1i and v2 = h3 2 2i.

Then n = v1 ×v2 = h2 7 4i is perpendicular to both lines. Pick any point on each of the lines, say (0 0 0) and (1 1 1),

and form the vector b = h1 1 1i connecting the two points. Then the distance between the two skew lines is the absolute

value of the scalar projection of b along n, that is, =
|n · b|
|n| =

|2 + 7 + 4|
4 + 49 + 16

=
13

69
.

80. A direction vector for the line 1 is v1 = h1 2 2i. A normal vector for the plane 1 is n1 = h1 1 2i. The vector from the

point (0 0 1) to (3 2 1), h3 2 2i, is parallel to the plane 2, as is the vector from (0 0 1) to (1 2 1), namely h1 2 0i.

Thus a normal vector for 2 is h3 2 2i × h1 2 0i = h4 2 4i, or we can use n2 = h2 1 2i, and a direction vector for

the line 2 of intersection of these planes is v2 = n1 × n2 = h1 1 2i × h2 1 2i = h0 2 1i. Notice that the point

(3 2 1) lies on both planes, so it also lies on 2. The lines are skew, so we can view them as lying in two parallel planes; a

common normal vector to the planes is n = v1 × v2 = h 2 1 2i. Line 1 passes through the point (1 2 6), so (1 2 6)

lies on one of the planes, and (3 2 1) is a point on 2 and therefore on the other plane. Equations of the planes then are

2 + 2 8 = 0 and 2 + 2 + 10 = 0, and by Exercise 75, the distance between the lines is

=
| 8 10|
4 + 1 + 4

=
18

3
= 6.

Alternatively, direction vectors for the lines are v1 = h1 2 2i and v2 = h0 2 1i, so n = v1 × v2 = h 2 1 2i is

perpendicular to both lines. Pick any point on each of the lines, say (1 2 6) and (3 2 1), and form the vector

b = h2 0 7i connecting the two points. Then the distance between the two skew lines is the absolute value of the scalar

projection of b along n, that is, =
|n · b|
|n| =

| 4 + 0 14|
4 + 1 + 4

=
18

3
= 6.
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LABORATORY PROJECT PUTTING 3D IN PERSPECTIVE ¤ 285

81. If 6= 0, then + + + = 0 ( + ) + ( 0) + ( 0) = 0 which by (7) is the scalar equation of the

plane through the point ( 0 0) with normal vector h i. Similarly, if 6= 0 (or if 6= 0) the equation of the plane can
be rewritten as ( 0) + ( + ) + ( 0) = 0 [or as ( 0) + ( 0) + ( + ) = 0] which by (7) is the

scalar equation of a plane through the point (0 0) [or the point (0 0 )] with normal vector h i.

82. (a) The planes + + = have normal vector h1 1 1i, so they are all
parallel. Their -, -, and -intercepts are all . When 0 their

intersection with the first octant is an equilateral triangle and when 0

their intersection with the octant diagonally opposite the first is an

equilateral triangle.

(b) The planes + + = 1 have -intercept 1, -intercept 1, and -intercept 1 . The plane with = 0 is parallel to the

-axis. As gets larger, the planes get closer to the -plane.

(c) The planes cos + cos = 1 have normal vectors h0 cos sin i, which are perpendicular to the -axis, and so the

planes are parallel to the -axis. We look at their intersection with the -plane. These are lines that are perpendicular to

hcos sin i and pass through (cos sin ), since cos2 + sin2 = 1. So these are the tangent lines to the unit circle.

Thus the family consists of all planes tangent to the circular cylinder with radius 1 and axis the -axis.

LABORATORY PROJECT Putting 3D in Perspective

1. If we view the screen from the camera’s location, the vertical clipping plane on the left passes through the points

(1000 0 0), (0 400 0), and (0 400 600). A vector from the first point to the second is v1 = h 1000 400 0i
and a vector from the first point to the third is v2 = h 1000 400 600i. A normal vector for the clipping plane is
v1 × v2 = 240,000 i+ 600,000 j or 2 i+ 5 j, and an equation for the plane is

2( 1000) + 5( 0) + 0( 0) = 0 2 5 = 2000. By symmetry, the vertical clipping plane on the right is

given by 2 + 5 = 2000. The lower clipping plane is = 0. The upper clipping plane passes through the points (1000 0 0),

(0 400 600), and (0 400 600). Vectors from the first point to the second and third points are v1 = h 1000 400 600i
and v2 = h 1000 400 600i, and a normal vector for the plane is v1 × v2 = 480,000 i 800,000k or 3 i+ 5k. An

equation for the plane is 3( 1000) + 0( 0) + 5( 0) = 0 3 + 5 = 3000.

A direction vector for the line is v = h630 390 162i and taking 0 = (230 285 102), parametric equations

are = 230 + 630 , = 285 + 390 , = 102 + 162 . intersects the left clipping plane when

2(230 + 630 ) 5( 285 + 390 ) = 2000 = 1
6
. The corresponding point is (125 350 75). intersects

the right clipping plane when 2(230 + 630 ) + 5( 285 + 390 ) = 2000 = 593
642
. The corresponding point is

approximately (811 9 75 2 251 6), but this point is not contained within the viewing volume. intersects the upper clipping

plane when 3(230 + 630 ) + 5(102 + 162 ) = 3000 = 2
3
, corresponding to the point (650 25 210), and

intersects the lower clipping plane when = 0 102 + 162 = 0 = 17
27
. The corresponding point is
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286 ¤ CHAPTER 12 VECTORS AND THE GEOMETRY OF SPACE

approximately ( 166 7 530 6 0), which is not contained within the viewing volume. Thus should be clipped at the

points (125 350 75) and (650 25 210).

2. A sight line from the camera at (1000 0 0) to the left endpoint (125 350 75) of the clipped line has direction

v = h 875 350 75i. Parametric equations are = 1000 875 , = 350 , = 75 . This line intersects the screen

when = 0 1000 875 = 0 = 8
7
, corresponding to the point 0 400 600

7
. Similarly, a sight line from

the camera to the right endpoint (650 25 210) of the clipped line has direction h 350 25 210i and parametric equations
are = 1000 350 , = 25 , = 210 . = 0 1000 350 = 0 = 20

7
, corresponding to the point

0 500
7
600 . Thus the projection of the clipped line is the line segment between the points 0 400 600

7
and

0 500
7
600 .

3. From Equation 12.5.4, equations for the four sides of the screen

are r1( ) = (1 )h0 400 0i+ h0 400 600i,
r2( ) = (1 )h0 400 600i+ h0 400 600i,
r3( ) = (1 )h0 400 0i+ h0 400 600i, and
r4( ) = (1 )h0 400 0i+ h0 400 0i. The clipped line
segment connects the points (125 350 75) and

(650 25 210), so an equation for the segment is

r5( ) = (1 )h125 350 75i+ h650 25 210i.
The projection of the clipped segment connects the points

0 400 600
7

and 0 500
7
600 , so an equation is r6( ) = (1 ) 0 400 600

7
+ 0 500

7
600 .

The sight line on the left connects the points (1000 0 0) and 0 400 600
7
, so an equation is

r7( ) = (1 )h1000 0 0i+ 0 400 600
7
. The other sight line connects (1000 0 0) to 0 500

7
600 , so an equation

is r8( ) = (1 )h1000 0 0i+ 0 500
7
600 .

4. The vector from (621 147 206) to (563 31 242), v1 = h 58 178 36i, lies in the plane of the rectangle, as does the
vector from (621 147 206) to (657 111 86), v2 = h36 36 120i. A normal vector for the plane is
v1 × v2 = h 1888 142 708i or h8 2 3i, and an equation of the plane is 8 + 2 + 3 = 5292. The line intersects

this plane when 8(230 + 630 ) + 2( 285 + 390 ) + 3(102 + 162 ) = 5292 = 1858
3153

0 589. The corresponding

point is approximately (601 25 55 18 197 46). Starting at this point, a portion of the line is hidden behind the rectangle.

The line becomes visible again at the left edge of the rectangle, specifically the edge between the points (621 147 206) and

(657 111 86). (This is most easily determined by graphing the rectangle and the line.) A plane through these two points

and the camera’s location, (1000 0 0), will clip the line at the point it becomes visible. Two vectors in this plane are

v1 = h 379 147 206i and v2 = h 343 111 86i. A normal vector for the plane is
v1 × v2 = h10224 38064 8352i and an equation of the plane is 213 793 174 = 213,000. intersects this plane
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SECTION 12.6 CYLINDERS AND QUADRIC SURFACES ¤ 287

when 213(230 + 630 ) 793( 285 + 390 ) 174(102 + 162 ) = 213,000 = 44,247
203,268 0 2177. The

corresponding point is approximately (367 14 200 11 137 26). Thus the portion of that should be removed is the

segment between the points (601 25 55 18 197 46) and (367 14 200 11 137 26).

12.6 Cylinders and Quadric Surfaces

1. (a) In R2, the equation = 2 represents a parabola.

(b) In R3, the equation = 2 doesn’t involve , so any

horizontal plane with equation = intersects the graph

in a curve with equation = 2. Thus, the surface is a

parabolic cylinder, made up of infinitely many shifted

copies of the same parabola. The rulings are parallel to

the -axis.

(c) In R3, the equation = 2 also represents a parabolic

cylinder. Since doesn’t appear, the graph is formed by

moving the parabola = 2 in the direction of the -axis.

Thus, the rulings of the cylinder are parallel to the -axis.

2. (a) (b) Since the equation = doesn’t
involve , horizontal traces are
copies of the curve = . The
rulings are parallel to the -axis.

(c) The equation = doesn’t involve ,
so vertical traces in = (parallel to the
-plane) are copies of the curve = .

The rulings are parallel to the -axis.
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288 ¤ CHAPTER 12 VECTORS AND THE GEOMETRY OF SPACE

3. Since is missing from the equation, the vertical traces
2 + 2 = 1, = , are copies of the same circle in

the plane = . Thus the surface 2 + 2 = 1 is a

circular cylinder with rulings parallel to the -axis.

4. Since is missing from the equation, the horizontal

traces 4 2 + 2 = 4, = , are copies of the same

ellipse in the plane = . Thus the surface

4 2 + 2 = 4 is an elliptic cylinder with rulings

parallel to the -axis.

5. Since is missing, each vertical trace = 1 2,

= , is a copy of the same parabola in the plane

= . Thus the surface = 1 2 is a parabolic

cylinder with rulings parallel to the -axis.

.

6. Since is missing, each vertical trace = 2, = ,

is a copy of the same parabola in the plane = .

Thus the surface = 2 is a parabolic cylinder with

rulings parallel to the -axis.

7. Since is missing, each horizontal trace = 1,

= , is a copy of the same hyperbola in the plane

= . Thus the surface = 1 is a hyperbolic

cylinder with rulings parallel to the -axis.
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8. Since is missing, each vertical trace = sin ,

= , is a copy of a sine curve in the plane = .

Thus the surface = sin is a cylindrical surface with

rulings parallel to the -axis.

9. (a) The traces of 2 + 2 2 = 1 in = are 2 2 = 1 2, a family of hyperbolas. (Note that the hyperbolas are

oriented differently for 1 1 than for 1 or 1.) The traces in = are 2 2 = 1 2, a similar

family of hyperbolas. The traces in = are 2 + 2 = 1 + 2, a family of circles. For = 0, the trace in the

-plane, the circle is of radius 1. As | | increases, so does the radius of the circle. This behavior, combined with the
hyperbolic vertical traces, gives the graph of the hyperboloid of one sheet in Table 1.

(b) The shape of the surface is unchanged, but the hyperboloid is

rotated so that its axis is the -axis. Traces in = are circles,

while traces in = and = are hyperbolas.

(c) Completing the square in gives 2 + ( + 1)2 2 = 1. The

surface is a hyperboloid identical to the one in part (a) but shifted

one unit in the negative -direction.

10. (a) The traces of 2 2 + 2 = 1 in = are 2 + 2 = 1 + 2, a family of hyperbolas, as are the traces in = ,

2 + 2 = 1 + 2. The traces in = are 2 + 2 = 2 1, a family of circles for | | 1. As | | increases, the radii
of the circles increase; the traces are empty for | | 1. This behavior, combined with the vertical traces, gives the graph of

the hyperboloid of two sheets in Table 1.

(b) The graph has the same shape as the hyperboloid in part (a) but is rotated so

that its axis is the -axis. Traces in = , | | 1, are circles, while traces

in = and = are hyperbolas.
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11. For = 2 + 4 2, the traces in = are 2 + 4 2 = . When 0 we

have a family of ellipses. When = 0 we have just a point at the origin, and

the trace is empty for 0. The traces in = are = 4 2 + 2, a

family of parabolas opening in the positive -direction. Similarly, the traces

in = are = 2 + 4 2, a family of parabolas opening in the positive

-direction. We recognize the graph as an elliptic paraboloid with axis the

-axis and vertex the origin.

12. 9 2 2 + 2 = 0. The traces in = are 2 2 = 9 2, a family of

hyperbolas if 6= 0 and two intersecting lines if = 0. The traces in =

are 9 2 + 2 = 2, 0, a family of ellipses; the traces in = are

2 9 2 = 2, a family of hyperbolas for 6= 0 and two intersecting lines
for = 0. We recognize the graph as an elliptic cone with axis the -axis

and vertex the origin.

13. 2 = 2 + 4 2. The traces in = are the ellipses 2 + 4 2 = 2. The

traces in = are 2 4 2 = 2, hyperbolas for 6= 0 and two
intersecting lines if = 0. Similarly, the traces in = are

2 2 = 4 2, hyperbolas for 6= 0 and two intersecting lines if = 0.

We recognize the graph as an elliptic cone with axis the -axis and vertex

the origin.

14. 25 2 + 4 2 + 2 = 100. The traces in = are 4 2 + 2 = 100 25 2,

a family of ellipses for | | 2. (The traces are a single point for | | = 2
and are empty for | | 2.) Similarly, the traces in = are the ellipses

25 2 + 2 = 100 4 2, | | 5, and the traces in = are the ellipses

25 2 + 4 2 = 100 2, | | 10. The graph is an ellipsoid centered at the

origin with intercepts = ±2, = ±5, = ±10.
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15. 2 + 4 2 2 = 4. The traces in = are the hyperbolas

4 2 2 = 4+ 2. The traces in = are 2+ 2 = 4 2 4, a family of

circles for | | 1, and the traces in = are 4 2 2 = 4+ 2, a family

of hyperbolas. Thus the surface is a hyperboloid of two sheets with

axis the -axis.

16. 4 2 +9 2 + = 0. The traces in = are the parabolas = 9 2 4 2

which open downward. Similarly, the traces in = are the parabolas

= 4 2 9 2, also opening downward, and the traces in = are

4 2 + 9 2 = , 0, a family of ellipses. The graph is an elliptic

paraboloid with axis the -axis, opening downward, and vertex the origin.

17. 36 2 + 2 +36 2 = 36. The traces in = are 2 + 36 2 = 36(1 2),

a family of ellipses for | | 1. (The traces are a single point for | | = 1
and are empty for | | 1.) The traces in = are the circles

36 2 + 36 2 = 36 2 2 + 2 = 1 1
36

2, | | 6, and the

traces in = are the ellipses 36 2 + 2 = 36(1 2), | | 1. The

graph is an ellipsoid centered at the origin with intercepts = ±1, = ±6,
= ±1.

18. 4 2 16 2 + 2 = 16. The traces in = are 2 16 2 = 16 4 2, a

family of hyperbolas for | | 6= 2 and two intersecting lines when | | = 2.
(Note that the hyperbolas are oriented differently for | | 2 than for

| | 2.) The traces in = are 4 2 + 2 = 16(1 + 2), a family of

ellipses, and the traces in = are 4 2 16 2 = 16 2, two

intersecting lines when | | = 4 and a family of hyperbolas when | | 6= 4
(oriented differently for | | 4 than for | | 4). We recognize the graph

as a hyperboloid of one sheet with axis the -axis.
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19. = 2 2. The traces in = are the parabolas = 2 2;

the traces in = are = 2 2, which are hyperbolas (note the hyperbolas

are oriented differently for 0 than for 0); and the traces in = are

the parabolas = 2 2. Thus,
1
=

2

12

2

12
is a hyperbolic paraboloid.

20. = 2 2. The traces in = are 2 2 = , two intersecting lines

when = 0 and a family of hyperbolas for 6= 0 (oriented differently for
0 than for 0). The traces in = are the parabolas

= 2 + 2, opening in the negative -direction, and the traces in =

are the parabolas = 2 2 which open in the positive -direction. The

graph is a hyperbolic paraboloid with saddle point (0 0 0).

21. This is the equation of an ellipsoid: 2 + 4 2 + 9 2 = 2 +
2

(1 2)2
+

2

(1 3)2
= 1, with -intercepts ±1, -intercepts± 1

2

and -intercepts± 1
3
. So the major axis is the -axis and the only possible graph is VII.

22. This is the equation of an ellipsoid: 9 2 + 4 2 + 2 =
2

(1 3)2
+

2

(1 2)2
+ 2 = 1, with -intercepts ±1

3
, -intercepts ±1

2

and -intercepts±1. So the major axis is the -axis and the only possible graph is IV.

23. This is the equation of a hyperboloid of one sheet, with = = = 1. Since the coefficient of 2 is negative, the axis of the

hyperboloid is the -axis, hence the correct graph is II.

24. This is a hyperboloid of two sheets, with = = = 1. This surface does not intersect the -plane at all, so the axis of the

hyperboloid is the -axis and the graph is III.

25. There are no real values of and that satisfy this equation for 0, so this surface does not extend to the left of the

-plane. The surface intersects the plane = 0 in an ellipse. Notice that occurs to the first power whereas and

occur to the second power. So the surface is an elliptic paraboloid with axis the -axis. Its graph is VI.

26. This is the equation of a cone with axis the -axis, so the graph is I.

27. This surface is a cylinder because the variable is missing from the equation. The intersection of the surface and the -plane

is an ellipse. So the graph is VIII.

28. This is the equation of a hyperbolic paraboloid. The trace in the -plane is the parabola = 2. So the correct graph is V.
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29. 2 = 2 + 1
9

2 or 2 = 2 +
2

9
represents an elliptic

cone with vertex (0 0 0) and axis the -axis.

30. 4 2 + 2 2 = 0 or =
2

1 4
+

2

1 2
or
4
= 2 +

2

2

represents an elliptic paraboloid with vertex (0 0 0) and

axis the -axis.

31. 2 + 2 2 2 = 0 or 2 = 2 2 2 or = 2
2

2

represents a hyperbolic paraboloid with center (0 0 0).

32. 2 = 2 + 4 2 + 4 or 2 + 2 4 2 = 4 or
2

4
+

2

4
2 = 1 represents a hyperboloid of two

sheets with axis the -axis.

33. Completing squares in and gives

4 2 + ( 2)2 + 4( 3)2 = 4 or

2 +
( 2)2

4
+ ( 3)2 = 1, an ellipsoid with

center (0 2 3).

34. Completing squares in and gives

4( 2)2 + ( 2)2 = 0 or

4
= ( 2)2 +

( 2)2

4
, an elliptic paraboloid with

vertex (0 2 2) and axis the horizontal line = 2, = 2.
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35. Completing squares in all three variables gives

( 2)2 ( + 1)2 + ( 1)2 = 0 or

( + 1)2 = ( 2)2 + ( 1)2, a circular cone with
center (2 1 1) and axis the horizontal line = 2,
= 1.

36. Completing squares in all three variables gives

( 1)2 ( 1)2 + ( + 2)2 = 2 or

( 1)2

2

( 1)2

2
+
( + 2)2

2
= 1, a hyperboloid of

one sheet with center (1 1 2) and axis the horizontal
line = 1, = 2.

37. Solving the equation for we get = ± 1 + 4 2 + 2, so we plot separately = 1 + 4 2 + 2 and

= 1 + 4 2 + 2.

To restrict the -range as in the second graph, we can use the option view=-4..4 in Maple’s plot3d command, or

PlotRange- {-4,4} in Mathematica’s Plot3D command.

38. We plot the surface = 2 2.

39. Solving the equation for we get = ± 4 2 + 2, so we plot separately = 4 2 + 2 and = 4 2 + 2.
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40. We plot the surface = 2 6 + 4 2.

41. 42.

43. The surface is a paraboloid of revolution (circular

paraboloid) with vertex at the origin, axis the -axis and

opens to the right. Thus the trace in the -plane is also a

parabola: = 2, = 0. The equation is = 2 + 2.

44. The surface is a right circular cone with vertex at (0, 0, 0)

and axis the -axis. For = 6= 0, the trace is a circle

with center ( , 0, 0) and radius = =
3
=
3
. Thus

the equation is ( 3)2 = 2 + 2 or 2 = 9 2 + 9 2.

45. Let = ( , , ) be an arbitrary point equidistant from ( 1, 0, 0) and the plane = 1. Then the distance from to

( 1, 0, 0) is ( + 1)2 + 2 + 2 and the distance from to the plane = 1 is | 1| 12 = | 1|

(by Equation 12.5.9). So | 1| = ( + 1)2 + 2 + 2 ( 1)2 = ( + 1)2 + 2 + 2

2 2 + 1 = 2 + 2 + 1 + 2 + 2 4 = 2 + 2. Thus the collection of all such points is a circular

paraboloid with vertex at the origin, axis the -axis, which opens in the negative direction.

46. Let = ( ) be an arbitrary point whose distance from the -axis is twice its distance from the -plane. The distance

from to the -axis is ( )2 + 2 + 2 = 2 + 2 and the distance from to the -plane ( = 0) is | | 1 = | |.

Thus 2 + 2 = 2 | | 2 + 2 = 4 2 2 = ( 2 22) + ( 2 22). So the surface is a right circular cone with

vertex the origin and axis the -axis.
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47. (a) An equation for an ellipsoid centered at the origin with intercepts = ± , = ± , and = ± is
2

2
+

2

2
+

2

2
= 1.

Here the poles of the model intersect the -axis at = ±6356 523 and the equator intersects the - and -axes at

= ±6378 137, = ±6378 137, so an equation is
2

(6378 137)2
+

2

(6378 137)2
+

2

(6356 523)2
= 1

(b) Traces in = are the circles
2

(6378 137)2
+

2

(6378 137)2
= 1

2

(6356 523)2

2 + 2 = (6378 137)2
6378 137

6356 523

2
2.

(c) To identify the traces in = we substitute = into the equation of the ellipsoid:

2

(6378 137)2
+

( )2

(6378 137)2
+

2

(6356 523)2
= 1

(1 + 2) 2

(6378 137)2
+

2

(6356 523)2
= 1

2

(6378 137)2 (1 + 2)
+

2

(6356 523)2
= 1

As expected, this is a family of ellipses.

48. If we position the hyperboloid on coordinate axes so that it is centered at the origin with axis the -axis then its equation is

given by
2

2
+

2

2

2

2
= 1. Horizontal traces in = are

2

2
+

2

2
= 1 +

2

2
, a family of ellipses, but we know that the

traces are circles so we must have = . The trace in = 0 is
2

2
+

2

2
= 1 2 + 2 = 2 and since the minimum

radius of 100 m occurs there, we must have = 100. The base of the tower is the trace in = 500 given by
2

2
+

2

2
= 1 +

( 500)2

2
but = 100 so the trace is 2 + 2 = 1002 + 50,0002 1

2
. We know the base is a circle of

radius 140, so we must have 1002 + 50,0002 1
2
= 1402 2 =

50,0002

1402 1002
=
781,250
3

and an equation for the

tower is
2

1002
+

2

1002

2

(781,250) 3
= 1 or

2

10,000
+

2

10,000
3 2

781,250
= 1, 500 500.

49. If ( ) satisfies = 2 2, then = 2 2. 1: = + , = + , = + 2( ) ,

2: = + , = , = 2( + ) . Substitute the parametric equations of 1 into the equation

of the hyperbolic paraboloid in order to find the points of intersection: = 2 2

+ 2( ) = ( + )2 ( + )2 = 2 2 + 2( ) = 2 2. As this is true for all values of ,

1 lies on = 2 2. Performing similar operations with 2 gives: = 2 2

2( + ) = ( )2 ( + )2 = 2 2 2( + ) = 2 2. This tells us that all of 2 also lies on

= 2 2.
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50. Any point on the curve of intersection must satisfy both 2 2 + 4 2 2 2 + 6 = 2 and 2 2 + 4 2 2 2 5 = 0.

Subtracting, we get 6 + 5 = 2, which is linear and therefore the equation of a plane. Thus the curve of intersection lies in

this plane.

51. The curve of intersection looks like a bent ellipse. The projection

of this curve onto the -plane is the set of points ( 0) which

satisfy 2 + 2 = 1 2 2 + 2 2 = 1

2 +
2

1 2
2 = 1. This is an equation of an ellipse.

12 Review

1. A scalar is a real number, while a vector is a quantity that has both a real-valued magnitude and a direction.

2. To add two vectors geometrically, we can use either the Triangle Law or the Parallelogram Law, as illustrated in Figures 3

and 4 in Section 12.2. Algebraically, we add the corresponding components of the vectors.

3. For 0, a is a vector with the same direction as a and length times the length of a. If 0, a points in the opposite

direction as a and has length | | times the length of a. (See Figures 7 and 15 in Section 12.2.) Algebraically, to find a we

multiply each component of a by .

4. See (1) in Section 12.2.

5. See Theorem 12.3.3 and Definition 12.3.1.

6. The dot product can be used to find the angle between two vectors and the scalar projection of one vector onto another. In

particular, the dot product can determine if two vectors are orthogonal. Also, the dot product can be used to determine the

work done moving an object given the force and displacement vectors.

7. See the boxed equations as well as Figures 4 and 5 and the accompanying discussion on page 828 [ET 804].

8. See Theorem 12.4.9 and the preceding discussion; use either (4) or (7) in Section 12.4.

9. The cross product can be used to create a vector orthogonal to two given vectors as well as to determine if two vectors are

parallel. The cross product can also be used to find the area of a parallelogram determined by two vectors. In addition, the

cross product can be used to determine torque if the force and position vectors are known.

10. (a) The area of the parallelogram determined by a and b is the length of the cross product: |a× b|.

(b) The volume of the parallelepiped determined by a, b, and c is the magnitude of their scalar triple product: |a · (b× c)|.
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11. If an equation of the plane is known, it can be written as + + + = 0. A normal vector, which is perpendicular to the

plane, is h i (or any scalar multiple of h i). If an equation is not known, we can use points on the plane to find two
non-parallel vectors which lie in the plane. The cross product of these vectors is a vector perpendicular to the plane.

12. The angle between two intersecting planes is defined as the acute angle between their normal vectors. We can find this angle

using Corollary 12.3.6.

13. See (1), (2), and (3) in Section 12.5.

14. See (5), (6), and (7) in Section 12.5.

15. (a) Two (nonzero) vectors are parallel if and only if one is a scalar multiple of the other. In addition, two nonzero vectors are

parallel if and only if their cross product is 0.

(b) Two vectors are perpendicular if and only if their dot product is 0.

(c) Two planes are parallel if and only if their normal vectors are parallel.

16. (a) Determine the vectors = h 1 2 3i and = h 1 2 3i. If there is a scalar such that

h 1 2 3i = h 1 2 3i, then the vectors are parallel and the points must all lie on the same line.

Alternatively, if × = 0, then and are parallel, so , , and are collinear.

Thirdly, an algebraic method is to determine an equation of the line joining two of the points, and then check whether or

not the third point satisfies this equation.

(b) Find the vectors = a, = b, = c. a× b is normal to the plane formed by , and , and so lies on this

plane if a× b and c are orthogonal, that is, if (a× b) · c = 0. (Or use the reasoning in Example 5 in Section 12.4.)
Alternatively, find an equation for the plane determined by three of the points and check whether or not the fourth point

satisfies this equation.

17. (a) See Exercise 12.4.45.

(b) See Example 8 in Section 12.5.

(c) See Example 10 in Section 12.5.

18. The traces of a surface are the curves of intersection of the surface with planes parallel to the coordinate planes. We can find

the trace in the plane = (parallel to the -plane) by setting = and determining the curve represented by the resulting

equation. Traces in the planes = (parallel to the -plane) and = (parallel to the -plane) are found similarly.

19. See Table 1 in Section 12.6.

1. This is false, as the dot product of two vectors is a scalar, not a vector.

2. False. For example, if u = i and v = i then |u+ v| = |0| = 0 but |u|+ |v| = 1 + 1 = 2.
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3. False. For example, if u = i and v = j then |u · v| = |0| = 0 but |u| |v| = 1 · 1 = 1. In fact, by Theorem 12.3.3,
|u · v| = |u| |v| cos .

4. False. For example, |i× i| = |0| = 0 (see Example 12.4.2) but |i| |i| = 1 · 1 = 1. In fact, by Thereom 12.4.9,
|u× v| = |u| |v| sin .

5. True, by Theorem 12.3.2, property 2.

6. False. Property 1 of Theorem 12.4.11 says that u× v = v× u.

7. True. If is the angle between u and v, then by Theorem 12.4.9, |u× v| = |u| |v| sin = |v| |u| sin = |v× u|.
(Or, by Theorem 12.4.11, |u× v| = | v× u| = | 1| |v× u| = |v× u|.)

8. This is true by Theorem 12.3.2, property 4.

9. Theorem 12.4.11, property 2 tells us that this is true.

10. This is true by Theorem 12.4.11, property 4.

11. This is true by Theorem 12.4.11, property 5.

12. In general, this assertion is false; a counterexample is i× (i× j) 6= (i× i)× j. (See the paragraph preceding Theorem
12.4.11.)

13. This is true because u× v is orthogonal to u (see Theorem 12.4.8), and the dot product of two orthogonal vectors is 0.

14. (u+ v)× v = u× v+ v× v [by Theorem 12.4.11, property 4]

= u× v+ 0 [by Example 12.4.2]

= u× v, so this is true.

15. This is false. A normal vector to the plane is n = h6 2 4i. Because h3 1 2i = 1
2
n, the vector is parallel to n and hence

perpendicular to the plane.

16. This is false, because according to Equation 12.5.8, + + + = 0 is the general equation of a plane.

17. This is false. In R2, 2 + 2 = 1 represents a circle, but ( ) | 2 + 2 = 1 represents a three-dimensional surface,

namely, a circular cylinder with axis the -axis.

18. This is false. In R3 the graph of = 2 is a parabolic cylinder (see Example 12.6.1). A paraboloid has an equation such as

= 2 + 2.

19. False. For example, i · j = 0 but i 6= 0 and j 6= 0.

20. This is false. By Corollary 12.4.10, u× v = 0 for any nonzero parallel vectors u, v. For instance, i× i = 0.

21. This is true. If u and v are both nonzero, then by (7) in Section 12.3, u · v = 0 implies that u and v are orthogonal. But
u× v = 0 implies that u and v are parallel (see Corollary 12.4.10). Two nonzero vectors can’t be both parallel and
orthogonal, so at least one of u, v must be 0.

22. This is true. We know u · v = |u| |v| cos where |u| 0, |v| 0, and |cos | 1, so |u · v| = |u| |v| |cos | |u| |v|.
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1. (a) The radius of the sphere is the distance between the points ( 1 2 1) and (6 2 3), namely,

[6 ( 1)]2 + ( 2 2)2 + (3 1)2 = 69. By the formula for an equation of a sphere (see page 813 [ET 789]),

an equation of the sphere with center ( 1 2 1) and radius 69 is ( + 1)2 + ( 2)2 + ( 1)2 = 69.

(b) The intersection of this sphere with the -plane is the set of points on the sphere whose -coordinate is 0. Putting = 0

into the equation, we have ( 2)2 + ( 1)2 = 68 = 0 which represents a circle in the -plane with center (0 2 1)

and radius 68.

(c) Completing squares gives ( 4)2 + ( + 1)2 + ( + 3)2 = 1 + 16 + 1 + 9 = 25. Thus the sphere is centered at

(4 1 3) and has radius 5.

2. (a) (b)

(c) (d)

3. u · v = |u| |v| cos 45 = (2)(3) 2
2
= 3 2. |u× v| = |u| |v| sin 45 = (2)(3) 2

2
= 3 2.

By the right-hand rule, u× v is directed out of the page.

4. (a) 2a+ 3b = 2 i+ 2 j 4k+ 9 i 6 j+ 3k = 11 i 4 j k

(b) |b| = 9 + 4 + 1 = 14

(c) a · b = (1)(3) + (1)( 2) + ( 2)(1) = 1

(d) a× b =
i j k

1 1 2

3 2 1

= (1 4) i (1 + 6) j+ ( 2 3)k = 3 i 7 j 5k

(e) b× c =
i j k

3 2 1

0 1 5

= 9 i+ 15 j+ 3k, |b× c| = 3 9 + 25 + 1 = 3 35
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(f ) a · (b× c) =
1 1 2

3 2 1

0 1 5

=
2 1

1 5

3 1

0 5
2
3 2

0 1
= 9 + 15 6 = 18

(g) c× c = 0 for any c.
(h) From part (e),

a× (b× c) = a× (9 i+ 15 j+ 3k) =
i j k

1 1 2

9 15 3

= (3 + 30) i (3 + 18) j+ (15 9)k = 33 i 21 j+ 6k

(i) The scalar projection is compa b = |b| cos = a · b |a| = 1

6
.

( j) The vector projection is proja b =
1

6

a

|a| = 1
6
(i+ j 2k).

(k) cos =
a · b
|a| |b| =

1

6 14
=

1

2 21
and = cos 1 1

2 21
96 .

5. For the two vectors to be orthogonal, we need h3 2 i · h2 4 i = 0 (3)(2 ) + (2)(4) + ( )( ) = 0

2 + 6 + 8 = 0 ( + 2)( + 4) = 0 = 2 or = 4.

6. We know that the cross product of two vectors is orthogonal to both. So we calculate

( j+ 2k)× (i 2 j+ 3k) = [3 ( 4)] i (0 2) j+ (0 1)k = 7 i+ 2 j k.

Then two unit vectors orthogonal to both given vectors are ± 7 i+ 2 j k

72 + 22 + ( 1)2
= ± 1

3 6
(7 i+ 2 j k),

that is, 7

3 6
i+ 2

3 6
j 1

3 6
k and 7

3 6
i 2

3 6
j+ 1

3 6
k.

7. (a) (u× v) ·w = u · (v×w) = 2

(b) u · (w× v) = u · [ (v×w)] = u · (v×w) = 2

(c) v · (u×w) = (v× u) ·w = (u× v) ·w = 2

(d) (u× v) · v = u · (v× v) = u · 0 = 0

8. (a× b) · [(b× c)× (c× a)] = (a× b) · ([(b× c) · a] c [(b× c) · c]a)
[by Property 6 of Theorem 12.4.11]

= (a× b) · [(b× c) · a] c = [a · (b× c)] (a× b) · c
= [a · (b× c)] [a · (b× c)] = [a · (b× c)]2

9. For simplicity, consider a unit cube positioned with its back left corner at the origin. Vector representations of the diagonals

joining the points (0 0 0) to (1 1 1) and (1 0 0) to (0 1 1) are h1 1 1i and h 1 1 1i. Let be the angle between these

two vectors. h1 1 1i · h 1 1 1i = 1 + 1 + 1 = 1 = |h1 1 1i| |h 1 1 1i| cos = 3 cos cos = 1
3

= cos 1 1
3

71 .
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10. = h1 3 1i, = h 2 1 3i and = h 1 3 1i. By Equation 12.4.13,

· × =

1 3 1

2 1 3

1 3 1

=
1 3

3 1
3

2 3

1 1

2 1

1 3
= 8 3 + 5 = 6.

The volume is · × = 6 cubic units.

11. = h1 0 1i, = h0 4 3i, so

(a) a vector perpendicular to the plane is × = h0 + 4 (3 + 0) 4 0i = h4 3 4i.

(b) 12 × = 1
2 16 + 9 + 16 = 41

2 .

12. D = 4 i+ 3 j+ 6k, = F ·D = 12 + 15 + 60 = 87 J

13. Let 1 be the magnitude of the force directed 20 away from the direction of shore, and let 2 be the magnitude of the other

force. Separating these forces into components parallel to the direction of the resultant force and perpendicular to it gives

1 cos 20 + 2 cos 30 = 255 (1), and 1 sin 20 2 sin 30 = 0 1 = 2
sin 30

sin 20
(2). Substituting (2)

into (1) gives 2(sin 30 cot 20 + cos 30 ) = 255 2 114 N. Substituting this into (2) gives 1 166 N.

14. | | = |r| |F| sin = (0 40)(50) sin(90 30 ) 17 3 N·m.

15. The line has direction v = h 3 2 3i. Letting 0 = (4 1 2), parametric equations are

= 4 3 , = 1 + 2 , = 2+ 3 .

16. A direction vector for the line is v = h3 2 1i, so parametric equations for the line are = 1 + 3 , = 2 , = 1 + .

17. A direction vector for the line is a normal vector for the plane, n = h2 1 5i, and parametric equations for the line are
= 2 + 2 , = 2 , = 4 + 5 .

18. Since the two planes are parallel, they will have the same normal vectors. Then we can take n = h1 4 3i and an equation of
the plane is 1( 2) + 4( 1) 3( 0) = 0 or + 4 3 = 6.

19. Here the vectors a = h4 3 0 ( 1) 2 1i = h1 1 1i and b = h6 3 3 ( 1) 1 1i = h3 4 0i lie in the plane,
so n = a× b = h 4 3 1i is a normal vector to the plane and an equation of the plane is
4( 3) + 3( ( 1)) + 1( 1) = 0 or 4 + 3 + = 14.

20. If we first find two nonparallel vectors in the plane, their cross product will be a normal vector to the plane. Since the given

line lies in the plane, its direction vector a = h2 1 3i is one vector in the plane. We can verify that the given point (1 2 2)

does not lie on this line. The point (0 3 1) is on the line (obtained by putting = 0) and hence in the plane, so the vector

b = h0 1 3 2 1 ( 2)i = h 1 1 3i lies in the plane, and a normal vector is n = a× b = h 6 9 1i. Thus an
equation of the plane is 6( 1) 9( 2) + ( + 2) = 0 or 6 + 9 = 26.
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21. Substitution of the parametric equations into the equation of the plane gives 2 + = 2(2 ) (1 + 3 ) + 4 = 2

+ 3 = 2 = 1. When = 1, the parametric equations give = 2 1 = 1, = 1 + 3 = 4 and = 4. Therefore,

the point of intersection is (1 4 4).

22. Use the formula proven in Exercise 12.4.45(a). In the notation used in that exercise, a is just the direction of the line; that is,

a = h1 1 2i. A point on the line is (1 2 1) (setting = 0), and therefore b = h1 0 2 0 1 0i = h1 2 1i.

Hence =
|a× b|
|a| =

|h1 1 2i × h1 2 1i|
1 + 1 + 4

=
|h 3 3 3i|

6
=

27

6
=

3

2
.

23. Since the direction vectors h2 3 4i and h6 1 2i aren’t parallel, neither are the lines. For the lines to intersect, the three
equations 1 + 2 = 1 + 6 , 2 + 3 = 3 , 3 + 4 = 5 + 2 must be satisfied simultaneously. Solving the first two

equations gives = 1
5
, = 2

5
and checking we see these values don’t satisfy the third equation. Thus the lines aren’t parallel

and they don’t intersect, so they must be skew.

24. (a) The normal vectors are h1 1 1i and h2 3 4i. Since these vectors aren’t parallel, neither are the planes parallel.
Also h1 1 1i · h2 3 4i = 2 3 4 = 5 6= 0 so the normal vectors, and thus the planes, are not perpendicular.

(b) cos =
h1 1 1i · h2 3 4i

3 29
=

5

87
and = cos 1 5

87
122 [or we can say 58 ].

25. n1 = h1 0 1i and n2 = h0 1 2i. Setting = 0, it is easy to see that (1 3 0) is a point on the line of intersection of

= 1 and + 2 = 3. The direction of this line is v1 = n1 × n2 = h1 2 1i. A second vector parallel to the desired
plane is v2 = h1 1 2i, since it is perpendicular to + 2 = 1. Therefore, the normal of the plane in question is

n = v1 × v2 = h4 1 1 + 2 1 + 2i = 3 h1 1 1i. Taking ( 0 0 0) = (1 3 0), the equation we are looking for is

( 1) + ( 3) + = 0 + + = 4.

26. (a) The vectors = h 1 2 1 1 10 1i = h 3 2 9i and = h1 2 3 1 4 1i = h 1 2 5i lie in the

plane, so n = × = h 3 2 9i × h 1 2 5i = h 8 24 8i or equivalently h1 3 1i is a normal vector to
the plane. The point (2 1 1) lies on the plane so an equation of the plane is 1( 2) + 3( 1) + 1( 1) = 0 or

+ 3 + = 6.

(b) The line is perpendicular to the plane so it is parallel to a normal vector for the plane, namely h1 3 1i. If the line passes

through ( 1 1 10) then symmetric equations are ( 1)

1
=

( 1)

3
=

10

1
or + 1 =

+ 1

3
= 10.

(c) Normal vectors for the two planes are n1 = h1 3 1i and n2 = h2 4 3i. The angle between the planes is given by

cos =
n1 · n2
|n1| |n2| =

h1 3 1i · h2 4 3i
12 + 32 + 12 22 + ( 4)2 + ( 3)2

=
2 12 3

11 29
=

13

319

Thus = cos 1 13

319
137 or 180 137 = 43 .
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(d) From part (c), the point (2 0 4) lies on the second plane, but notice that the point also satisfies the equation of the first

plane, so the point lies on the line of intersection of the planes. A vector v in the direction of this intersecting line is

perpendicular to the normal vectors of both planes, so take v = n1 × n2 = h1 3 1i × h2 4 3i = h 5 5 10i or
equivalently we can take v = h1 1 2i. Parametric equations for the line are = 2 + , = , = 4 + 2 .

27. By Exercise 12.5.75, =
| 2 ( 24)|
32 + 12 + ( 4)2

=
22

26
.

28. The equation = 3 represents a plane parallel to the

-plane and 3 units in front of it.

29. The equation = represents a plane perpendicular to

the -plane and intersecting the -plane in the line

= , = 0.

30. The equation = 2 represents a parabolic cylinder

whose trace in the -plane is the -axis and which opens

to the right.

31. The equation 2 = 2 + 4 2 represents a (right elliptical)

cone with vertex at the origin and axis the -axis.

32. 4 + 2 = 4 is a plane with intercepts
(1 0 0), (0 4 0), and (0 0 2).

33. An equivalent equation is 2 +
2

4
2 = 1, a

hyperboloid of two sheets with axis the -axis. For

| | 2, traces parallel to the -plane are circles.
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34. An equivalent equation is 2 + 2 + 2 = 1,

a hyperboloid of one sheet with axis the -axis.

35. Completing the square in gives

4 2 + 4( 1)2 + 2 = 4 or 2 + ( 1)2 +
2

4
= 1,

an ellipsoid centered at (0 1 0).

36. Completing the square in and gives

= ( 1)2 + ( 2)2, a circular paraboloid with
vertex (0 1 2) and axis the horizontal line = 1, = 2.

37. 4 2 + 2 = 16
2

4
+

2

16
= 1. The equation of the ellipsoid is

2

4
+

2

16
+

2

2
= 1, since the horizontal trace in the

plane = 0 must be the original ellipse. The traces of the ellipsoid in the -plane must be circles since the surface is obtained

by rotation about the -axis. Therefore, 2 = 16 and the equation of the ellipsoid is
2

4
+

2

16
+

2

16
= 1

4 2 + 2 + 2 = 16.

38. The distance from a point ( ) to the plane = 1 is | 1|, so the given condition becomes

| 1| = 2 ( 0)2 + ( + 1)2 + ( 0)2 | 1| = 2 2 + ( + 1)2 + 2

( 1)2 = 4 2 + 4( + 1)2 + 4 2 3 = 4 2 + (3 2 + 10 ) + 4 2

16
3
= 4 2 + 3 + 5

3

2
+ 4 2 3

4
2 + 9

16
+ 5

3

2
+ 3

4
2 = 1.

This is the equation of an ellipsoid whose center is 0 5
3
0 .
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PROBLEMS PLUS

1. Since three-dimensional situations are often difficult to visualize and work with, let

us first try to find an analogous problem in two dimensions. The analogue of a cube

is a square and the analogue of a sphere is a circle. Thus a similar problem in two

dimensions is the following: if five circles with the same radius are contained in a

square of side 1 m so that the circles touch each other and four of the circles touch

two sides of the square, find .

The diagonal of the square is 2. The diagonal is also 4 + 2 . But is the diagonal of a smaller square of side . Therefore

= 2 2 = 4 + 2 = 4 + 2 2 = 4 + 2 2 = 2

4+ 2 2
.

Let’s use these ideas to solve the original three-dimensional problem. The diagonal of the cube is 12 + 12 + 12 = 3.

The diagonal of the cube is also 4 + 2 where is the diagonal of a smaller cube with edge . Therefore

= 2 + 2 + 2 = 3 3 = 4 + 2 = 4 + 2 3 = 4 + 2 3 . Thus =
3

4 + 2 3
=
2 3 3

2
.

The radius of each ball is 3 3
2
m.

2. Try an analogous problem in two dimensions. Consider a rectangle with

length and width and find the area of in terms of and . Since

contains , it has area

( ) = + the area of two × 1 rectangles

+ the area of two 1× rectangles

+ the area of four quarter-circles of radius 1

as seen in the diagram. So ( ) = + 2 + 2 + · 12.
Now in three dimensions, the volume of is

+ 2( × × 1) + 2(1× × ) + 2( × 1× )

+ the volume of 4 quarter-cylinders with radius 1 and height

+ the volume of 4 quarter-cylinders with radius 1 and height

+ the volume of 4 quarter-cylinders with radius 1 and height

+ the volume of 8 eighths of a sphere of radius 1

So
( ) = + 2 + 2 + 2 + · 12 · + · 12 · + · 12 · + 4

3 · 13

= + 2( + + ) + ( + + ) + 4
3
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308 ¤ CHAPTER 12 PROBLEMS PLUS

3. (a) We find the line of intersection as in Example 12.5.7(b). Observe that the point ( 1 ) lies on both planes. Now since

lies in both planes, it is perpendicular to both of the normal vectors n1 and n2, and thus parallel to their cross product

n1 × n2 =
i j k

1 1

1

= 2 2 + 1 2 1 . So symmetric equations of can be written as

+ 1

2
=

2 1
=

2 + 1
, provided that 6= 0, ±1.

If = 0, then the two planes are given by + = 0 and = 1, so symmetric equations of are = 1, = . If

= 1, then the two planes are given by + + = 1 and + + = 1, and they intersect in the line = 0,

= 1. If = 1, then the two planes are given by + + = 1 and + = 1, and they intersect in the line

= 0, = 1 .

(b) If we set = in the symmetric equations and solve for and separately, we get + 1 =
( )( 2 )

2 + 1
,

=
( )( 2 1)

2 + 1
=

2 + ( 2 1)
2 + 1

, =
( 2 1) + 2

2 + 1
. Eliminating from these equations, we

have 2 + 2 = 2 + 1. So the curve traced out by in the plane = is a circle with center at (0 0 ) and

radius 2 + 1.

(c) The area of a horizontal cross-section of the solid is ( ) = ( 2 + 1), so =
1

0
( ) = 1

3
3 +

1

0
= 4

3
.

4. (a) We consider velocity vectors for the plane and the wind. Let v be the initial, intended

velocity for the plane and v the actual velocity relative to the ground. Ifw is the velocity

of the wind, v is the resultant, that is, the vector sum v +w as shown in the figure. We

know v = 180 j, and since the plane actually flew 80 km in 1
2
hour, |v | = 160. Thus

v = (160 cos 85 ) i+ (160 sin 85 ) j 13 9 i+ 159 4 j. Finally, v +w = v , so

w = v v 13 9 i 20 6 j. Thus, the wind velocity is about 13 9 i 20 6 j, and the

wind speed is |w| (13 9)2 + ( 20 6)2 24 9 km h.

(b) Let v be the velocity the pilot should have taken. The pilot would need to head a little west of north to compensate

for the wind, so let be the angle v makes with the north direction. Then we can write

v = h180 cos( + 90 ) 180 sin( + 90 )i. With the effect of the wind, the actual velocity (with respect to the ground)

will be v +w, which we want to be due north. Equating horizontal components of the vectors, we must have

180 cos( + 90 ) + 160 cos 85 = 0 cos( + 90 ) = 160
180

cos 85 0 0775, so

cos 1( 0 0775) 90 4 4 . Thus the pilot should have headed about 4 4 west of north.
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CHAPTER 12 PROBLEMS PLUS ¤ 309

5. v3 = projv1v2 =
v1 · v2
|v1|2

v1 =
5

22
v1 so |v3| = 5

22
|v1| = 5

2
,

v4 = projv2v3 =
v2 · v3
|v2|2

v2 =
v2 · 5

22
v1

|v2|2
v2 =

5

22 · 32 (v1 · v2)v2 =
52

22 · 32 v2 |v4| = 52

22 · 32 |v2| =
52

22 · 3 ,

v5 = projv3v4 =
v3 · v4
|v3|2

v3 =
5
22
v1 · 52

22 32
v2

5
2

2

5

22
v1 =

52

24 · 32 (v1 · v2) v1 =
53

24 · 32 v1

|v5| = 53

24 · 32 |v1| =
53

23 · 32 . Similarly, |v6| =
54

24 · 33 , |v7| =
55

25 · 34 , and in general, |v | = 5 2

2 2 · 3 3
= 3 5

6

2.

Thus

=1

|v |= |v1|+ |v2|+
=3

3 5
6

2
= 2 + 3 +

=1

3 5
6

= 5 +
=1

5
2

5
6

1
= 5 +

5
2

1 5
6

[sum of a geometric series] = 5 + 15 = 20

6. Completing squares in the inequality 2 + 2 + 2 136 + 2( + 2 + 3 )

gives ( 1)2 + ( 2)2 + ( 3)2 150 which describes the set of all

points ( ) whose distance from the point (1 2 3) is less than

150 = 5 6. The distance from to ( 1 1 4) is 4 + 1 + 1 = 6,

so the largest possible sphere that passes through and satisfies the stated

conditions extends 5 6 units in the opposite direction, giving a diameter of

6 6. (See the figure.)

Thus the radius of the desired sphere is 3 6, and its center is 3 6 units from in the direction of . A unit vector in this

direction is u = 1

6
h2 1 1i, so starting at ( 1 1 4) and following the vector 3 6u = h6 3 3i we arrive at the center

of the sphere, (5 4 1). An equation of the sphere then is ( 5)2 + ( 4)2 + ( 1)2 = 3 6
2

or ( 5)2 + ( 4)2 + ( 1)2 = 54.

7. (a) When = , the block is not moving, so the sum of the forces on the block

must be 0, thusN+F+W = 0 This relationship is illustrated

geometrically in the figure. Since the vectors form a right triangle, we have

tan( ) =
|F|
|N| = = .

(b) We place the block at the origin and sketch the force vectors acting on the block, including the additional horizontal force

H, with initial points at the origin. We then rotate this system so thatF lies along the positive -axis and the inclined plane

is parallel to the -axis. (See the following figure.)
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310 ¤ CHAPTER 12 PROBLEMS PLUS

|F| is maximal, so |F| = for . Then the vectors, in terms of components parallel and perpendicular to the

inclined plane, are

N = j F = ( ) i

W = ( sin ) i+ ( cos ) j H = ( min cos ) i+ ( min sin ) j

Equating components, we have

sin + min cos = 0 min cos + = sin (1)

cos min sin = 0 min sin + cos = (2)

(c) Since (2) is solved for , we substitute into (1):

min cos + ( min sin + cos ) = sin

min cos + min sin = sin cos

min =
sin cos

cos + sin
=

tan

1 + tan

From part (a) we know = tan , so this becomes min =
tan tan

1 + tan tan
and using a trigonometric identity,

this is tan( ) as desired.

Note for = , min = tan 0 = 0, which makes sense since the block is at rest for , thus no additional forceH

is necessary to prevent it from moving. As increases, the factor tan( ), and hence the value of min, increases

slowly for small values of but much more rapidly as becomes significant. This seems reasonable, as the

steeper the inclined plane, the less the horizontal components of the various forces affect the movement of the block, so we

would need a much larger magnitude of horizontal force to keep the block motionless. If we allow 90 , corresponding

to the inclined plane being placed vertically, the value of min is quite large; this is to be expected, as it takes a great

amount of horizontal force to keep an object from moving vertically. In fact, without friction (so = 0), we would have

90 min , and it would be impossible to keep the block from slipping.
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CHAPTER 12 PROBLEMS PLUS ¤ 311

(d) Since max is the largest value of that keeps the block from slipping, the force of friction is keeping the block from

moving up the inclined plane; thus, F is directed down the plane. Our system of forces is similar to that in part (b), then,

except that we have F = ( ) i. (Note that |F| is again maximal.) Following our procedure in parts (b) and (c), we
equate components:

sin + max cos = 0 max cos = sin

cos max sin = 0 max sin + cos =

Then substituting,

max cos ( max sin + cos ) = sin

max cos max sin = sin + cos

max =
sin + cos

cos sin
=

tan +

1 tan

=
tan + tan

1 tan tan
= tan( + )

We would expect max to increase as increases, with similar behavior as we established for min, but with max values

always larger than min. We can see that this is the case if we graph max as a function of , as the curve is the graph of

min translated 2 to the left, so the equation does seem reasonable. Notice that the equation predicts max as

(90 ). In fact, as max increases, the normal force increases as well. When (90 ) 90 , the

horizontal force is completely counteracted by the sum of the normal and frictional forces, so no part of the horizontal

force contributes to moving the block up the plane no matter how large its magnitude.

8. (a) The largest possible solid is achieved by starting with a circular cylinder of diameter 1 with axis the -axis and with a

height of 1. This is the largest solid that creates a square shadow with side length 1 in the -direction and a circular disk

shadow in the -direction. For convenience, we place the base of the

cylinder on the -plane so that it intersects the - and -axes at ±1
2 .

We then remove as little as possible from the solid that leaves an

isosceles triangle shadow in the -direction. This is achieved by

cutting the solid with planes parallel to the -axis that intersect the

-axis at 1 and the -axis at ±1
2
(see the figure).

To compute the volume of this solid, we take vertical slices parallel to the -plane. The equation of the base of the solid

is 2 + 2 = 1
4
, so a cross-section units to the right of the origin is a rectangle with base 2 1

4
2. For 0 1

2
,

the solid is cut off on top by the plane = 1 2 , so the height of the rectangular cross-section is 1 2 and the
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312 ¤ CHAPTER 12 PROBLEMS PLUS

cross-sectional area is ( ) = 2 1
4

2 (1 2 ). The volume of the right half of the solid is

1 2

0

2 1
4

2 (1 2 ) = 2
1 2

0

1
4

2 4
1 2

0

1
4

2

= 2 1
4
area of a circle of radius 1

2
4 1

3
1
4

2 3 2 1 2

0

= 2 1
4
· 1

2

2
+ 4

3
0 1

4

3 2
=

8
1
6

Thus the volume of the solid is 2
8

1
6
=

4
1
3

0 45.

(b) There is not a smallest volume. We can remove portions of the solid from

part (a) to create smaller and smaller volumes as long as we leave the

“skeleton” shown in the figure intact (which has no volume at all and is not a

solid). Thus we can create solids with arbitrarily small volume.
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13 VECTOR FUNCTIONS

13.1 Vector Functions and Space Curves

1. The component functions 4 2, 3 , and ln( + 1) are all defined when 4 2 0 2 2 and

+ 1 0 1, so the domain of r is ( 1 2].

2. The component functions 2

+ 2
, sin , and ln(9 2) are all defined when 6= 2 and 9 2 0 3 3,

so the domain of r is ( 3 2) ( 2 3).

3. lim
0

3 = 0 = 1, lim
0

2

sin2
= lim

0

1

sin2

2

=
1

lim
0

sin2

2

=
1

lim
0

sin
2 =

1

12
= 1,

and lim
0
cos 2 = cos 0 = 1. Thus

lim
0

3 i+
2

sin2
j+ cos 2 k = lim

0

3 i+ lim
0

2

sin2
j+ lim

0
cos 2 k = i+ j+ k.

4. lim
1

2

1
= lim

1

( 1)

1
= lim

1
= 1, lim

1
+ 8 = 3, lim

1

sin

ln
= lim

1

cos

1
= [by l’Hospital’s Rule].

Thus the given limit equals i+ 3 j k.

5. lim 1 + 2

1 2
= lim

(1 2) + 1

(1 2) 1
=
0 + 1

0 1
= 1, lim tan 1 =

2
, lim 1 2

= lim
1 1

2
= 0 0 = 0. Thus

lim
1 + 2

1 2
tan 1 1 2

= 1
2
0 .

6. lim = lim = lim
1
= 0 [by l’Hospital’s Rule], lim

3 +

2 3 1
= lim

1 + (1 2)

2 (1 3)
=
1 + 0

2 0
=
1

2
,

and lim sin
1
= lim

sin(1 )

1
= lim

cos(1 )( 1 2)

1 2
= lim cos

1
= cos 0 = 1 [again by l’Hospital’s Rule].

Thus lim
3 +

2 3 1
sin

1
= 0 1

2
1 .

7. The corresponding parametric equations for this curve are = sin , = .

We can make a table of values, or we can eliminate the parameter: =

= sin , with R. By comparing different values of , we find the direction in

which increases as indicated in the graph.
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314 ¤ CHAPTER 13 VECTOR FUNCTIONS

8. The corresponding parametric equations for this curve are = 3, = 2.

We can make a table of values, or we can eliminate the parameter:

= 3 = 3 = 2 = ( 3 )
2
= 2 3,

with R R. By comparing different values of , we find the

direction in which increases as indicated in the graph.

9. The corresponding parametric equations are = , = 2 , = 2 , which are

parametric equations of a line through the point (0 2 0) and with direction vector

h1 1 2i.

10. The corresponding parametric equations are = sin , = , = cos .

Note that 2 + 2 = sin2 + cos2 = 1, so the curve lies on the circular

cylinder 2 + 2 = 1. A point ( ) on the curve lies directly to the left or

right of the point ( 0 ) which moves clockwise (when viewed from the left)

along the circle 2 + 2 = 1 in the -plane as increases. Since = , the

curve is a helix that spirals toward the right around the cylinder.

11. The corresponding parametric equations are = 1, = cos , = 2 sin .

Eliminating the parameter in and gives 2 + ( 2)2 = cos2 + sin2 = 1

or 2 + 2 4 = 1. Since = 1, the curve is an ellipse centered at (1 0 0) in

the plane = 1.

12. The parametric equations are = 2, = , = 2, so we have = 2 with = 2.

Thus the curve is a parabola in the plane = 2 with vertex (0 0 2).
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SECTION 13.1 VECTOR FUNCTIONS AND SPACE CURVES ¤ 315

13. The parametric equations are = 2, = 4, = 6. These are positive

for 6= 0 and 0 when = 0. So the curve lies entirely in the first octant.

The projection of the graph onto the -plane is = 2, 0, a half parabola.

Onto the -plane = 3, 0, a half cubic, and the -plane, 3 = 2.

14. If = cos , = cos , = sin , then 2 + 2 = 1 and 2 + 2 = 1,

so the curve is contained in the intersection of circular cylinders along the

- and -axes. Furthermore, = , so the curve is an ellipse in the

plane = , centered at the origin.

15. The projection of the curve onto the -plane is given by r( ) = h sin 0i [we use 0 for the -component] whose graph

is the curve = sin , = 0. Similarly, the projection onto the -plane is r( ) = h 0 2 cos i, whose graph is the cosine
wave = 2cos , = 0, and the projection onto the -plane is r( ) = h0 sin 2 cos i whose graph is the ellipse
2 + 1

4
2 = 1, = 0.

-plane -plane -plane

From the projection onto the -plane we see that the curve lies on an elliptical

cylinder with axis the -axis. The other two projections show that the curve

oscillates both vertically and horizontally as we move in the -direction,

suggesting that the curve is an elliptical helix that spirals along the cylinder.
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316 ¤ CHAPTER 13 VECTOR FUNCTIONS

16. The projection of the curve onto the -plane is given by r( ) = h 0i whose graph is the line = , = 0.

The projection onto the -plane is r( ) = 0 2 whose graph is the parabola = 2, = 0.

The projection onto the -plane is r( ) = 0 2 whose graph is the parabola = 2, = 0.

-plane -plane -plane

From the projection onto the -plane we see that the curve lies on the vertical

plane = . The other two projections show that the curve is a parabola contained

in this plane.

17. Taking r0 = h2 0 0i and r1 = h6 2 2i, we have from Equation 12.5.4
r( ) = (1 ) r0 + r1 = (1 ) h2 0 0i+ h6 2 2i, 0 1 or r( ) = h2 + 4 2 2 i, 0 1.

Parametric equations are = 2 + 4 , = 2 , = 2 , 0 1.

18. Taking r0 = h 1 2 2i and r1 = h 3 5 1i, we have from Equation 12.5.4
r( ) = (1 ) r0 + r1 = (1 ) h 1 2 2i+ h 3 5 1i, 0 1 or r( ) = h 1 2 2 + 3 2 + 3 i, 0 1.

Parametric equations are = 1 2 , = 2 + 3 , = 2 + 3 , 0 1.

19. Taking r0 = h0 1 1i and r1 = 1
2

1
3

1
4
, we have

r( ) = (1 ) r0 + r1 = (1 ) h0 1 1i+ 1
2

1
3

1
4
, 0 1 or r( ) = 1

2
1 + 4

3
1 3

4
, 0 1.

Parametric equations are = 1
2 , = 1 + 4

3 , = 1 3
4 , 0 1.

20. Taking r0 = h i and r1 = h i, we have
r( ) = (1 ) r0 + r1 = (1 ) h i+ h i, 0 1 or r( ) = h + ( ) + ( ) + ( ) i,
0 1. Parametric equations are = + ( ) , = + ( ) , = + ( ) , 0 1.

21. = cos , = , = sin , 0. At any point ( ) on the curve, 2 + 2 = 2 cos2 + 2 sin2 = 2 = 2 so the

curve lies on the circular cone 2 + 2 = 2 with axis the -axis. Also notice that 0; the graph is II.

22. = cos , = sin , = 1 (1 + 2). At any point on the curve we have 2 + 2 = cos2 + sin2 = 1, so the curve lies

on a circular cylinder 2 + 2 = 1 with axis the -axis. Notice that 0 1 and = 1 only for = 0. A point ( ) on
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the curve lies directly above the point ( 0), which moves counterclockwise around the unit circle in the -plane as

increases, and 0 as ± . The graph must be VI.

23. = , = 1 (1 + 2), = 2. At any point on the curve we have = 2, so the curve lies on a parabolic cylinder parallel

to the -axis. Notice that 0 1 and 0. Also the curve passes through (0 1 0) when = 0 and 0, as

± , so the graph must be V.

24. = cos , = sin , = cos 2 . 2 + 2 = cos2 + sin2 = 1, so the curve lies on a circular cylinder with axis the

-axis. A point ( ) on the curve lies directly above or below ( 0), which moves around the unit circle in the -plane

with period 2 . At the same time, the -value of the point ( ) oscillates with a period of . So the curve repeats itself and

the graph is I.

25. = cos 8 , = sin 8 , = 0 8 , 0. 2 + 2 = cos2 8 + sin2 8 = 1, so the curve lies on a circular cylinder with

axis the -axis. A point ( ) on the curve lies directly above the point ( 0), which moves counterclockwise around the

unit circle in the -plane as increases. The curve starts at (1 0 1), when = 0, and (at an increasing rate) as

, so the graph is IV.

26. = cos2 , = sin2 , = . + = cos2 + sin2 = 1, so the curve lies in the vertical plane + = 1.

and are periodic, both with period , and increases as increases, so the graph is III.

27. If = cos , = sin , = , then 2 + 2 = 2 cos2 + 2 sin2 = 2 = 2,

so the curve lies on the cone 2 = 2 + 2. Since = , the curve is a spiral on

this cone.

28. Here 2 = sin2 = and 2 + 2 = sin2 + cos2 = 1, so the

curve is contained in the intersection of the parabolic cylinder

= 2 with the circular cylinder 2 + 2 = 1. We get the complete

intersection for 0 2 .

29. Parametric equations for the curve are = , = 0, = 2 2. Substituting into the equation of the paraboloid

gives 2 2 = 2 2 = 2 2 = 0, 1. Since r(0) = 0 and r(1) = i+ k, the points of intersection

are (0 0 0) and (1 0 1).

30. Parametric equations for the helix are = sin , = cos , = . Substituting into the equation of the sphere gives

sin2 + cos2 + 2 = 5 1 + 2 = 5 = ±2. Since r(2) = hsin 2 cos 2 2i and
r( 2) = hsin( 2) cos( 2) 2i, the points of intersection are (sin 2 cos 2 2) (0 909 0 416 2) and

(sin( 2) cos( 2) 2) ( 0 909 0 416 2).
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318 ¤ CHAPTER 13 VECTOR FUNCTIONS

31. r( ) = hcos sin 2 sin sin 2 cos 2 i.
We include both a regular plot and a plot

showing a tube of radius 0.08 around the

curve.

32. r( ) = 2 ln 33. r( ) = h sin cos i

34. r( ) = cos 35. r( ) = hcos 2 cos 3 cos 4 i

36. = sin , = sin 2 , = cos 4 .
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SECTION 13.1 VECTOR FUNCTIONS AND SPACE CURVES ¤ 319

We graph the projections onto the coordinate planes.

-plane -plane -plane

From the projection onto the -plane we see that from above the curve appears to be shaped like a “figure eight.”

The curve can be visualized as this shape wrapped around an almost parabolic cylindrical surface, the profile of

which is visible in the projection onto the -plane.

37. = (1 + cos 16 ) cos , = (1 + cos 16 ) sin , = 1 + cos 16 . At any

point on the graph,
2 + 2 = (1 + cos 16 )2 cos2 + (1 + cos 16 )2 sin2

= (1 + cos 16 )2 = 2, so the graph lies on the cone 2 + 2 = 2.

From the graph at left, we see that this curve looks like the projection of a

leaved two-dimensional curve onto a cone.

38. = 1 0 25 cos2 10 cos , = 1 0 25 cos2 10 sin ,

= 0 5 cos 10 . At any point on the graph,

2 + 2 + 2 = (1 0 25 cos2 10 ) cos2

+(1 0 25 cos2 10 ) sin2 + 0 25 cos2

= 1 0 25 cos2 10 + 0 25 cos2 10 = 1,

so the graph lies on the sphere 2 + 2 + 2 = 1, and since = 0 5 cos 10

the graph resembles a trigonometric curve with ten peaks projected onto the

sphere. We get the complete graph for 0 2 .

39. If = 1, then = 1, = 4, = 0, so the curve passes through the point (1 4 0). If = 3, then = 9, = 8, = 28,

so the curve passes through the point (9 8 28). For the point (4 7 6) to be on the curve, we require = 1 3 = 7

= 2 But then = 1 + ( 2)3 = 7 6= 6, so (4 7 6) is not on the curve.

40. The projection of the curve of intersection onto the -plane is the circle 2 + 2 = 4, = 0.

Then we can write = 2 cos , = 2 sin , 0 2 . Since also lies on the surface = , we have

= = (2 cos )(2 sin ) = 4 cos sin , or 2 sin(2 ). Then parametric equations for are = 2 cos , = 2 sin ,

= 2 sin(2 ), 0 2 , and the corresponding vector function is r( ) = 2 cos i+ 2 sin j+ 2 sin(2 )k, 0 2 .
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320 ¤ CHAPTER 13 VECTOR FUNCTIONS

41. Both equations are solved for , so we can substitute to eliminate : 2 + 2 = 1 + 2 + 2 = 1 + 2 + 2

2 = 1 + 2 = 1
2
( 2 1). We can form parametric equations for the curve of intersection by choosing a

parameter = , then = 1
2
( 2 1) and = 1 + = 1 + 1

2
( 2 1) = 1

2
( 2 + 1). Thus a vector function representing

is r( ) = i+ 1
2
( 2 1) j+ 1

2
( 2 + 1)k.

42. The projection of the curve of intersection onto the -plane is the parabola = 2, = 0. Then we can choose the

parameter = = 2. Since also lies on the surface = 4 2 + 2, we have = 4 2 + 2 = 4 2 + ( 2)2.

Then parametric equations for are = , = 2, = 4 2 + 4, and the corresponding vector function

is r( ) = i+ 2 j+ (4 2 + 4)k.

43. The projection of the curve of intersection onto the -plane is the circle 2 + 2 = 1, = 0, so we can write = cos ,

= sin , 0 2 . Since also lies on the surface = 2 2, we have = 2 2 = cos2 sin2 or cos 2 .

Thus parametric equations for are = cos , = sin , = cos 2 , 0 2 , and the corresponding vector function

is r( ) = cos i+ sin j+ cos 2 k, 0 2 .

44. The projection of the curve of intersection onto the -plane is the circle 2 + 2 = 1, = 0, so we can write = cos ,

= sin , 0 2 . also lies on the surface 2 + 2 + 4 2 = 4, and since 0 we can write

= 4 2 4 2 = 4 cos2 4 sin2 = 4 cos2 4(1 cos2 ) = 3 cos2 = 3 | cos |
Thus parametric equations for are = cos , = 3 | cos |, = sin , 0 2 , and the corresponding vector function

is r( ) = cos i+ 3 | cos | j+ sin k, 0 2 .

45. The projection of the curve of intersection onto the

-plane is the circle 2 + 2 = 4 = 0. Then we can write

= 2cos , = 2 sin , 0 2 . Since also lies on

the surface = 2, we have = 2 = (2 cos )2 = 4cos2 .

Then parametric equations for are = 2cos , = 2 sin ,

= 4cos2 , 0 2 .

46.

= = 2 4 2 = 16 2 4 2 = 16 2 4 4 = 4 1
2

2 4.

Note that is positive because the intersection is with the top half of the ellipsoid. Hence the curve is given

by = , = 2, = 4 1
4
2 4.
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SECTION 13.1 VECTOR FUNCTIONS AND SPACE CURVES ¤ 321

47. For the particles to collide, we require r1( ) = r2( ) 2 7 12 2 = 4 3 2 5 6 . Equating components

gives 2 = 4 3, 7 12 = 2, and 2 = 5 6. From the first equation, 2 4 +3 = 0 ( 3)( 1) = 0 so = 1

or = 3. = 1 does not satisfy the other two equations, but = 3 does. The particles collide when = 3, at the

point (9 9 9).

48. The particles collide provided r1( ) = r2( ) 2 3 = h1 + 2 1 + 6 1 + 14 i. Equating components gives
= 1 + 2 , 2 = 1 + 6 , and 3 = 1 + 14 . The first equation gives = 1, but this does not satisfy the other equations, so

the particles do not collide. For the paths to intersect, we need to find a value for and a value for where r1( ) = r2( )
2 3 = h1 + 2 1 + 6 1 + 14 i. Equating components, = 1 + 2 , 2 = 1 + 6 , and 3 = 1 + 14 . Substituting the

first equation into the second gives (1 + 2 )2 = 1 + 6 4 2 2 = 0 2 (2 1) = 0 = 0 or = 1
2
.

From the first equation, = 0 = 1 and = 1
2

= 2. Checking, we see that both pairs of values satisfy the

third equation. Thus the paths intersect twice, at the point (1 1 1) when = 0 and = 1, and at (2 4 8) when = 1
2

and = 2.

49. Let u( ) = h 1( ) 2( ) 3( )i and v( ) = h 1( ) 2( ) 3( )i. In each part of this problem the basic procedure is to use
Equation 1 and then analyze the individual component functions using the limit properties we have already developed for

real-valued functions.

(a) lim u( ) + lim v( ) = lim 1( ) lim 2( ) lim 3( ) + lim 1( ) lim 2( ) lim 3( ) and the limits of these

component functions must each exist since the vector functions both possess limits as . Then adding the two vectors

and using the addition property of limits for real-valued functions, we have that

lim u( ) + lim v( ) = lim 1( ) + lim 1( ) lim 2( ) + lim 2( ) lim 3( ) + lim 3( )

= lim [ 1( ) + 1( )] lim [ 2( ) + 2( )] lim [ 3( ) + 3( )]

= lim h 1( ) + 1( ) 2( ) + 2( ) 3( ) + 3( )i [using (1) backward]

= lim [u( ) + v( )]

(b) lim u( ) = lim h 1( ) 2( ) 3( )i = lim 1( ) lim 2( ) lim 3( )

= lim 1( ) lim 2( ) lim 3( ) = lim 1( ) lim 2( ) lim 3( )

= lim h 1( ) 2( ) 3( )i = lim u( )

(c) lim u( ) · lim v( ) = lim 1( ) lim 2( ) lim 3( ) · lim 1( ) lim 2( ) lim 3( )

= lim 1( ) lim 1( ) + lim 2( ) lim 2( ) + lim 3( ) lim 3( )

= lim 1( ) 1( ) + lim 2( ) 2( ) + lim 3( ) 3( )

= lim [ 1( ) 1( ) + 2( ) 2( ) + 3( ) 3( )] = lim [u( ) · v( )]
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322 ¤ CHAPTER 13 VECTOR FUNCTIONS

(d) lim u( )× lim v( ) = lim 1( ) lim 2( ) lim 3( ) × lim 1( ) lim 2( ) lim 3( )

= lim 2( ) lim 3( ) lim 3( ) lim 2( )

lim 3( ) lim 1( ) lim 1( ) lim 3( )

lim 1( ) lim 2( ) lim 2( ) lim 1( )

= lim [ 2( ) 3( ) 3( ) 2( )] lim [ 3( ) 1( ) 1( ) 3( )]

lim [ 1( ) 2( ) 2( ) 1( )]

= lim h 2( ) 3( ) 3( ) 2( ) 3 ( ) 1( ) 1( ) 3( ) 1( ) 2( ) 2( ) 1( )i

= lim [u( )× v( )]

50. The projection of the curve onto the -plane is given by the parametric equations = (2 + cos 1 5 ) cos ,

= (2 + cos 1 5 ) sin . If we convert to polar coordinates, we have

2 = 2 + 2 = [(2 + cos 1 5 ) cos ]2 + [(2 + cos 1 5 ) sin ]2 = (2 + cos 1 5 )2(cos2 + sin2 ) = (2 + cos 1 5 )2

= 2 + cos 1 5 . Also, tan = =
(2 + cos 1 5 ) sin

(2 + cos 1 5 ) cos
= tan = .

Thus the polar equation of the curve is = 2+ cos 1 5 . At = 0, we have

= 3, and decreases to 1 as increases to 2
3
. For 2

3
4
3
,

increases to 3; decreases to 1 again at = 2 , increases to 3 at = 8
3
,

decreases to 1 at = 10
3
, and completes the closed curve by increasing

to 3 at = 4 . We sketch an approximate graph as shown in the figure.

We can determine how the curve passes over itself by investigating the maximum and minimum values of for 0 4 .

Since = sin 1 5 , is maximized where sin 1 5 = 1 1 5 =
2
, 5
2
, or 9

2

=
3
, 5
3
, or 3 . is minimized where sin 1 5 = 1

1 5 = 3
2
, 7
2
, or 11

2
= , 7

3
, or 11

3
. Note that these are

precisely the values for which cos 1 5 = 0 = 2, and on the graph

of the projection, these six points appear to be at the three self-intersections

we see. Comparing the maximum and minimum values of at these

intersections, we can determine where the curve passes over itself, as

indicated in the figure.
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SECTION 13.1 VECTOR FUNCTIONS AND SPACE CURVES ¤ 323

We show a computer-drawn graph of the curve from above, as well as views from the front and from the right side.

Top view Front view Side view

The top view graph shows a more accurate representation of the projection of the trefoil knot onto the -plane (the axes are

rotated 90 ). Notice the indentations the graph exhibits at the points corresponding to = 1. Finally, we graph several

additional viewpoints of the trefoil knot, along with two plots showing a tube of radius 0 2 around the curve.
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51. Let r( ) = h ( ) ( ) ( )i and b = h 1 2 3i. If lim r( ) = b, then lim r( ) exists, so by (1),

b = lim r( ) = lim ( ) lim ( ) lim ( ) . By the definition of equal vectors we have lim ( ) = 1, lim ( ) = 2

and lim ( ) = 3. But these are limits of real-valued functions, so by the definition of limits, for every 0 there exists

1 0, 2 0, 3 0 so that if 0 | | 1 then | ( ) 1| 3, if 0 | | 2 then | ( ) 2| 3, and

if 0 | | 3 then | ( ) 3| 3. Letting =minimum of { 1 2 3}, then if 0 | | we have

| ( ) 1|+ | ( ) 2|+ | ( ) 3| 3 + 3 + 3 = . But

|r( ) b|= |h ( ) 1 ( ) 2 ( ) 3i| = ( ( ) 1)2 + ( ( ) 2)2 + ( ( ) 3)2

[ ( ) 1]2 + [ ( ) 2]2 + [ ( ) 3]2 = | ( ) 1|+ | ( ) 2|+ | ( ) 3|

Thus for every 0 there exists 0 such that if 0 | | then

|r( ) b| | ( ) 1|+ | ( ) 2|+ | ( ) 3| . Conversely, suppose for every 0, there exists 0 such

that if 0 | | then |r( ) b| |h ( ) 1 ( ) 2 ( ) 3i|

[ ( ) 1]2 + [ ( ) 2]2 + [ ( ) 3]2 [ ( ) 1]
2 + [ ( ) 2]

2 + [ ( ) 3]
2 2. But each term

on the left side of the last inequality is positive, so if 0 | | , then [ ( ) 1]
2 2, [ ( ) 2]

2 2 and

[ ( ) 3]
2 2 or, taking the square root of both sides in each of the above, | ( ) 1| , | ( ) 2| and

| ( ) 3| . And by definition of limits of real-valued functions we have lim ( ) = 1, lim ( ) = 2 and

lim ( ) = 3. But by (1), lim r( ) = lim ( ) lim ( ) lim ( ) , so lim r( ) = h 1 2 3i = b.

13.2 Derivatives and Integrals of Vector Functions

1. (a)

(b) r(4 5) r(4)

0 5
= 2[r(4 5) r(4)], so we draw a vector in the same

direction but with twice the length of the vector r(4 5) r(4).

r(4 2) r(4)

0 2
= 5[r(4 2) r(4)], so we draw a vector in the same

direction but with 5 times the length of the vector r(4 2) r(4).
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(c) By Definition 1, r0(4) = lim
0

r(4 + ) r(4) . T(4) = r0(4)
|r0(4)| .

(d) T(4) is a unit vector in the same direction as r0(4), that is, parallel to the

tangent line to the curve at r(4) with length 1.

2. (a) The curve can be represented by the parametric equations = 2, = , 0 2. Eliminating the parameter, we have

= 2, 0 2, a portion of which we graph here, along with the vectors r(1), r(1 1), and r(1 1) r(1).

(b) Since r( ) = 2 , we differentiate components, giving r0( ) = h2 1i, so r0(1) = h2 1i.
r(1 1) r(1)

0 1
=
h1 21 1 1i h1 1i

0 1
= 10 h0 21 0 1i = h2 1 1i.

As we can see from the graph, these vectors are very close in length and direction. r0(1) is defined to be
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lim
0

r(1 + ) r(1) , and we recognize r(1 1) r(1)

0 1
as the expression after the limit sign with = 0 1 Since is

close to 0, we would expect r(1 1) r(1)

0 1
to be a vector close to r0(1).

3. Since ( + 2)2 = 2 = 1

= ( + 2)2 + 1, the curve is a

parabola.

(a), (c) (b) r0( ) = h1 2 i,
r0( 1) = h1 2i

4. Since = 2 = ( 3)2 3 = 2 3,

the curve is the graph of = 2 3.

(a), (c) (b) r0( ) = 2 3 2 ,

r0(1) = h2 3i

5. = sin , = 2cos so
2 + ( 2)2 = 1 and the curve is

an ellipse.

(a), (c) (b) r0( ) = cos i 2 sin j,

r0
4

=
2

2
i 2 j

6. Since = =
1
=
1 the

curve is part of the hyperbola

=
1 . Note that 0, 0.

(a), (c) (b) r0( ) = i j,

r0(0) = i j

7. Since = 2 = ( )2 = 2, the

curve is part of a parabola. Note

that here 0, 0.

(a), (c) (b) r0( ) = 2 2 i+ j,

r0(0) = 2 i+ j
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8. = 1 + cos , = 2 + sin so

( 1)2 + ( 2)2 = 1 and the

curve is a circle.

(a), (c) (b) r0( ) = sin i+ cos j,

r0
6

=
1

2
i+

3

2
j

9. r0( ) = [ sin ] 2 [ cos 2 ] = h cos + sin 2 ( sin 2 ) · 2 + cos 2 i

= h cos + sin 2 cos 2 2 sin 2 i

10. r( ) = tan sec 1 2 r0( ) = sec2 sec tan 2 3

11. r( ) = i+ j+ 2 k r0( ) = 1 i+ 0 j+ 2 1
2

1 2 k = i+
1
k

12. r( ) = 1

1 +
i +

1 +
j +

2

1 +
k

r0( ) =
0 1(1)

(1 + )2
i+

(1 + ) · 1 (1)

(1 + )2
j+

(1 + ) · 2 2(1)

(1 + )2
k =

1

(1 + )2
i+

1

(1 + )2
j+

2 + 2

(1 + )2
k

13. r( ) =
2
i j+ ln(1 + 3 )k r0( ) = 2

2
i+

3

1 + 3
k

14. r0( ) = [ ( 3 sin 3 ) + cos 3 ] i+ · 3 sin2 cos j+ · 3 cos2 ( sin )k

= ( cos 3 3 sin 3 ) i+ 3 sin2 cos j 3 cos2 sin k

15. r0( ) = 0+ b+ 2 c = b+ 2 c by Formulas 1 and 3 of Theorem 3.

16. To find r0( ), we first expand r( ) = a× (b+ c) = (a× b) + 2(a× c), so r0( ) = a× b+ 2 (a× c).

17. r0( ) = + 2 (1 + 2) 2 r0(0) = h1 2 2i. So |r0(0)| = 12 + 22 + 22 = 9 = 3 and

T(0) =
r0(0)
|r0(0)| =

1
3
h1 2 2i = 1

3
2
3

2
3
.

18. r0( ) = 3 2 + 3 2 3 r0(1) = h6 2 3i. Thus

T(1) =
r0(1)
|r0(1)| =

1

62 + 22 + 32
h6 2 3i = 1

7 h6 2 3i = 6
7

2
7

3
7
.

19. r0( ) = sin i + 3 j + 4 cos 2 k r0(0) = 3 j + 4k. Thus

T(0) =
r0(0)
|r0(0)| =

1

02 + 32 + 42
(3 j+ 4k) = 1

5 (3 j+ 4k) =
3
5 j+

4
5 k.

20. r0( ) = 2 sin cos i 2 cos sin j+ 2 tan sec2 k

r0 4
= 2 · 2

2 · 2
2 i 2 · 2

2 · 2
2 j+ 2 · 1 · ( 2)2 k = i j+ 4k and r0 4

= 1 + 1 + 16 = 18 = 3 2. Thus

T
4
=

r0
4

r0
4

=
1

3 2
(i j+ 4k) =

1

3 2
i

1

3 2
j+

4

3 2
k.
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21. r( ) = 2 3 r0( ) = 1 2 3 2 . Then r0(1) = h1 2 3i and |r0(1)| = 12 + 22 + 32 = 14, so

T(1) =
r0(1)
|r0(1)| =

1

14
h1 2 3i = 1

14

2

14

3

14
. r00( ) = h0 2 6 i, so

r0( )× r00( ) =
i j k

1 2 3 2

0 2 6

=
2 3 2

2 6
i

1 3 2

0 6
j +

1 2

0 2
k

= (12 2 6 2) i (6 0) j+ (2 0)k = 6 2 6 2

22. r( ) = 2 2 2 r0( ) = 2 2 2 2 (2 + 1) 2 r0(0) = 2 0 2 0 (0 + 1) 0 = h2 2 1i

and |r0(0)| = 22 + ( 2)2 + 12 = 3. ThenT(0) = r0 (0)
|r0 (0)| =

1
3
h2 2 1i = 2

3
2
3

1
3
.

r00( ) = 4 2 4 2 (4 + 4) 2 r00(0) = 4 0 4 0 (0 + 4) 0 = h4 4 4i.

r0( ) · r00( ) = 2 2 2 2 (2 + 1) 2 · 4 2 4 2 (4 + 4) 2

= (2 2 )(4 2 ) + ( 2 2 )(4 2 ) + ((2 + 1) 2 )((4 + 4) 2 )

= 8 4 8 4 + (8 2 + 12 + 4) 4 = (8 2 + 12 + 12) 4 8 4

23. The vector equation for the curve is r( ) = 1 + 2 3 3 + , so r0( ) = 1 3 2 1 3 2 + 1 . The point

(3 0 2) corresponds to = 1, so the tangent vector there is r0(1) = h1 2 4i. Thus, the tangent line goes through the point
(3 0 2) and is parallel to the vector h1 2 4i. Parametric equations are = 3 + , = 2 , = 2 + 4 .

24. The vector equation for the curve is r( ) =
2

, so r0( ) = + 2 2 2
+

2

. The point (1 0 0)

corresponds to = 0, so the tangent vector there is r0(0) = h1 1 1i. Thus, the tangent line is parallel to the vector h1 1 1i
and includes the point (1 0 0). Parametric equations are = 1 + 1 · = 1 + , = 0+ 1 · = , = 0 + 1 · = .

25. The vector equation for the curve is r( ) = cos sin , so

r0( ) = ( sin ) + (cos )( ), cos + (sin )( ), ( )

= (cos + sin ) (cos sin )

The point (1 0 1) corresponds to = 0, so the tangent vector there is

r0(0) = 0(cos 0 + sin 0) 0(cos 0 sin 0) 0 = h 1 1 1i. Thus, the tangent line is parallel to the vector
h 1 1 1i and parametric equations are = 1 + ( 1) = 1 , = 0 + 1 · = , = 1 + ( 1) = 1 .

26. The vector equation for the curve is r( ) = 2 + 3 ln( 2 + 3) , so r0( ) = 2 + 3 2 ( 2 + 3) 1 . At (2 ln 4 1),

= 1 and r0(1) = 1
2

1
2
1 . Thus, parametric equations of the tangent line are = 2 + 1

2
, = ln 4 + 1

2
, = 1 + .

27. First we parametrize the curve of intersection. The projection of onto the -plane is contained in the circle
2 + 2 = 25, = 0, so we can write = 5 cos , = 5 sin . also lies on the cylinder 2 + 2 = 20, and 0

near the point (3 4 2), so we can write = 20 2 = 20 25 sin2 . A vector equation then for is
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r( ) = 5 cos 5 sin 20 25 sin2 r0( ) = 5 sin 5 cos 1
2
(20 25 sin2 ) 1 2( 50 sin cos ) .

The point (3 4 2) corresponds to = cos 1 3
5
, so the tangent vector there is

r0 cos 1 3
5

= 5 4
5

5 3
5

1
2
20 25 4

5

2 1 2

50 4
5

3
5

= h 4 3 6i.

The tangent line is parallel to this vector and passes through (3 4 2), so a vector equation for the line

is r( ) = (3 4 )i+ (4 + 3 )j+ (2 6 )k.

28. r( ) = 2 cos 2 sin r0( ) = 2 sin 2 cos . The tangent line to the curve is parallel to the plane when the

curve’s tangent vector is orthogonal to the plane’s normal vector. Thus we require 2 sin 2 cos · 3 1 0 = 0

2 3 sin + 2 cos + 0 = 0 tan = 1
3

=
6
[since 0 ].

r
6
= 3 1 6 , so the point is ( 3 1 6).

29. r( ) = 2 2 r0( ) = 1 2 2 . At (0 1 0),

= 0 and r0(0) = h1 1 2i. Thus, parametric equations of the tangent
line are = , = 1 , = 2 .

30. r( ) = h2 cos 2 sin 4 cos 2 i,

r0( ) = h 2 sin 2 cos 8 sin 2 i. At 3 1 2 , =
6
and

r0( 6 ) = 1 3 4 3 . Thus, parametric equations of the

tangent line are = 3 , = 1 + 3 , = 2 4 3 .

31. r( ) = h cos sin i r0( ) = hcos sin 1 cos + sin i.
At ( 0), = and r0( ) = h 1 1 i. Thus, parametric equations
of the tangent line are = , = + , = .

32. (a) The tangent line at = 0 is the line through the point with position vector r(0) = hsin 0 2 sin 0 cos 0i = h0 0 1i, and in
the direction of the tangent vector, r0(0) = h cos 0 2 cos 0 sin 0i = h 2 0i. So an equation of the line is
h i = r(0) + r0(0) = h0 + 0 + 2 1i = h 2 1i.

c° 2012 Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part.

NOT FOR SALE

°°cc 2012 Cengage Learning. All Rights Reserved. May not be scanned, copied, or2012 Cengage Learning. All Rights Reserved. May not be scanned, copied, duplicated, or posted to a publicly accessible website, in whole or in part.licated, or posted to a publicly accessible website, in whole or in par

102
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r 1
2

= sin
2
2 sin

2
cos

2
= h1 2 0i ,

r0 1
2
= cos

2
2 cos

2
sin

2
= h0 0 i .

So the equation of the second line is

h i = h1 2 0i+ h0 0 i = h1 2 i.
The lines intersect where h 2 1i = h1 2 i,
so the point of intersection is (1 2 1).

(b)

33. The angle of intersection of the two curves is the angle between the two tangent vectors to the curves at the point of

intersection. Since r01( ) = 1 2 3 2 and = 0 at (0 0 0), r01(0) = h1 0 0i is a tangent vector to r1 at (0 0 0). Similarly,

r02( ) = hcos 2 cos 2 1i and since r2(0) = h0 0 0i, r02 (0) = h1 2 1i is a tangent vector to r2 at (0 0 0). If is the angle

between these two tangent vectors, then cos = 1

1 6
h1 0 0i · h1 2 1i = 1

6
and = cos 1 1

6
66 .

34. To find the point of intersection, we must find the values of and which satisfy the following three equations simultaneously:

= 3 , 1 = 2, 3 + 2 = 2. Solving the last two equations gives = 1, = 2 (check these in the first equation).

Thus the point of intersection is (1 0 4). To find the angle of intersection, we proceed as in Exercise 33. The tangent

vectors to the respective curves at (1 0 4) are r01(1) = h1 1 2i and r02(2) = h 1 1 4i. So

cos = 1

6 18
( 1 1 + 8) = 6

6 3
= 1

3
and = cos 1 1

3
55 .

Note: In Exercise 33, the curves intersect when the value of both parameters is zero. However, as seen in this exercise, it is not

necessary for the parameters to be of equal value at the point of intersection.

35. 2

0
( i 3 j+ 3 5 k) =

2

0
i

2

0
3 j+

2

0
3 5 k

= 1
2
2 2

0
i 1

4
4 2

0
j+ 1

2
6 2

0
k

= 1
2
(4 0) i 1

4
(16 0) j+ 1

2
(64 0)k = 2 i 4 j+ 32k

36.
1

0

4

1 + 2
j+

2

1 + 2
k = 4 tan 1 j+ ln(1 + 2)k

1

0
= 4 tan 1 1 j+ ln 2k 4 tan 1 0 j+ ln 1k

= 4
4
j+ ln 2k 0 j 0k = j+ ln 2k

37. 2

0
(3 sin2 cos i+ 3 sin cos2 j+ 2 sin cos k)

=
2

0
3 sin2 cos i+

2

0
3 sin cos2 j+

2

0
2 sin cos k

= sin3
2

0
i+ cos3

2

0
j+ sin2

2

0
k = (1 0) i+ (0 + 1) j+ (1 0)k = i+ j+ k

38. 2

1
2 i+ 1 j+ sin k = 1

3
3 i+ 2

5
( 1)5 2 + 2

3
( 1)3 2 j

2

1
+ 1 cos

2

1
+

2

1
1 cos k

= 7
3 i+

16
15 j+

3 + 1
2 sin

2

1
k = 7

3 i+
16
15 j

3 k
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SECTION 13.2 DERIVATIVES AND INTEGRALS OF VECTOR FUNCTIONS ¤ 331

39. (sec2 i+ ( 2 + 1)3 j+ 2 ln k) = sec2 i+ ( 2 + 1)3 j+ 2 ln k

= tan i+ 1
8
( 2 + 1)4 j+ 1

3
3 ln 1

9
3 k+C,

whereC is a vector constant of integration. [For the -component, integrate by parts with = ln , = 2 .]

40. 2 i+
1

j+
1

1 2
k = 2 i+

1
j+

1

1 2
k

= 1
2

2 1
2

2 i+ 1+
1

1
j+

1

1 2
k

= 1
2

2 1
4

2 i+ ( ln | 1 |) j+ sin 1 k+C

41. r0( ) = 2 i+ 3 2 j+ k r( ) = 2 i+ 3 j+ 2
3
3 2 k+C, whereC is a constant vector.

But i+ j = r (1) = i+ j+ 2
3
k+C. ThusC = 2

3
k and r( ) = 2 i+ 3 j+ 2

3
3 2 2

3
k.

42. r0( ) = i+ j+ k r( ) = 1
2
2 i+ j+ k+C. But i+ j+ k = r (0) = j k+C.

ThusC = i+ 2k and r( ) = 1
2
2 + 1 i+ j+ ( + 2)k.

For Exercises 43–46, let u( ) = h 1( ) 2( ) 3( )i and v( ) = h 1( ) 2( ) 3( )i. In each of these exercises, the procedure is to apply
Theorem 2 so that the corresponding properties of derivatives of real-valued functions can be used.

43. [u( ) + v( )] = h 1( ) + 1( ) 2( ) + 2( ) 3( ) + 3( )i

= [ 1( ) + 1 ( )] [ 2( ) + 2( )] [ 3( ) + 3( )]

= h 0
1( ) +

0
1( )

0
2( ) +

0
2( )

0
3( ) +

0
3( )i

= h 0
1( )

0
2 ( )

0
3( )i+ h 0

1( )
0
2( )

0
3( )i = u0( ) + v0( )

44. [ ( )u( )] = h ( ) 1( ) ( ) 2( ) ( ) 3( )i

= [ ( ) 1( )] [ ( ) 2( )] [ ( ) 3( )]

= h 0( ) 1( ) + ( ) 0
1( )

0( ) 2( ) + ( ) 0
2( )

0( ) 3( ) + ( ) 0
3( )i

= 0( ) h 1( ) 2( ) 3( )i+ ( ) h 0
1( )

0
2( )

0
3( )i = 0( )u( ) + ( )u0( )

45. [u( )× v( )] = h 2( ) 3( ) 3( ) 2( ) 3( ) 1( ) 1( ) 3( ) 1( ) 2( ) 2( ) 1( )i

= h 0
2 3( ) + 2( )

0
3( )

0
3( ) 2( ) 3( )

0
2( )

0
3( ) 1( ) + 3( )

0
1 ( )

0
1( ) 3( ) 1( )

0
3( )

0
1( ) 2( ) + 1( )

0
2( )

0
2( ) 1( ) 2( )

0
1( )i

= h 0
2( ) 3( )

0
3( ) 2 ( )

0
3( ) 1( )

0
1( ) 3( )

0
1( ) 2( )

0
2( ) 1( )i

+ h 2( )
0
3( ) 3( )

0
2( ) 3( )

0
1 ( ) 1( )

0
3( ) 1( )

0
2( ) 2( )

0
1( )i

= u0( )× v( ) + u( )× v0( )
[continued]
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332 ¤ CHAPTER 13 VECTOR FUNCTIONS

Alternate solution: Let r( ) = u( )× v( ). Then
r( + ) r( ) = [u( + )× v( + )] [u( )× v( )]

= [u( + )× v( + )] [u( )× v( )] + [u( + )× v( )] [u( + )× v( )]
= u( + )× [v( + ) v( )] + [u( + ) u( )]× v( )

(Be careful of the order of the cross product.) Dividing through by and taking the limit as 0 we have

r0( ) = lim
0

u( + )× [v( + ) v( )]
+ lim

0

[u( + ) u( )]× v( )
= u( )× v0( ) + u0( )× v( )

by Exercise 13.1.49(a) and Definition 1.

46. [u( ( ))] = h 1( ( )) 2( ( )) 3( ( ))i = [ 1( ( ))] [ 2( ( ))] [ 3( ( ))]

= h 0( ) 0
1( ( ))

0( ) 0
2( ( ))

0( ) 0
3( ( ))i = 0( )u0( )

47. [u( ) · v( )] = u0( ) · v( ) + u( ) · v0( ) [by Formula 4 of Theorem 3]

= hcos sin 1i · h cos sin i+ hsin cos i · h1 sin cos i
= cos cos sin + sin + sin cos sin + cos

= 2 cos + 2 sin 2 cos sin

48. [u( )× v( )] = u0( )× v( ) + u( )× v0( ) [by Formula 5 of Theorem 3]

= hcos sin 1i × h cos sin i+ hsin cos i × h1 sin cos i
= sin2 cos cos sin cos2 + sin

+ cos2 + sin cos sin sin2 cos

= cos2 sin2 cos + sin 2 2 cos sin cos2 sin2 cos + sin

49. By Formula 4 of Theorem 3, 0( ) = u0( ) · v( ) + u( ) · v0( ), and v0( ) = 1 2 3 2 , so
0(2) = u0(2) · v(2) + u(2) · v0(2) = h3 0 4i · h2 4 8i+ h1 2 1i · h1 4 12i = 6 + 0 + 32 + 1 + 8 12 = 35.

50. By Formula 5 of Theorem 3, r0( ) = u0( )× v( ) + u( )× v0( ), so

r0(2) = u0(2)× v(2) + u(2)× v0(2) = h3 0 4i × h2 4 8i+ h1 2 1i × h1 4 12i

= h 16 16 12i+ h28 13 2i = h12 29 14i

51. [r( )× r0( )] = r0( )× r0( ) + r( )× r00( ) by Formula 5 of Theorem 3. But r0( )× r0( ) = 0 (by Example 2 in

Section 12.4). Thus, [r( )× r0( )] = r( )× r00( ).

52. (u( ) · [v ( )×w( )])= u0( ) · [v( )×w( )] + u( ) · [v( )×w ( )]

= u0( ) · [v( )×w( )] + u( ) · [v0( )×w( ) + v( )×w0( )]

= u0( ) · [v( )×w( )] + u( ) · [v0( )×w( )] + u( ) · [v( )×w0( )]

= u0( ) · [v( )×w( )] v0( ) · [u( )×w( )] +w0( ) · [u( )× v( )]
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SECTION 13.3 ARC LENGTH AND CURVATURE ¤ 333

53. |r( )| = [r( ) · r( )]1 2 = 1
2
[r( ) · r( )] 1 2 [2r( ) · r0( )] = 1

|r( )| r( ) · r
0( )

54. Since r( ) · r0( ) = 0, we have 0 = 2r( ) · r0( ) = [r( ) · r( )] = |r( )|2. Thus |r( )|2, and so |r( )|, is a constant,

and hence the curve lies on a sphere with center the origin.

55. Since u( ) = r( ) · [r0( )× r00( )],

u0( ) = r0( ) · [r0( )× r00( )] + r( ) · [r0( )× r00( )]

= 0 + r( ) · [r00( )× r00( ) + r0( )× r000( )] [since r0( ) r0( )× r00( )]
= r( ) · [r0( )× r000( )] [since r00( )× r00( ) = 0]

56. The tangent vector r0( ) is defined as lim
0

r( + ) r( ) . Here we assume that this limit exists and r0( ) 6= 0; then we know

that this vector lies on the tangent line to the curve. As in Figure 1, let points and have position vectors r( ) and r( + ).

The vector r( + ) r( ) points from to , so r( + ) r( ) = . If 0 then + , so lies “ahead”

of on the curve. If is sufficiently small (we can take to be as small as we like since 0) then approximates

the curve from to and hence points approximately in the direction of the curve as increases. Since is positive,

1
=
r( + ) r( ) points in the same direction. If 0, then + so lies “behind” on the curve. For

sufficiently small, approximates the curve but points in the direction of decreasing . However, is negative, so

1
=
r( + ) r( ) points in the opposite direction, that is, in the direction of increasing . In both cases, the difference

quotient r( + ) r( ) points in the direction of increasing . The tangent vector r0( ) is the limit of this difference quotient,

so it must also point in the direction of increasing .

13.3 Arc Length and Curvature

1. r( ) = h 3 cos 3 sin i r0( ) = h1 3 sin 3 cos i
|r0( )| = 12 + ( 3 sin )2 + (3 cos )2 = 1 + 9(sin2 + cos2 ) = 10.

Then using Formula 3, we have =
5

5
|r0( )| =

5

5
10 = 10

5

5
= 10 10.

2. r( ) = 2 2 1
3
3 r0( ) = 2 2 2

|r0( )| = 22 + (2 )2 + ( 2)2 = 4 + 4 2 + 4 = (2 + 2)2 = 2 + 2 for 0 1. Then using Formula 3, we have

=
1

0
|r0( )| =

1

0
(2 + 2) = 2 + 1

3
3 1

0
= 7

3
.

3. r( ) = 2 i+ j+ k r0( ) = 2 i+ j k

|r0( )| = 2
2
+ ( )2 + ( )2 = 2 + 2 + 2 = ( + )2 = + [since + 0].

Then =
1

0
|r0( )| =

1

0
( + ) =

1

0
= 1.
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334 ¤ CHAPTER 13 VECTOR FUNCTIONS

4. r( ) = cos i+ sin j+ ln cos k r0( ) = sin i+ cos j+
sin

cos
k = sin i+ cos j tan k,

|r0( )| = ( sin )2 + cos2 + ( tan )2 = 1 + tan2 = sec2 = |sec |. Since sec 0 for 0 4, here we

can say |r0( )| = sec . Then

=
4

0

sec = ln |sec + tan | 4

0
= ln sec

4
+ tan

4
ln |sec 0 + tan 0|

= ln 2 + 1 ln |1 + 0| = ln( 2 + 1)

5. r( ) = i+ 2 j+ 3 k r0( ) = 2 j+ 3 2 k |r0( )| = 4 2 + 9 4 = 4 + 9 2 [since 0].

Then =
1

0
|r0( )| =

1

0
4 + 9 2 = 1

18
· 2
3
(4 + 9 2)3 2

1

0
= 1

27
(133 2 43 2) = 1

27
(133 2 8).

6. r( ) = 12 i + 8 3 2 j + 3 2 k r0( ) = 12 i + 12 j + 6 k

|r0( )| = 144 + 144 + 36 2 = 36( + 2)2 = 6 | + 2| = 6( + 2) for 0 1. Then

=
1

0
|r0( )| =

1

0
6( + 2) = 3 2 + 12

1

0
= 15.

7. r( ) = 2 3 4 r0( ) = 2 3 2 4 3 |r0( )| = (2 )2 + (3 2)2 + (4 3)2 = 4 2 + 9 4 + 16 6, so

=
2

0
|r0( )| =

2

0
4 2 + 9 4 + 16 6 18 6833.

8. r( ) = r0( ) = 1 (1 )

|r0( )| = 12 + ( )2 + [(1 ) ]2 = 1 + 2 + (1 )2 2 = 1 + (2 2 + 2) 2 , so

=
3

1
|r0( )| =

3

1
1 + (2 + 2 + 2) 2 2 0454.

9. r( ) = hsin cos tan i r0( ) = cos sin sec2

|r0( )| = cos2 + ( sin )2 + (sec2 )2 = 1 + sec4 and =
4

0
|r0( )| =

4

0
1 + sec4 1 2780.

10. We plot two different views of the curve with parametric equations = sin , = sin 2 , = sin 3 . To help visualize the

curve, we also include a plot showing a tube of radius 0 07 around the curve.

The complete curve is given by the parameter interval [0 2 ] and we have r0( ) = hcos 2 cos 2 3 cos 3 i

|r0( )| = cos2 + 4 cos2 2 + 9 cos2 3 , so =
2

0
|r0( )| =

2

0
cos2 + 4 cos2 2 + 9 cos2 3 16 0264.
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11. The projection of the curve onto the -plane is the curve 2 = 2 or = 1
2

2, = 0. Then we can choose the parameter

= = 1
2
2. Since also lies on the surface 3 = , we have = 1

3
= 1

3
( )( 1

2
2) = 1

6
3. Then parametric

equations for are = , = 1
2
2, = 1

6
3 and the corresponding vector equation is r( ) = 1

2
2 1

6
3 . The origin

corresponds to = 0 and the point (6 18 36) corresponds to = 6, so

=
6

0
|r0( )| =

6

0
1 1

2
2 =

6

0
12 + 2 + 1

2
2 2

=
6

0
1 + 2 + 1

4
4

=
6

0
(1 + 1

2
2)2 =

6

0
(1 + 1

2
2) = + 1

6
3 6

0
= 6 + 36 = 42

12. Let be the curve of intersection. The projection of onto the -plane is the ellipse 4 2 + 2 = 4 or 2 + 2 4 = 1,

= 0. Then we can write = cos , = 2 sin , 0 2 . Since also lies on the plane + + = 2, we have

= 2 = 2 cos 2 sin . Then parametric equations for are = cos , = 2 sin , = 2 cos 2 sin ,

0 2 , and the corresponding vector equation is r( ) = hcos 2 sin 2 cos 2 sin i. Differentiating gives
r0( ) = h sin 2 cos sin 2 cos i

|r0( )| = ( sin )2 + (2 cos )2 + (sin 2 cos )2 = 2 sin2 + 8 cos2 4 sin cos . The length of is

=
2

0
|r0( )| =

2

0
2 sin2 + 8 cos2 4 sin cos 13 5191.

13. r( ) = 2 i+ (1 3 ) j+ (5 + 4 )k r0( ) = 2 i 3 j+ 4k and = |r0( )| = 4 + 9 + 16 = 29. Then

= ( ) =
0
|r0( )| =

0
29 = 29 . Therefore, = 1

29
, and substituting for in the original equation, we

have r( ( )) = 2

29
i+ 1 3

29
j+ 5 + 4

29
k.

14. r( ) = 2 cos 2 i+ 2 j+ 2 sin 2 k r0( ) = 2 2 (cos 2 sin 2 ) i+ 2 2 (cos 2 + sin 2 )k,

= |r0( )| = 2 2 (cos 2 sin 2 )2 + (cos 2 + sin 2 )2 = 2 2 2 cos2 2 + 2 sin2 2 = 2 2 2 .

= ( ) =
0
|r0( )| =

0
2 2 2 = 2 2

0
= 2 ( 2 1)

2
+ 1 = 2 = 1

2 ln 2
+ 1 .

Substituting, we have

r( ( )) =
2 1

2
ln

2
+1

cos 2 1
2
ln

2
+ 1 i+ 2 j+

2 1
2
ln

2
+1

sin 2 1
2
ln

2
+ 1 k

=
2
+ 1 cos ln

2
+ 1 i+ 2 j+

2
+ 1 sin ln

2
+ 1 k

15. Here r( ) = h3 sin 4 3 cos i, so r0( ) = h3 cos 4 3 sin i and |r0( )| = 9 cos2 + 16 + 9 sin2 = 25 = 5.

The point (0 0 3) corresponds to = 0, so the arc length function beginning at (0 0 3) and measuring in the positive

direction is given by ( ) =
0
|r0( )| =

0
5 = 5 . ( ) = 5 5 = 5 = 1, thus your location after

moving 5 units along the curve is (3 sin 1 4 3 cos 1).

16. r( ) = 2
2 + 1

1 i+
2
2 + 1

j r0( ) =
4

( 2 + 1)2
i+

2 2 + 2

( 2 + 1)2
j,

= |r0( )| = 4

( 2 + 1)2

2

+
2 2 + 2

( 2 + 1)2

2

=
4 4 + 8 2 + 4

( 2 + 1)4
=

4( 2 + 1)2

( 2 + 1)4
=

4

( 2 + 1)2
=

2
2 + 1

.

Since the initial point (1 0) corresponds to = 0, the arc length function
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( ) =
0

r0( ) =
0

2
2 + 1

= 2arctan . Then arctan = 1
2

= tan 1
2
. Substituting, we have

r( ( )) =
2

tan2 1
2

+ 1
1 i+

2 tan 1
2

tan2 1
2

+ 1
j =

1 tan2 1
2

1 + tan2 1
2

i+
2 tan 1

2

sec2 1
2

j

=
1 tan2 1

2

sec2 1
2

i+ 2 tan 1
2

cos2 1
2

j = cos2 1
2

sin2 1
2

i+ 2 sin 1
2

cos 1
2

j = cos i+ sin j

With this parametrization, we recognize the function as representing the unit circle. Note here that the curve approaches, but

does not include, the point ( 1 0), since cos = 1 for = + 2 ( an integer) but then = tan 1
2

is undefined.

17. (a) r( ) = h 3 cos 3 sin i r0( ) = h1 3 sin 3 cos i |r0( )| = 1 + 9 sin2 + 9cos2 = 10.

Then T( ) = r0( )
|r0( )| =

1

10
h1 3 sin 3 cos i or 1

10

3

10
sin 3

10
cos .

T0( ) = 1

10
h0 3 cos 3 sin i |T0( )| = 1

10
0 + 9 cos2 + 9 sin2 = 3

10
. Thus

N( ) =
T0( )
|T0( )| =

1 10

3 10
h0 3 cos 3 sin i = h0 cos sin i.

(b) ( ) =
|T0( )|
|r0( )| =

3 10

10
=
3

10

18. (a) r( ) = 2 sin cos cos + sin

r0( ) = h2 cos + sin cos , sin + cos + sin i = h2 sin cos i

|r0( )| = 4 2 + 2 sin2 + 2 cos2 = 4 2 + 2(cos2 + sin2 ) = 5 2 = 5 [since 0]. Then

T( ) =
r0( )
|r0( )| =

1

5
h2 sin cos i = 1

5
h2 sin cos i. T0( ) = 1

5
h0 cos sin i

|T0 ( )| = 1

5
0 + cos2 + sin2 = 1

5
. ThusN( ) = T0( )

|T0( )| =
1 5

1 5
h0 cos sin i = h0 cos sin i.

(b) ( ) =
|T0( )|
|r0( )| =

1 5

5
=
1

5

19. (a) r( ) = 2 r0( ) = 2 |r0( )| = 2 + 2 + 2 = ( + )2 = + .

Then

T( ) =
r0( )
|r0( )| =

1

+
2 =

1
2 + 1

2 2 1 after multiplying by and

T0( ) =
1

2 + 1
2 2 2 0

2 2

( 2 + 1)2
2 2 1

=
1

( 2 + 1)2
( 2 + 1) 2 2 2 0 2 2 2 2 1 =

1

( 2 + 1)2
2 1 2 2 2 2 2

Then

|T0( )|= 1

( 2 + 1)2
2 2 (1 2 2 + 4 ) + 4 4 + 4 4 =

1

( 2 + 1)2
2 2 (1 + 2 2 + 4 )

=
1

( 2 + 1)2
2 2 (1 + 2 )2 =

2 (1 + 2 )

( 2 + 1)2
=

2
2 + 1
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Therefore

N( ) =
T0( )
|T0( )| =

2 + 1

2

1

( 2 + 1)2
2 (1 2 ) 2 2 2 2

=
1

2 ( 2 + 1)
2 (1 2 ) 2 2 2 2 =

1
2 + 1

1 2 2 2

(b) ( ) =
|T0( )|
|r0( )| =

2
2 + 1

· 1

+
=

2
3 + 2 +

=
2 2

4 + 2 2 + 1
=

2 2

( 2 + 1)2

20. (a) r( ) = 1
2
2 2 r0( ) = h1 2 i |r0( )| = 1 + 2 + 4 2 = 1 + 5 2. Then

T( ) =
r0( )
|r0( )| =

1

1 + 5 2
h1 2 i.

T0( ) =
5

(1 + 5 2)3 2
h1 2 i+ 1

1 + 5 2
h0 1 2i [by Formula 3 of Theorem 13.2.3]

=
1

(1 + 5 2)3 2
5 5 2 10 2 + 0 1 + 5 2 2 + 10 2 =

1

(1 + 5 2)3 2
h 5 1 2i

|T0( )| = 1

(1 + 5 2)3 2
25 2 + 1+ 4 =

1

(1 + 5 2)3 2
25 2 + 5 =

5 5 2 + 1

(1 + 5 2)3 2
=

5

1 + 5 2

ThusN( ) = T0( )
|T0( )| =

1 + 5 2

5
· 1

(1 + 5 2)3 2
h 5 1 2i = 1

5 + 25 2
h 5 1 2i.

(b) ( ) =
|T0( )|
|r0( )| =

5 (1 + 5 2)

1 + 5 2
=

5

(1 + 5 2)3 2

21. r( ) = 3 j+ 2 k r0( ) = 3 2 j+ 2 k, r00( ) = 6 j+ 2k, |r0( )| = 02 + (3 2)2 + (2 )2 = 9 4 + 4 2,

r0( )× r00( ) = 6 2 i, |r0( )× r00( )| = 6 2. Then ( ) =
|r0( )× r00( )|
|r0( )|3 =

6 2

9 4 + 4 2
3 =

6 2

(9 4 + 4 2)3 2
.

22. r( ) = i + 2 j + k r0( ) = i + 2 j + k, r00( ) = 2 j + k,

|r0( )| = 12 + (2 )2 + ( )2 = 1+ 4 2 + 2 , r0( )× r00( ) = (2 2) i j + 2k,

|r0( )× r00( )| = [(2 2) ]2 + ( )2 + 22 = (2 2)2 2 + 2 + 4 = (4 2 8 + 5) 2 + 4.

Then ( ) =
|r0( )× r00( )|
|r0( )|3 =

(4 2 8 + 5) 2 + 4

1 + 4 2 + 2
3 =

(4 2 8 + 5) 2 + 4

(1 + 4 2 + 2 )3 2
.

23. r( ) = 3 i+ 4 sin j+ 4 cos k r0( ) = 3 i+ 4 cos j 4 sin k, r00( ) = 4 sin j 4 cos k,

|r0( )| = 9 + 16 cos2 + 16 sin2 = 9 + 16 = 5, r0( )× r00( ) = 16 i+ 12 cos j 12 sin k,

|r0( )× r00( )| = 256 + 144 cos2 + 144 sin2 = 400 = 20. Then ( ) =
|r0( )× r00( )|
|r0( )|3 =

20

53
=
4

25
.

24. r( ) = 2 ln ln r0( ) = h2 1 1 + ln i, r00( ) = 2 1 2 1 . The point (1 0 0) corresponds

to = 1, and r0(1) = h2 1 1i, |r0(1)| = 22 + 12 + 12 = 6, r00(1) = h2 1 1i, r0(1)× r00(1) = h2 0 4i,

|r0(1)× r00(1)| = 22 + 02 + ( 4)2 = 20 = 2 5. Then (1) =
|r0(1)× r00(1)|

|r0(1)|3 =
2 5

6
3 =

2 5

6 6
or 30

18
.
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25. r( ) = 2 3 r0( ) = 1 2 3 2 . The point (1 1 1) corresponds to = 1, and r0(1) = h1 2 3i
|r0(1)| = 1 + 4 + 9 = 14. r00( ) = h0 2 6 i r00(1) = h0 2 6i. r0(1)× r00(1) = h6 6 2i, so

|r0(1)× r00(1)| = 36 + 36 + 4 = 76. Then (1) =
|r0(1)× r00(1)|

|r0(1)|3 =
76

14
3 =

1

7

19

14
.

26. Note that we get the complete curve for 0 2 .

r( ) = hcos sin sin 5 i r0( ) = h sin cos 5 cos 5 i,
r00( ) = h cos sin 25 sin 5 i. The point (1 0 0)

corresponds to = 0, and r0(0) = h0 1 5i

|r0(0)| = 02 + 12 + 52 = 26, r00(0) = h 1 0 0i,
r0(0)× r00(0) = h0 5 1i

|r0(0)× r00(0)| = 02 + ( 5)2 + 12 = 26. The curvature at

the point (1 0 0) is (0) =
|r0(0)× r00(0)|

|r0(0)|3 =
26

26
3 =

1

26
.

27. ( ) = 4, 0( ) = 4 3, 00( ) = 12 2, ( ) =
| 00( )|

[1 + ( 0( ))2]3 2
=

12 2

[1 + (4 3)2]3 2
=

12 2

(1 + 16 6)3 2

28. ( ) = tan , 0( ) = sec2 , 00( ) = 2 sec · sec tan = 2 sec2 tan ,

( ) =
| 00( )|

[1 + ( 0( ))2]3 2
=

2 sec2 tan

[1 + (sec2 )2]3 2
=
2 sec2 |tan |
(1 + sec4 )3 2

29. ( ) = , 0( ) = + , 00( ) = + 2 ,

( ) =
| 00( )|

[1 + ( 0( ))2]3 2
=

| + 2 |
[1 + ( + )2]3 2

=
| + 2|

[1 + ( + )2]3 2

30. 0 =
1 , 00 =

1
2
,

( ) =
| 00( )|

1 + ( 0( ))2
3 2

=
1
2

1

(1 + 1 2)3 2
=
1
2

( 2)3 2

( 2 + 1)3 2
=

| |
( 2 + 1)3 2

=
( 2 + 1)3 2

[since 0].

To find the maximum curvature, we first find the critical numbers of ( ):

0( ) =
( 2 + 1)3 2 3

2
( 2 + 1)1 2(2 )

[( 2 + 1)3 2]
2 =

( 2 + 1)1 2[( 2 + 1) 3 2]

( 2 + 1)3
=

1 2 2

( 2 + 1)5 2
;

0( ) = 0 1 2 2 = 0, so the only critical number in the domain is = 1

2
. Since 0( ) 0 for 0 1

2

and 0( ) 0 for 1

2
, ( ) attains its maximum at = 1

2
. Thus, the maximum curvature occurs at 1

2
ln 1

2
.

Since lim
( 2 + 1)3 2

= 0, ( ) approaches 0 as .
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SECTION 13.3 ARC LENGTH AND CURVATURE ¤ 339

31. Since 0 = 00 = , the curvature is ( ) =
| 00( )|

[1 + ( 0( ))2]3 2
=
(1 + 2 )3 2

= (1 + 2 ) 3 2.

To find the maximum curvature, we first find the critical numbers of ( ):

0( ) = (1 + 2 ) 3 2 + 3
2
(1 + 2 ) 5 2(2 2 ) =

1 + 2 3 2

(1 + 2 )5 2
=

1 2 2

(1 + 2 )5 2
.

0( ) = 0 when 1 2 2 = 0, so 2 = 1
2
or = 1

2
ln 2. And since 1 2 2 0 for 1

2
ln 2 and 1 2 2 0

for 1
2
ln 2, the maximum curvature is attained at the point 1

2
ln 2 ( ln 2) 2 = 1

2
ln 2 1

2
.

Since lim (1 + 2 ) 3 2 = 0 ( ) approaches 0 as .

32. We can take the parabola as having its vertex at the origin and opening upward, so the equation is ( ) = 2 0. Then by

Equation 11, ( ) = | 00( )|
[1 + ( 0( ))2]3 2

=
|2 |

[1 + (2 )2]3 2
=

2

(1 + 4 2 2)3 2
, thus (0) = 2 . We want (0) = 4, so

= 2 and the equation is = 2 2.

33. (a) appears to be changing direction more quickly at than , so we would expect the curvature to be greater at .

(b) First we sketch approximate osculating circles at and . Using the

axes scale as a guide, we measure the radius of the osculating circle

at to be approximately 0 8 units, thus =
1

=
1 1

0 8
1 3. Similarly, we estimate the radius of the

osculating circle at to be 1 4 units, so =
1 1

1 4
0 7.

34. = 4 2 2 0 = 4 3 4 , 00 = 12 2 4, and

( ) =
| 00|

1 + ( 0)2
3 2

=
12 2 4

1 + (4 3 4 )2
3 2
. The graph of the

curvature here is what we would expect. The graph of = 4 2 2

appears to be bending most sharply at the origin and near = ±1.

35. = 2 0 = 2 3, 00 = 6 4, and

( ) =
| 00|

1 + ( 0)2
3 2

=
6 4

1 + ( 2 3)2
3 2

=
6

4 (1 + 4 6)3 2
.

The appearance of the two humps in this graph is perhaps a little surprising, but it is

explained by the fact that = 2 increases asymptotically at the origin from both

directions, and so its graph has very little bend there. [Note that (0) is undefined.]
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36. r( ) = h sin 1 cos 4 cos( 2)i r0( ) = h1 cos sin 2 sin( 2)i, r00( ) = hsin cos cos( 2)i.

Using a CAS, r0( )× r00( ) = 2 sin3( 2) sin( 2) sin cos 1 , |r0( )× r00( )| = 3 4 cos + cos 2 or

2 2 sin2( 2), and |r0( )| = 2 1 cos or 2 2 |sin( 2)|. (To compute cross products in Maple, use the
VectorCalculus or LinearAlgebra package and the CrossProduct(a,b) command. Here loading

the RealDomain package will give simpler results. In Mathematica, use Cross[a,b].)

Then ( ) =
|r0( )× r00( )|
|r0( )|3 =

3 4 cos + cos 2

8 (1 cos )3 2
or 1

4 2 2 cos
or 1

8 |sin( 2)| . We plot the space curve and its

curvature function for 0 8 below.

The asymptotes in the graph of ( ) correspond to the sharp cusps we see in the graph of r( ). The space curve bends most

sharply as it approaches these cusps (mostly in the -direction) and bends most gradually between these, near its intersections

with the -plane, where = + 2 ( an integer). (The bending we see in the -direction on the curve near these points is

deceiving; most of the curvature occurs in the -direction.) The curvature graph has local minima at these values of .

37. r( ) = 2 r0( ) = ( + 1) 2 , r00( ) = ( + 2) 0 . Then

r0( )× r00( ) = 2 2( + 2) 2 + 3 , |r0( )× r00( )| = 2 2 + 2( + 2)2 2 + (2 + 3)2,

|r0( )| = ( + 1)2 2 + 2 + 2, and ( ) =
|r0( )× r00( )|
|r0( )|3 =

2 2 + 2( + 2)2 2 + (2 + 3)2

[( + 1)2 2 + 2 + 2]3 2
.

We plot the space curve and its curvature function for 5 5 below.

From the graph of ( ) we see that curvature is maximized for = 0, so the curve bends most sharply at the point (0 1 0).

The curve bends more gradually as we move away from this point, becoming almost linear. This is reflected in the curvature

graph, where ( ) becomes nearly 0 as | | increases.
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38. Notice that the curve is highest for the same -values at which curve is turning more sharply, and is 0 or near 0 where is

nearly straight. So, must be the graph of = ( ), and is the graph of = ( ).

39. Notice that the curve has two inflection points at which the graph appears almost straight. We would expect the curvature to

be 0 or nearly 0 at these values, but the curve isn’t near 0 there. Thus, must be the graph of = ( ) rather than the graph

of curvature, and is the graph of = ( ).

40. (a) The complete curve is given by 0 2 . Curvature

appears to have a local (or absolute) maximum at 6

points. (Look at points where the curve appears to turn

more sharply.)

(b) Using a CAS, we find (after simplifying)

( ) =
3 2 (5 sin + sin 5 )2

(9 cos 6 + 2 cos 4 + 11)3 2
. (To compute cross

products in Maple, use the VectorCalculus or

LinearAlgebra package and the

CrossProduct(a,b) command; in Mathematica, use

Cross[a,b].) The graph shows 6 local (or absolute)

maximum points for 0 2 , as observed in part (a).

41. Using a CAS, we find (after simplifying)

( ) =
6 4 cos2 12 cos + 13

(17 12 cos )3 2
. (To compute cross

products in Maple, use the VectorCalculus or

LinearAlgebra package and the CrossProduct(a,b)

command; in Mathematica, use Cross[a,b].) Curvature is

largest at integer multiples of 2 .

42. Here r( ) = h ( ) ( )i, r0( ) = h 0( ) 0( )i, r00( ) = h 00( ) 00( )i,

|r0( )|3 = ( 0( ))2 + ( 0( ))2
3

= [( 0( ))2 + ( 0( ))2]3 2 = ( 2 + 2)3 2, and

|r0( )× r00( )| = |h0 0 0( ) 00( ) 00( ) 0( )i| = ( ¨ ¨ )2
1 2

= | ¨ ¨|. Thus ( ) =
| ¨ ¨|
[ 2 + 2]3 2

.

43. = 2 = 2 ¨ = 2, = 3 = 3 2 ¨ = 6 .

Then ( ) =
| ¨ ¨|
[ 2 + 2]3 2

=
(2 )(6 ) (3 2)(2)

[(2 )2 + (3 2)2]3 2
=

12 2 6 2

(4 2 + 9 4)3 2
=

6 2

(4 2 + 9 4)3 2
.
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44. = cos = sin ¨ = 2 cos ,

= sin = cos ¨ = 2 sin . Then

( ) =
| ¨ ¨|
[ 2 + 2]3 2

=
( sin )( 2 sin ) ( cos )( 2 cos )

[( sin )2 + ( cos )2]3 2

=
3 sin2 + 3 cos2

( 2 2 sin2 + 2 2 cos2 )3 2
=

3

( 2 2 sin2 + 2 2 cos2 )3 2

45. = cos = (cos sin ) ¨ = ( sin cos ) + (cos sin ) = 2 sin ,

= sin = (cos + sin ) ¨ = ( sin + cos ) + (cos + sin ) = 2 cos . Then

( ) =
| ¨ ¨|
[ 2 + 2]3 2

=
(cos sin )(2 cos ) (cos + sin )( 2 sin )

([ (cos sin )]2 + [ (cos + sin )]2)3 2

=
2 2 (cos2 sin cos + sin cos + sin2 )

2 (cos2 2 cos sin + sin2 + cos2 + 2cos sin + sin2 )
3 2

=
2 2 (1)

[ 2 (1 + 1)]3 2
=

2 2

3 (2)3 2
=

1

2

46. ( ) = , 0( ) = , 00( ) = 2 . Using Formula 11 we have

( ) =
| 00( )|

[1 + ( 0( ))2]3 2
=

2

[1 + ( )2]3 2
=

2

(1 + 2 2 )3 2
so the curvature at = 0 is

(0) =
2

(1 + 2)3 2
. To determine the maximum value for (0), let ( ) =

2

(1 + 2)3 2
. Then

0( ) =
2 · (1 + 2)3 2 2 · 3

2
(1 + 2)1 2(2 )

[(1 + 2)3 2]2
=
(1 + 2)1 2 2 (1 + 2) 3 3

(1 + 2)3
=

2 3

(1 + 2)5 2
. We have a critical

number when 2 3 = 0 (2 2) = 0 = 0 or = ± 2. 0( ) is positive for 2, 0 2

and negative elsewhere, so achieves its maximum value when = 2 or 2. In either case, (0) = 2

33 2
, so the members

of the family with the largest value of (0) are ( ) = 2 and ( ) = 2 .

47. 1 2
3
1 corresponds to = 1. T( ) =

r0( )
|r0( )| =

2 2 2 1

4 2 + 4 4 + 1
=

2 2 2 1

2 2 + 1
, soT(1) = 2

3
2
3

1
3
.

T0( ) = 4 (2 2 + 1) 2 2 2 2 1 + (2 2 + 1) 1 h2 4 0i [by Formula 3 of Theorem 13.2.3]

= (2 2 + 1) 2 8 2 + 4 2 + 2 8 3 + 8 3 + 4 4 = 2(2 2 + 1) 2 1 2 2 2 2

N( ) =
T0( )
|T0( )| =

2(2 2 + 1) 2 1 2 2 2 2

2(2 2 + 1) 2 (1 2 2)2 + (2 )2 + ( 2 )2
=

1 2 2 2 2

1 4 2 + 4 4 + 8 2
=

1 2 2 2 2

1 + 2 2

N(1) = 1
3

2
3

2
3
andB(1) = T(1)×N(1) = 4

9
2
9

4
9
+ 1

9
4
9
+ 2

9
= 2

3
1
3

2
3
.

48. (1 0 0) corresponds to = 0. r( ) = hcos sin ln cos i, and in Exercise 4 we found that r0( ) = h sin cos tan i
and |r0( )| = |sec |. Here we can assume

2 2
and then sec 0 |r0( )| = sec .

T( ) =
r0( )
|r0( )| =

h sin cos tan i
sec

= sin cos cos2 sin and T(0) = h0 1 0i.

T0( ) = h [(sin )( sin ) + (cos )(cos )] 2(cos )( sin ) cos i = sin2 cos2 2 sin cos cos , so

c° 2012 Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part.

NOT FOR SALE

°°cc 2012 Cengage Learning. All Rights Reserved. May not be scanned, copied, or2012 Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part.duplicated, or posted to a publicly accessible website, in whole or in part.

115



SECTION 13.3 ARC LENGTH AND CURVATURE ¤ 343

N(0) =
T0(0)
|T0(0)| =

h 1 0 1i
1 + 0 + 1

=
1

2
h 1 0 1i = 1

2
0 1

2
.

Finally,B(0) = T(0)×N(0) = h0 1 0i × 1

2
0 1

2
= 1

2
0 1

2
.

49. (0 2) corresponds to = . r( ) = h2 sin 3 2 cos 3 i

T( ) =
r0( )
|r0( )| =

h6 cos 3 1 6 sin 3 i
36 cos2 3 + 1 + 36 sin2 3

=
1

37
h6 cos 3 1 6 sin 3 i.

T( ) = 1

37
h 6 1 0i is a normal vector for the normal plane, and so h 6 1 0i is also normal. Thus an equation for the

plane is 6 ( 0) + 1( ) + 0( + 2) = 0 or 6 = .

T0( ) = 1

37
h 18 sin 3 0 18 cos 3 i |T0( )| = 182 sin2 3 + 182 cos2 3

37
=

18

37

N( ) =
T0( )
|T0( )| = h sin 3 0 cos 3 i. SoN( ) = h0 0 1i andB( ) = 1

37
h 6 1 0i × h0 0 1i = 1

37
h1 6 0i.

SinceB( ) is a normal to the osculating plane, so is h1 6 0i.
An equation for the plane is 1( 0) + 6( ) + 0( + 2) = 0 or + 6 = 6 .

50. = 1 at (1 1 1). r0( ) = 1 2 3 2 . r0(1) = h1 2 3i is normal to the normal plane, so an equation for this plane
is 1( 1) + 2( 1) + 3( 1) = 0, or + 2 + 3 = 6.

T( ) =
r0( )
|r0( )| =

1

1 + 4 2 + 9 4
1 2 3 2 . Using the product rule on each term ofT( ) gives

T0( ) =
1

(1 + 4 2 + 9 4)3 2
1
2
(8 + 36 3) 2(1 + 4 2 + 9 4) 1

2
(8 + 36 3)2

6 (1 + 4 2 + 9 4) 1
2
(8 + 36 3)3 2

=
1

(1 + 4 2 + 9 4)3 2
4 18 3 2 18 4 6 + 12 3 =

2

(14)3 2
h11 8 9i when = 1.

N(1) k T0(1) k h11 8 9i and T(1) k r0(1) = h1 2 3i a normal vector to the osculating plane is

h11 8 9i × h1 2 3i = h42 42 14i or equivalently h3 3 1i.
An equation for the plane is 3( 1) 3( 1) + ( 1) = 0 or 3 3 + = 1.

51. The ellipse is given by the parametric equations = 2cos , = 3 sin , so using the result from Exercise 42,

( ) =
| ¨ ¨ |
[ 2 + 2]3 2

=
|( 2 sin )( 3 sin ) (3 cos )( 2 cos )|

(4 sin2 + 9 cos2 )3 2
=

6

(4 sin2 + 9cos2 )3 2
.

At (2 0), = 0. Now (0) = 6
27
= 2

9
, so the radius of the osculating circle is

1 (0) = 9
2
and its center is 5

2
0 . Its equation is therefore + 5

2

2
+ 2 = 81

4
.

At (0 3), =
2 , and 2

= 6
8 =

3
4 . So the radius of the osculating circle is

4
3 and

its center is 0 5
3
. Hence its equation is 2 + 5

3

2
= 16

9
.

c° 2012 Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part.

NOT FOR SALE

°°cc 2012 Cengage Learning. All Rights Reserved. May not be scanned, copied, or2012 Cengage Learning. All Rights Reserved. May not be scanned, copied, duplicated, or posted to a publicly accessible website, in whole or in part.licated, or posted to a publicly accessible website, in whole or in par

116



344 ¤ CHAPTER 13 VECTOR FUNCTIONS

52. = 1
2

2 0 = and 00 = 1, so Formula 11 gives ( ) =
1

(1 + 2)3 2
. So the curvature at (0 0) is (0) = 1 and

the osculating circle has radius 1 and center (0 1), and hence equation 2 + ( 1)2 = 1. The curvature at 1 1
2

is (1) =
1

(1 + 12)3 2
=

1

2 2
. The tangent line to the parabola at 1 1

2

has slope 1, so the normal line has slope 1. Thus the center of the

osculating circle lies in the direction of the unit vector 1

2

1

2
.

The circle has radius 2 2, so its center has position vector

1 1
2
+ 2 2 1

2

1

2
= 1 5

2
. So the equation of the circle

is ( + 1)2 + 5
2

2
= 8.

53. The tangent vector is normal to the normal plane, and the vector h6 6 8i is normal to the given plane.
ButT( ) k r0( ) and h6 6 8i k h3 3 4i, so we need to find such that r0( ) k h3 3 4i.
r( ) = 3 3 4 r0( ) = 3 2 3 4 3 k h3 3 4i when = 1. So the planes are parallel at the point ( 1 3 1).

54. To find the osculating plane, we first calculate the unit tangent and normal vectors.

In Maple, we use the VectorCalculus package and set r:= tˆ3,3*t,tˆ4 ;. After differentiating, the

Normalize command converts the tangent vector to the unit tangent vector: T:=Normalize(diff(r,t));. After

simplifying, we find that T( ) =
3 2 3 4 3

16 6 + 9 4 + 9
. We use a similar procedure to compute the unit normal vector,

N:=Normalize(diff(T,t));. After simplifying, we haveN( ) =
(8 6 9) 3 3(3 + 8 2) 6 2( 4 + 3)

2(4 6 + 36 2 + 9)(16 6 + 9 4 + 9)
. Then

we use the command B:=CrossProduct(T,N);. After simplification, we find thatB( ) =
6 2 2 4 3

2(4 6 + 36 2 + 9)
.

In Mathematica, we define the vector function r={tˆ3,3*t,tˆ4} and use the command Dt to differentiate. We find

T( ) by dividing the result by its magnitude, computed using the Norm command. (You may wish to include the option

Element[t,Reals] to obtain simpler expressions.) N( ) is found similarly, and we use Cross[T,N] to findB( ).

NowB( ) is parallel to 6 2 2 4 3 , so ifB( ) is parallel to h1 1 1i for some 6= 0 [sinceB(0) = 0], then

6 2 2 4 3 = h1 1 1i for some value of . But then 6 2 = 2 4 = 3 which has no solution for 6= 0. So there is
no such osculating plane.

55. First we parametrize the curve of intersection. We can choose = ; then = 2 = 2 and = 2 = 4, and the curve is

given by r( ) = 2 4 . r0( ) = 2 1 4 3 and the point (1 1 1) corresponds to = 1, so r0(1) = h2 1 4i is a normal
vector for the normal plane. Thus an equation of the normal plane is

2( 1) + 1( 1) + 4( 1) = 0 or 2 + + 4 = 7. T( ) =
r0( )
|r0( )| =

1

4 2 + 1 + 16 6
2 1 4 3 and

c° 2012 Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part.°°cc 2012 Cengage Learning. All Rights Reserved. May not be scanned, copied, or2012 Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part.duplicated, or posted to a publicly accessible website, in whole or in part.

117
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T0( ) = 1
2
(4 2 + 1 + 16 6) 3 2(8 + 96 5) 2 1 4 3 + (4 2 + 1 + 16 6) 1 2 2 0 12 2 . A normal vector for

the osculating plane is B(1) = T(1) ×N(1), but r0(1) = h2 1 4i is parallel to T(1) and
T0(1) = 1

2
(21) 3 2(104)h2 1 4i+ (21) 1 2h2 0 12i = 2

21 21
h 31 26 22i is parallel toN(1) as is h 31 26 22i,

so h2 1 4i × h 31 26 22i = h126 168 21i is normal to the osculating plane. Thus an equation for the osculating
plane is 126( 1) 168( 1) 21( 1) = 0 or 6 8 = 3.

56. r( ) = + 2 1 1
2
2 r0( ) = h1 1 i, T( ) =

r0( )
|r0( )| =

1

2 + 2
h1 1 i,

T0( )= 1
2
(2 + 2) 3 2(2 )h1 1 i+ (2 + 2) 1 2 h0 0 1i

= (2 + 2) 3 2 h1 1 i (2 + 2)h0 0 1i = 1

(2+ 2)3 2 h 2i

A normal vector for the osculating plane isB( ) = T( )×N( ), but r0( ) = h1 1 i is parallel toT( ) and h 2i

is parallel toT0( ) and hence parallel toN( ), so h1 1 i × h 2i = 2 + 2 2 + 2 0 is normal to the

osculating plane for any . All such vectors are parallel to h1 1 0i, so at any point + 2 1 1
2
2 on the curve, an

equation for the osculating plane is 1[ ( + 2)] + 1[ (1 )] + 0 1
2
2 = 0 or + = 3. Because the osculating

plane at every point on the curve is the same, we can conclude that the curve itself lies in that same plane. In fact, we can

easily verify that the parametric equations of the curve satisfy + = 3.

57. =
T

=
T

=
| T | andN =

T

| T | , so N =

T T

T
=

T
=

T by the Chain Rule.

58. For a plane curve, T = |T| cos i + |T| sin j = cos i + sin j. Then

T
=

T
= ( sin i+ cos j) and T

= | sin i+ cos j| = . Hence for a plane

curve, the curvature is = | |.

59. (a) |B| = 1 B ·B = 1 (B ·B) = 0 2
B ·B = 0 B

B

(b) B = T×N
B
= (T×N) = (T×N) 1

= (T×N) 1

|r0( )| = [(T
0 ×N) + (T×N0)]

1

|r0( )|

= T0 × T0

|T0| + (T×N0)
1

|r0( )| =
T×N0

|r0( )|
B

T

(c) B = T×N T N,B T andB N. SoB, T andN form an orthogonal set of vectors in the three-

dimensional space R3. From parts (a) and (b), B is perpendicular to bothB and T, so B is parallel toN.

Therefore, B = ( )N, where ( ) is a scalar.
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346 ¤ CHAPTER 13 VECTOR FUNCTIONS

(d) SinceB = T×N, T N and both T andN are unit vectors,B is a unit vector mutually perpendicular to bothT and

N. For a plane curve, T andN always lie in the plane of the curve, so that B is a constant unit vector always

perpendicular to the plane. Thus B = 0, but B = ( )N andN 6= 0, so ( ) = 0.

60. N = B×T
N
= (B×T) = B ×T+B× T [by Formula 5 of Theorem 13.2.3]

= N×T+B× N [by Formulas 3 and 1]

= (N×T) + (B×N) [by Property 2 of Theorem 12.4.11 ]

ButB×N = B× (B×T) = (B ·T)B (B ·B)T [by Property 6 of Theorem 12.4.11 ] = T

N = (T×N) T = T+ B.

61. (a) r0 = 0T r00 = 00T+ 0T0 = 00T+ 0 T 0 = 00T+ ( 0)2N by the first Serret-Frenet formula.

(b) Using part (a), we have

r0 × r00 = ( 0T)× [ 00T+ ( 0)2N]

= [( 0T)× ( 00T)] + ( 0T)× ( ( 0)2N) [by Property 3 of Theorem 12.4.11 ]

= ( 0 00)(T×T) + ( 0)3(T×N) = 0+ ( 0)3B = ( 0)3B

(c) Using part (a), we have

r000 = [ 00T+ ( 0)2N]0 = 000T+ 00T0 + 0( 0)2N+ 2 0 00N+ ( 0)2N0

= 000T+ 00 T 0 + 0( 0)2N+ 2 0 00N+ ( 0)2
N 0

= 000T+ 00 0 N+ 0( 0)2N+ 2 0 00N+ ( 0)3( T+ B) [by the second formula]

= [ 000 2( 0)3]T+ [3 0 00 + 0( 0)2]N+ ( 0)3B

(d) Using parts (b) and (c) and the facts thatB ·T = 0,B ·N = 0, andB ·B = 1, we get
(r0 × r00) · r000
|r0 × r00|2 =

( 0)3B · [ 000 2( 0)3]T+ [3 0 00 + 0( 0)2]N+ ( 0)3B

| ( 0)3B|2 =
( 0)3 ( 0)3

[ ( 0)3]2
= .

62. First we find the quantities required to compute :

r0( ) = h sin cos i r00( ) = h cos sin 0i r000( ) = h sin cos 0i
|r0( )| = ( sin )2 + ( cos )2 + 2 = 2 + 2

r0( )× r00( ) =
i j k

sin cos

cos sin 0

= sin i cos j+ 2 k

|r0( )× r00( )| = ( sin )2 + ( cos )2 + ( 2)2 = 2 2 + 4

(r0( )× r00( )) · r000( ) = ( sin )( sin ) + ( cos )( cos ) + ( 2)(0) = 2
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SECTION 13.3 ARC LENGTH AND CURVATURE ¤ 347

Then by Theorem 10, ( ) = |r0( )× r00( )|
|r0( )|3 =

2 2 + 4

2 + 2
3 =

2 + 2

2 + 2
3 = 2 + 2

which is a constant.

From Exercise 61(d), the torsion is given by =
(r0 × r00) · r000
|r0 × r00|2 =

2

2 2 + 4
2 = 2 + 2

which is also a constant.

63. r = 1
2
2 1

3
3 r0 = 1 2 , r00 = h0 1 2 i, r000 = h0 0 2i r0 × r00 = 2 2 1

=
(r0 × r00) · r000
|r0 × r00|2 =

2 2 1 · h0 0 2i
4 + 4 2 + 1

=
2

4 + 4 2 + 1

64. r = hsinh cosh i r0 = hcosh sinh 1i, r00 = hsinh cosh 0i, r000 = hcosh sinh 0i
r0 × r00 = cosh sinh cosh2 sinh2 = h cosh sinh 1i

=
|r0 × r00|
|r0|3 =

|h cosh sinh 1i|
|hcosh sinh 1i|3 =

cosh2 + sinh2 + 1

cosh2 + sinh2 + 1
3 2

=
1

cosh2 + sinh2 + 1
=

1

2 cosh2
,

=
(r0 × r00) · r000
|r0 × r00|2 =

h cosh sinh 1i · hcosh sinh 0i
cosh2 + sinh2 + 1

=
cosh2 + sinh2

2 cosh2
=

1

2 cosh2

So at the point (0 1 0), = 0, and = 1
2
and = 1

2
.

65. For one helix, the vector equation is r( ) = h10 cos 10 sin 34 (2 )i (measuring in angstroms), because the radius of each
helix is 10 angstroms, and increases by 34 angstroms for each increase of 2 in . Using the arc length formula, letting go

from 0 to 2 9× 108 × 2 , we find the approximate length of each helix to be

=
2 9×108×2
0

|r0( )| =
2 9×108×2
0

( 10 sin )2 + (10 cos )2 + 34
2

2
= 100 + 34

2

2
2 9×108×2

0

= 2 9× 108 × 2 100 + 34
2

2
2 07× 1010 Å—more than two meters!

66. (a) For the function ( ) =

0 if 0

( ) if 0 1

1 if 1

to be continuous, we must have (0) = 0 and (1) = 1.

For 0 to be continuous, we must have 0(0) = 0(1) = 0. The curvature of the curve = ( ) at the point ( ( ))

is ( ) =
| 00( )|

1 + [ 0( )]2
3 2
. For ( ) to be continuous, we must have 00(0) = 00(1) = 0.

Write ( ) = 5 + 4 + 3 + 2 + + . Then 0( ) = 5 4 + 4 3 + 3 2 + 2 + and
00( ) = 20 3 + 12 2 + 6 + 2 . Our six conditions are:

(0) = 0 = 0 (1)
0(0) = 0 = 0 (3)
00(0) = 0 = 0 (5)

(1) = 1 + + + + + = 1 (2)
0(1) = 0 5 + 4 + 3 + 2 + = 0 (4)
00(1) = 0 20 + 12 + 6 + 2 = 0 (6)

From (1), (3), and (5), we have = = = 0. Thus (2), (4) and (6) become (7) + + = 1, (8) 5 + 4 + 3 = 0,
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348 ¤ CHAPTER 13 VECTOR FUNCTIONS

and (9) 10 + 6 + 3 = 0. Subtracting (8) from (9) gives (10) 5 + 2 = 0. Multiplying (7) by 3 and subtracting from

(8) gives (11) 2 + = 3. Multiplying (11) by 2 and subtracting from (10) gives = 6. By (10), = 15.

By (7), = 10. Thus, ( ) = 6 5 15 4 + 10 3.

(b)

13.4 Motion in Space: Velocity and Acceleration

1. (a) If r( ) = ( ) i+ ( ) j+ ( )k is the position vector of the particle at time t, then the average velocity over the time

interval [0 1] is

vave =
r(1) r(0)

1 0
=
(4 5 i+ 6 0 j+ 3 0k) (2 7 i+ 9 8 j+ 3 7k)

1
= 1 8 i 3 8 j 0 7k. Similarly, over the other

intervals we have

[0 5 1] : vave =
r(1) r(0 5)

1 0 5
=
(4 5 i+ 6 0 j+ 3 0k) (3 5 i+ 7 2 j+ 3 3k)

0 5
= 2 0 i 2 4 j 0 6k

[1 2] : vave =
r(2) r(1)

2 1
=
(7 3 i+ 7 8 j+ 2 7k) (4 5 i+ 6 0 j+ 3 0k)

1
= 2 8 i+ 1 8 j 0 3k

[1 1 5] : vave =
r(1 5) r(1)

1 5 1
=
(5 9 i+ 6 4 j+ 2 8k) (4 5 i+ 6 0 j+ 3 0k)

0 5
= 2 8 i+ 0 8 j 0 4k

(b) We can estimate the velocity at = 1 by averaging the average velocities over the time intervals [0 5 1] and [1 1 5]:

v(1) 1
2
[(2 i 2 4 j 0 6k) + (2 8 i+ 0 8 j 0 4k)] = 2 4 i 0 8 j 0 5k. Then the speed is

|v(1)| (2 4)2 + ( 0 8)2 + ( 0 5)2 2 58.

2. (a) The average velocity over 2 2 4 is

r(2 4) r(2)

2 4 2
= 2 5 [r(2 4) r(2)], so we sketch a vector in the same

direction but 2 5 times the length of [r(2 4) r(2)] .

(b) The average velocity over 1 5 2 is

r(2) r(1 5)

2 1 5
= 2[r(2) r(1 5)], so we sketch a vector in the

same direction but twice the length of [r(2) r(1 5)].
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SECTION 13.4 MOTION IN SPACE: VELOCITY AND ACCELERATION ¤ 349

(c) Using Equation 2 we have v(2) = lim
0

r(2 + ) r(2) .

(d) v(2) is tangent to the curve at r(2) and points in the direction of

increasing . Its length is the speed of the particle at = 2. We can

estimate the speed by averaging the lengths of the vectors found in

parts (a) and (b) which represent the average speed over 2 2 4 and

1 5 2 respectively. Using the axes scale as a guide, we estimate the

vectors to have lengths 2 8 and 2 7. Thus, we estimate the speed at = 2

to be |v(2)| 1
2
(2 8 + 2 7) = 2 75 and we draw the velocity vector v(2)

with this length.

3. r( ) = 1
2
2 At = 2:

v( ) = r0( ) = h 1i v(2) = h 2 1i

a( ) = r00( ) = h 1 0i a(2) = h 1 0i

|v( )| = 2 + 1

4. r( ) = 2 4 At = 1:

v( ) = r0( ) = 1 2 v(1) = h 1 2i

a( ) = r00( ) = 0 1 3 2 a(1) = h0 1i

|v( )| = 1 + 4

5. r( ) = 3 cos i+ 2 sin j At = 3:

v( ) = 3 sin i+ 2 cos j v
3
= 3 3

2
i+ j

a( ) = 3 cos i 2 sin j a
3
= 3

2
i 3 j

|v( )| = 9 sin2 + 4 cos2 = 4 + 5 sin2

Notice that 2 9 + 2 4 = sin2 + cos2 = 1, so the path is an ellipse.
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350 ¤ CHAPTER 13 VECTOR FUNCTIONS

6. r( ) = i+ 2 j At = 0:

v( ) = i+ 2 2 j v(0) = i+ 2 j

a( ) = i+ 4 2 j a(0) = i+ 4 j

|v( )| = 2 + 4 4 = 1 + 4 2

Notice that = 2 =
2
= 2, so the particle travels along a parabola,

but = , so 0.

7. r( ) = i+ 2 j+ 2k At = 1:

v( ) = i+ 2 j v(1) = i+ 2 j

a( ) = 2 j a(1) = 2 j

|v( )| = 1 + 4 2

Here = , = 2 = 2 and = 2, so the path of the particle is a

parabola in the plane = 2.

8. r( ) = i+ 2cos j+ sin k At = 0:

v( ) = i 2 sin j+ cos k v(0) = i+ k

a( ) = 2 cos j sin k a(0) = 2 j

|v( )| = 1 + 4 sin2 + cos2 = 2 + 3 sin2

Since 2 4 + 2 = 1, = , the path of the particle is an elliptical helix

about the -axis.

9. r( ) = 2 + 2 3 v( ) = r0( ) = 2 + 1 2 1 3 2 , a( ) = v0( ) = h2 2 6 i,

|v( )| = (2 + 1)2 + (2 1)2 + (3 2)2 = 9 4 + 8 2 + 2.

10. r( ) = h2 cos 3 2 sin i v( ) = r0( ) = h 2 sin 3 2 cos i, a( ) = v0( ) = h 2 cos 0 2 sin i,

|v( )| = 4 sin2 + 9 + 4cos2 = 13.

11. r( ) = 2 i+ j+ k v( ) = r0( ) = 2 i+ j k, a( ) = v0( ) = j+ k,

|v( )| = 2 + 2 + 2 = ( + )2 = + .

12. r( ) = 2 i+ 2 j+ ln k v( ) = r0( ) = 2 i+ 2 j+ (1 )k, a( ) = v0( ) = 2 i (1 2)k,

|v( )| = 4 2 + 4 + (1 2) = [2 + (1 )]2 = |2 + (1 )|.

13. r( ) = hcos sin i

v( ) = r0( ) = hcos sin i+ h sin cos 1i = hcos sin sin + cos + 1i
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a( ) = v0( ) = hcos sin sin cos sin + cos + cos sin + 1 + 1i
= h 2 sin 2 cos + 2i

|v( )| = cos2 + sin2 2 cos sin + sin2 + cos2 + 2 sin cos + 2 + 2 + 1

= 2 + 2 + 3

14. r( ) = 2 sin cos cos + sin

v( ) = r0( ) = h2 cos ( sin + cos ) sin + cos + sin i = h2 sin cos i,
a( ) = v0( ) = h2 cos + sin sin + cos i,

|v( )| = 4 2 + 2 sin2 + 2 cos2 = 4 2 + 2 = 5 2 = 5 [since 0].

15. a( ) = i+ 2 j v( ) = a( ) = (i+ 2 j) = i+ 2 j+C and k = v (0) = C,

soC = k and v( ) = i+ 2 j+ k. r( ) = v( ) = ( i+ 2 j+ k) = 1
2
2 i+ 2 j+ k+D.

But i = r (0) = D, soD = i and r( ) = 1
2
2 + 1 i+ 2 j+ k.

16. a( ) = 2 i+ 6 j+ 12 2 k v( ) = (2 i+ 6 j+ 12 2 k) = 2 i+ 3 2 j+ 4 3 k+C, and i = v(0) = C,

soC = i and v( ) = (2 + 1)i+ 3 2 j+ 4 3 k. r( ) = (2 + 1)i+ 3 2 j+ 4 3 k = ( 2 + ) i+ 3 j+ 4 k+D.

But j k = r(0) = D, soD = j k and r( ) = ( 2 + ) i+ ( 3 + 1) j+ ( 4 1)k.

17. (a) a( ) = 2 i+ sin j+ cos 2 k

v( ) = (2 i+ sin j+ cos 2 k) = 2 i cos j+ 1
2
sin 2 k+C

and i = v (0) = j+C, soC = i+ j

and v( ) = 2 + 1 i+ (1 cos ) j+ 1
2
sin 2 k.

r( ) = [ 2 + 1 i+ (1 cos ) j+ 1
2
sin 2 k]

= 1
3
3 + i+ ( sin ) j 1

4
cos 2 k+D

But j = r (0) = 1
4
k+D, soD = j+ 1

4
k and r( ) = 1

3
3 + i+ ( sin + 1) j+ 1

4
1
4
cos 2 k.

(b)

18. (a) a( ) = i+ j+ k

v ( ) = i+ j+ k = 1
2
2 i+ j k+C

and k = v (0) = j k+C, soC = j+ 2k

and v( ) = 1
2
2 i+ 1 j+ 2 k.

r( ) = 1
2
2 i+ ( 1) j+ (2 )k

= 1
6
3 i+ ( ) j+ ( + 2 )k+D

But j+ k = r(0) = j+ k+D, soD = 0 and r( ) = 1
6
3 i+ ( ) j+ ( + 2 )k

(b)

19. r( ) = 2 5 2 16 v( ) = h2 5 2 16i, |v( )| = 4 2 + 25 + 4 2 64 + 256 = 8 2 64 + 281

and |v( )| = 1
2
(8 2 64 + 281) 1 2(16 64). This is zero if and only if the numerator is zero, that is,

c° 2012 Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part.

NOT FOR SALE

°°cc 2012 Cengage Learning. All Rights Reserved. May not be scanned, copied, or2012 Cengage Learning. All Rights Reserved. May not be scanned, copied, duplicated, or posted to a publicly accessible website, in whole or in part.licated, or posted to a publicly accessible website, in whole or in par

124



352 ¤ CHAPTER 13 VECTOR FUNCTIONS

16 64 = 0 or = 4. Since |v( )| 0 for 4 and |v( )| 0 for 4, the minimum speed of 153 is attained

at = 4 units of time.

20. Since r( ) = 3 i + 2 j + 3 k, a( ) = r00( ) = 6 i + 2 j + 6 k. By Newton’s Second Law,

F( ) = a( ) = 6 i+ 2 j+ 6 k is the required force.

21. |F( )| = 20 N in the direction of the positive -axis, so F( ) = 20k. Also = 4 kg, r(0) = 0 and v(0) = i j.

Since 20k = F( ) = 4a( ), a( ) = 5k. Then v( ) = 5 k+ c1 where c1 = i j so v( ) = i j+ 5 k and the

speed is |v( )| = 1 + 1 + 25 2 = 25 2 + 2. Also r( ) = i j+ 5
2
2 k+ c2 and 0 = r(0), so c2 = 0

and r( ) = i j+ 5
2
2 k.

22. The argument here is the same as that in Example 13.2.4 with r( ) replaced by v( ) and r0( ) replaced by a( ).

23. |v(0)| = 200 m s and, since the angle of elevation is 60 , a unit vector in the direction of the velocity is

(cos 60 )i+ (sin 60 )j = 1
2
i+ 3

2
j. Thus v(0) = 200 1

2
i+ 3

2
j = 100 i+ 100 3 j and if we set up the axes so that the

projectile starts at the origin, then r(0) = 0. Ignoring air resistance, the only force is that due to gravity, so

F( ) = a( ) = j where 9 8 m s2. Thus a( ) = 9 8 j and, integrating, we have v( ) = 9 8 j+C. But

100 i+ 100 3 j = v(0) = C, so v( ) = 100 i+ 100 3 9 8 j and then (integrating again)

r( ) = 100 i+ 100 3 4 9 2 j+D where 0 = r(0) = D. Thus the position function of the projectile is

r( ) = 100 i+ 100 3 4 9 2 j.

(a) Parametric equations for the projectile are ( ) = 100 , ( ) = 100 3 4 9 2. The projectile reaches the ground when

( ) = 0 (and 0) 100 3 4 9 2 = 100 3 4 9 = 0 = 100 3
4 9

35 3 s. So the range is

100 3
4 9

= 100 100 3
4 9

3535 m.

(b) The maximum height is reached when ( ) has a critical number (or equivalently, when the vertical component

of velocity is 0): 0( ) = 0 100 3 9 8 = 0 = 100 3
9 8

17 7 s. Thus the maximum height is

100 3
9 8

= 100 3 100 3
9 8

4 9 100 3
9 8

2

1531 m.

(c) From part (a), impact occurs at = 100 3
4 9

s. Thus, the velocity at impact is

v 100 3
4 9

= 100 i + 100 3 9 8 100 3
4 9

j = 100 i 100 3 j and the speed is

v 100 3
4 9

= 10,000 + 30,000 = 200 m s.

24. As in Exercise 23, v( ) = 100 i+ 100 3 9 8 j and r( ) = 100 i+ 100 3 4 9 2 j+D.

But r(0) = 100 j, soD = 100 j and r( ) = 100 i+ 100 + 100 3 4 9 2 j.
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SECTION 13.4 MOTION IN SPACE: VELOCITY AND ACCELERATION ¤ 353

(a) = 0 100 + 100 3 4 9 2 = 0 or 4 9 2 100 3 100 = 0. From the quadratic formula we have

=
100 3± ( 100 3 )2 4(4 9)( 100)

2(4 9)
=
100 3± 31,960

9 8
. Taking the positive -value gives

= 100 3+ 31,960
9 8

35 9 s. Thus the range is = 100 · 100 3+ 31,960
9 8

3592 m.

(b) The maximum height is attained when = 0 100 3 9 8 = 0 = 100 3
9 8

17 7 s and the

maximum height is 100 + 100 3 100 3
9 8

4 9 100 3
9 8

2

1631 m.

Alternate solution: Because the projectile is fired in the same direction and with the same velocity as in Exercise 23,

but from a point 100 m higher, the maximum height reached is 100 m higher than that found in Exercise 23, that is,

1531 m+ 100 m = 1631 m.

(c) From part (a), impact occurs at = 100 3+ 31,960
9 8

s. Thus the velocity at impact is

v 100 3+ 31,960
9 8

= 100 i+ 100 3 9 8 100 3+ 31,960
9 8

j = 100 i 31,960 j and the speed is

|v| = 10,000 + 31,960 = 41,960 205 m s.

25. As in Example 5, r( ) = ( 0 cos 45 ) i+ ( 0 sin 45 )
1
2

2 j = 1
2 0 2 i+ 0 2 2 j . The ball lands when

= 0 (and 0) =
0 2 s. Now since it lands 90 m away, 90 = = 1

2 0 2
0 2 or 2

0 = 90 and the initial

velocity is 0 = 90 30 m s.

26. As in Example 5, r( ) = ( 0 cos 30 ) i+ ( 0 sin 30 )
1
2

2 j = 1
2 0 3 i+ ( 0

2) j and then

v( ) = r0( ) = 1
2 0 3 i+ ( 0 2 ) j . The shell reaches its maximum height when the vertical component of velocity

is zero, so 1
2
( 0 2 ) = 0 =

0

2
. The vertical height of the shell at that time is 500 m,

so 1
2

0
0

2
0

2

2

= 500
2
0

8
= 500 0 = 4000 = 4000(9 8) 198 m s.

27. Let be the angle of elevation. Then 0 = 150 m s and from Example 5, the horizontal distance traveled by the projectile is

=
2
0 sin 2 . Thus 150

2 sin 2
= 800 sin 2 =

800

1502
0 3484 2 20 4 or 180 20 4 = 159 6 .

Two angles of elevation then are 10 2 and 79 8 .

28. Here 0 = 115 ft s, the angle of elevation is = 50 , and if we place the origin at home plate, then r(0) = 3 j.

As in Example 5, we have r ( ) = 1
2

2 j+ v0 +D whereD = r(0) = 3 j and v0 = 0 cos i+ 0 sin j,

so r( ) = ( 0 cos ) i+ ( 0 sin ) 1
2

2 + 3 j. Thus, parametric equations for the trajectory of the ball are

= ( 0 cos ) , = ( 0 sin ) 1
2

2 + 3. The ball reaches the fence when = 400

( 0 cos ) = 400 =
400

0 cos
=

400

115 cos 50
5 41 s. At this time, the height of the ball is
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354 ¤ CHAPTER 13 VECTOR FUNCTIONS

= ( 0 sin ) 1
2

2 + 3 (115 sin 50 )(5 41) 1
2
(32)(5 41)2 + 3 11 2 ft. Since the fence is 10 ft high, the ball

clears the fence.

29. Place the catapult at the origin and assume the catapult is 100 meters from the city, so the city lies between (100 0)

and (600 0). The initial speed is 0 = 80 m s and let be the angle the catapult is set at. As in Example 5, the trajectory of

the catapulted rock is given by r ( ) = (80 cos ) i+ (80 sin ) 4 9 2 j. The top of the near city wall is at (100 15),

which the rock will hit when (80 cos ) = 100 =
5

4 cos
and (80 sin ) 4 9 2 = 15

80 sin · 5

4 cos
4 9

5

4 cos

2

= 15 100 tan 7 65625 sec2 = 15. Replacing sec2 with tan2 + 1 gives

7 65625 tan2 100 tan + 22 65625 = 0. Using the quadratic formula, we have tan 0 230635, 12 8306

13 0 , 85 5 . So for 13 0 85 5 , the rock will land beyond the near city wall. The base of the far wall is

located at (600 0) which the rock hits if (80 cos ) = 600 =
15

2 cos
and (80 sin ) 4 9 2 = 0

80 sin · 15

2 cos
4 9

15

2 cos

2

= 0 600 tan 275 625 sec2 = 0

275 625 tan2 600 tan + 275 625 = 0. Solutions are tan 0 658678, 1 51819 33 4 , 56 6 . Thus the

rock lands beyond the enclosed city ground for 33 4 56 6 , and the angles that allow the rock to land on city ground

are 13 0 33 4 , 56 6 85 5 . If you consider that the rock can hit the far wall and bounce back into the city, we

calculate the angles that cause the rock to hit the top of the wall at (600 15): (80 cos ) = 600 =
15

2 cos
and

(80 sin ) 4 9 2 = 15 600 tan 275 625 sec2 = 15 275 625 tan2 600 tan + 290 625 = 0.

Solutions are tan 0 727506, 1 44936 36 0 , 55 4 , so the catapult should be set with angle where

13 0 36 0 , 55 4 85 5 .

30. If we place the projectile at the origin then, as in Example 5, r( ) = ( 0 cos ) i+ ( 0 sin ) 1
2

2 j and

v( ) = ( 0 cos ) i+ [( 0 sin ) ] j. The maximum height is reached when the vertical component of velocity is zero, so

( 0 sin ) = 0 =
0 sin , and the corresponding height is the vertical component of the position function:

( 0 sin ) 1
2

2 = ( 0 sin )
0 sin 1

2

0 sin
2

=
1

2
2
0 sin

2

Half that time is =
0 sin

2
, when the height of the projectile is

( 0 sin ) 1
2

2 = ( 0 sin )
0 sin

2
1
2

0 sin

2

2

=
1

2
2
0 sin

2 1

8
2
0 sin

2 =
3

8
2
0 sin

2 =
3

4

1

2
2
0 sin

2

or three-quarters of the maximum height.
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SECTION 13.4 MOTION IN SPACE: VELOCITY AND ACCELERATION ¤ 355

31. Here a( ) = 4 j 32k so v( ) = 4 j 32 k+ v0 = 4 j 32 k+ 50 i+ 80k = 50 i 4 j+ (80 32 )k and

r( ) = 50 i 2 2 j+ (80 16 2)k (note that r0 = 0). The ball lands when the -component of r( ) is zero

and 0: 80 16 2 = 16 (5 ) = 0 = 5. The position of the ball then is

r(5) = 50(5) i 2(5)2 j+ [80(5) 16(5)2]k = 250 i 50 j or equivalently the point (250 50 0). This is a distance of

2502 + ( 50)2 + 02 = 65,000 255 ft from the origin at an angle of tan 1 50
250

11 3 from the eastern direction

toward the south. The speed of the ball is |v(5)| = |50 i 20 j 80k| = 502 + ( 20)2 + ( 80)2 = 9300 96 4 ft/s.

32. Place the ball at the origin and consider j to be pointing in the northward direction with i pointing east and k pointing

upward. Force = mass × acceleration acceleration = force mass, so the wind applies a constant acceleration of

4 N 0 8 kg = 5 m s2 in the easterly direction. Combined with the acceleration due to gravity, the acceleration acting

on the ball is a( ) = 5 i 9 8k. Then v( ) = a( ) = 5 i 9 8 k+C whereC is a constant vector.

We know v(0) = C = 30 cos 30 j+ 30 sin 30 k = 15 3 j+ 15k C = 15 3 j+ 15k and

v( ) = 5 i 15 3 j+ (15 9 8 )k. r( ) = v( ) = 2 5 2 i 15 3 j+ 15 4 9 2 k+D but r(0) = D = 0

so r( ) = 2 5 2 i 15 3 j+ 15 4 9 2 k. The ball lands when 15 4 9 2 = 0 = 0, = 15 4 9 3 0612 s,

so the ball lands at approximately r(3 0612) 23 43 i 79 53 j which is 82.9 m away in the direction S 16.4 E. Its speed is

approximately |v(3 0612)| 15 306 i 15 3 j 15k 33 68 m s.

33. (a) After seconds, the boat will be 5 meters west of point . The velocity

of the water at that location is 3
400
(5 )(40 5 ) j. The velocity of the

boat in still water is 5 i so the resultant velocity of the boat is

v( ) = 5 i+ 3
400 (5 )(40 5 ) j = 5i+ 3

2
3
16

2 j. Integrating, we obtain

r( ) = 5 i+ 3
4
2 1

16
3 j+C. If we place the origin at (and consider j

to coincide with the northern direction) then r(0) = 0 C = 0 and we have r( ) = 5 i+ 3
4
2 1

16
3 j. The boat

reaches the east bank after 8 s, and it is located at r(8) = 5(8)i+ 3
4
(8)2 1

16
(8)3 j = 40 i+16 j. Thus the boat is 16 m

downstream.

(b) Let be the angle north of east that the boat heads. Then the velocity of the boat in still water is given by

5(cos ) i+ 5(sin ) j. At seconds, the boat is 5(cos ) meters from the west bank, at which point the velocity

of the water is 3
400
[5(cos ) ][40 5(cos ) ] j. The resultant velocity of the boat is given by

v( ) = 5(cos ) i+ 5 sin + 3
400 (5 cos )(40 5 cos ) j = (5 cos ) i+ 5 sin + 3

2 cos 3
16

2 cos2 j.

Integrating, r( ) = (5 cos ) i+ 5 sin + 3
4
2 cos 1

16
3 cos2 j (where we have again placed

the origin at ). The boat will reach the east bank when 5 cos = 40 =
40

5 cos
=

8

cos
.

In order to land at point (40 0) we need 5 sin + 3
4
2 cos 1

16
3 cos2 = 0
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5
8

cos
sin + 3

4

8

cos

2

cos 1
16

8

cos

3

cos2 = 0
1

cos
(40 sin + 48 32) = 0

40 sin + 16 = 0 sin = 2
5
. Thus = sin 1 2

5
23 6 , so the boat should head 23 6 south of

east (upstream). The path does seem realistic. The boat initially heads

upstream to counteract the effect of the current. Near the center of the river,

the current is stronger and the boat is pushed downstream. When the boat

nears the eastern bank, the current is slower and the boat is able to progress

upstream to arrive at point .

34. As in Exercise 33(b), let be the angle north of east that the boat heads, so the velocity of the boat in still water is given

by 5(cos ) i+ 5(sin ) j. At seconds, the boat is 5(cos ) meters from the west bank, at which point the velocity

of the water is 3 sin( 40) j = 3 sin[ · 5(cos ) 40] j = 3 sin
8
cos j. The resultant velocity of the boat

then is given by v( ) = 5(cos ) i + 5 sin + 3 sin
8
cos j. Integrating,

r ( ) = (5 cos ) i+ 5 sin
24

cos
cos

8
cos j+C.

If we place the origin at then r(0) = 0 24

cos
j+C = 0 C =

24

cos
j and

r( ) = (5 cos ) i+ 5 sin
24

cos
cos

8
cos +

24

cos
j. The boat will reach the east bank when

5 cos = 40 =
8

cos
. In order to land at point (40 0) we need

5 sin
24

cos
cos

8
cos +

24

cos
= 0

5
8

cos
sin

24

cos
cos

8

8

cos
cos +

24

cos
= 0

1

cos
40 sin

24
cos +

24
= 0

40 sin +
48
= 0 sin =

6

5
. Thus = sin 1 6

5
22 5 , so the boat should head 22 5 south of east.

35. If r0( ) = c× r( ) then r0( ) is perpendicular to both c and r( ). Remember that r0( ) points in the direction of motion, so if
r0( ) is always perpendicular to c, the path of the particle must lie in a plane perpendicular to c. But r0( ) is also perpendicular

to the position vector r( ) which confines the path to a sphere centered at the origin. Considering both restrictions, the path

must be contained in a circle that lies in a plane perpendicular to c, and the circle is centered on a line through the origin in the

direction of c.

36. (a) From Equation 7 we have a = 0T+ 2N. If a particle moves along a straight line, then = 0 [see Section 13.3], so the

acceleration vector becomes a = 0T. Because the acceleration vector is a scalar multiple of the unit tangent vector, it is

parallel to the tangent vector.

c° 2012 Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part.

NOT FOR SALE

°°cc 2012 Cengage Learning. All Rights Reserved. May not be scanned, copied, or2012 Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part.duplicated, or posted to a publicly accessible website, in whole or in part.

129
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(b) If the speed of the particle is constant, then 0 = 0 and Equation 7 gives a = 2N. Thus the acceleration vector is

parallel to the unit normal vector (which is perpendicular to the tangent vector and points in the direction that the curve is

turning).

37. r( ) = (3 3) i + 3 2 j r0( ) = (3 3 2) i + 6 j,

|r0( )| = (3 3 2)2 + (6 )2 = 9 + 18 2 + 9 4 = (3 3 2)2 = 3 + 3 2,

r00( ) = 6 i + 6 j, r0( ) × r00( ) = (18 + 18 2)k. Then Equation 9 gives

=
r0( ) · r00( )
|r0( )| =

(3 3 2)( 6 ) + (6 )(6)

3 + 3 2
=
18 + 18 3

3 + 3 2
=
18 (1 + 2)

3(1 + 2)
= 6 or by Equation 8,

= 0 = 3 + 3 2 = 6 and Equation 10 gives =
|r0( )× r00( )|

|r0( )| =
18 + 18 2

3 + 3 2
=
18(1 + 2)

3(1 + 2)
= 6.

38. r( ) = (1 + ) i+ ( 2 2 ) j r0( ) = i+ (2 2) j, |r0( )| = 12 + (2 2)2 = 4 2 8 + 5,

r00( ) = 2 j, r0( )× r00( ) = 2k. Then Equation 9 gives =
r0( ) · r00( )
|r0( )| =

2(2 2)

4 2 8 + 5
and Equation 10

gives =
|r0( )× r00( )|

|r0( )| =
2

4 2 8 + 5
.

39. r( ) = cos i+ sin j+ k r0( ) = sin i+ cos j+ k, |r0( )| = sin2 + cos2 + 1 = 2,

r00( ) = cos i sin j, r0( )× r00( ) = sin i cos j+ k.

Then =
r0( ) · r00( )
|r0( )| =

sin cos sin cos

2
= 0 and =

|r0( )× r00( )|
|r0( )| =

sin2 + cos2 + 1

2
=

2

2
= 1.

40. r( ) = i+ 2 j+ 3 k r0( ) = i+ 2 j+ 3k, |r0( )| = 12 + (2 )2 + 32 = 4 2 + 10,

r00( ) = 2j, r0( )× r00( ) = 6i+ 2k.

Then =
r0( ) · r00( )
|r0( )| =

4

4 2 + 10
and =

|r0( )× r00( )|
|r0( )| =

2 10

4 2 + 10
.

41. r( ) = i+ 2 j+ k r0( ) = i+ 2 j k, |r( )| = 2 + 2 + 2 = ( + )2 = + ,

r00( ) = i + k. Then =
2 2

+
=
( + )( )

+
= = 2 sinh

and =
2 i 2 j 2 k

+
=

2( 2 + 2 + 2 )

+
= 2

+

+
= 2.

42. r( ) = i+ cos2 j+ sin2 k r0( ) = i 2 cos sin j+ 2 sin cos k = i sin 2 j+ sin 2 k,

|r0( )| = 1 + 2 sin2 2 , r00( ) = 2(sin2 cos2 ) j+ 2(cos2 sin2 )k = 2 cos 2 j+ 2cos 2 k. So

=
2 sin 2 cos 2 + 2 sin 2 cos 2

1 + 2 sin2 2
=

4 sin 2 cos 2

1 + 2 sin2 2
and =

| 2 cos 2 j 2 cos 2 k|
1 + 2 sin2 2

=
2 2 |cos 2 |
1 + 2 sin2

.
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43. The tangential component of a is the length of the projection of a onto T, so we sketch

the scalar projection of a in the tangential direction to the curve and estimate its length to

be 4 5 (using the fact that a has length 10 as a guide). Similarly, the normal component of

a is the length of the projection of a ontoN, so we sketch the scalar projection of a in the

normal direction to the curve and estimate its length to be 9 0. Thus 4 5 cm s2 and

9 0 cm s2.

44. L( ) = r( )× v( )

L0( ) = [r0( )× v( ) + r ( )× v0( )] [by Formula 5 of Theorem 13.2.3]

= [v( )× v( ) + r( )× v0( )] = [0+ r( )× a ( )] = ( )

So if the torque is always 0, then L0( ) = 0 for all , and so L( ) is constant.

45. If the engines are turned off at time , then the spacecraft will continue to travel in the direction of v( ), so we need a such

that for some scalar 0, r( ) + v( ) = h6 4 9i. v( ) = r0( ) = i+
1
j+

8

( 2 + 1)2
k

r( ) + v( ) = 3 + + 2 + ln + 7
4

2 + 1
+

8

( 2 + 1)2
3 + + = 6 = 3 ,

so 7 4
2 + 1

+
8(3 )

( 2 + 1)2
= 9

24 12 2 4

( 2 + 1)2
= 2 4 + 8 2 12 + 3 = 0.

It is easily seen that = 1 is a root of this polynomial. Also 2 + ln 1 + 3 1

1
= 4, so = 1 is the desired solution.

46. (a) v
= v

v
=
1

v . Integrating both sides of this equation with respect to gives

0

v
= v

0

1 v( )

v(0)

v = v
( )

(0)

[Substitution Rule]

v( ) v(0) = ln
( )

(0)
v v( ) = v(0) ln

(0)

( )
v .

(b) |v( )| = 2 |v |, and |v(0)| = 0. Therefore, by part (a), 2 |v | = ln
(0)

( )
v

2 |v | = ln (0)

( )
|v |. Note: (0) ( ) so that ln (0)

( )
0 ( ) = 2 (0).

Thus (0) 2 (0)

(0)
= 1 2 is the fraction of the initial mass that is burned as fuel.
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APPLIED PROJECT Kepler's Laws

1. With r = ( cos ) i+ ( sin ) j and h = k where 0,

(a) h = r× r0 = [( cos ) i+ ( sin ) j]× 0 cos sin i+ 0 sin + cos j

= 0 cos sin + 2 cos2 0 cos sin + 2 sin2 k = 2 k

(b) Since h = k, 0, = |h|. But by part (a), = |h| = 2 ( ).

(c) ( ) = 1
2 0

|r|2 = 1
2 0

2 ( ) in polar coordinates. Thus, by the Fundamental Theorem of Calculus,

=
2

2
.

(d) =
2

2
=
2
= constant since h is a constant vector and = |h|.

2. (a) Since = 1
2
, a constant, ( ) = 1

2
+ 1. But (0) = 0, so ( ) = 1

2
. But ( ) = area of the ellipse=

and ( ) = 1
2

, so = 2 .

(b) 2 ( ) = where is the eccentricity of the ellipse. But = (1 2) or = (1 2) and 1 2 = 2 2.

Hence 2 ( ) = = 2 .

(c) 2 =
4 2 2

2
= 4 2 2 2

2
=
4 2

3.

3. From Problem 2, 2 =
4 2

3. 365 25 days× 24 · 602 secondsday 3 1558× 107 seconds. Therefore

3 =
2

4 2

(6 67× 10 11)(1 99× 1030)(3 1558× 107)2
4 2

3 348× 1033 m3 1 496× 1011 m. Thus, the

length of the major axis of the earth’s orbit (that is, 2 ) is approximately 2 99× 1011 m = 2 99× 108 km.

4. We can adapt the equation 2 =
4 2

3 from Problem 2(c) with the earth at the center of the system, so is the period of the

satellite’s orbit about the earth, is the mass of the earth, and is the length of the semimajor axis of the satellite’s orbit

(measured from the earth’s center). Since we want the satellite to remain fixed above a particular point on the earth’s equator,

must coincide with the period of the earth’s own rotation, so = 24 h = 86,400 s. The mass of the earth is

= 5 98× 1024 kg, so =
2

4 2

1 3
(86,400)2(6 67× 10 11)(5 98× 1024)

4 2

1 3

4 23× 107 m. If we

assume a circular orbit, the radius of the orbit is , and since the radius of the earth is 6 37× 106 m, the required altitude
above the earth’s surface for the satellite is 4 23× 107 6 37× 106 3 59× 107 m, or 35,900 km.
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13 Review

1. A vector function is a function whose domain is a set of real numbers and whose range is a set of vectors. To find the derivative

or integral, we can differentiate or integrate each component of the vector function.

2. The tip of the moving vector r( ) of a continuous vector function traces out a space curve.

3. The tangent vector to a smooth curve at a point with position vector r( ) is the vector r0( ). The tangent line at is the line

through parallel to the tangent vector r0( ). The unit tangent vector isT( ) = r0( )
|r0( )| .

4. (a) (a) – (f ) See Theorem 13.2.3.

5. Use Formula 13.3.2, or equivalently, 13.3.3.

6. (a) The curvature of a curve is =
T whereT is the unit tangent vector.

(b) ( ) =
T0( )
r0( )

(c) ( ) =
|r0( )× r00( )|
|r0( )|3 (d) ( ) =

| 00( )|
[1 + ( 0( ))2]3 2

7. (a) The unit normal vector: N( ) = T0( )
|T0( )| . The binormal vector: B( ) = T( )×N( ).

(b) See the discussion preceding Example 7 in Section 13.3.

8. (a) If r( ) is the position vector of the particle on the space curve, the velocity v( ) = r0( ), the speed is given by |v( )|,
and the acceleration a( ) = v0( ) = r00( ).

(b) a = T+ N where = 0 and = 2.

9. See the statement of Kepler’s Laws on page 892 [ET 868].

1. True. If we reparametrize the curve by replacing = 3, we have r( ) = i+ 2 j+ 3 k, which is a line through the origin

with direction vector i+ 2 j+ 3k.

2. True. Parametric equations for the curve are = 0, = 2, = 4 , and since = 4 we have = 2 = ( 4)2 or

= 1
16

2, = 0. This is an equation of a parabola in the -plane.

3. False. The vector function represents a line, but the line does not pass through the origin; the -component is 0 only for = 0

which corresponds to the point (0 3 0) not (0 0 0).

4. True. See Theorem 13.2.2.

5. False. By Formula 5 of Theorem 13.2.3, [u( )× v( )] = u0( )× v( ) + u( )× v0( ).
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CHAPTER 13 REVIEW ¤ 361

6. False. For example, let r( ) = hcos sin i. Then |r( )| = cos2 + sin2 = 1 |r( )| = 0, but

|r0( )| = |h sin cos i| = ( sin )2 + cos2 = 1.

7. False. is the magnitude of the rate of change of the unit tangent vectorT with respect to arc length , not with respect to .

8. False. The binormal vector, by the definition given in Section 13.3, isB( ) = T( )×N( ) = [N( )×T( )].

9. True. At an inflection point where is twice continuously differentiable we must have 00( ) = 0, and by Equation 13.3.11,

the curvature is 0 there.

10. True. From Equation 13.3.9 , ( ) = 0 |T0( )| = 0 T0( ) = 0 for all . But thenT( ) = C, a constant vector,

which is true only for a straight line.

11. False. If r( ) is the position of a moving particle at time and |r( )| = 1 then the particle lies on the unit circle or the unit

sphere, but this does not mean that the speed |r0( )| must be constant. As a counterexample, let r( ) = 1 2 , then

r0( ) = 1 1 2 and |r( )| = 2 + 1 2 = 1 but |r0( )| = 1 + 2 (1 2) = 1 1 2 which is not

constant.

12. True. See Example 4 in Section 13.2 .

13. True. See the discussion preceding Example 7 in Section 13.3.

14. False. For example, r1( ) = h i and r2( ) = h2 2 i both represent the same plane curve (the line = ), but the tangent

vector r01( ) = h1 1i for all , while r02( ) = h2 2i. In fact, different parametrizations give parallel tangent vectors at a point,
but their magnitudes may differ.

1. (a) The corresponding parametric equations for the curve are = ,

= cos , = sin . Since 2 + 2 = 1, the curve is contained in a

circular cylinder with axis the -axis. Since = , the curve is a helix.

(b) r( ) = i+ cos j+ sin k

r0( ) = i sin j+ cos k

r00( ) = 2 cos j 2 sin k

2. (a) The expressions 2 , ( 1) , and ln( + 1) are all defined when 2 0 2, 6= 0,
and + 1 0 1. Thus the domain of r is ( 1 0) (0 2].

(b) lim
0
r( ) = lim

0
2 lim

0

1
lim

0
ln( + 1) = 2 0 lim

0 1
ln(0 + 1)

= 2 1 0 [using l’Hospital’s Rule in the -component]
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362 ¤ CHAPTER 13 VECTOR FUNCTIONS

(c) r0( ) = 2
1

ln( + 1) =
1

2 2

+ 1
2

1

+ 1

3. The projection of the curve of intersection onto the -plane is the circle 2 + 2 = 16 = 0. So we can write

= 4 cos , = 4 sin , 0 2 . From the equation of the plane, we have = 5 = 5 4 cos , so parametric

equations for are = 4cos , = 4 sin , = 5 4 cos , 0 2 , and the corresponding vector function is

r( ) = 4 cos i+ 4 sin j+ (5 4 cos )k, 0 2 .

4. The curve is given by r( ) = h2 sin 2 sin 2 2 sin 3 i, so
r0( ) = h2 cos 4 cos 2 6 cos 3 i. The point 1 3 2 corresponds to = 6

(or
6
+ 2 , an integer), so the tangent vector there is r0(

6
) = 3 2 0 .

Then the tangent line has direction vector 3 2 0 and includes the point

1 3 2 , so parametric equations are = 1 + 3 , = 3 + 2 , = 2.

5. 1

0
( 2 i+ cos j+ sin k) =

1

0
2 i+

1

0
cos j+

1

0
sin k

= 1
3
3 1

0
i+ sin

1

0

1

0
1 sin j+ 1 cos

1

0
k

= 1
3
i+ 1

2 cos
1

0
j+ 2 k = 1

3
i 2

2 j+
2 k

where we integrated by parts in the -component.

6. (a) intersects the -plane where = 0 2 1 = 0 = 1
2
, so the point

is 2 1
2

3
0 ln 1

2
= 15

8
0 ln 2 .

(b) The curve is given by r( ) = 2 3 2 1 ln , so r0( ) = 3 2 2 1 . The point (1 1 0) corresponds to = 1, so

the tangent vector there is r0(1) = h 3 2 1i. Then the tangent line has direction vector h 3 2 1i and includes the point
(1 1 0), so parametric equations are = 1 3 , = 1 + 2 , = .

(c) The normal plane has normal vector r0(1) = h 3 2 1i and equation 3( 1) + 2( 1) + = 0 or 3 2 = 1.

7. r( ) = 2 3 4 r0( ) = 2 3 2 4 3 |r0( )| = 4 2 + 9 4 + 16 6 and

=
3

0
|r0( )| =

3

0
4 2 + 9 4 + 16 6 . Using Simpson’s Rule with ( ) = 4 2 + 9 4 + 16 6 and = 6 we

have = 3 0
6
= 1

2
and

3
(0) + 4 1

2
+ 2 (1) + 4 3

2
+ 2 (2) + 4 5

2
+ (3)

= 1
6

0 + 0 + 0 + 4 · 4 1
2

2
+ 9 1

2

4
+ 16 1

2

6
+ 2 · 4(1)2 + 9(1)4 + 16(1)6

+ 4 · 4 3
2

2
+ 9 3

2

4
+ 16 3

2

6
+ 2 · 4(2)2 + 9(2)4 + 16(2)6

+ 4 · 4 5
2

2
+ 9 5

2

4
+ 16 5

2

6
+ 4(3)2 + 9(3)4 + 16(3)6

86 631
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8. r0( ) = 3 1 2 2 sin 2 2 cos 2 , |r0( )| = 9 + 4(sin2 2 + cos2 2 ) = 9 + 4.

Thus =
1

0
9 + 4 =

13

4
1
9

1 2 = 1
9
· 2
3

3 2
13

4
= 2

27
(133 2 8).

9. The angle of intersection of the two curves, , is the angle between their respective tangents at the point of intersection.

For both curves the point (1 0 0) occurs when = 0.

r01( ) = sin i+ cos j+ k r01(0) = j+ k and r02( ) = i+ 2 j+ 3 2 k r02(0) = i.

r01(0) · r02(0) = (j+ k) · i = 0. Therefore, the curves intersect in a right angle, that is, =
2
.

10. The parametric value corresponding to the point (1 0 1) is = 0.

r0( ) = i+ (cos + sin ) j+ (cos sin )k |r0( )| = 1 + (cos + sin )2 + (cos sin )2 = 3

and ( ) =
0

3 = 3( 1) = ln 1 + 1

3
.

Therefore, r( ( )) = 1 + 1

3
i+ 1+ 1

3
sin ln 1 + 1

3
j+ 1 + 1

3
cos ln 1 + 1

3
k.

11. (a) T( ) = r0( )
|r0( )| =

2 1

|h 2 1i| =
2 1

4 + 2 + 1

(b) T0( ) = 1
2
( 4 + 2 + 1) 3 2(4 3 + 2 ) 2 1 + ( 4 + 2 + 1) 1 2h2 1 0i

=
2 3

( 4 + 2 + 1)3 2
2 1 +

1

( 4 + 2 + 1)1 2
h2 1 0i

=
2 5 3 2 4 2 2 3 + 2 5 + 2 3 + 2 4 + 2 + 1 0

( 4 + 2 + 1)3 2
=

3 + 2 4 + 1 2 3

( 4 + 2 + 1)3 2

|T0( )| =
6 + 4 4 + 4 2 + 8 2 4 + 1 + 4 6 + 4 4 + 2

( 4 + 2 + 1)3 2
=

8 + 5 6 + 6 4 + 5 2 + 1

( 4 + 2 + 1)3 2
and

N( ) =
3 + 2 1 4 2 3

8 + 5 6 + 6 4 + 5 2 + 1
.

(c) ( ) =
|T0( )|
|r0( )| =

8 + 5 6 + 6 4 + 5 2 + 1

( 4 + 2 + 1)2
or

4 + 4 2 + 1

( 4 + 2 + 1)3 2

12. Using Exercise 13.3.42, we have r0( ) = h 3 sin 4 cos i, r00( ) = h 3 cos 4 sin i,

|r0( )|3 = 9 sin2 + 4 cos2
3

and then

( ) =
|( 3 sin )( 4 sin ) (4 cos )( 3 cos )|

(9 sin2 + 16 cos2 )3 2
=

12

(9 sin2 + 16 cos2 )3 2
.

At (3 0), = 0 and (0) = 12 (16)3 2 = 12
64
= 3

16
. At (0 4), =

2
and

2
= 12 93 2 = 12

27
= 4

9
.

13. 0 = 4 3, 00 = 12 2 and ( ) =
| 00|

[1 + ( 0)2]3 2
=

12 2

(1 + 16 6)3 2
, so (1) =

12

173 2
.
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364 ¤ CHAPTER 13 VECTOR FUNCTIONS

14. ( ) =
12 2 2

[1 + (4 3 2 )2]3 2
(0) = 2.

So the osculating circle has radius 12 and center 0
1
2
.

Thus its equation is 2 + + 1
2

2
= 1

4
.

15. r( ) = hsin 2 cos 2 i r0( ) = h2 cos 2 1 2 sin 2 i T( ) = 1

5
h2 cos 2 1 2 sin 2 i

T0( ) = 1

5
h 4 sin 2 0 4 cos 2 i N( ) = h sin 2 0 cos 2 i. SoN =N( ) = h0 0 1i and

B = T×N = 1

5
h 1 2 0i. So a normal to the osculating plane is h 1 2 0i and an equation is

1( 0) + 2( ) + 0( 1) = 0 or 2 + 2 = 0.

16. (a) The average velocity over [3 3 2] is given by

r(3 2) r(3)

3 2 3
= 5[r(3 2) r(3)], so we draw a

vector with the same direction but 5 times the length

of the vector [r(3 2) r(3)].

(b) v(3) = r0(3) = lim
0

r(3 + ) r(3)

(c) T(3) = r0(3)
|r0(3)| , a unit vector in the same direction as

r0(3), that is, parallel to the tangent line to the curve at

r(3), pointing in the direction corresponding to

increasing , and with length 1.

17. r( ) = ln i+ j+ k, v( ) = r0( ) = (1 + ln ) i+ j k,

|v ( )| = (1 + ln )2 + 12 + ( )2 = 2 + 2 ln + (ln )2 + 2 , a( ) = v0( ) = 1 i+ k

18. v( ) = a( ) = (6 i+ 12 2 j 6 k) = 3 2 i+ 4 3 j 3 2 k+C, but i j+ 3k = v(0) = 0+C,

soC = i j+ 3k and v( ) = (3 2 + 1) i+ (4 3 1) j+ (3 3 2)k

r( ) = v( ) = ( 3 + ) i+ ( 4 ) j+ (3 3)k+D.

But r(0) = 0 soD = 0 and r( ) = ( 3 + ) i+ ( 4 ) j+ (3 3)k.

19. We set up the axes so that the shot leaves the athlete’s hand 7 ft above the origin. Then we are given r(0) = 7j,

|v(0)| = 43 ft s, and v(0) has direction given by a 45 angle of elevation. Then a unit vector in the direction of v(0) is
1

2
(i+ j) v(0) = 43

2
(i+ j). Assuming air resistance is negligible, the only external force is due to gravity, so as in

Example 13.4.5 we have a = j where here 32 ft s2. Since v0( ) = a( ), we integrate, giving v( ) = j+C
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CHAPTER 13 REVIEW ¤ 365

whereC = v(0) = 43

2
(i+ j) v ( ) = 43

2
i+ 43

2
j. Since r0( ) = v( ) we integrate again, so

r( ) = 43

2
i+ 43

2

1
2

2 j+D. ButD = r(0) = 7 j r( ) = 43

2
i+ 43

2

1
2

2 + 7 j.

(a) At 2 seconds, the shot is at r(2) = 43

2
(2) i+ 43

2
(2) 1

2 (2)
2 + 7 j 60 8 i+ 3 8 j, so the shot is about 3 8 ft above

the ground, at a horizontal distance of 60 8 ft from the athlete.

(b) The shot reaches its maximum height when the vertical component of velocity is 0: 43

2
= 0

=
43

2
0 95 s. Then r(0 95) 28 9 i+ 21 4 j, so the maximum height is approximately 21 4 ft.

(c) The shot hits the ground when the vertical component of r( ) is 0, so 43

2

1
2

2 + 7 = 0

16 2 + 43

2
+ 7 = 0 2 11 s. r(2 11) 64 2 i 0 08 j, thus the shot lands approximately 64 2 ft from the

athlete.

20. r0( ) = i+ 2 j+ 2 k, r00( ) = 2k, |r0( )| = 1 + 4 + 4 2 = 4 2 + 5.

Then =
r0( ) · r00( )
|r0( )| =

4

4 2 + 5
and =

|r0( )× r00( )|
|r0( )| =

|4 i 2 j|
4 2 + 5

=
2 5

4 2 + 5
.

21. (a) Instead of proceeding directly, we use Formula 3 of Theorem 13.2.3: r( ) = R( )

v = r0( ) = R( ) + R0( ) = cos i+ sin j+ v .

(b) Using the same method as in part (a) and starting with v = R( ) + R0( ), we have

a = v0 = R0( ) +R0( ) + R00( ) = 2R0( ) + R00( ) = 2v + a .

(c) Here we have r( ) = cos i + sin j = R( ). So, as in parts (a) and (b),

v = r0( ) = R0( ) R( ) = [R0( ) R( )]

a = v0 = [R00( ) R0( )] [R0( ) R( )] = [R00( ) 2R0( ) +R( )]

= a 2 v + R

Thus, the Coriolis acceleration (the sum of the “extra” terms not involving a ) is 2 v + R.

22. (a) ( ) =

1 if 0

1 2 if 0 1

2

2 if 1

2

0( ) =

0 if 0

1 2 if 0 1

2

1 if 1

2

00( ) =

0 if 0

1 (1 2)3 2 if 0 1

2

0 if 1

2

since [ (1 2) 1 2] = (1 2) 1 2 2(1 2) 3 2 = (1 2) 3 2.

Now lim
0+

1 2 = 1 = (0) and lim
(1 2)

1 2 = 1

2
= 1

2
, so is continuous. Also, since
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366 ¤ CHAPTER 13 VECTOR FUNCTIONS

lim
0+

0( ) = 0 = lim
0

0( ) and lim
(1 2)

0( ) = 1 = lim
(1 2)+

0( ), 0 is continuous. But

lim
0+

00( ) = 1 6= 0 = lim
0

00( ), so 00 is not continuous at = 0. (The same is true at = 1

2
.)

So does not have continuous curvature.

(b) Set ( ) = 5 + 4 + 3 + 2 + + . The continuity conditions on are (0) = 0, (1) = 1, 0(0) = 0 and
0(1) = 1. Also the curvature must be continuous. For 0 and 1, ( ) = 0; elsewhere

( ) =
| 00( )|

(1 + [ 0( )]2)3 2
, so we need 00(0) = 0 and 00(1) = 0.

The conditions (0) = 0(0) = 00(0) = 0 imply that = = = 0.

The other conditions imply that + + = 1, 5 + 4 + 3 = 1, and

10 + 6 + 3 = 0. From these, we find that = 3, = 8, and = 6.

Therefore ( ) = 3 5 8 4 + 6 3. Since there was no solution with

= 0, this could not have been done with a polynomial of degree 4.

23. (a) r( ) = cos i+ sin j v = r0( ) = sin i+ cos j, so r = (cos i+ sin j) and

v = ( sin i+ cos j). v · r = 2( cos sin + sin cos ) = 0, so v r. Since r points along a

radius of the circle, and v r, v is tangent to the circle. Because it is a velocity vector, v points in the direction of motion.

(b) In (a), we wrote v in the form u, where u is the unit vector sin i+ cos j. Clearly |v| = |u| = . At

speed , the particle completes one revolution, a distance 2 , in time =
2

=
2 .

(c) a = v
= 2 cos i 2 sin j = 2 (cos i+ sin j), so a = 2r. This shows that a is proportional

to r and points in the opposite direction (toward the origin). Also, |a| = 2 |r| = 2 .

(d) By Newton’s Second Law (see Section 13.4), F = a, so |F| = |a| = 2 =
( )2

=
|v|2 .

24. (a) Dividing the equation |F| sin =
2

by the equation |F| cos = , we obtain tan =
2

, so 2 = tan .

(b) = 400 ft and = 12 , so = tan 400 · 32 · tan 12 52 16 ft s 36 mi h.

(c) We want to choose a new radius 1 for which the new rated speed is 32 of the old one: 1 tan 12 = 3
2 tan 12 .

Squaring, we get 1 tan 12 = 9
4 tan 12 , so 1 =

9
4 = 9

4 (400) = 900 ft.
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PROBLEMS PLUS

1. (a) The projectile reaches maximum height when 0 = = [( 0 sin ) 1
2

2] = 0 sin ; that is, when

=
0 sin and = ( 0 sin )

0 sin 1

2
0 sin

2

=
2
0 sin

2

2
. This is the maximum height attained when

the projectile is fired with an angle of elevation . This maximum height is largest when =
2
. In that case, sin = 1

and the maximum height is
2
0

2
.

(b) Let = 2
0 . We are asked to consider the parabola 2 + 2 2 = 0 which can be rewritten as =

1

2
2 +

2
.

The points on or inside this parabola are those for which and 0 1

2
2 +

2
. When the projectile is

fired at angle of elevation , the points ( ) along its path satisfy the relations = ( 0 cos ) and

= ( 0 sin ) 1
2

2, where 0 (2 0 sin ) (as in Example 13.4.5). Thus

| | 0 cos
2 0 sin

=
2
0 sin 2

2
0 = | |. This shows that .

For in the specified range, we also have = 0 sin
1
2

= 1
2

2 0 sin
0 and

= ( 0 sin )
0 cos 2 0 cos

2

= (tan )
2 2

0 cos
2

2 =
1

2 cos2
2 + (tan ) . Thus

1

2
2 +

2
=

1

2 cos2
2 +

1

2
2 + (tan )

2

=
2

2
1

1

cos2
+ (tan )

2
=

2(1 sec2 ) + 2 (tan ) 2

2

=
(tan2 ) 2 + 2 (tan ) 2

2
=

[(tan ) ]2

2
0

We have shown that every target that can be hit by the projectile lies on or inside the parabola =
1

2
2 +

2
.

Now let ( ) be any point on or inside the parabola =
1

2
2 +

2
. Then and 0 1

2
2 +

2
.

We seek an angle such that ( ) lies in the path of the projectile; that is, we wish to find an angle such that

=
1

2 cos2
2 + (tan ) or equivalently =

1

2
(tan2 + 1) 2 + (tan ) . Rearranging this equation we get

2

2
tan2 tan +

2

2
+ = 0 or 2(tan )2 2 (tan ) + ( 2 + 2 ) = 0 ( ) . This quadratic equation
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for tan has real solutions exactly when the discriminant is nonnegative. Now 2 4 0

( 2 )2 4 2( 2 + 2 ) 0 4 2( 2 2 2 ) 0 2 2 + 2 0

1

2
( 2 2)

1

2
2 +

2
. This condition is satisfied since ( ) is on or inside the parabola

=
1

2
2 +

2
. It follows that ( ) lies in the path of the projectile when tan satisfies ( ), that is, when

tan =
2 ± 4 2( 2 2 2 )

2 2
=

± 2 2 2

.

(c) If the gun is pointed at a target with height at a distance downrange, then

tan = . When the projectile reaches a distance downrange (remember

we are assuming that it doesn’t hit the ground first), we have = = ( 0 cos ) ,

so =
0 cos

and = ( 0 sin ) 1
2

2 = tan
2

2 2
0 cos

2
.

Meanwhile, the target, whose -coordinate is also , has fallen from height to height

1
2

2 = tan
2

2 2
0 cos

2
. Thus the projectile hits the target.

2. (a) As in Problem 1, r( ) = ( 0 cos ) i+ ( 0 sin ) 1
2

2 j, so = ( 0 cos ) and = ( 0 sin ) 1
2

2. The

difference here is that the projectile travels until it reaches a point where 0 and = (tan ) . (Here 0
2
.)

From the parametric equations, we obtain =
0 cos

and =
( 0 sin )

0 cos

2

2 2
0 cos

2
= (tan )

2

2 2
0 cos

2
.

Thus the projectile hits the inclined plane at the point where (tan )
2

2 2
0 cos

2
= (tan ) . Since

2

2 2
0 cos

2
= (tan + tan ) and 0, we must have

2 2
0 cos

2
= tan + tan . It follows that

=
2 2

0 cos
2

(tan + tan ) and =
0 cos

=
2 0 cos

(tan + tan ). This means that the parametric

equations are defined for in the interval 0 2 0 cos
(tan + tan ) .

(b) The downhill range (that is, the distance to the projectile’s landing point as

measured along the inclined plane) is ( ) = sec , where is the

coordinate of the landing point calculated in part (a). Thus

( ) =
2 2

0 cos
2

(tan + tan ) sec =
2 2

0 sin cos

cos
+
cos2 sin

cos2

=
2 2

0 cos

cos2
(sin cos + cos sin ) =

2 2
0 cos sin( + )

cos2
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( ) is maximized when

0 = 0( ) =
2 2

0

cos2
[ sin sin( + ) + cos cos( + )]

=
2 2

0

cos2
cos[( + ) + ] =

2 2
0 cos(2 + )

cos2

This condition implies that cos(2 + ) = 0 2 + =
2

= 1
2 2

.

(c) The solution is similar to the solutions to parts (a) and (b). This time the projectile travels until it reaches a point where

0 and = (tan ) . Since tan = tan( ), we obtain the solution from the previous one by replacing with .

The desired angle is = 1
2 2

+ .

(d) As observed in part (c), firing the projectile up an inclined plane with angle of inclination involves the same equations as

in parts (a) and (b) but with replaced by . So if is the distance up an inclined plane, we know from part (b) that

=
2 2

0 cos sin( )

cos2( )
2
0 =

cos2

2 cos sin( )
. 2

0 is minimized (and hence 0 is minimized) with

respect to when

0 = ( 2
0) =

cos2

2
· (cos cos ( ) sin sin ( ))

[cos sin( )]2

=
cos2

2
· cos[ + ( )]

[cos sin( )]2
=

cos2

2
· cos(2 )

[cos sin( )]2

Since
2
, this implies cos(2 ) = 0 2 =

2
= 1

2 2
+ . Thus the initial speed, and

hence the energy required, is minimized for = 1
2 2

+ .

3. (a) a = j v = v0 j = 2 i j s = s0 + 2 i
1
2

2 j = 3 5 j+ 2 i 1
2

2 j

s = 2 i+ 3 5 1
2

2 j. Therefore = 0 when = 7 seconds. At that instant, the ball is 2 7 0 94 ft to the

right of the table top. Its coordinates (relative to an origin on the floor directly under the table’s edge) are (0 94 0). At

impact, the velocity is v = 2 i 7 j, so the speed is |v| = 4 + 7 15 ft s.

(b) The slope of the curve when =
7 is = =

2
=

7

2
=

7

2
. Thus cot =

7

2

and 7 6 .

(c) From (a), |v| = 4 + 7 . So the ball rebounds with speed 0 8 4 + 7 12 08 ft s at angle of inclination

90 82 3886 . By Example 13.4.5, the horizontal distance traveled between bounces is =
2
0 sin 2 , where

0 12 08 ft s and 82 3886 . Therefore, 1 197 ft. So the ball strikes the floor at about

2 7 + 1 197 2 13 ft to the right of the table’s edge.
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4. By the Fundamental Theorem of Calculus, r0( ) = sin 1
2

2 cos 1
2

2 , |r0( )| = 1 and so T( ) = r0( ).

ThusT0( ) = cos 1
2

2 sin 1
2

2 and the curvature is = |T0( )| = ( )2(1) = | |.

5. The trajectory of the projectile is given by r( ) = ( cos ) i + ( sin ) 1
2

2 j, so

v( ) = r0( ) = cos i+ ( sin ) j and

|v( )|= ( cos )2 + ( sin )2 = 2 (2 sin ) + 2 2 = 2 2
2
(sin ) +

2

2

= sin
2

+
2

2

2

2
sin2 = sin

2

+
2

2
cos2

The projectile hits the ground when ( sin ) 1
2

2 = 0 = 2 sin , so the distance traveled by the projectile is

( ) =
(2 ) sin

0

|v( )| =
(2 ) sin

0

sin
2

+
2

2
cos2

=
( ) sin

2
sin

2

+ cos
2

+
[( ) cos ]2

2
ln sin + sin

2

+ cos
2

(2 ) sin

0

[using Formula 21 in the Table of Integrals]

=
2

sin sin
2

+ cos
2

+ cos
2

ln sin + sin
2

+ cos
2

+ sin sin
2

+ cos
2

cos
2

ln sin + sin
2

+ cos
2

=
2

sin · +
2

2
cos2 ln sin + + sin ·

2

2
cos2 ln sin +

=
2

sin +
2

2
cos2 ln

( ) sin +

( ) sin +
=

2

sin +
2

2
cos2 ln

1 + sin

1 sin

We want to maximize ( ) for 0 2.

0( ) =
2

cos +
2

2
cos2 · 1 sin

1 + sin
· 2 cos

(1 sin )2
2 cos sin ln

1 + sin

1 sin

=
2

cos +
2

2
cos2 · 2

cos
2 cos sin ln

1 + sin

1 sin

=
2

cos +
2

cos 1 sin ln
1 + sin

1 sin
=

2

cos 2 sin ln
1 + sin

1 sin

( ) has critical points for 0 2 when 0( ) = 0 2 sin ln
1 + sin

1 sin
= 0 [since cos 6= 0].

c° 2012 Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part.°°cc 2012 Cengage Learning. All Rights Reserved. May not be scanned, copied, or2012 Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part.duplicated, or posted to a publicly accessible website, in whole or in part.

143



CHAPTER 13 PROBLEMS PLUS ¤ 371

Solving by graphing (or using a CAS) gives 0 9855. Compare values at the critical point and the endpoints:

(0) = 0, ( 2) = 2 , and (0 9855) 1 20 2 . Thus the distance traveled by the projectile is maximized

for 0 9855 or 56 .

6. As the cable is wrapped around the spool, think of the top or bottom of the

cable forming a helix of radius + . Let be the vertical distance

between coils. Then, from similar triangles,

2
2 4 2

=
2 ( + ) 2 2 = 2( + )2( 2 4 2)

=
2 ( + )
2( + )2 2

.

If we parametrize the helix by ( ) = ( + ) cos , ( ) = ( + ) sin , then we must have ( ) = [ (2 )] .

The length of one complete cycle is

=
2

0

[ 0( )]2 + [ 0( )]2 + [ 0 ( )]2 =
2

0

( + )2 +
2

2

= 2 ( + )2 +
2

2

= 2 ( + )2 +
2( + )2

2( + )2 2
= 2 ( + ) 1 +

2

2( + )2 2
=

2 2( + )2

2( + )2 2

The number of complete cycles is [[ ]], and so the shortest length along the spool is

=
2 ( + )
2( + )2 2

2( + )2 2

2 2( + )2

7. We can write the vector equation as r( ) = a 2 + b + c where a = h 1 2 3i, b = h 1 2 3i, and c = h 1 2 3i.
Then r0( ) = 2 a+ b which says that each tangent vector is the sum of a scalar multiple of a and the vector b. Thus the

tangent vectors are all parallel to the plane determined by a and b so the curve must be parallel to this plane. [Here we assume

that a and b are nonparallel. Otherwise the tangent vectors are all parallel and the curve lies along a single line.] A normal

vector for the plane is a× b = h 2 3 3 2 3 1 1 3 1 2 2 1i. The point ( 1, 2, 3) lies on the plane (when

= 0), so an equation of the plane is

( 2 3 3 2)( 1) + ( 3 1 1 3)( 2) + ( 1 2 2 1)( 3) = 0

or

( 2 3 3 2) + ( 3 1 1 3) + ( 1 2 2 1) = 2 3 1 3 2 1 + 3 1 2 1 3 2 + 1 2 3 2 1 3
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14 PARTIAL DERIVATIVES

14.1 Functions of Several Variables

1. (a) From Table 1, ( 15 40) = 27, which means that if the temperature is 15 C and the wind speed is 40 km h, then the

air would feel equivalent to approximately 27 C without wind.

(b) The question is asking: when the temperature is 20 C, what wind speed gives a wind-chill index of 30 C? From

Table 1, the speed is 20 km h.

(c) The question is asking: when the wind speed is 20 km h, what temperature gives a wind-chill index of 49 C? From

Table 1, the temperature is 35 C.

(d) The function = ( 5 ) means that we fix at 5 and allow to vary, resulting in a function of one variable. In

other words, the function gives wind-chill index values for different wind speeds when the temperature is 5 C. From

Table 1 (look at the row corresponding to = 5), the function decreases and appears to approach a constant value as

increases.

(e) The function = ( 50) means that we fix at 50 and allow to vary, again giving a function of one variable. In

other words, the function gives wind-chill index values for different temperatures when the wind speed is 50 km h . From

Table 1 (look at the column corresponding to = 50), the function increases almost linearly as increases.

2. (a) From Table 3, (95 70) = 124, which means that when the actual temperature is 95 F and the relative humidity is 70%,

the perceived air temperature is approximately 124 F.

(b) Looking at the row corresponding to = 90, we see that (90 ) = 100 when = 60.

(c) Looking at the column corresponding to = 50, we see that ( 50) = 88 when = 85.

(d) = (80 ) means that is fixed at 80 and is allowed to vary, resulting in a function of that gives the humidex values

for different relative humidities when the actual temperature is 80 F. Similarly, = (100 ) is a function of one

variable that gives the humidex values for different relative humidities when the actual temperature is 100 F. Looking at

the rows of the table corresponding to = 80 and = 100 we see that (80 ) increases at a relatively constant rate of

approximately 1 F per 10% relative humidity, while (100 ) increases more quickly (at first with an average rate of

change of 5 F per 10% relative humidity) and at an increasing rate (approximately 12 F per 10% relative humidity for

larger values of ).

3. (120 20) = 1 47(120)0 65(20)0 35 94 2, so when the manufacturer invests $20 million in capital and 120,000 hours of

labor are completed yearly, the monetary value of the production is about $94.2 million.

4. If the amounts of labor and capital are both doubled, we replace in the function with 2 2 , giving

(2 2 ) = 1 01(2 )0 75(2 )0 25 = 1 01(20 75)(20 25) 0 75 0 25 = (21)1 01 0 75 0 25 = 2 ( )

Thus, the production is doubled. It is also true for the general case ( ) = 1 :

(2 2 ) = (2 ) (2 )1 = (2 )(21 ) 1 = (2 +1 ) 1 = 2 ( ).
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374 ¤ CHAPTER 14 PARTIAL DERIVATIVES

5. (a) (160 70) = 0 1091(160)0 425(70)0 725 20 5, which means that the surface area of a person 70 inches (5 feet 10

inches) tall who weighs 160 pounds is approximately 20.5 square feet.

(b) Answers will vary depending on the height and weight of the reader.

6. We compare the values for the wind-chill index given by Table 1 with those given by the model function:

Modeled Wind-Chill Index Values ( )

The values given by the function appear to be fairly close (within 0 5) to the values in Table 1.

7. (a) According to Table 4, (40 15) = 25, which means that if a 40-knot wind has been blowing in the open sea for 15 hours,

it will create waves with estimated heights of 25 feet.

(b) = (30 ) means we fix at 30 and allow to vary, resulting in a function of one variable. Thus here, = (30 )

gives the wave heights produced by 30-knot winds blowing for hours. From the table (look at the row corresponding to

= 30), the function increases but at a declining rate as increases. In fact, the function values appear to be approaching a

limiting value of approximately 19, which suggests that 30-knot winds cannot produce waves higher than about 19 feet.

(c) = ( 30) means we fix at 30, again giving a function of one variable. So, = ( 30) gives the wave heights

produced by winds of speed blowing for 30 hours. From the table (look at the column corresponding to = 30), the

function appears to increase at an increasing rate, with no apparent limiting value. This suggests that faster winds (lasting

30 hours) always create higher waves.

8. (a) The cost of making small boxes, medium boxes, and large boxes is = ( ) = 8000 + 2 5 + 4 + 4 5

dollars.

(b) (3000 5000 4000) = 8000 + 2 5(3000) + 4(5000) + 4 5(4000) = 53,500 which means that it costs $53,500 to make

3000 small boxes, 5000 medium boxes, and 4000 large boxes.

(c) Because no partial boxes will be produced, each of , , and must be a positive integer or zero.
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9. (a) (2 1) = cos(2 + 2( 1)) = cos(0) = 1

(b) + 2 is defined for all choices of values for and and the cosine function is defined for all input values, so the domain

of is R2.

(c) The range of the cosine function is [ 1 1] and + 2 generates all possible input values for the cosine function, so the

range of cos( + 2 ) is [ 1 1].

10. (a) (3 1) = 1 + 4 12 = 1+ 3

(b) 4 2 is defined only when 4 2 0, or 2 4

2 2. So the domain of is {( ) | 2 2}.

(c) We know 0 4 2 2 so 1 1 + 4 2 3. Thus the range of is [1 3].

11. (a) (1 1 1) = 1 + 1 + 1 + ln(4 12 12 12) = 3 + ln 1 = 3

(b) , , are defined only when 0, 0, 0, and ln(4 2 2 2) is defined when

4 2 2 2 0 2 + 2 + 2 4, thus the domain is

( ) | 2 + 2 + 2 4 0 0 0 , the portion of the interior of a sphere of radius 2, centered at the

origin, that is in the first octant.

12. (a) (1 2 3) = 13 · 22 · 3 10 1 2 3 = 12 4 = 24

(b) is defined only when 10 0 10 , so the domain is {( ) | 10 }, the
points on or below the plane + + = 10.

13. 2 is defined only when 2 0, or 2 .

So the domain of is {( ) | 2 }.
14. We need 0, so = {( ) | 0}, the first and
third quadrants.
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15. ln(9 2 9 2) is defined only when

9 2 9 2 0, or 1
9

2 + 2 1. So the domain of

is ( ) 1
9

2 + 2 1 , the interior of an ellipse.

16. 2 2 is defined only when 2 2 0

2 2 | | | | | | | |. So
the domain of is {( ) | | | | |}.

17. 1 2 is defined only when 1 2 0, or
2 1 1 1, and 1 2 is defined

only when 1 2 0, or 2 1 1 1.

Thus the domain of is

{( ) | 1 1 1 1}.

18. + 25 2 2 is defined only when 0 and

25 2 2 0 2 + 2 25. So the domain

of is ( ) | 2 + 2 25 0 , a half disk of

radius 5.

19. 2 is defined only when 2 0, or 2.

In addition, is not defined if 1 2 = 0

= ±1. Thus the domain of is

( ) | 2 6= ±1 .

20. arcsin( 2 + 2 2) is defined only when

1 2 + 2 2 1 1 2 + 2 3. Thus

the domain of is ( ) | 1 2 + 2 3 .
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21. We need 1 2 2 2 0 or 2 + 2 + 2 1,

so = ( ) | 2 + 2 + 2 1 (the points inside

or on the sphere of radius 1, center the origin).

22. is defined only when 16 4 2 4 2 2 0

2

4
+

2

4
+

2

16
1. Thus,

= ( )
2

4
+

2

4
+

2

16
1 , that is, the points

inside the ellipsoid
2

4
+

2

4
+

2

16
= 1.

23. = 1 + , a plane which intersects the -plane in the

line = 1 + , = 0. The portion of this plane for

0, 0 is shown.

24. = 2 , a plane which intersects the -plane in the

line = 2 , = 0. The portion of this plane for

0, 0 is shown.

25. = 10 4 5 or 4 + 5 + = 10, a plane with

intercepts 2 5, 2, and 10.

26. = , a cylinder.
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27. = 2 + 1, a parabolic cylinder 28. = 1 + 2 2 + 2 2, a circular paraboloid with vertex at

(0 0 1).

29. = 9 2 9 2, an elliptic paraboloid opening

downward with vertex at (0 0 9).

30. = 4 2 + 2 so 4 2 + 2 = 2 and 0, the top

half of an elliptic cone.

31. = 4 4 2 2 so 4 2 + 2 + 2 = 4 or

2 +
2

4
+

2

4
= 1 and 0, the top half of an

ellipsoid.

32. All six graphs have different traces in the planes = 0 and = 0, so we investigate these for each function.

(a) ( ) = | |+ | |. The trace in = 0 is = | |, and in = 0 is = | |, so it must be graph VI.
(b) ( ) = | |. The trace in = 0 is = 0 and in = 0 is = 0, so it must be graph V.

(c) ( ) =
1

1 + 2 + 2
. The trace in = 0 is =

1

1 + 2
, and in = 0 is =

1

1 + 2
. In addition, we can see that is

close to 0 for large values of and , so this is graph I.
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(d) ( ) = ( 2 2)2. The trace in = 0 is = 4, and in = 0 is = 4. Both graph II and graph IV seem plausible;

notice the trace in = 0 is 0 = ( 2 2)2 = ± , so it must be graph IV.

(e) ( ) = ( )2. The trace in = 0 is = 2, and in = 0 is = 2. Both graph II and graph IV seem plausible;

notice the trace in = 0 is 0 = ( )2 = , so it must be graph II.

(f ) ( ) = sin (| |+ | |). The trace in = 0 is = sin | |, and in = 0 is = sin | |. In addition, notice that the
oscillating nature of the graph is characteristic of trigonometric functions. So this is graph III.

33. The point ( 3 3) lies between the level curves with -values 50 and 60. Since the point is a little closer to the level curve with

= 60, we estimate that ( 3 3) 56. The point (3 2) appears to be just about halfway between the level curves with

-values 30 and 40, so we estimate (3 2) 35. The graph rises as we approach the origin, gradually from above, steeply

from below.

34. (a) (Chicago) lies between level curves with pressures 1012 and 1016 mb, and since appears to be located about

one-fourth the distance from the 1012 mb isobar to the 1016 mb isobar, we estimate the pressure at Chicago to be about

1013 mb. lies very close to a level curve with pressure 1012 mb so we estimate the pressure at Nashville to be

approximately 1012 mb. appears to be just about halfway between level curves with pressures 1008 and 1012 mb, so we

estimate the pressure at San Francisco to be about 1010 mb. lies close to a level curve with pressure 1016 mb but we

can’t see a level curve to its left so it is more difficult to make an accurate estimate. There are lower pressures to the right

of and is a short distance to the left of the level curve with pressure 1016 mb, so we might estimate that the pressure at

Vancouver is about 1017 mb.

(b) Winds are stronger where the isobars are closer together (see Figure 13), and the level curves are closer near than at the

other locations, so the winds were strongest at San Francisco.

35. The point (160 10), corresponding to day 160 and a depth of 10 m, lies between the isothermals with temperature values

of 8 and 12 C. Since the point appears to be located about three-fourths the distance from the 8 C isothermal to the 12 C

isothermal, we estimate the temperature at that point to be approximately 11 C. The point (180 5) lies between the 16 and

20 C isothermals, very close to the 20 C level curve, so we estimate the temperature there to be about 19 5 C.

36. If we start at the origin and move along the -axis, for example, the -values of a cone centered at the origin increase at a

constant rate, so we would expect its level curves to be equally spaced. A paraboloid with vertex the origin, on the other hand,

has -values which change slowly near the origin and more quickly as we move farther away. Thus, we would expect its level

curves near the origin to be spaced more widely apart than those farther from the origin. Therefore contour map I must

correspond to the paraboloid, and contour map II the cone.

37. Near , the level curves are very close together, indicating that the terrain is quite steep. At , the level curves are much

farther apart, so we would expect the terrain to be much less steep than near , perhaps almost flat.
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38.

39. 40.

41. 42.

43. The level curves are ( 2 )2 = or = 2 ± ,

0, a family of pairs of parallel lines.

44. The level curves are 3 = or = 3 , a family

of cubic curves.
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45. The level curves are + = or = + , a

family of vertical translations of the graph of the root

function = .

46. The level curves are ln( 2 + 4 2) = or 2 +4 2 = ,

a family of ellipses.

47. The level curves are = or = , a family of

exponential curves.

48. = sec or = cos , 6=
2
+ [ an integer].

49. The level curves are 2 2 = or 2 2 = 2,

0. When = 0 the level curve is the pair of lines

= ± . For 0, the level curves are hyperbolas

with axis the -axis.

50. For 6= 0 and ( ) 6= (0 0), =
2 + 2

2 + 2 = 0 2 + 1
2

2
=

1

4 2
, a family

of circles with center 0 1
2

and radius 1
2
(without the

origin). If = 0, the level curve is the -axis.
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51. The contour map consists of the level curves = 2 + 9 2, a family of
ellipses with major axis the -axis. (Or, if = 0, the origin.)

The graph of ( ) is the surface = 2 + 9 2, an elliptic paraboloid.

If we visualize lifting each ellipse = 2 + 9 2 of the contour map to the plane
= , we have horizontal traces that indicate the shape of the graph of .

52. The contour map consists of the level curves = 36 9 2 4 2

9 2 + 4 2 = 36 2, 0, a family of ellipses with major axis the
-axis. (Or, if = 6, the origin.)

The graph of ( ) is the surface = 36 9 2 4 2, or equivalently the upper half of the ellipsoid

9 2 + 4 2 + 2 = 36. If we visualize lifting each ellipse = 36 9 2 4 2 of the contour map to the plane = ,

we have horizontal traces that indicate the shape of the graph of .

53. The isothermals are given by = 100 (1 + 2 + 2 2) or
2 + 2 2 = (100 ) [0 100], a family of ellipses.

54. The equipotential curves are =
2 2 2

or

2 + 2 = 2
2

, a family of circles ( ).

Note: As , the radius of the circle approaches .
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55. ( ) = 2 3

The traces parallel to the -plane (such as the left-front trace in the graph above) are parabolas; those parallel to the -plane

(such as the right-front trace) are cubic curves. The surface is called a monkey saddle because a monkey sitting on the surface

near the origin has places for both legs and tail to rest.

56. ( ) = 3 3

The traces parallel to either the

-plane or the -plane are cubic
curves.

57. ( ) = ( 2+ 2) 3 sin( 2) + cos( 2)

58. ( ) = cos cos

The traces parallel to either the

- or -plane are cosine curves

with amplitudes that vary

from 0 to 1.

59. = sin( ) (a) C (b) II

Reasons: This function is periodic in both and , and the function is the same when is interchanged with , so its graph is

symmetric about the plane = . In addition, the function is 0 along the - and -axes. These conditions are satisfied only by

C and II.
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60. = cos (a) A (b) IV

Reasons: This function is periodic in but not , a condition satisfied only by A and IV. Also, note that traces in = are

cosine curves with amplitude that increases as increases.

61. = sin( ) (a) F (b) I

Reasons: This function is periodic in both and but is constant along the lines = + , a condition satisfied only

by F and I.

62. = sin sin (a) E (b) III

Reasons: This function is periodic in both and , but unlike the function in Exercise 61, it is not constant along lines such as

= + , so the contour map is III. Also notice that traces in = are vertically shifted copies of the sine wave = sin ,

so the graph must be E.

63. = (1 2)(1 2) (a) B (b) VI

Reasons: This function is 0 along the lines = ±1 and = ±1. The only contour map in which this could occur is VI. Also

note that the trace in the -plane is the parabola = 1 2 and the trace in the -plane is the parabola = 1 2, so the

graph is B.

64. =
1 + 2 + 2

(a) D (b) V

Reasons: This function is not periodic, ruling out the graphs in A, C, E, and F. Also, the values of approach 0 as we use

points farther from the origin. The only graph that shows this behavior is D, which corresponds to V.

65. = + 3 + 5 is a family of parallel planes with normal vector h1 3 5i.

66. = 2 + 3 2 + 5 2 is a family of ellipsoids for 0 and the origin for = 0.

67. Equations for the level surfaces are = 2 + 2. For 0, we have a family of circular cylinders with axis the -axis and

radius . When = 0 the level surface is the -axis. (There are no level surfaces for 0.)

68. Equations for the level surfaces are 2 2 2 = . For = 0, the equation becomes 2 + 2 = 2 and the surface is a

right circular cone with vertex the origin and axis the -axis. For 0, we have a family of hyperboloids of two sheets with

axis the -axis, and for 0, we have a family of hyperboloids of one sheet with axis the -axis.

69. (a) The graph of is the graph of shifted upward 2 units.

(b) The graph of is the graph of stretched vertically by a factor of 2.

(c) The graph of is the graph of reflected about the -plane.

(d) The graph of ( ) = ( ) + 2 is the graph of reflected about the -plane and then shifted upward 2 units.
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70. (a) The graph of is the graph of shifted 2 units in the positive -direction.

(b) The graph of is the graph of shifted 2 units in the negative -direction.

(c) The graph of is the graph of shifted 3 units in the negative -direction and 4 units in the positive -direction.

71. ( ) = 3 4 4 2 10

Three-dimensional view Front view

It does appear that the function has a maximum value, at the higher of the two “hilltops.” From the front view graph, the

maximum value appears to be approximately 15. Both hilltops could be considered local maximum points, as the values of

there are larger than at the neighboring points. There does not appear to be any local minimum point; although the valley shape

between the two peaks looks like a minimum of some kind, some neighboring points have lower function values.

72. ( ) =
2 2

Three-dimensional view Front view

The function does have a maximum value, which it appears to achieve at two different points (the two “hilltops”). From the

front view graph, we can estimate the maximum value to be approximately 0 18. These same two points can also be

considered local maximum points. The two “valley bottoms” visible in the graph can be considered local minimum points, as

all the neighboring points give greater values of .

73. ( ) =
+

2 + 2
. As both and become large, the function values

appear to approach 0, regardless of which direction is considered. As

( ) approaches the origin, the graph exhibits asymptotic behavior.

From some directions, ( ) , while in others ( ) .

(These are the vertical spikes visible in the graph.) If the graph is

examined carefully, however, one can see that ( ) approaches 0

along the line = .
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74. ( ) =
2 + 2

. The graph exhibits different limiting values as and

become large or as ( ) approaches the origin, depending on the direction

being examined. For example, although is undefined at the origin, the

function values appear to be 1
2
along the line = , regardless of the distance

from the origin. Along the line = , the value is always 1
2
. Along the

axes, ( ) = 0 for all values of ( ) except the origin. Other directions,
heading toward the origin or away from the origin, give various limiting

values between 1
2
and 1

2
.

75. ( ) =
2+ 2

. First, if = 0, the graph is the cylindrical surface

=
2
(whose level curves are parallel lines). When 0, the vertical trace

above the -axis remains fixed while the sides of the surface in the -direction

“curl” upward, giving the graph a shape resembling an elliptic paraboloid. The

level curves of the surface are ellipses centered at the origin.

= 0

For 0 1, the ellipses have major axis the -axis and the eccentricity increases as 0.

= 0 5 (level curves in increments of 1)

For = 1 the level curves are circles centered at the origin.

= 1 (level curves in increments of 1)
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When 1, the level curves are ellipses with major axis the -axis, and the eccentricity increases as increases.

= 2 (level curves in increments of 4)

For values of 0, the sides of the surface in the -direction curl downward and approach the -plane (while the vertical

trace = 0 remains fixed), giving a saddle-shaped appearance to the graph near the point (0 0 1). The level curves consist of

a family of hyperbolas. As decreases, the surface becomes flatter in the -direction and the surface’s approach to the curve in

the trace = 0 becomes steeper, as the graphs demonstrate.

= 0 5 (level curves in increments of 0 25)

= 2 (level curves in increments of 0 25)
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76. = ( 2 + 2)
2 2

. There are only three basic shapes which can be obtained (the fourth and fifth graphs are the

reflections of the first and second ones in the -plane). Interchanging and rotates the graph by 90 about the -axis.

= 1, = 1

= 2, = 1 = 1, = 1

= 1, = 1 = 2, = 1

If and are both positive ( 6= ), we see that the graph has two maximum points whose height increases as and increase.

If and have opposite signs, the graph has two maximum points and two minimum points, and if and are both negative,

the graph has one maximum point and two minimum points.

77. = 2 + 2 + . When 2, the surface intersects the plane = 6= 0 in a hyperbola. (See the following graph.)
It intersects the plane = in the parabola = (2 + ) 2, and the plane = in the parabola = (2 ) 2. These

parabolas open in opposite directions, so the surface is a hyperbolic paraboloid.

When = 2 the surface is = 2 + 2 2 = ( )2. So the surface is constant along each line = . That

is, the surface is a cylinder with axis = 0, = 0. The shape of the cylinder is determined by its intersection with the

plane + = 0, where = 4 2, and hence the cylinder is parabolic with minima of 0 on the line = .
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= 5, = 2 = 10 = 2

When 2 0, 0 for all and . If and have the same sign, then

2 + 2 + 2 + 2 2 = ( )2 0. If they have opposite signs, then 0. The intersection with the

surface and the plane = 0 is an ellipse (see graph below). The intersection with the surface and the planes = 0 and

= 0 are parabolas = 2 and = 2 respectively, so the surface is an elliptic paraboloid.

When 0 the graphs have the same shape, but are reflected in the plane = 0, because

2 + 2 + = ( )2 + 2 + ( )( ) . That is, the value of is the same for at ( ) as it is for at ( ).

= 1, = 2 = 0 = 10

So the surface is an elliptic paraboloid for 0 2, a parabolic cylinder for = 2, and a hyperbolic paraboloid for 2.

78. First, we graph ( ) = 2 + 2.

( ) = 2 + 2

[continued]
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Graphs of the other four functions follow.

( ) =
2 + 2 ( ) = ln 2 + 2

( ) = sin 2 + 2 ( ) =
1
2 + 2

Notice that each graph ( ) = 2 + 2 exhibits radial symmetry about the -axis and the trace in the -plane for

0 is the graph of = ( ), 0. This suggests that the graph of ( ) = 2 + 2 is obtained from the graph

of by graphing = ( ) in the -plane and rotating the curve about the -axis.

79. (a) = 1 = = ln = ln

ln = ln + ln

(b) We list the values for ln( ) and ln( ) for the years 1899 –1922. (Historically, these values were rounded to

2 decimal places.)

Year = ln( ) = ln( )

1899 0 0
1900 0 02 0 06
1901 0 04 0 02
1902 0 04 0
1903 0 07 0 05
1904 0 13 0 12
1905 0 18 0 04
1906 0 20 0 07
1907 0 23 0 15
1908 0 41 0 38
1909 0 33 0 24
1910 0 35 0 27

Year = ln( ) = ln( )

1911 0 38 0 34
1912 0 38 0 24
1913 0 41 0 25
1914 0 47 0 37
1915 0 53 0 34
1916 0 49 0 28
1917 0 53 0 39
1918 0 60 0 50
1919 0 68 0 57
1920 0 74 0 57
1921 1 05 0 85
1922 0 98 0 59
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After entering the ( ) pairs into a calculator or CAS, the resulting least squares regression line through the points is

approximately = 0 75136 + 0 01053, which we round to = 0 75 + 0 01.

(c) Comparing the regression line from part (b) to the equation = ln + with = ln( ) and = ln( ), we have

= 0 75 and ln = 0 01 = 0 01 1 01. Thus, the Cobb-Douglas production function is

= 1 = 1 01 0 75 0 25.

14.2 Limits and Continuity

1. In general, we can’t say anything about (3 1)! lim
( ) (3 1)

( ) = 6 means that the values of ( ) approach 6 as

( ) approaches, but is not equal to, (3 1). If is continuous, we know that lim
( ) ( )

( ) = ( ), so

lim
( ) (3 1)

( ) = (3 1) = 6.

2. (a) The outdoor temperature as a function of longitude, latitude, and time is continuous. Small changes in longitude, latitude,

or time can produce only small changes in temperature, as the temperature doesn’t jump abruptly from one value to

another.

(b) Elevation is not necessarily continuous. If we think of a cliff with a sudden drop-off, a very small change in longitude or

latitude can produce a comparatively large change in elevation, without all the intermediate values being attained.

Elevation can jump from one value to another.

(c) The cost of a taxi ride is usually discontinuous. The cost normally increases in jumps, so small changes in distance traveled

or time can produce a jump in cost. A graph of the function would show breaks in the surface.

3. We make a table of values of

( ) =
2 3 + 3 2 5

2
for a set

of ( ) points near the origin.

As the table shows, the values of ( ) seem to approach 2 5 as ( ) approaches the origin from a variety of different

directions. This suggests that lim
( ) (0 0)

( ) = 2 5. Since is a rational function, it is continuous on its domain. is

defined at (0 0), so we can use direct substitution to establish that lim
( ) (0 0)

( ) =
0203 + 0302 5

2 0 · 0 =
5

2
, verifying

our guess.
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4. We make a table of values of

( ) =
2

2 + 2 2
for a set of ( )

points near the origin.

It appears from the table that the values of ( ) are not approaching a single value as ( ) approaches the origin. For

verification, if we first approach (0 0) along the -axis, we have ( 0) = 0, so ( ) 0. But if we approach (0 0) along

the line = , ( ) =
2 2

2 + 2 2
=
2

3
( 6= 0), so ( ) 2

3 . Since approaches different values along different paths

to the origin, this limit does not exist.

5. ( ) = 5 3 2 2 is a polynomial, and hence continuous, so lim
( ) (1 2)

( ) = (1 2) = 5(1)3 (1)2(2)2 = 1.

6. is a polynomial and therefore continuous. Since is a continuous function, the composition is also continuous.

Similarly, + is a polynomial and cos is a continuous function, so the composition cos( + ) is continuous.

The product of continuous functions is continuous, so ( ) = cos( + ) is a continuous function and

lim
( ) (1 1)

( ) = (1 1) = (1)( 1) cos(1 + ( 1)) = 1 cos 0 = .

7. ( ) =
4
2 + 3 2

is a rational function and hence continuous on its domain.

(2 1) is in the domain of , so is continuous there and lim
( ) (2 1)

( ) = (2 1) =
4 (2)(1)

(2)2 + 3(1)2
=
2

7
.

8. 1 + 2

2 +
is a rational function and hence continuous on its domain, which includes (1 0). ln is a continuous function for

0, so the composition ( ) = ln
1 + 2

2 +
is continuous wherever 1 +

2

2 +
0. In particular, is continuous at

(1 0) and so lim
( ) (1 0)

( ) = (1 0) = ln
1 + 02

12 + 1 · 0 = ln
1

1
= 0.

9. ( ) = ( 4 4 2) ( 2 + 2 2). First approach (0 0) along the -axis. Then ( 0) = 4 2 = 2 for 6= 0, so

( ) 0. Now approach (0 0) along the -axis. For 6= 0, (0 ) = 4 2 2 2 = 2, so ( ) 2. Since has

two different limits along two different lines, the limit does not exist.
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10. ( ) = (5 4 cos2 ) ( 4 + 4). First approach (0 0) along the -axis. Then ( 0) = 0 4 = 0 for 6= 0, so

( ) 0. Next approach (0 0) along the -axis. For 6= 0, (0 ) = 5 4 4 = 5, so ( ) 5. Since has two

different limits along two different lines, the limit does not exist.

11. ( ) = ( 2 sin2 ) ( 4 + 4). On the -axis, ( 0) = 0 for 6= 0, so ( ) 0 as ( ) (0 0) along the

-axis. Approaching (0 0) along the line = , ( ) =
2 sin2

4 + 4
=
sin2

2 2
=
1

2

sin
2

for 6= 0 and

lim
0

sin
= 1, so ( ) 1

2
. Since has two different limits along two different lines, the limit does not exist.

12. ( ) =
( 1)2 + 2

. On the -axis, ( 0) = 0 ( 1)2 = 0 for 6= 1, so ( ) 0 as ( ) (1 0) along

the -axis. Approaching (1 0) along the line = 1, ( 1) =
( 1) ( 1)

( 1)2 + ( 1)2
=
( 1)2

2( 1)2
=
1

2
for 6= 1,

so ( ) 1
2
along this line. Thus the limit does not exist.

13. ( ) =
2 + 2

. We can see that the limit along any line through (0 0) is 0, as well as along other paths through

(0 0) such as = 2 and = 2. So we suspect that the limit exists and equals 0; we use the Squeeze Theorem to prove our

assertion. 0
2 + 2

| | since | | 2 + 2, and | | 0 as ( ) (0 0). So lim
( ) (0 0)

( ) = 0.

14. ( ) =
4 4

2 + 2
=
( 2 + 2)( 2 2)

2 + 2
= 2 2 for ( ) 6= (0 0). Thus the limit as ( ) (0 0) is 0.

15. Let ( ) =
2

4 + 4 2
. Then ( 0) = 0 for 6= 0, so ( ) 0 as ( ) (0 0) along the -axis. Approaching

(0 0) along the -axis or the line = also gives a limit of 0. But 2 =
2 2 2

4 + 4( 2)2
=

4 2

5 4
=

2

5
for 6= 0, so

( ) 0 5 = 1
5 as ( ) (0 0) along the parabola = 2. Thus the limit doesn’t exist.

16. We can use the Squeeze Theorem to show that lim
( ) (0 0)

2 sin2

2 + 2 2
= 0:

0
2 sin2

2 + 2 2
sin2 since

2

2 + 2 2
1, and sin2 0 as ( ) (0 0), so lim

( ) (0 0)

2 sin2

2 + 2 2
= 0.

17. lim
( ) (0 0)

2 + 2

2 + 2 + 1 1
= lim

( ) (0 0)

2 + 2

2 + 2 + 1 1
·

2 + 2 + 1 + 1
2 + 2 + 1 + 1

= lim
( ) (0 0)

2 + 2 2 + 2 + 1 + 1

2 + 2
= lim

( ) (0 0)

2 + 2 + 1 + 1 = 2
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18. ( ) = 4 ( 2 + 8). On the -axis, ( 0) = 0 for 6= 0, so ( ) 0 as ( ) (0 0) along the -axis.

Approaching (0 0) along the curve = 4 gives ( 4 ) = 8 2 8 = 1
2
for 6= 0, so along this path ( ) 1

2
as

( ) (0 0). Thus the limit does not exist.

19.
2

is a composition of continuous functions and hence continuous. is a continuous function and tan is continuous for

6=
2
+ ( an integer), so the composition tan( ) is continuous for 6=

2
+ . Thus the product

( ) =
2
tan( ) is a continuous function for 6=

2
+ . If = and = 1

3
then 6=

2
+ , so

lim
( ) ( 0 1 3)

( ) = ( 0 1 3) = 02 tan( · 1 3) = 1 · tan( 3) = 3.

20. ( ) =
+

2 + 2 + 2
. Then ( 0 0) = 0 2 = 0 for 6= 0, so as ( ) (0 0 0) along the -axis,

( ) 0. But ( 0) = 2 (2 2) = 1
2
for 6= 0, so as ( ) (0 0 0) along the line = , = 0,

( ) 1
2
. Thus the limit doesn’t exist.

21. ( ) =
+ 2 + 2

2 + 2 + 4
. Then ( 0 0) = 0 2 = 0 for 6= 0, so as ( ) (0 0 0) along the -axis,

( ) 0. But ( 0) = 2 (2 2) = 1
2
for 6= 0, so as ( ) (0 0 0) along the line = , = 0,

( ) 1
2
. Thus the limit doesn’t exist.

22. ( ) =
2 + 4 2 + 9 2

. Then ( 0 0) = 0 for 6= 0, so as ( ) (0 0 0) along the -axis, ( ) 0.

But (0 ) = 2 (13 2) = 1
13
for 6= 0, so as ( ) (0 0 0) along the line = , = 0, ( ) 1

13
.

Thus the limit doesn’t exist.

23. From the ridges on the graph, we see that as ( ) (0 0) along the

lines under the two ridges, ( ) approaches different values. So the

limit does not exist.

24. From the graph, it appears that as we approach the origin along the lines

= 0 or = 0, the function is everywhere 0, whereas if we approach the

origin along a certain curve it has a constant value of about 1
2
. [In fact,

( 3 ) = 6 (2 6) = 1
2 for 6= 0, so ( ) 1

2 as ( ) (0 0)

along the curve = 3.] Since the function approaches different values

depending on the path of approach, the limit does not exist.
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SECTION 14.2 LIMITS AND CONTINUITY ¤ 395

25. ( ) = ( ( )) = (2 + 3 6)2 + 2 + 3 6. Since is a polynomial, it is continuous on R2 and is

continuous on its domain { | 0}. Thus is continuous on its domain.

= {( ) | 2 + 3 6 0} = ( ) | 2
3
+ 2 , which consists of all points on or above the line = 2

3
+2.

26. ( ) = ( ( )) =
1

1 + 2 2
+ ln

1

1 + 2 2
. is a rational function, so it is continuous on its domain. Because

1 + 2 2 0, the domain of is R2, so is continuous everywhere. is continuous on its domain { | 0}. Thus is

continuous on its domain ( )
1

1 + 2 2
0 = {( ) | 1} which consists of all points between (but not on)

the two branches of the hyperbola = 1 .

27. From the graph, it appears that is discontinuous along the line = .

If we consider ( ) = 1 ( ) as a composition of functions,

( ) = 1 ( ) is a rational function and therefore continuous except

where = 0 = . Since the function ( ) = is continuous

everywhere, the composition ( ( )) = 1 ( ) = ( ) is

continuous except along the line = , as we suspected.

28. We can see a circular break in the graph, corresponding approximately to

the unit circle, where is discontinuous. Since ( ) =
1

1 2 2
is

a rational function, it is continuous except where 1 2 2 = 0

2 + 2 = 1, confirming our observation that is discontinuous on the

circle 2 + 2 = 1.

29. The functions and 1+ are continuous everywhere, and 1+ is never zero, so ( ) =
1 +

is continuous

on its domain R2.

30. ( ) = cos 1 + = ( ( )) where ( ) = 1 + , continuous on its domain

{( ) | 1 + 0} = {( ) | + 1}, and ( ) = cos is continuous everywhere. Thus is continuous on its

domain {( ) | + 1}.

31. ( ) =
1 + 2 + 2

1 2 2
is a rational function and thus is continuous on its domain

( ) | 1 2 2 6= 0 = ( ) | 2 + 2 6= 1 .

32. The functions + and 1 are continuous everywhere, so ( ) =
+

1
is continuous except where

1 = 0 = 0 = 0 or = 0. Thus is continuous on its domain {( ) | 6= 0 6= 0}.

c° 2012 Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part.

NOT FOR SALE

°°cc 2012 Cengage Learning. All Rights Reserved. May not be scanned, copied, or2012 Cengage Learning. All Rights Reserved. May not be scanned, copied, duplicated, or posted to a publicly accessible website, in whole or in part.licated, or posted to a publicly accessible website, in whole or in par

168



396 ¤ CHAPTER 14 PARTIAL DERIVATIVES

33. ( ) = ln( 2 + 2 4) = ( ( )) where ( ) = 2 + 2 4, continuous on R2, and ( ) = ln , continuous on its

domain { | 0}. Thus is continuous on its domain ( ) | 2 + 2 4 0 = ( ) | 2 + 2 4 , the exterior

of the circle 2 + 2 = 4.

34. ( ) = ( ( )) where ( ) = ( + ) 2, a rational function that is continuous on R2 except where + = 0, and

( ) = tan 1 , continuous everywhere. Thus is continuous on its domain {( ) | + 6= 0} = {( ) | 6= }.

35. ( ) = ( ( )) where ( ) = 2 + 2 + 2, a polynomial that is continuous

everywhere, and ( ) = arcsin , continuous on [ 1 1]. Thus is continuous on its domain

( ) | 1 2 + 2 + 2 1 = ( ) | 2 + 2 + 2 1 , so is continuous on the unit ball.

36. 2 is continuous on its domain ( ) | 2 0 = ( ) | 2 and ln is continuous on its domain

{ | 0}, so the product ( ) = 2 ln is continuous for 2 and 0, that is,

( ) | 2, 0 .

37. ( ) =

2 3

2 2 + 2
if ( ) 6= (0 0)

1 if ( ) = (0 0)

The first piece of is a rational function defined everywhere except at the

origin, so is continuous on R2 except possibly at the origin. Since 2 2 2 + 2, we have 2 3 (2 2 + 2) 3 . We

know that 3 0 as ( ) (0 0). So, by the Squeeze Theorem, lim
( ) (0 0)

( ) = lim
( ) (0 0)

2 3

2 2 + 2
= 0.

But (0 0) = 1, so is discontinuous at (0 0). Therefore, is continuous on the set {( ) | ( ) 6= (0 0)}.

38. ( ) =
2 + + 2

if ( ) 6= (0 0)

0 if ( ) = (0 0)
The first piece of is a rational function defined everywhere except

at the origin, so is continuous on R2 except possibly at the origin. ( 0) = 0 2 = 0 for 6= 0, so ( ) 0 as

( ) (0 0) along the -axis. But ( ) = 2 (3 2) = 1
3
for 6= 0, so ( ) 1

3
as ( ) (0 0) along the

line = . Thus lim
( ) (0 0)

( ) doesn’t exist, so is not continuous at (0 0) and the largest set on which is continuous

is {( ) | ( ) 6= (0 0)}.

39. lim
( ) (0 0)

3 + 3

2 + 2
= lim

0+

( cos )3 + ( sin )3

2
= lim

0+
( cos3 + sin3 ) = 0

40. lim
( ) (0 0)

( 2 + 2) ln( 2 + 2) = lim
0+

2 ln 2 = lim
0+

ln 2

1 2
= lim

0+

(1 2)(2 )

2 3
[using l’Hospital’s Rule]

= lim
0+
( 2) = 0

41. lim
( ) (0 0)

2 2
1

2 + 2
= lim

0+

2
1

2
= lim

0+

2
( 2 )

2
[using l’Hospital’s Rule]

= lim
0+

2
= 0 = 1

c° 2012 Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part.

NOT FOR SALE

°°cc 2012 Cengage Learning. All Rights Reserved. May not be scanned, copied, or2012 Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part.duplicated, or posted to a publicly accessible website, in whole or in part.

169



SECTION 14.2 LIMITS AND CONTINUITY ¤ 397

42. lim
( ) (0 0)

sin( 2 + 2)
2 + 2

= lim
0+

sin( 2)
2

, which is an

indeterminate form of type 0 0. Using l’Hospital’s Rule, we get

lim
0+

sin( 2)
2

H
= lim

0+

2 cos( 2)

2
= lim

0+
cos( 2) = 1.

Or: Use the fact that lim
0

sin
= 1.

43. ( ) =

sin( ) if ( ) 6= (0 0)

1 if ( ) = (0 0)

From the graph, it appears that is continuous everywhere. We know

is continuous on R2 and sin is continuous everywhere, so

sin( ) is continuous on R2 and sin( ) is continuous on R2

except possibly where = 0. To show that is continuous at those points, consider any point ( ) in R2 where = 0.

Because is continuous, = 0 as ( ) ( ). If we let = , then 0 as ( ) ( ) and

lim
( ) ( )

sin( )
= lim

0

sin( )
= 1 by Equation 2.4.2 [ET 3.3.2]. Thus lim

( ) ( )
( ) = ( ) and is continuous

on R2.

44. (a) ( ) =
0 if 0 or 4

1 if 0 4
Consider the path = , 0 4. [The path does not pass through

(0 0) if 0 except for the trivial case where = 0.] If 0 then ( ) = 0. If 0 then

= | | = | | | | and 4 | | | | 4
4

| | | | | |4 | | whenever is

defined. Then 4 | | | |1 (4 ) so ( ) = 0 for | | | |1 (4 ) and ( ) 0 as

( ) (0 0) along this path.

(b) If we approach (0 0) along the path = 5, 0 then we have ( 5) = 1 for 0 1 because 0 5 4 there.

Thus ( ) 1 as ( ) (0 0) along this path, but in part (a) we found a limit of 0 along other paths, so

lim
( ) (0 0)

( ) doesn’t exist and is discontinuous at (0 0).

(c) First we show that is discontinuous at any point ( 0) on the -axis. If we approach ( 0) along the path = , 0

then ( ) = 1 for 0 4, so ( ) 1 as ( ) ( 0) along this path. If we approach ( 0) along the path

= , 0 then ( ) = 0 since 0 and ( ) 0 as ( ) ( 0). Thus the limit does not exist and is

discontinuous on the line = 0. is also discontinuous on the curve = 4: For any point ( 4) on this curve,

approaching the point along the path = , 4 gives ( ) = 0 since 4, so ( ) 0 as ( ) ( 4).

But approaching the point along the path = , 4 gives ( ) = 1 for 0, so ( ) 1 as ( ) ( 4)

and the limit does not exist there.
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398 ¤ CHAPTER 14 PARTIAL DERIVATIVES

45. Since |x a|2 = |x|2 + |a|2 2 |x| |a| cos |x|2 + |a|2 2 |x| |a| = (|x| |a|)2, we have |x| |a| |x a|. Let
0 be given and set = . Then if 0 |x a| , |x| |a| |x a| = . Hence limx a |x| = |a| and

(x) = |x| is continuous on R .

46. Let 0 be given. We need to find 0 such that if 0 |x a| then | (x) (a)| = |c · x c · a| .

But |c · x c · a| = |c · (x a)| and |c · (x a)| |c| |x a| by Exercise 12.3.61 (the Cauchy-Schwartz Inequality). Set
= |c|. Then if 0 |x a| , | (x) (a)| = |c · x c · a| |c| |x a| |c| = |c| ( |c|) = . So is

continuous on R .

14.3 Partial Derivatives

1. (a) represents the rate of change of when we fix and and consider as a function of the single variable , which

describes how quickly the temperature changes when longitude changes but latitude and time are constant.

represents the rate of change of when we fix and and consider as a function of , which describes how quickly the

temperature changes when latitude changes but longitude and time are constant. represents the rate of change of

when we fix and and consider as a function of , which describes how quickly the temperature changes over time for

a constant longitude and latitude.

(b) (158 21 9) represents the rate of change of temperature at longitude 158 W, latitude 21 N at 9:00 AM when only

longitude varies. Since the air is warmer to the west than to the east, increasing longitude results in an increased air

temperature, so we would expect (158 21 9) to be positive. (158 21 9) represents the rate of change of temperature

at the same time and location when only latitude varies. Since the air is warmer to the south and cooler to the north,

increasing latitude results in a decreased air temperature, so we would expect (158 21 9) to be negative. (158 21 9)

represents the rate of change of temperature at the same time and location when only time varies. Since typically air

temperature increases from the morning to the afternoon as the sun warms it, we would expect (158 21 9) to be

positive.

2. By Definition 4, (92 60) = lim
0

(92 + 60) (92 60) , which we can approximate by considering = 2 and

= 2 and using the values given in Table 1: (92 60)
(94 60) (92 60)

2
=
111 105

2
= 3,

(92 60)
(90 60) (92 60)

2
=
100 105

2
= 2 5. Averaging these values, we estimate (92 60) to be

approximately 2 75. Thus, when the actual temperature is 92 F and the relative humidity is 60%, the apparent temperature

rises by about 2 75 F for every degree that the actual temperature rises.

Similarly, (92 60) = lim
0

(92 60 + ) (92 60) which we can approximate by considering = 5 and = 5:

(92 60)
(92 65) (92 60)

5
=
108 105

5
= 0 6, (92 60)

(92 55) (92 60)

5
=
103 105

5
= 0 4.
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SECTION 14.3 PARTIAL DERIVATIVES ¤ 399

Averaging these values, we estimate (92 60) to be approximately 0 5. Thus, when the actual temperature is 92 F and the

relative humidity is 60%, the apparent temperature rises by about 0 5 F for every percent that the relative humidity increases.

3. (a) By Definition 4, ( 15 30) = lim
0

( 15 + 30) ( 15 30) , which we can approximate by considering = 5

and = 5 and using the values given in the table:

( 15 30)
( 10 30) ( 15 30)

5
=

20 ( 26)

5
=
6

5
= 1 2,

( 15 30)
( 20 30) ( 15 30)

5
=

33 ( 26)

5
=

7

5
= 1 4. Averaging these values, we estimate

( 15 30) to be approximately 1 3. Thus, when the actual temperature is 15 C and the wind speed is 30 km h, the

apparent temperature rises by about 1 3 C for every degree that the actual temperature rises.

Similarly, ( 15 30) = lim
0

( 15 30 + ) ( 15 30) which we can approximate by considering = 10

and = 10: ( 15 30)
( 15 40) ( 15 30)

10
=

27 ( 26)

10
=

1

10
= 0 1,

( 15 30)
( 15 20) ( 15 30)

10
=

24 ( 26)

10
=

2

10
= 0 2. Averaging these values, we estimate

( 15 30) to be approximately 0 15. Thus, when the actual temperature is 15 C and the wind speed is 30 km h, the

apparent temperature decreases by about 0 15 C for every km h that the wind speed increases.

(b) For a fixed wind speed , the values of the wind-chill index increase as temperature increases (look at a column of

the table), so is positive. For a fixed temperature , the values of decrease (or remain constant) as increases

(look at a row of the table), so is negative (or perhaps 0).

(c) For fixed values of , the function values ( ) appear to become constant (or nearly constant) as increases, so the

corresponding rate of change is 0 or near 0 as increases. This suggests that lim ( ) = 0.

4. (a) represents the rate of change of when we fix and consider as a function of , which describes how quickly the

wave heights change when the wind speed changes for a fixed time duration. represents the rate of change of

when we fix and consider as a function of , which describes how quickly the wave heights change when the duration

of time changes, but the wind speed is constant.

(b) By Definition 4, (40 15) = lim
0

(40 + 15) (40 15) which we can approximate by considering

= 10 and = 10 and using the values given in the table: (40 15)
(50 15) (40 15)

10
=
36 25

10
= 1 1,

(40 15)
(30 15) (40 15)

10
=
16 25

10
= 0 9. Averaging these values, we have (40 15) 1 0. Thus, when

a 40-knot wind has been blowing for 15 hours, the wave heights should increase by about 1 foot for every knot that the
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400 ¤ CHAPTER 14 PARTIAL DERIVATIVES

wind speed increases (with the same time duration). Similarly, (40 15) = lim
0

(40 15 + ) (40 15) which we

can approximate by considering = 5 and = 5: (40 15)
(40 20) (40 15)

5
=
28 25

5
= 0 6,

(40 15)
(40 10) (40 15)

5
=
21 25

5
= 0 8. Averaging these values, we have (40 15) 0 7. Thus, when a

40-knot wind has been blowing for 15 hours, the wave heights increase by about 0 7 feet for every additional hour that the

wind blows.

(c) For fixed values of , the function values ( ) appear to increase in smaller and smaller increments, becoming nearly

constant as increases. Thus, the corresponding rate of change is nearly 0 as increases, suggesting that

lim ( ) = 0.

5. (a) If we start at (1 2) and move in the positive -direction, the graph of increases. Thus (1 2) is positive.

(b) If we start at (1 2) and move in the positive -direction, the graph of decreases. Thus (1 2) is negative.

6. (a) The graph of decreases if we start at ( 1 2) and move in the positive -direction, so ( 1 2) is negative.

(b) The graph of decreases if we start at ( 1 2) and move in the positive -direction, so ( 1 2) is negative.

7. (a) = ( ), so is the rate of change of in the -direction. is negative at ( 1 2) and if we move in the

positive -direction, the surface becomes less steep. Thus the values of are increasing and ( 1 2) is positive.

(b) is the rate of change of in the -direction. is negative at ( 1 2) and if we move in the positive -direction, the

surface becomes steeper. Thus the values of are decreasing, and ( 1 2) is negative.

8. (a) = ( ), so is the rate of change of in the -direction. is positive at (1 2) and if we move in the positive

-direction, the surface becomes steeper, looking in the positive -direction. Thus the values of are increasing and

(1 2) is positive.

(b) is negative at ( 1 2) and if we move in the positive -direction, the surface gets steeper (with negative slope), looking

in the positive -direction. This means that the values of are decreasing as increases, so ( 1 2) is negative.

9. First of all, if we start at the point (3 3) and move in the positive -direction, we see that both and decrease, while

increases. Both and have a low point at about (3 1 5), while is 0 at this point. So is definitely the graph of , and

one of and is the graph of . To see which is which, we start at the point ( 3 1 5) and move in the positive -direction.
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SECTION 14.3 PARTIAL DERIVATIVES ¤ 401

traces out a line with negative slope, while traces out a parabola opening downward. This tells us that is the -derivative

of . So is the graph of , is the graph of , and is the graph of .

10. (2 1) is the rate of change of at (2 1) in the -direction. If we start at (2 1), where (2 1) = 10, and move in the

positive -direction, we reach the next contour line [where ( ) = 12] after approximately 0 6 units. This represents an

average rate of change of about 2
0 6
. If we approach the point (2 1) from the left (moving in the positive -direction) the

output values increase from 8 to 10 with an increase in of approximately 0 9 units, corresponding to an average rate of

change of 2
0 9
. A good estimate for (2 1) would be the average of these two, so (2 1) 2 8. Similarly, (2 1) is the

rate of change of at (2 1) in the -direction. If we approach (2 1) from below, the output values decrease from 12 to 10 with

a change in of approximately 1 unit, corresponding to an average rate of change of 2. If we start at (2 1) and move in the

positive -direction, the output values decrease from 10 to 8 after approximately 0.9 units, a rate of change of 2
0 9
. Averaging

these two results, we estimate (2 1) 2 1.

11. ( ) = 16 4 2 2 ( ) = 8 and ( ) = 2 (1 2) = 8 and (1 2) = 4. The graph

of is the paraboloid = 16 4 2 2 and the vertical plane = 2 intersects it in the parabola = 12 4 2, = 2

(the curve 1 in the first figure). The slope of the tangent line

to this parabola at (1 2 8) is (1 2) = 8. Similarly the

plane = 1 intersects the paraboloid in the parabola

= 12 2, = 1 (the curve 2 in the second figure) and

the slope of the tangent line at (1 2 8) is (1 2) = 4.

12. ( ) = (4 2 4 2)1 2 ( ) = (4 2 4 2) 1 2 and ( ) = 4 (4 2 4 2) 1 2

(1 0) = 1

3
, (1 0) = 0. The graph of is the upper half of the ellipsoid 2 + 2 + 4 2 = 4 and the plane = 0

intersects the graph in the semicircle 2 + 2 = 4, 0 and the slope of the tangent line 1 to this semicircle

at 1 0 3 is (1 0) = 1

3
. Similarly the plane = 1

intersects the graph in the semi-ellipse 2 + 4 2 = 3, 0

and the slope of the tangent line 2 to this semi-ellipse at

1 0 3 is (1 0) = 0.
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13. ( ) = 2 3 = 2 3, = 3 2 2

Note that traces of in planes parallel to the -plane are parabolas which open downward for 0 and upward for 0,

and the traces of in these planes are straight lines, which have negative slopes for 0 and positive slopes for 0. The

traces of in planes parallel to the -plane are cubic curves, and the traces of in these planes are parabolas.

14. ( ) =
1 + 2 2

=
(1 + 2 2)(0) (2 2)

(1 + 2 2)2
=

2 3

(1 + 2 2)2
,

=
(1 + 2 2)(1) (2 2 )

(1 + 2 2)2
=

1 2 2

(1 + 2 2)2

Note that traces of in planes parallel to the -plane have only one extreme value (a minimum for 0, a maximum for

0), and the traces of in these planes have only one zero (going from negative to positive if 0 and from positive to
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negative if 0). The traces of in planes parallel to the -plane have two extreme values, and the traces of in these

planes have two zeros.

15. ( ) = 5 3 ( ) = 0 3 = 3 , ( ) = 5 4 3

16. ( ) = 4 3 + 8 2

( ) = 4 3 · 3 + 8 · 2 · = 4 3 3 + 16 , ( ) = 4 · 3 2 + 8 2 · 1 = 3 4 2 + 8 2

17. ( ) = cos ( ) = ( sin ) ( ) = sin , ( ) = ( 1) cos = cos

18. ( ) = ln ( ) = 1
2

1 2 ln = (ln ) (2 ), ( ) = · 1 =

19. = (2 + 3 )10 = 10(2 + 3 )9 · 2 = 20(2 + 3 )9, = 10(2 + 3 )9 · 3 = 30(2 + 3 )9

20. = tan = (sec2 )( ) = sec2 , = (sec2 )( ) = sec2

21. ( ) = = 1 ( ) = 1 = 1 , ( ) = 2 = 2

22. ( ) =
( + )2

( ) =
( + )2(1) ( )(2)( + )

[( + )2]2
=

+ 2

( + )3
=
( + )3

,

( ) =
( + )2(0) ( )(2)( + )

[( + )2]2
=

2

( + )3

23. ( ) =
+

+
( ) =

( + )( ) ( + )( )

( + )2
=
( )

( + )2
,

( ) =
( + )( ) ( + )( )

( + )2
=
( )

( + )2

24. =
+ 2

=
0( + 2) (1)

( + 2)2
=

( + 2)2
, =

( + 2) (2 )

( + 2)2
=

( + 2 2 )

( + 2)2

25. ( ) = ( 2 3)5 ( ) = 5( 2 3)4 · 2 = 10 ( 2 3)4,

( ) = 5( 2 3)4( 2 3 2) = 5( 2 3 2)( 2 3)4

26. ( ) = sin( cos ) ( ) = cos( cos ) · cos = cos cos( cos ),

( ) = cos( cos )( sin ) = sin cos( cos )

27. ( ) = tan 1( 2) ( ) =
1

1 + ( 2)2
· 2 =

2

1 + 2 4
, ( ) =

1

1 + ( 2)2
· 2 =

2

1 + 2 4

28. ( ) = ( ) = 1, ( ) = ln
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29. ( ) = cos( ) ( ) = cos = cos( ) by the Fundamental Theorem of Calculus, Part 1;

( ) = cos = cos = cos = cos( ).

30. ( ) = 3 + 1

( ) = 3 + 1 = 3 + 1 = 3 + 1 = 3 + 1 by the Fundamental

Theorem of Calculus, Part 1; ( ) = 3 + 1 = 3 + 1.

31. ( ) = 5 2 3 4 ( ) = 10 3 4, ( ) = 15 2 2 4, ( ) = 20 2 3 3

32. ( ) = sin( ) ( ) = sin( ), ( ) = cos( ),

( ) = cos( )( 1) = cos( )

33. = ln( + 2 + 3 ) =
1

+ 2 + 3
, =

2

+ 2 + 3
, =

3

+ 2 + 3

34. =

= · = 2 , = · = 2 , = · + · 1 = ( + 1)

35. = sin 1( ) = sin 1( ), = · 1

1 ( )2
( )+ sin 1( ) · =

1 2 2
+ sin 1( ),

= · 1

1 ( )2
( ) =

2

1 2 2

36. = = ( ) 1, = ln · 1 = ln , = ln ·
2
=

2
ln

37. ( ) = 2 cos( ) ( ) = 2 cos( ), ( ) = 2 cos( ),

( ) = 2 sin( )(1 ) = ( 2 ) sin( ), ( ) = 2 sin( )( 2) = ( 2 2) sin( )

38. ( ) =
+ 2

+ 2
( ) =

1

+ 2
( ) =

+ 2
,

( ) =
1

+ 2
(2 ) =

2

+ 2
, ( ) =

( + 2)(0) ( + 2)( )

( + 2)2
=

( + 2)

( + 2)2
,

( ) =
( + 2)(0) ( + 2)(2 )

( + 2)2
=

2 ( + 2)

( + 2)2

39. = 2
1 +

2
2 + · · ·+ 2 . For each = 1, , , = 1

2
2
1 +

2
2 + · · ·+ 2 1 2

(2 ) =
2
1 +

2
2 + · · ·+ 2

.

40. = sin( 1 + 2 2 + · · ·+ ). For each = 1, , , = cos( 1 + 2 2 + · · ·+ ).
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41. ( ) = ln + 2 + 2

( ) =
1

+ 2 + 2
1 + 1

2
( 2 + 2) 1 2(2 ) =

1

+ 2 + 2
1 +

2 + 2
,

so (3 4) =
1

3 + 32 + 42
1 +

3

32 + 42
= 1

8
1 + 3

5
= 1

5
.

42. ( ) = arctan( ) ( ) =
1

1 + ( )2
( 2) =

2 (1 + 2 2)
=

2 + 2
,

so (2 3) =
3

22 + 32
=

3

13
.

43. ( ) =
+ +

( ) =
1( + + ) (1)

( + + )2
=

+

( + + )2
,

so (2 1 1) =
2 + ( 1)

(2 + 1 + ( 1))2
=
1

4
.

44. ( ) = sin2 + sin2 + sin2

( ) = 1
2
sin2 + sin2 + sin2

1 2
(0 + 0 + 2 sin · cos ) = sin cos

sin2 + sin2 + sin2
,

so 0 0
4
=

sin
4
cos

4

sin2 0 + sin2 0 + sin2
4

=
2
2
· 2
2

0 + 0 + 2
2

2
=

1
2

2
2

=
1

2
or 2

2
.

45. ( ) = 2 3

( ) = lim
0

( + ) ( )
= lim

0

( + ) 2 ( + )3 ( 2 3 )

= lim
0

( 2 3 2 3 2)
= lim

0
( 2 3 2 3 2) = 2 3 2

( ) = lim
0

( + ) ( )
= lim

0

( + )2 3( + ) ( 2 3 )
= lim

0

(2 + 3)

= lim
0
(2 + 3) = 2 3

46. ( ) =
+ 2

( ) = lim
0

( + ) ( )
= lim

0

+
+ + 2 + 2 · ( + + 2)( + 2)

( + + 2)( + 2)

= lim
0

( + )( + 2) ( + + 2)

( + + 2)( + 2)
= lim

0

2

( + + 2)( + 2)

= lim
0

2

( + + 2)( + 2)
=

2

( + 2)2

[continued]
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( ) = lim
0

( + ) ( )
= lim

0

+( + )2 + 2 · + ( + )2 + 2

+ ( + )2 ( + 2)

= lim
0

( + 2) + ( + )2

[ + ( + )2]( + 2)
= lim

0

( 2 )

[ + ( + )2]( + 2)

= lim
0

2

[ + ( + )2]( + 2)
=

2

( + 2)2

47. 2 + 2 2 + 3 2 = 1 ( 2 + 2 2 + 3 2) = (1) 2 + 0 + 6 = 0 6 = 2

=
2

6
=

3
, and ( 2 + 2 2 + 3 2) = (1) 0 + 4 + 6 = 0 6 = 4

=
4

6
=

2

3
.

48. 2 2 + 2 2 = 4 ( 2 2 + 2 2 ) = (4) 2 0 + 2 2 = 0

(2 2) = 2 =
2

2 2
=
1

, and

( 2 2 + 2 2 ) = (4) 0 2 + 2 2 = 0 (2 2) = 2

=
2

2 2
=

1
.

49. = ( ) = ( ) = + · 1 =

( ) = , so = .

( ) = ( ) = + · 1 = ( ) = , so

= .

50. + ln = 2 ( + ln ) = ( 2) + ln = 2 ln = 2

ln = (2 ) , so =
ln

2
.

( + ln ) = ( 2) + · 1 + · 1 = 2 + = 2

+ = (2 ) , so =
+ ( )

2
=

+

(2 )
.

51. (a) = ( ) + ( ) = 0( ), = 0( )
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(b) = ( + ). Let = + . Then = = (1) = 0( ) = 0( + ),

= = (1) = 0( ) = 0( + ).

52. (a) = ( ) ( ) = 0( ) ( ), = ( ) 0( )

(b) = ( ). Let = . Then = and = . Hence = = · = 0( ) = 0( )

and = = · = 0( ) = 0( ).

(c) = . Let = . Then =
1 and =

2
. Hence = = 0( )

1
=

0( )

and = = 0( )
2

=
0( )
2

.

53. ( ) = 3 5 + 2 4 ( ) = 3 2 5 + 8 3 , ( ) = 5 3 4 + 2 4. Then ( ) = 6 5 + 24 2 ,

( ) = 15 2 4 + 8 3, ( ) = 15 2 4 + 8 3, and ( ) = 20 3 3.

54. ( ) = sin2( + ) ( ) = 2 sin( + ) cos( + ) · = sin(2 + 2 ) [using the

identity sin 2 = 2 sin cos ], ( ) = 2 sin( + ) cos( + ) · = sin(2 + 2 ).

Then ( ) = cos(2 + 2 ) · 2 = 2 2 cos(2 + 2 ),

( ) = cos(2 + 2 ) · 2 = 2 cos(2 + 2 ),

( ) = cos(2 + 2 ) · 2 = 2 cos(2 + 2 ), and

( ) = cos(2 + 2 ) · 2 = 2 2 cos(2 + 2 ).

55. = 2 + 2 = 1
2
( 2 + 2) 1 2 · 2 =

2 + 2
, = 1

2
( 2 + 2) 1 2 · 2 =

2 + 2
. Then

=
1 · 2 + 2 · 1

2
( 2 + 2) 1 2(2 )

2 + 2
2 =

2 + 2 2 2 + 2

2 + 2
=

2 + 2 2

( 2 + 2)3 2
=

2

( 2 + 2)3 2
,

= 1
2

2 + 2 3 2
(2 ) =

( 2 + 2)3 2
, = 1

2
2 + 2 3 2

(2 ) =
( 2 + 2)3 2

,

=
1 · 2 + 2 · 1

2
( 2 + 2) 1 2(2 )

2 + 2
2 =

2 + 2 2 2 + 2

2 + 2
=

2 + 2 2

( 2 + 2)3 2
=

2

( 2 + 2)3 2
.

56. = =
( ) (1)

( )2
=

2

( )2
,

=
( ) ( 1)

( )2
=

2

( )2
. Then = 2( 2)( ) 3(1) =

2 2

( )3
,

=
2 ( )2 2 · 2( )( 1)

[( )2]2
=

2 ( ) + 2 2

( )3
=

2

( )3
,

=
2 ( )2 2 · 2( )(1)

[( )2]2
=
2 ( ) 2 2

( )3
=

2

( )3
, = 2( 2)( ) 3( 1) =

2 2

( )3
.
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57. = arctan
+

1

=
1

1 + +
1

2 ·
(1)(1 ) ( + )( )

(1 )2
=

1 + 2

(1 )2 + ( + )2
=

1 + 2

1 + 2 + 2 + 2 2

=
1 + 2

(1 + 2)(1 + 2)
=

1

1 + 2

=
1

1 + +
1

2 ·
(1)(1 ) ( + )( )

(1 )2
=

1 + 2

(1 )2 + ( + )2
=

1 + 2

(1 + 2)(1 + 2)
=

1

1 + 2
.

Then = (1 + 2) 2 · 2 =
2

(1 + 2)2
, = 0, = 0, = (1 + 2) 2 · 2 =

2

(1 + 2)2
.

58. = = · = + , = · = + . Then = + · = 2 + ,

= + (1 + ), = + ( ) + + (1) = + (1 + ),

= + (1 + ) = + ( + 2 ).

59. = 4 3 4 = 4 3 3, = 12 3 2 and = 3 4 2 4 3, = 12 3 2.

Thus = .

60. = sin = sin , = cos + (sin )( · + · 1) = ( cos + sin + sin ),

= cos + (sin )( ) = (cos + sin ),

= · sin + (cos + sin ) · = (sin + cos + sin ). Thus = .

61. = cos( 2 ) = sin( 2 ) · 2 = 2 sin( 2 ),

= 2 · cos( 2 ) · 2 + sin( 2 ) · ( 2 ) = 2 3 cos( 2 ) 2 sin( 2 ) and

= sin( 2 ) · 2 = 2 sin( 2 ), = 2 · cos( 2 ) · 2 +sin( 2 ) · ( 2 ) = 2 3 cos( 2 ) 2 sin( 2 ).

Thus = .

62. = ln( + 2 ) =
1

+ 2
= ( + 2 ) 1, = ( 1)( + 2 ) 2(2) =

2

( + 2 )2
and

=
1

+ 2
· 2 = 2( + 2 ) 1, = ( 2)( + 2 ) 2 =

2

( + 2 )2
. Thus = .

63. ( ) = 4 2 3 = 4 3 2 3 2 , = 12 2 2 6 , = 24 2 6 and

= 8 3 3 2, = 24 2 6 .

64. ( ) = sin(2 + 5 ) = cos(2 + 5 ) · 5 = 5 cos(2 + 5 ), = 5 sin(2 + 5 ) · 2 = 10 sin(2 + 5 ),

= 10 cos(2 + 5 ) · 5 = 50 cos(2 + 5 )

65. ( ) =
2

=
2 · 2 = 2 2

, = 2 · 2
( 2) +

2 · 2 = ( 4 + 2)
2
,

= ( 4 + 2) · 2
(2 ) +

2 · (4 3 + 2 ) = (2 2 2 5 + 6 3 + 2 )
2
.

66. ( ) = sin( ) = sin( ), = cos( ) · = cos( ),

= ( sin( ) · ) + cos( ) · = [cos( ) sin( )].
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67. = sin = cos + sin · ( ) = (cos + sin ),

2

= (sin ) + (cos + sin ) ( ) = (sin + cos + sin ),

3

2
= ( sin ) + (sin + cos + sin ) · ( ) = (2 sin + cos + sin ).

68. = = ( )1 2 = 1
2
( ) 1 2( 1) = 1

2
( ) 1 2,

2

= 1
2

1
2
( ) 3 2(1) = 1

4
( ) 3 2,

3

= 1
4
( ) 3 2.

69. =
+ 2

= ( + 2 ) 1 = ( + 2 ) 1,
2

= ( + 2 ) 2(1) = ( + 2 ) 2,

3

= ( 2)( + 2 ) 3(2) = 4( + 2 ) 3 =
4

( + 2 )3
and = ( 1)( + 2 ) 2(1) = ( + 2 ) 2,

2

= ( + 2 ) 2,
3

2
= 0.

70. = . If = 0, or if = 0 or 1, or if = 0, 1, or 2, then
6

2 3
= 0. Otherwise = 1,

2

2
= ( 1) 2,

3

3
= ( 1)( 2) 3,

4

3
= ( 1)( 2) 1 3,

5

2 3
= ( 1) ( 1)( 2) 2 3, and

6

2 3
= ( 1) ( 1)( 2) 1 2 3.

71. Assuming that the third partial derivatives of are continuous (easily verified), we can write = . Then

( ) = 2 3 + arcsin = 2 3 + 0, = 2 3, and = 6 2 = .

72. Let ( ) = 1 + and ( ) = 1 so that = + . Then = 0 = = and

= 0 = = . But (since the partial derivatives are continous on their domains) = and = , so

= + = 0 + 0 = 0.

73. By Definition 4, (3 2) = lim
0

(3 + 2) (3 2) which we can approximate by considering = 0 5 and = 0 5:

(3 2)
(3 5 2) (3 2)

0 5
=
22 4 17 5

0 5
= 9 8, (3 2)

(2 5 2) (3 2)

0 5
=
10 2 17 5

0 5
= 14 6. Averaging

these values, we estimate (3 2) to be approximately 12 2. Similarly, (3 2 2) = lim
0

(3 + 2 2) (3 2 2) which

we can approximate by considering = 0 5 and = 0 5: (3 2 2)
(3 5 2 2) (3 2 2)

0 5
=
26 1 15 9

0 5
= 20 4,

(3 2 2)
(2 5 2 2) (3 2 2)

0 5
=
9 3 15 9

0 5
= 13 2. Averaging these values, we have (3 2 2) 16 8.

To estimate (3 2), we first need an estimate for (3 1 8):

(3 1 8)
(3 5 1 8) (3 1 8)

0 5
=
20 0 18 1

0 5
= 3 8, (3 1 8)

(2 5 1 8) (3 1 8)

0 5
=
12 5 18 1

0 5
= 11 2.
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Averaging these values, we get (3 1 8) 7 5. Now ( ) = [ ( )] and ( ) is itself a function of two

variables, so Definition 4 says that ( ) = [ ( )] = lim
0

( + ) ( )

(3 2) = lim
0

(3 2 + ) (3 2) . We can estimate this value using our previous work with = 0 2 and = 0 2:

(3 2)
(3 2 2) (3 2)

0 2
=
16 8 12 2

0 2
= 23, (3 2)

(3 1 8) (3 2)

0 2
=
7 5 12 2

0 2
= 23 5.

Averaging these values, we estimate (3 2) to be approximately 23 25.

74. (a) If we fix and allow to vary, the level curves indicate that the value of decreases as we move through in the positive

-direction, so is negative at .

(b) If we fix and allow to vary, the level curves indicate that the value of increases as we move through in the positive

-direction, so is positive at .

(c) = ( ), so if we fix and allow to vary, is the rate of change of as increases. Note that at points to the

right of the level curves are spaced farther apart (in the -direction) than at points to the left of , demonstrating that

decreases less quickly with respect to to the right of So as we move through in the positive -direction the

(negative) value of increases, hence ( ) = is positive at .

(d) = ( ) so if we fix and allow to vary, is the rate of change of as increases. The level curves are

closer together (in the -direction) at points above than at those below , demonstrating that decreases more quickly

with respect to for -values above . So as we move through in the positive -direction, the (negative) value of

decreases, hence is negative.

(e) = ( ) so if we fix and allow to vary, is the rate of change of as increases. The level curves are

closer together (in the -direction) at points above than at those below , demonstrating that increases more quickly

with respect to above . So as we move through in the positive -direction the (positive) value of increases, hence

( ) = is positive at .

75. =
2 2

sin =
2 2

cos , = 2 2 2
sin , and = 2 2 2 2

sin .

Thus 2 = .

76. (a) = 2 + 2 = 2 , = 2; = 2 , = 2. Thus + 6= 0 and = 2 + 2 does not satisfy

Laplace’s Equation.

(b) = 2 2 is a solution: = 2, = 2 so + = 0.

(c) = 3 + 3 2 is not a solution: = 3 2 + 3 2, = 6 ; = 6 , = 6 .
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(d) = ln 2 + 2 is a solution: =
1
2 + 2

1

2
( 2 + 2) 1 2(2 ) =

2 + 2
,

=
( 2 + 2) (2 )

( 2 + 2)2
=

2 2

( 2 + 2)2
. By symmetry, =

2 2

( 2 + 2)2
, so + = 0.

(e) = sin cosh + cos sinh is a solution: = cos cosh sin sinh = sin cosh cos sinh ,

and = sin sinh + cos cosh , = sin cosh + cos sinh .

(f) = cos cos is a solution: = cos + sin , = cos + cos , and

= sin + cos , = cos cos .

77. =
1

2 + 2 + 2
= 1

2
( 2 + 2 + 2) 3 2(2 ) = ( 2 + 2 + 2) 3 2 and

= ( 2 + 2 + 2) 3 2 3
2
( 2 + 2 + 2) 5 2(2 ) =

2 2 2 2

( 2 + 2 + 2)5 2
.

By symmetry, =
2 2 2 2

( 2 + 2 + 2)5 2
and =

2 2 2 2

( 2 + 2 + 2)5 2
.

Thus + + =
2 2 2 2 + 2 2 2 2 + 2 2 2 2

( 2 + 2 + 2)5 2
= 0.

78. (a) = sin( ) sin( ) = sin( ) cos( ), = 2 2 sin( ) sin( ), = cos( ) sin( ),

= 2 sin( ) sin( ). Thus = 2 .

(b) =
2 2 2

=
( 2 2 2) (2 2 )

( 2 2 2)2
=

2 2 + 2

( 2 2 2)2
,

=
2 2 ( 2 2 2)2 + ( 2 2 2)(2)( 2 2 2)(2 2 )

( 2 2 2)4
=
2 4 3 + 6 2 2

( 2 2 2)3
,

= ( 1)( 2 2 2) 2(2 ) =
2

( 2 2 2)2
,

=
2 ( 2 2 2)2 2 (2)( 2 2 2)( 2 )

( 2 2 2)4
=
2 2 3 2 2 + 8 2

( 2 2 2)3
=
2 2 3 + 6 2

( 2 2 2)3
.

Thus = 2 .

(c) = ( )6 + ( + )6 = 6 ( )5 + 6 ( + )5, = 30 2( )4 + 30 2( + )4,

= 6( )5 + 6( + )5, = 30( )4 + 30( + )4. Thus = 2 .

(d) = sin( ) + ln( + ) = cos( ) +
+

, = 2 sin( )
2

( + )2
,

= cos( ) +
1

+
, = sin( )

1

( + )2
. Thus = 2 .

79. Let = + , = . Then =
[ ( ) + ( )]

=
( )

+
( )

= 0( ) 0( ) and

=
[ 0( ) 0( )]

= [ 00( ) + 00( )] = 2[ 00( ) + 00( )]. Similarly, by using the Chain Rule we have

= 0( ) + 0( ) and = 00( ) + 00( ). Thus = 2 .
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80. For each , = 1 , = 1 1+ 2 2+···+ and 2 2 = 2 1 1+ 2 2+···+ .

Then
2

2
1

+
2

2
2

+ · · ·+
2

2
= 2

1 +
2
2 + · · ·+ 2 1 1+ 2 2+···+ = 1 1+ 2 2+···+ =

since 2
1 +

2
2 + · · ·+ 2 = 1.

81. = ln( + ) =
+

and =
+

, so + =
+

+
+

=
+

+
= 1.

2

2
=

( + ) ( )

( + )2
=

+

( + )2
,

2

=
0 ( )

( + )2
=

+

( + )2
, and

2

2
=

( + ) ( )

( + )2
=

+

( + )2
. Thus

2

2

2

2

2 2

=
+

( + )2
·

+

( + )2

+

( + )2

2

=
( + )2

( + )4
( + )2

( + )4
= 0

82. (a) = 60(2 ) (1 + 2 + 2)2, so at (2 1), = 240 (1 + 4 + 1)2 = 20
3
.

(b) = 60(2 ) (1 + 2 + 2)2, so at (2 1), = 120 36 = 10
3
. Thus from the point (2 1) the temperature is

decreasing at a rate of 20
3
C m in the -direction and is decreasing at a rate of 10

3
C m in the -direction.

83. By the Chain Rule, taking the partial derivative of both sides with respect to 1 gives

1

1
=

[(1 1) + (1 2) + (1 3)]

1
or 2

1
= 2

1 . Thus
1
=

2

2
1

.

84. = , so = 1 and = 1. Then

+ = ( 1 ) + ( 1) = 1+ 1 + 1+ 1 = ( + ) = ( + )

85. If we fix = 0 ( 0) is a function of a single variable , and = is a separable differential equation. Then

= = ln | | = ln | |+ ( 0), where ( 0) can depend on 0. Then

| | = ln| |+ ( 0), and since 0 and 0, we have = ln ( 0) = ( 0) ln = 1( 0) where

1( 0) =
( 0).

86. (a) ( ) = 1 01 0 75 0 25 ( ) = 1 01(0 75 0 25) 0 25 = 0 7575 0 25 0 25 and

( ) = 1 01 0 75(0 25 0 75) = 0 2525 0 75 0 75.

(b) The marginal productivity of labor in 1920 is (194 407) = 0 7575(194) 0 25(407)0 25 0 912. Recall that , , and

are expressed as percentages of the respective amounts in 1899, so this means that in 1920, if the amount of labor is

increased, production increases at a rate of about 0.912 percentage points per percentage point increase in labor. The

marginal productivity of capital in 1920 is (194 407) = 0 2525(194)0 75(407) 0 75 0 145, so an increase in capital
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investment would cause production to increase at a rate of about 0.145 percentage points per percentage point increase in

capital.

(c) The value of (194 407) is greater than the value of (194 407), suggesting that increasing labor in 1920 would have

increased production more than increasing capital.

87. +
2

2
( ) = =

1
+

2

2
( ), so =

1
(1)( ) = .

We can also write +
2

2
= =

2

2
= ( ) 1 2 2, so

= ( ) 2(1) + 2 2 3 =
2 2

3 ( )2
.

88. = so =
2
; = , so = ; = , so = .

Thus =
2

= = 1, since = .

89. By Exercise 88, = = , so = . Also, = = and = .

Since = , we have = · · = .

90. = 0 6215 + 0 3965 0 16. When = 15 C and = 30 km h, = 0 6215 + 0 3965(30)0 16 1 3048, so we

would expect the apparent temperature to drop by approximately 1 3 C if the actual temperature decreases by 1 C.

= 11 37(0 16) 0 84 + 0 3965 (0 16) 0 84 and when = 15 C and = 30 km h,

= 11 37(0 16)(30) 0 84 + 0 3965( 15)(0 16)(30) 0 84 0 1592, so we would expect the apparent temperature

to drop by approximately 0 16 C if the wind speed increases by 1 km h.

91. = 1
2

2, = ,
2

2
= . Thus ·

2

2
= 1

2
2 = .

92. The Law of Cosines says that 2 = 2 + 2 2 cos . Thus ( 2)
=

( 2 + 2 2 cos ) or

2 = 2 ( sin ) , implying that =
sin

. Taking the partial derivative of both sides with respect to gives

0 = 2 2 (cos ) 2 ( sin ) . Thus =
cos

sin
. By symmetry, =

cos

sin
.

93. ( ) = + 4 ( ) = 4 and ( ) = 3 ( ) = 3. Since and are continuous

everywhere but ( ) 6= ( ), Clairaut’s Theorem implies that such a function ( ) does not exist.
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94. Setting = 1, the equation of the parabola of intersection is

= 6 1 1 2 2 = 4 2 2. The slope of the tangent is

= 4 , so at (1 2 4) the slope is 8. Parametric

equations for the line are therefore = 1, = 2 + ,

= 4 8 .

95. By the geometry of partial derivatives, the slope of the tangent line is (1 2). By implicit differentiation of

4 2 + 2 2 + 2 = 16, we get 8 + 2 ( ) = 0 = 4 , so when = 1 and = 2 we have

= 2. So the slope is (1 2) = 2. Thus the tangent line is given by 2 = 2( 1), = 2. Taking the

parameter to be = 1, we can write parametric equations for this line: = 1 + , = 2, = 2 2 .

96. ( ) = 0 + 1 sin( )

(a) = 1 [cos( )( )] + 1( ) sin( ) = 1 [sin( ) + cos( )].

This quantity represents the rate of change of temperature with respect to depth below the surface, at a given time .

(b) = 1 [cos( )( )] = 1 cos( ). This quantity represents the rate of change of

temperature with respect to time at a fixed depth .

(c) =

= 1 [cos( )( ) sin( )( )] + ( ) [sin( ) + cos( )]

= 2 2
1 cos( )

But from part (b), = 1 cos( ) =
2 2 . So with =

2 2 , the function satisfies the heat equation.

(d) Note that near the surface (that is, for small ) the

temperature varies greatly as changes, but deeper

(for large ) the temperature is more stable.

(e) The term is a phase shift: it represents the fact that since heat diffuses slowly through soil, it takes time for changes

in the surface temperature to affect the temperature at deeper points. As increases, the phase shift also increases. For

example, when = 0 2, the highest temperature at the surface is reached when 91, whereas at a depth of 5 feet the

peak temperature is attained at 149, and at a depth of 10 feet, at 207.

97. By Clairaut’s Theorem, = ( ) = ( ) = = ( ) = ( ) = .
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SECTION 14.3 PARTIAL DERIVATIVES ¤ 415

98. (a) Since we are differentiating times, with two choices of variable at each differentiation, there are 2 th-order partial

derivatives.

(b) If these partial derivatives are all continuous, then the order in which the partials are taken doesn’t affect the value of the

result, that is, all th-order partial derivatives with partials with respect to and partials with respect to are

equal. Since the number of partials taken with respect to for an th-order partial derivative can range from 0 to , a

function of two variables has + 1 distinct partial derivatives of order if these partial derivatives are all continuous.

(c) Since differentiations are to be performed with three choices of variable at each differentiation, there are 3 th-order

partial derivatives of a function of three variables.

99. Let ( ) = ( 0) = ( 2) 3 2 0 = | | 3. But we are using the point (1 0), so near (1 0), ( ) = 2. Then

0( ) = 2 3 and 0(1) = 2, so using (1) we have (1 0) = 0(1) = 2.

100. (0 0) = lim
0

(0 + 0) (0 0)
= lim

0

( 3 + 0)1 3 0
= lim

0
= 1.

Or: Let ( ) = ( 0) = 3 3 + 0 = . Then 0( ) = 1 and 0(0) = 1 so, by (1), (0 0) = 0(0) = 1.

101. (a) (b) For ( ) 6= (0 0),

( ) =
(3 2 3)( 2 + 2) ( 3 3)(2 )

( 2 + 2)2

=
4 + 4 2 3 5

( 2 + 2)2

and by symmetry ( ) =
5 4 3 2 4

( 2 + 2)2
.

(c) (0 0) = lim
0

( 0) (0 0)
= lim

0

(0 2) 0
= 0 and (0 0) = lim

0

(0 ) (0 0)
= 0.

(d) By (3), (0 0) = = lim
0

(0 ) (0 0)
= lim

0

( 5 0) 4

= 1 while by (2),

(0 0) = = lim
0

( 0) (0 0)
= lim

0

5 4

= 1.

(e) For ( ) 6= (0 0), we use a CAS to compute

( ) =
6 + 9 4 2 9 2 4 6

( 2 + 2)3

Now as ( ) (0 0) along the -axis, ( ) 1 while as

( ) (0 0) along the -axis, ( ) 1. Thus isn’t

continuous at (0 0) and Clairaut’s Theorem doesn’t apply, so there is

no contradiction. The graphs of and are identical except at the

origin, where we observe the discontinuity.
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14.4 Tangent Planes and Linear Approximations

1. = ( ) = 3 2 2 2 + ( ) = 4 + 1, ( ) = 6 , so (2 1) = 7, (2 1) = 6.

By Equation 2, an equation of the tangent plane is ( 3) = (2 1)( 2) + (2 1)[ ( 1)]

+ 3 = 7( 2) 6( + 1) or = 7 6 + 5.

2. = ( ) = 3( 1)2 + 2( + 3)2 + 7 ( ) = 6( 1), ( ) = 4( + 3), so (2 2) = 6 and

(2 2) = 4. By Equation 2, an equation of the tangent plane is 12 = (2 2)( 2) + (2 2) [ ( 2)]

12 = 6( 2) + 4( + 2) or = 6 + 4 + 8.

3. = ( ) = ( ) = 1
2
( ) 1 2 · = 1

2
, ( ) = 1

2
( ) 1 2 · = 1

2
, so (1 1) = 1

2

and (1 1) = 1
2
. Thus an equation of the tangent plane is 1 = (1 1)( 1) + (1 1)( 1)

1 = 1
2 ( 1) + 1

2 ( 1) or + 2 = 0.

4. = ( ) = ( ) = + , ( ) = 2 , so (2 0) = 1, (2 0) = 4, and an equation of

the tangent plane is 2 = (2 0)( 2) + (2 0)( 0) 2 = 1( 2) + 4( 0) or = + 4 .

5. = ( ) = sin( + ) ( ) = · cos( + ) + sin( + ) · 1 = cos( + ) + sin( + ),

( ) = cos( + ), so ( 1 1) = ( 1) cos 0 + sin 0 = 1, ( 1 1) = ( 1) cos 0 = 1 and an equation of the

tangent plane is 0 = ( 1)( + 1) + ( 1)( 1) or + + = 0.

6. = ( ) = ln( 2 ) ( ) = 1 ( 2 ), ( ) = 2 ( 2 ), so (3 1) = 1, (3 1) = 2, and

an equation of the tangent plane is 0 = (3 1)( 3) + (3 1)( 1) = 1( 3) + ( 2)( 1) or

= 2 1.

7. = ( ) = 2 + + 3 2, so ( ) = 2 + (1 1) = 3, ( ) = + 6 (1 1) = 7 and an

equation of the tangent plane is 5 = 3( 1) + 7( 1) or = 3 + 7 5. After zooming in, the surface and the

tangent plane become almost indistinguishable. (Here, the tangent plane is below the surface.) If we zoom in farther, the

surface and the tangent plane will appear to coincide.
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SECTION 14.4 TANGENT PLANES AND LINEAR APPROXIMATIONS ¤ 417

8. = ( ) = arctan( 2) =
1

1 + ( 2)2
( 2) =

2

1 + 2 4
, =

1

1 + ( 2)2
(2 ) =

2

1 + 2 4
,

(1 1) = 1
1+1

= 1
2
, (1 1) = 2

1+ 1
= 1, so an equation of the tangent plane is

4
= 1

2
( 1) + 1( 1) or

= 1
2
+ 3

2
+

4
. After zooming in, the surface and the tangent plane become almost indistinguishable. (Here the

tangent plane is above the surface.) If we zoom in farther, the surface and the tangent plane will appear to coincide.

9. ( ) =
sin ( )

1 + 2 + 2
. A CAS gives ( ) =

sin ( ) + cos ( )

1 + 2 + 2

2 2 sin ( )

(1 + 2 + 2)2
and

( ) =
sin ( ) cos ( )

1 + 2 + 2

2 2 sin ( )

(1 + 2 + 2)2
. We use the CAS to evaluate these at (1 1), and then

substitute the results into Equation 2 to compute an equation of the tangent plane: = 1
3

1
3
. The surface and tangent

plane are shown in the first graph below. After zooming in, the surface and the tangent plane become almost indistinguishable,

as shown in the second graph. (Here, the tangent plane is shown with fewer traces than the surface.) If we zoom in farther, the

surface and the tangent plane will appear to coincide.

10. ( ) = 10 + + . A CAS gives

( ) = 1
10

10 + + + 10 1

2
+

2
and

( ) = 1
10

10 + + + 10 1

2
+

2
. We use the CAS to evaluate these at (1 1),

and then substitute the results into Equation 2 to get an equation of the tangent plane: = 0 7 0 1 + 0 7 0 1 + 1 6 0 1.

The surface and tangent plane are shown in the first graph below. After zooming in, the surface and the tangent plane become
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418 ¤ CHAPTER 14 PARTIAL DERIVATIVES

almost indistinguishable, as shown in the second graph. (Here, the tangent plane is above the surface.) If we zoom in farther,

the surface and the tangent plane will appear to coincide.

11. ( ) = 1+ ln( 5). The partial derivatives are ( ) = · 1

5
( )+ ln( 5) · 1 =

5
+ ln( 5)

and ( ) = · 1

5
( ) =

2

5
, so (2 3) = 6 and (2 3) = 4. Both and are continuous functions for

5, so by Theorem 8, is differentiable at (2 3). By Equation 3, the linearization of at (2 3) is given by

( ) = (2 3) + (2 3)( 2) + (2 3)( 3) = 1 + 6( 2) + 4( 3) = 6 + 4 23.

12. ( ) = 3 4. The partial derivatives are ( ) = 3 2 4 and ( ) = 4 3 3, so (1 1) = 3 and (1 1) = 4.

Both and are continuous functions, so is differentiable at (1 1) by Theorem 8. The linearization of at (1 1) is given

by ( ) = (1 1) + (1 1)( 1) + (1 1)( 1) = 1 + 3( 1) + 4( 1) = 3 + 4 6.

13. ( ) =
+

. The partial derivatives are ( ) =
1( + ) (1)

( + )2
= ( + )2 and

( ) = ( 1)( + ) 2 · 1 = ( + )2, so (2 1) = 1
9
and (2 1) = 2

9
. Both and are continuous

functions for 6= , so is differentiable at (2 1) by Theorem 8. The linearization of at (2 1) is given by

( ) = (2 1) + (2 1)( 2) + (2 1)( 1) = 2
3
+ 1

9
( 2) 2

9
( 1) = 1

9
2
9
+ 2

3
.

14. ( ) = + 4 = ( + 4 )1 2. The partial derivatives are ( ) = 1
2
( + 4 ) 1 2 and

( ) = 1
2
( + 4 ) 1 2(4 4 ) = 2 4 ( + 4 ) 1 2, so (3 0) = 1

2
(3 + 0) 1 2 = 1

4
and

(3 0) = 2 0(3 + 0) 1 2 = 1. Both and are continuous functions near (3 0), so is

differentiable at (3 0) by Theorem 8. The linearization of at (3 0) is

( ) = (3 0) + (3 0)( 3) + (3 0)( 0) = 2 + 1
4
( 3) + 1( 0) = 1

4
+ + 5

4
.

15. ( ) = cos . The partial derivatives are ( ) = ( ) cos = cos and

( ) = ( sin ) + (cos ) ( ) = (sin + cos ), so ( 0) = 0 and ( 0) = .

Both and are continuous functions, so is differentiable at ( 0), and the linearization of at ( 0) is

( ) = ( 0) + ( 0)( ) + ( 0)( 0) = 1 + 0( ) ( 0) = 1 .

c° 2012 Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part.

NOT FOR SALE

°°cc 2012 Cengage Learning. All Rights Reserved. May not be scanned, copied, or2012 Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part.duplicated, or posted to a publicly accessible website, in whole or in part.

191



SECTION 14.4 TANGENT PLANES AND LINEAR APPROXIMATIONS ¤ 419

16. ( ) = + sin( ). The partial derivatives are ( ) = (1 ) cos( ) and ( ) = 1 + ( 2) cos( ), so

(0 3) = 1
3
and (0 3) = 1. Both and are continuous functions for 6= 0, so is differentiable at (0 3), and the

linearization of at (0 3) is

( ) = (0 3) + (0 3)( 0) + (0 3)( 3) = 3 + 1
3
( 0) + 1( 3) = 1

3
+ .

17. Let ( ) =
2 + 3

4 + 1
. Then ( ) =

2

4 + 1
and ( ) = (2 + 3)( 1)(4 + 1) 2(4) =

8 12

(4 + 1)2
. Both and

are continuous functions for 6= 1
4
, so by Theorem 8, is differentiable at (0 0). We have (0 0) = 2, (0 0) = 12

and the linear approximation of at (0 0) is ( ) (0 0) + (0 0)( 0) + (0 0)( 0) = 3 + 2 12 .

18. Let ( ) = + cos2 . Then ( ) = 1
2
( + cos2 ) 1 2(2 cos )( sin ) = cos sin + cos2 and

( ) = 1
2
( + cos2 ) 1 2(1) = 1 2 + cos2 . Both and are continuous functions for cos2 , so

is differentiable at (0 0) by Theorem 8. We have (0 0) = 0 and (0 0) = 1
2
, so the linear approximation of at (0 0) is

( ) (0 0) + (0 0)( 0) + (0 0)( 0) = 1 + 0 + 1
2
= 1 + 1

2
.

19. We can estimate (2 2 4 9) using a linear approximation of at (2 5), given by

( ) (2 5) + (2 5)( 2) + (2 5)( 5) = 6 + 1( 2) + ( 1)( 5) = + 9. Thus

(2 2 4 9) 2 2 4 9 + 9 = 6 3.

20. ( ) = 1 cos ( ) = cos and

( ) = [ ( sin ) + (cos )(1)] = sin cos , so (1 1) = 1, (1 1) = 1. Then the linear

approximation of at (1 1) is given by

( ) (1 1) + (1 1)( 1) + (1 1)( 1)

= 2 + (1)( 1) + (1)( 1) = +

Thus (1 02 0 97) 1 02 + 0 97 = 1 99. We graph and its

tangent plane near the point (1 1 2) below. Notice near = 1 the

surfaces are almost identical.

21. ( ) = 2 + 2 + 2 ( ) =
2 + 2 + 2

, ( ) =
2 + 2 + 2

, and

( ) =
2 + 2 + 2

, so (3 2 6) = 3
7
, (3 2 6) = 2

7
, (3 2 6) = 6

7
. Then the linear approximation of

c° 2012 Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part.

NOT FOR SALE

°°cc 2012 Cengage Learning. All Rights Reserved. May not be scanned, copied, or2012 Cengage Learning. All Rights Reserved. May not be scanned, copied, duplicated, or posted to a publicly accessible website, in whole or in part.licated, or posted to a publicly accessible website, in whole or in par

192



420 ¤ CHAPTER 14 PARTIAL DERIVATIVES

at (3 2 6) is given by

( ) (3 2 6) + (3 2 6)( 3) + (3 2 6)( 2) + (3 2 6)( 6)

= 7 + 3
7 ( 3) + 2

7 ( 2) + 6
7 ( 6) = 3

7 + 2
7 + 6

7

Thus (3 02)2 + (1 97)2 + (5 99)2 = (3 02 1 97 5 99) 3
7
(3 02) + 2

7
(1 97) + 6

7
(5 99) 6 9914.

22. From the table, (40 20) = 28. To estimate (40 20) and (40 20) we follow the procedure used in Exercise 14.3.4. Since

(40 20) = lim
0

(40 + 20) (40 20) , we approximate this quantity with = ±10 and use the values given in the

table:

(40 20)
(50 20) (40 20)

10
=
40 28

10
= 1 2, (40 20)

(30 20) (40 20)

10
=
17 28

10
= 1 1

Averaging these values gives (40 20) 1 15. Similarly, (40 20) = lim
0

(40 20 + ) (40 20) , so we use = 10

and = 5:

(40 20)
(40 30) (40 20)

10
=
31 28

10
= 0 3, (40 20)

(40 15) (40 20)

5
=
25 28

5
= 0 6

Averaging these values gives (40 15) 0 45. The linear approximation, then, is

( ) (40 20) + (40 20)( 40) + (40 20)( 20) 28 + 1 15( 40) + 0 45( 20)

When = 43 and = 24, we estimate (43 24) 28 + 1 15(43 40) + 0 45(24 20) = 33 25, so we would expect the

wave heights to be approximately 33 25 ft.

23. From the table, (94 80) = 127. To estimate (94 80) and (94 80) we follow the procedure used in Section 14.3. Since

(94 80) = lim
0

(94 + 80) (94 80) , we approximate this quantity with = ±2 and use the values given in the

table:

(94 80)
(96 80) (94 80)

2
=
135 127

2
= 4, (94 80)

(92 80) (94 80)

2
=
119 127

2
= 4

Averaging these values gives (94 80) 4. Similarly, (94 80) = lim
0

(94 80 + ) (94 80) , so we use = ±5:

(94 80)
(94 85) (94 80)

5
=
132 127

5
= 1, (94 80)

(94 75) (94 80)

5
=
122 127

5
= 1

Averaging these values gives (94 80) 1. The linear approximation, then, is

( ) (94 80) + (94 80)( 94) + (94 80)( 80)

127 + 4( 94) + 1( 80) [or 4 + 329]

Thus when = 95 and = 78, (95 78) 127 + 4(95 94) + 1(78 80) = 129, so we estimate the heat index to be

approximately 129 F.
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24. From the table, ( 15 50) = 29. To estimate ( 15 50) and ( 15 50) we follow the procedure used in Section 14.3.

Since ( 15 50) = lim
0

( 15 + 50) ( 15 50) , we approximate this quantity with = ±5 and use the values

given in the table:

( 15 50)
( 10 50) ( 15 50)

5
=

22 ( 29)

5
= 1 4

( 15 50)
( 20 50) ( 15 50)

5
=

35 ( 29)

5
= 1 2

Averaging these values gives ( 15 50) 1 3. Similarly ( 15 50) = lim
0

( 15 50 + ) ( 15 50) ,

so we use = ±10:

( 15 50)
( 15 60) ( 15 50)

10
=

30 ( 29)

10
= 0 1

( 15 50)
( 15 40) ( 15 50)

10
=

27 ( 29)

10
= 0 2

Averaging these values gives ( 15 50) 0 15. The linear approximation to the wind-chill index function, then, is

( ) ( 15 50) + ( 15 50)( ( 15)) + ( 15 50)( 50) 29 + (1 3)( + 15) (0 15)( 50).

Thus when = 17 C and = 55 km h, ( 17 55) 29 + (1 3)( 17 + 15) (0 15)(55 50) = 32 35, so we

estimate the wind-chill index to be approximately 32 35 C.

25. = 2 cos 2

= + = 2 ( 2) cos 2 + 2 ( sin 2 )(2 ) = 2 2 cos 2 2 2 sin 2

26. = 2 + 3 2 = ( 2 + 3 2)1 2

= + = 1
2
( 2 + 3 2) 1 2(2 ) + 1

2
( 2 + 3 2) 1 2(6 ) =

2 + 3 2
+

3
2 + 3 2

27. = 5 3 = + = 5 4 3 + 3 5 2

28. =
1 +

= + +

= ( 1)(1 + ) 2( ) +
1(1 + ) ( )

(1 + )2
+ ( 1)(1 + ) 2( )

=
2

(1 + )2
+

1

(1 + )2

2

(1 + )2

29. = 2 cos = + + = 2 cos + 2 cos 2 sin
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30. =
2 2

= + + =
2 2

+
2 2

( 2 ) + [ · 2 2

( 2 ) +
2 2 · 1]

=
2 2

2
2 2

+ (1 2 2)
2 2

31. = = 0 05, = = 0 1, = 5 2 + 2, = 10 , = 2 . Thus when = 1 and = 2,

= (1 2) + (1 2) = (10)(0 05) + (4)(0 1) = 0 9 while

= (1 05 2 1) (1 2) = 5(1 05)2 + (2 1)2 5 4 = 0 9225.

32. = = 0 04, = = 0 05, = 2 + 3 2, = 2 , = 6 . Thus when = 3 and = 1,

= (7)( 0 04) + ( 9)(0 05) = 0 73 while = (2 96)2 (2 96)( 0 95) + 3( 0 95)2 (9 + 3 + 3) = 0 7189.

33. = + = + and | | 0 1, | | 0 1. We use = 0 1, = 0 1 with = 30, = 24; then

the maximum error in the area is about = 24(0 1) + 30(0 1) = 5 4 cm2.

34. Let be the volume. Then = 2 and = 2 + 2 is an estimate of the amount of metal. With

= 0 05 and = 0 2 we get = 2 (2)(10)(0 05) + (2)2(0 2) = 2 80 8 8 cm3.

35. The volume of a can is = 2 and is an estimate of the amount of tin. Here = 2 + 2 , so put

= 0 04, = 0 08 (0 04 on top, 0 04 on bottom) and then = 2 (48)(0 04) + (16)(0 08) 16 08 cm3.

Thus the amount of tin is about 16 cm3.

36. = 13 12 + 0 6215 11 37 0 16 + 0 3965 0 16, so the differential of is

= + = (0 6215 + 0 3965 0 16) + 11 37(0 16) 0 84 + 0 3965 (0 16) 0 84

= (0 6215 + 0 3965 0 16) + ( 1 8192 + 0 06344 ) 0 84

Here we have | | 1, | | 2, so we take = 1, = 2 with = 11, = 26. The maximum error in the calculated

value of is about = (0 6215 + 0 3965(26)0 16)(1) + ( 1 8192 + 0 06344( 11))(26) 0 84(2) 0 96.

37. =
2 2 + 2

, so the differential of is

= + =
(2 2 + 2)( ) (2 )

(2 2 + 2)2
+
(2 2 + 2)(0) (4 )

(2 2 + 2)2

=
(2 2 2)

(2 2 + 2)2
4

(2 2 + 2)2

Here we have = 0 1 and = 0 1, so we take = 0 1, = 0 1 with = 3, = 0 7. Then the change in the
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SECTION 14.4 TANGENT PLANES AND LINEAR APPROXIMATIONS ¤ 423

tension is approximately

=
[2(0 7)2 (3)2]

[2(0 7)2 + (3)2]2
(0 1)

4 (3)(0 7)

[2(0 7)2 + (3)2]2
(0 1)

=
0 802

(9 98)2
0 84

(9 98)2
=

1 642

99 6004
0 0165

Because the change is negative, tension decreases.

38. Here = = 0 3, = = 5, = 8 31 , so

=
8 31 8 31 ·

2
= 8 31

5

12

310

144
· 3
10

8 83. Thus the pressure will drop by about 8 83 kPa.

39. First we find
1
implicitly by taking partial derivatives of both sides with respect to 1:

1

1
=

[(1 1) + (1 2) + (1 3)]

1

2

1
= 2

1
1
=

2

2
1

. Then by symmetry,

2
=

2

2
2

,
3
=

2

2
3

. When 1 = 25, 2 = 40 and 3 = 50,
1
=
17

200
= 200

17
. Since the possible error

for each is 0 5%, the maximum error of is attained by setting = 0 005 . So

=
1

1 +
2

2 +
3

3 = (0 005)
2 1

1
+

1

2
+

1

3
= (0 005) = 1

17
0 059 .

40. Let and be the four numbers with ( ) = . Since the largest error due to rounding

for each number is 0 05, the maximum error in the calculated product is approximated by

= ( )(0 05) + ( )(0 05) + ( )(0 05) + ( )(0 05). Furthermore, each of the numbers is positive but less than

50, so the product of any three is between 0 and (50)3. Thus 4(50)3(0 05) = 25,000.

41. The errors in measurement are at most 2%, so 0 02 and 0 02. The relative error in the calculated surface

area is

=
0 1091(0 425 0 425 1) 0 725 + 0 1091 0 425(0 725 0 725 1)

0 1091 0 425 0 725
= 0 425 + 0 725

To estimate the maximum relative error, we use = = 0 02 and = = 0 02

= 0 425 (0 02) + 0 725 (0 02) = 0 023. Thus the maximum percentage error is approximately 2 3%.

42. r1( ) = 2 + 3 1 2 3 4 + 2 r01( ) = h3 2 4 + 2 i, r2( ) = 1 + 2 2 3 1 2 + 1

r02( ) = 2 6 2 2 . Both curves pass through since r1(0) = r2(1) = h2 1 3i, so the tangent vectors r01(0) = h3 0 4i

and r02(1) = h2 6 2i are both parallel to the tangent plane to at . A normal vector for the tangent plane is
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424 ¤ CHAPTER 14 PARTIAL DERIVATIVES

r01(0)× r02(1) = h3 0 4i × h2 6 2i = h24 14 18i, so an equation of the tangent plane is
24( 2) 14( 1) + 18( 3) = 0 or 12 7 + 9 = 44.

43. = ( + + ) ( ) = ( + )2 + ( + )2 ( 2 + 2)

= 2 + 2 + ( )2 + 2 + 2 + ( )2 2 2 = 2 + ( )2 + 2 + ( )2

But ( ) = 2 and ( ) = 2 and so = ( ) + ( ) + + , which is Definition 7

with 1 = and 2 = . Hence is differentiable.

44. = ( + + ) ( ) = ( + )( + ) 5( + )2 ( 5 2)

= + + + 5 2 10 5( )2 + 5 2

= ( 10 ) + + 5 ,

but ( ) = and ( ) = 10 and so = ( ) + ( ) + 5 , which is Definition 7

with 1 = and 2 = 5 . Hence is differentiable.

45. To show that is continuous at ( ) we need to show that lim
( ) ( )

( ) = ( ) or

equivalently lim
( ) (0 0)

( + + ) = ( ). Since is differentiable at ( ),

( + + ) ( ) = = ( ) + ( ) + 1 + 2 , where 1 and 2 0 as

( ) (0 0). Thus ( + + ) = ( ) + ( ) + ( ) + 1 + 2 . Taking the limit of

both sides as ( ) (0 0) gives lim
( ) (0 0)

( + + ) = ( ). Thus is continuous at ( ).

46. (a) lim
0

( 0) (0 0)
= lim

0

0 0
= 0 and lim

0

(0 ) (0 0)
= lim

0

0 0
= 0. Thus (0 0) = (0 0) = 0.

To show that isn’t differentiable at (0 0) we need only show that is not continuous at (0 0) and apply Exercise 45. As

( ) (0 0) along the -axis ( ) = 0 2 = 0 for 6= 0 so ( ) 0 as ( ) (0 0) along the -axis. But

as ( ) (0 0) along the line = , ( ) = 2 2 2 = 1
2
for 6= 0 so ( ) 1

2
as ( ) (0 0) along this

line. Thus lim
( ) (0 0)

( ) doesn’t exist, so is discontinuous at (0 0) and thus not differentiable there.

(b) For ( ) 6= (0 0), ( ) =
( 2 + 2) (2 )

( 2 + 2)2
=

( 2 2)

( 2 + 2)2
. If we approach (0 0) along the -axis, then

( ) = (0 ) =
3

4
=
1 , so ( ) ± as ( ) (0 0). Thus lim

( ) (0 0)
( ) does not exist and

( ) is not continuous at (0 0) Similarly, ( ) =
( 2 + 2) (2 )

( 2 + 2)2
=

( 2 2)

( 2 + 2)2
for ( ) 6= (0 0), and

if we approach (0 0) along the -axis, then ( ) = ( 0) =
3

4
=
1 . Thus lim

( ) (0 0)
( ) does not exist and

( ) is not continuous at (0 0)
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SECTION 14.5 THE CHAIN RULE ¤ 425

14.5 The Chain Rule

1. = 2 + 2 + , = sin , = = + = (2 + ) cos + (2 + )

2. = cos( + 4 ), = 5 4, = 1

= + = sin( + 4 )(1)(20 3) + [ sin( + 4 )(4)]( 2)

= 20 3 sin( + 4 ) +
4
2
sin( + 4 ) =

4
2

20 3 sin( + 4 )

3. = 1 + 2 + 2, = ln , = cos

= + = 1
2
(1+ 2+ 2) 1 2(2 ) · 1 + 1

2
(1+ 2+ 2) 1 2(2 )( sin ) =

1

1 + 2 + 2
sin

4. = tan 1( ), = , = 1

= + =
1

1 + ( )2
( 2) · +

1

1 + ( )2
(1 ) · ( )( 1)

=
2 + 2

· +
1

+ 2
· =

2 + 2

5. = , = 2, = 1 , = 1 + 2

= + + = · 2 + 1 · ( 1) +
2
· 2 = 2

2
2

6. = ln 2 + 2 + 2 = 1
2 ln(

2 + 2 + 2), = sin , = cos , = tan

= + + =
1

2
· 2

2 + 2 + 2
· cos +

1

2
· 2

2 + 2 + 2
· ( sin ) +

1

2
· 2

2 + 2 + 2
· sec2

=
cos sin + sec2

2 + 2 + 2

7. = 2 3, = cos , = sin

= + = 2 3 cos + 3 2 2 sin

= + = (2 3)( sin ) + (3 2 2)( cos ) = 2 3 sin + 3 2 2 cos

8. = arcsin( ), = 2 + 2, = 1 2

= + =
1

1 ( )2
(1) · 2 +

1

1 ( )2
( 1) · ( 2 ) =

2 + 2

1 ( )2

= + =
1

1 ( )2
(1) · 2 + 1

1 ( )2
( 1) · ( 2 ) =

2 + 2

1 ( )2
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426 ¤ CHAPTER 14 PARTIAL DERIVATIVES

9. = sin cos , = 2, = 2

= + = (cos cos )( 2) + ( sin sin )(2 ) = 2 cos cos 2 sin sin

= + = (cos cos )(2 ) + ( sin sin )( 2) = 2 cos cos 2 sin sin

10. = +2 , = , =

= + = ( +2 )(1 ) + (2 +2 )( 2) = +2 1 2
2

= + = ( +2 )( 2) + (2 +2 )(1 ) = +2 2
2

11. = cos , = , = 2 + 2

= + = cos · + ( sin ) · 1
2
( 2 + 2) 1 2(2 ) = cos sin ·

2 + 2

= cos
2 + 2

sin

= + = cos · + ( sin ) · 1
2
( 2 + 2) 1 2(2 ) = cos sin ·

2 + 2

= cos
2 + 2

sin

12. = tan( ), = 2 + 3 , = 3 2

= + = sec2( )(1 ) · 2 + sec2( )( 2) · 3

=
2
sec2

3
2
sec2 =

2 3
2

sec2

= + = sec2( )(1 ) · 3 + sec2( )( 2) · ( 2)

=
3
sec2 +

2
2
sec2 =

2 + 3
2

sec2

13. When = 3, = (3) = 2 and = (3) = 7. By the Chain Rule (2),

= + = (2 7) 0(3) + (2 7) 0(3) = (6)(5) + ( 8)( 4) = 62.

14. By the Chain Rule (3), = + . Then

(1 0) = ( (1 0) (1 0)) (1 0) + ( (1 0) (1 0)) (1 0) = (2 3) (1 0) + (2 3) (1 0)

= ( 1)( 2) + (10)(5) = 52

Similarly, = +

(1 0) = ( (1 0) (1 0)) (1 0) + ( (1 0) (1 0)) (1 0) = (2 3) (1 0) + (2 3) (1 0)

= ( 1)(6) + (10)(4) = 34
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SECTION 14.5 THE CHAIN RULE ¤ 427

15. ( ) = ( ( ) ( )) where = + sin , = + cos

= , = cos , = , = sin . By the Chain Rule (3), = + . Then

(0 0) = ( (0 0) (0 0)) (0 0) + ( (0 0) (0 0)) (0 0) = (1 2)( 0) + (1 2)( 0) = 2(1) + 5(1) = 7.

Similarly, = + . Then

(0 0) = ( (0 0) (0 0)) (0 0) + ( (0 0) (0 0)) (0 0) = (1 2)(cos 0) + (1 2)( sin 0)

= 2(1) + 5(0) = 2

16. ( ) = ( ( ) ( )) where = 2 , = 2 4 = 2, = 1, = 4, = 2 .

By the Chain Rule (3) = + . Then

(1 2) = ( (1 2) (1 2)) (1 2) + ( (1 2) (1 2)) (1 2) = (0 0)(2) + (0 0)( 4)

= 4(2) + 8( 4) = 24

Similarly, = + . Then

(1 2) = ( (1 2) (1 2)) (1 2) + ( (1 2) (1 2)) (1 2) = (0 0)( 1) + (0 0)(4)

= 4( 1) + 8(4) = 28

17. = ( ), = ( ), = ( )

= + , = + ,

= +

18. = ( ), = ( ), = ( ), = ( ),

= ( )

= + + + ,

= + + + ,

= + + +

19. = ( ), = ( ), = ( ), = ( )

= + + , = + +
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428 ¤ CHAPTER 14 PARTIAL DERIVATIVES

20. = ( ), = ( ), = ( ), = ( )

= + + , = + + ,

= + + , = + +

21. = 4 + 2 , = + 2 , = 2

= + = (4 3 + 2 )(1) + ( 2)( 2),

= + = (4 3 + 2 )(2) + ( 2)( 2),

= + = (4 3 + 2 )( 1) + ( 2)(2 ).

When = 4, = 2, and = 1 we have = 7 and = 8,

so = (1484)(1) + (49)(2) = 1582, = (1484) (2) + (49)(4) = 3164, = (1484)( 1) + (49)(16) = 700.

22. = (2 + ) = (2 + ) 1, = , =

= + = [ (2 + ) 2(2)]( ) +
(2 + )(1) (1)

(2 + )2
( )

=
2

(2 + )2
( ) +

2

(2 + )2
( ),

= + =
2

(2 + )2
( ) +

2

(2 + )2 2
,

= + =
2

(2 + )2 2
+

2

(2 + )2
( ).

When = 2, = 1, and = 4 we have = 4 and = 8,

so = 1
16

(2) + 1
32

(4) = 0, = 1
16

(4) + 1
32

(4) = 1
8 , = 1

16
1
2
+ 1

32
(2) = 1

32 .

23. = + + , = cos , = sin , =

= + + = ( + )(cos ) + ( + )(sin ) + ( + )( ),

= + + = ( + )( sin ) + ( + )( cos ) + ( + )( ).

When = 2 and = 2 we have = 0, = 2, and = , so = (2 + )(0) + (0 + )(1) + (2 + 0)( 2) = 2 and

= (2 + )( 2) + (0 + )(0) + (2 + 0)(2) = 2 .
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SECTION 14.5 THE CHAIN RULE ¤ 429

24. = 2 + 2 + 2 = ( 2 + 2 + 2)1 2, = , = , =

= + +

= 1
2
( 2 + 2 + 2) 1 2(2 )( ) + 1

2
( 2 + 2 + 2) 1 2(2 )( ) + 1

2
( 2 + 2 + 2) 1 2(2 )( )

=
+ +
2 + 2 + 2

,

= + + =
2 + 2 + 2

( ) +
2 + 2 + 2

( ) +
2 + 2 + 2

( )

=
+ +
2 + 2 + 2

.

When = 0 and = 2 we have = 0, = 2, and = 1, so =
0 + 4 + 2

5
=

6

5
and =

0 + 2 + 0

5
=

2

5
.

25. =
+

+
, = + , = + , = +

= + +

=
( + )(1) ( + )(1)

( + )2
(1) +

( + )(1) ( + )(0)

( + )2
( ) +

( + )(0) ( + )(1)

( + )2
( )

=
( ) + ( + ) ( + )

( + )2
,

= + + =
( + )2

( ) +
+

( + )2
(1) +

( + )

( + )2
( ) =

( ) + ( + ) ( + )

( + )2
,

= + + =
( + )2

( ) +
+

( + )2
( ) +

( + )

( + )2
(1) =

( ) + ( + ) ( + )

( + )2
.

When = 2, = 3, and = 4 we have = 14, = 11, and = 10, so =
1 + (24)(4) (25)(3)

(24)2
=
20

576
=

5

144
,

=
( 1)(4) + 24 (25)(2)

(24)2
=

30

576
=

5

96
, and =

( 1)(3) + (24)(2) 25

(24)2
=
20

576
=

5

144
.

26. = , = 2 , = 2 , = 2

= + + = (2 ) + (0) + ( 2) = (2 + 2),

= + + = ( 2) + (2 ) + (0) = ( 2 + 2 ),

= + + = (0) + ( 2) + (2 ) = ( 2 + 2 ).

When = 1, = 2, and = 1 we have = 2, = 4, and = 1, so = 4( 4 + 8) = 4 4,

= 4(1 8) = 7 4, and = 4( 8 16) = 24 4.
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430 ¤ CHAPTER 14 PARTIAL DERIVATIVES

27. cos = 2 + 2, so let ( ) = cos 2 2 = 0. Then by Equation 6

= =
sin 2

cos 2
=
2 + sin

cos 2
.

28. cos( ) = 1 + sin , so let ( ) = cos( ) 1 sin = 0. Then by Equation 6

= =
sin( )( )

sin( )( ) cos
=

sin( )

cos + sin( )
.

29. tan 1( 2 ) = + 2, so let ( ) = tan 1( 2 ) 2 = 0. Then

( ) =
1

1 + ( 2 )2
(2 ) 1 2 =

2

1 + 4 2
1 2 =

2 (1 + 2)(1 + 4 2)

1 + 4 2
,

( ) =
1

1 + ( 2 )2
( 2) 2 =

2

1 + 4 2
2 =

2 2 (1 + 4 2)

1 + 4 2

and = =
[2 (1 + 2)(1 + 4 2)] (1 + 4 2)

[ 2 2 (1 + 4 2)] (1 + 4 2)
=
(1 + 2)(1 + 4 2) 2

2 2 (1 + 4 2)

=
1 + 4 2 + 2 + 4 4 2

2 2 2 5 3

30. sin = + , so let ( ) = sin = 0. Then = =
cos 1

sin
=
1 + cos

sin
.

31. 2 + 2 2 + 3 2 = 1, so let ( ) = 2 + 2 2 + 3 2 1 = 0. Then by Equations 7

= =
2

6
=

3
and = =

4

6
=

2

3
.

32. 2 2 + 2 2 = 4, so let ( ) = 2 2 + 2 2 4 = 0. Then by Equations 7

= =
2

2 2
=
1

and = =
2

2 2
=

1
.

33. = , so let ( ) = = 0. Then = = = and

= = = .

34. + ln = 2, so let ( ) = + ln 2 = 0. Then = =
ln

2
=

ln

2
and

= =
+ ( )

2
=

+

2 2
.

35. Since and are each functions of , ( ) is a function of , so by the Chain Rule, = + . After

3 seconds, = 1 + = 1 + 3 = 2, = 2 + 1
3
= 2 + 1

3
(3) = 3, =

1

2 1 +
=

1

2 1 + 3
=
1

4
, and =

1

3
.

Then = (2 3) + (2 3) = 4 1
4
+ 3 1

3
= 2. Thus the temperature is rising at a rate of 2 C s.
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SECTION 14.5 THE CHAIN RULE ¤ 431

36. (a) Since is negative, a rise in average temperature (while annual rainfall remains constant) causes a decrease in

wheat production at the current production levels. Since is positive, an increase in annual rainfall (while the

average temperature remains constant) causes an increase in wheat production.

(b) Since the average temperature is rising at a rate of 0 15 C year, we know that = 0 15. Since rainfall is

decreasing at a rate of 0 1 cm year, we know = 0 1. Then, by the Chain Rule,

= + = ( 2)(0 15) + (8)( 0 1) = 1 1. Thus we estimate that wheat production will decrease

at a rate of 1 1 units year.

37. = 1449 2 + 4 6 0 055 2 + 0 00029 3 + 0 016 , so = 4 6 0 11 + 0 00087 2 and = 0 016.

According to the graph, the diver is experiencing a temperature of approximately 12 5 C at = 20 minutes, so

= 4 6 0 11(12 5) + 0 00087(12 5)2 3 36. By sketching tangent lines at = 20 to the graphs given, we estimate

1

2
and 1

10
. Then, by the Chain Rule, = + (3 36) 1

10
+ (0 016) 1

2
0 33.

Thus the speed of sound experienced by the diver is decreasing at a rate of approximately 0 33 m s per minute.

38. = 2 3, so = + =
2

3
1 8 +

2

3
( 2 5) = 20,160 12,000 = 8160 in3 s.

39. (a) = , so by the Chain Rule,

= + + = + + = 2 · 2 · 2 + 1 · 2 · 2 + 1 · 2 · ( 3) = 6 m3 s.

(b) = 2( + + ), so by the Chain Rule,

= + + = 2( + ) + 2( + ) + 2( + )

= 2(2 + 2)2 + 2(1 + 2)2 + 2(1 + 2)( 3) = 10 m2 s

(c) 2 = 2 + 2 + 2 2 = 2 + 2 + 2 = 2(1)(2) + 2(2)(2) + 2(2)( 3) = 0

= 0 m s.

40. =

= + =
1

2
=
1

=
1

400
( 0 01)

0 08

400
(0 03) = 0 000031 A s

41. = 0 05, = 0 15, = 8 31 and =
8 31

8 31
2

. Thus when = 20 and = 320,

= 8 31
0 15

20

(0 05)(320)

400
0 27 L s.
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432 ¤ CHAPTER 14 PARTIAL DERIVATIVES

42. = 1 47 0 65 0 35 and considering , , and as functions of time we have

= + = 1 47(0 65) 0 35 0 35 + 1 47(0 35) 0 65 0 65 . We are given

that = 2 and = 0 5, so when = 30 and = 8, the rate of change of production is

1 47(0 65)(30) 0 35(8)0 35( 2) + 1 47(0 35)(30)0 65(8) 0 65(0 5) 0 596. Thus production at that time

is decreasing at a rate of about $596,000 per year.

43. Let be the length of the first side of the triangle and the length of the second side. The area of the triangle is given by

= 1
2

sin where is the angle between the two sides. Thus is a function of , , and , and , , and are each in turn

functions of time . We are given that = 3, = 2, and because is constant, = 0. By the Chain Rule,

= + + = 1
2
sin · + 1

2
sin · + 1

2
cos · . When = 20, = 30,

and = 6 we have

0 = 1
2
(30) sin

6
(3) + 1

2
(20) sin

6
( 2) + 1

2
(20)(30) cos

6

= 45 · 1
2

20 · 1
2
+ 300 · 3

2
· = 25

2
+ 150 3

Solving for gives =
25 2

150 3
=

1

12 3
, so the angle between the sides is decreasing at a rate of

1 12 3 0 048 rad s.

44. =
+

= 332+34
332 40

460 576 6 Hz. and are functions of time , so

= + =
1 · +

+

( )2
·

= 1
332 40

(460) (1 2) + 332+34
(332 40)2

(460) (1 4) 4 65 Hz s

45. (a) By the Chain Rule, = cos + sin , = ( sin ) + cos .

(b)
2

=
2

cos2 + 2 cos sin +
2

sin2 ,

2

=
2

2 sin2 2 2 cos sin +
2

2 cos2 . Thus

2

+
1
2

2

=
2

+
2

(cos2 + sin2 ) =
2

+
2

.
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46. By the Chain Rule, = cos + sin , = ( sin ) + cos . Then

2

=
2

2 cos2 + 2 2 cos sin +
2

2 sin2 and

2

=
2

2 sin2 2 2 cos sin +
2

2 sin2 . Thus

2

+
2

2 =
2

+
2

.

47. Let = . Then = = and = ( 1). Thus + = 0.

48. = + and = . Thus =
2 2

.

49. Let = + , = . Then = ( ) + ( ), so = 0( ) and = 0( ).

Thus = + = 0( ) 0( ) and

2

2
= [ 0( ) 0( )] =

0( ) 0( )
= 2 00( ) + 2 00( ).

Similarly = 0( ) + 0( ) and
2

2
= 00( ) + 00( ). Thus

2

2
= 2

2

2
.

50. By the Chain Rule, = cos + sin and = sin + cos .

Then
2

2
= cos + cos + sin + sin . But

=
2

2
+

2

= cos
2

2
+ sin

2

and

=
2

2
+

2

= sin
2

2
+ cos

2

.

Also, by continuity of the partials,
2

=
2

. Thus

2

2
= cos + cos cos

2

2
+ sin

2

+ sin + sin sin
2

2
+ cos

2

= cos + sin + 2 cos2
2

2
+ 2 2 cos sin

2

+ 2 sin2
2

2

[continued]

c° 2012 Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part.

NOT FOR SALE

°°cc 2012 Cengage Learning. All Rights Reserved. May not be scanned, copied, or2012 Cengage Learning. All Rights Reserved. May not be scanned, copied, duplicated, or posted to a publicly accessible website, in whole or in part.licated, or posted to a publicly accessible website, in whole or in par

206



434 ¤ CHAPTER 14 PARTIAL DERIVATIVES

Similarly

2

2
= cos sin sin + cos

= cos sin sin
2

2
+ cos

2

sin + cos cos
2

2
sin

2

= cos sin + 2 sin2
2

2
2 2 cos sin

2

+ 2 cos2
2

2

Thus 2
2

2
+

2

2
= (cos2 + sin2 )

2

2
+

2

2
=

2

2
+

2

2
, as desired.

51. = 2 + 2 . Then

2

= 2 + 2

=
2

2
2 + 2 + 2 +

2

2
2 + 2 + 2

= 4
2

2
+

2

4 2 + 0 + 4
2

2
+

2

4 2 + 2

By the continuity of the partials,
2

= 4
2

2
+ 4

2

2
+ (4 2 + 4 2)

2

+ 2 .

52. By the Chain Rule,

(a) = cos + sin (b) = sin + cos

(c)
2

=
2

= cos + sin = sin + cos + cos + sin

= sin + cos
2

2
+

2

+ cos + sin
2

2
+

2

= sin + cos sin
2

2
+ cos

2

+ cos + sin cos
2

2
sin

2

= sin cos sin
2

2
+ cos2

2

+ cos + cos sin
2

2
sin2

2

= cos sin + cos sin
2

2

2

2
+ (cos2 sin2 )

2
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53. = cos + sin and = sin + cos . Then

2

2
= cos

2

2
cos +

2

sin + sin
2

2
sin +

2

cos

= cos2
2

2
+ 2 cos sin

2

+ sin2
2

2

and
2

2 = cos + ( sin )
2

2
( sin ) +

2

cos

sin + cos
2

2
cos +

2

( sin )

= cos sin + 2 sin2
2

2
2 2 cos sin

2

+ 2 cos2
2

2

Thus
2

2
+
1
2

2

2 +
1

= (cos2 + sin2 )
2

2
+ sin2 + cos2

2

2

1
cos

1
sin +

1
cos + sin

=
2

2
+

2

2
as desired.

54. (a) = + . Then

2

2
= + = +

2

2
+ +

2

2

=
2

2

2

+
2

+
2

2
+

2

2

2

+
2

+
2

2

=
2

2

2

+ 2
2

+
2

2

2

+
2

2
+

2

2

(b)
2

= +

=
2

2
+

2

+
2

+
2

2
+

2

+
2

=
2

2
+

2

+ +
2

+
2

+
2

2

55. (a) Since is a polynomial, it has continuous second-order partial derivatives, and

( ) = ( )2( ) + 2( )( )2 + 5( )3 = 3 2 + 2 3 2 + 5 3 3 = 3( 2 + 2 2 + 5 3) = 3 ( ).

Thus, is homogeneous of degree 3.

(b) Differentiating both sides of ( ) = ( ) with respect to using the Chain Rule, we get

( ) = [ ( )]
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436 ¤ CHAPTER 14 PARTIAL DERIVATIVES

( )
( ) · ( )

+
( )

( ) · ( )
=

( )
( ) +

( )
( ) = 1 ( ).

Setting = 1: ( ) + ( ) = ( ).

56. Differentiating both sides of ( ) = ( ) with respect to using the Chain Rule, we get

( )
( ) · ( )

+
( )

( ) · ( )
=

( )
( ) +

( )
( ) = 1 ( ) and

differentiating again with respect to gives
2

( )2
( ) · ( )

+
2

( ) ( )
( ) · ( )

+
2

( ) ( )
( ) · ( )

+
2

( )2
( ) · ( )

= ( 1) 1 ( ).

Setting = 1 and using the fact that = , we have 2 + 2 + 2 = ( 1) ( ).

57. Differentiating both sides of ( ) = ( ) with respect to using the Chain Rule, we get

( ) = [ ( )]

( )
( ) · ( )

+
( )

( ) · ( )
= ( ) ( ) = ( ).

Thus ( ) = 1 ( ).

58. ( ) = 0 is assumed to define as a function of and , that is, = ( ). So by (7), = since 6= 0.

Similarly, it is assumed that ( ) = 0 defines as a function of and , that is = ( ). Then ( ( ) ) = 0

and by the Chain Rule, + + = 0. But = 0 and = 1, so + = 0 = .

A similar calculation shows that = . Thus = = 1.

59. Given a function defined implicitly by ( ) = 0, where is differentiable and 6= 0, we know that = . Let

( ) = so = ( ). Differentiating both sides with respect to and using the Chain Rule gives

2

2
= + where = =

2
, = =

2
.

Thus
2

2
=

2
(1) +

2

=
2 + 2

3

But has continuous second derivatives, so by Clauraut’s Theorem, = and we have
2

2
=

2 2 + 2

3
as desired.
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14.6 Directional Derivatives and the Gradient Vector

1. We can approximate the directional derivative of the pressure function at K in the direction of S by the average rate of change

of pressure between the points where the red line intersects the contour lines closest to K (extend the red line slightly at the

left). In the direction of S, the pressure changes from 1000 millibars to 996 millibars and we estimate the distance between

these two points to be approximately 50 km (using the fact that the distance from K to S is 300 km). Then the rate of change of

pressure in the direction given is approximately 996 1000
50

= 0 08 millibar km.

2. First we draw a line passing through Dubbo and Sydney. We approximate the directional derivative at Dubbo in the direction

of Sydney by the average rate of change of temperature between the points where the line intersects the contour lines closest to

Dubbo. In the direction of Sydney, the temperature changes from 30 C to 27 C. We estimate the distance between these two

points to be approximately 120 km, so the rate of change of maximum temperature in the direction given is approximately

27 30
120

= 0 025 C km.

3. u ( 20 30) = ( 20 30) · u = ( 20 30) 1

2
+ ( 20 30) 1

2
.

( 20 30) = lim
0

( 20 + 30) ( 20 30) , so we can approximate ( 20 30) by considering = ±5 and

using the values given in the table: ( 20 30)
( 15 30) ( 20 30)

5
=

26 ( 33)

5
= 1 4,

( 20 30)
( 25 30) ( 20 30)

5
=

39 ( 33)

5
= 1 2. Averaging these values gives ( 20 30) 1 3.

Similarly, ( 20 30) = lim
0

( 20 30 + ) ( 20 30) , so we can approximate ( 20 30) with = ±10:

( 20 30)
( 20 40) ( 20 30)

10
=

34 ( 33)

10
= 0 1,

( 20 30)
( 20 20) ( 20 30)

10
=

30 ( 33)

10
= 0 3. Averaging these values gives ( 20 30) 0 2.

Then u ( 20 30) 1 3 1

2
+ ( 0 2) 1

2
0 778.

4. ( ) = 3 4 + 4 3 ( ) = 3 2 4 + 4 3 3 and ( ) = 4 3 3 + 3 4 2. If u is a unit vector in the

direction of =
6
, then from Equation 6, u (1 1) = (1 1) cos

6
+ (1 1) sin

6
= 7 · 3

2
+ 7 · 1

2
= 7+ 7 3

2
.

5. ( ) = ( ) = and ( ) = . If u is a unit vector in the direction of = 2 3, then

from Equation 6, u (0 4) = (0 4) cos 2
3
+ (0 4) sin 2

3
= 4 · 1

2
+ 1 · 3

2
= 2+ 3

2
.

6. ( ) = cos ( ) = cos and ( ) = sin . If u is a unit vector in the direction of =
4
, then

from Equation 6, u (0 0) = (0 0) cos 4
+ (0 0) sin 4

= 1 · 2
2 + 0 = 2

2 .
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438 ¤ CHAPTER 14 PARTIAL DERIVATIVES

7. ( ) = sin(2 + 3 )

(a) ( ) = i+ j = [cos(2 + 3 ) · 2] i+ [cos(2 + 3 ) · 3] j = 2 cos (2 + 3 ) i+ 3 cos (2 + 3 ) j

(b) ( 6 4) = (2 cos 0) i+ (3 cos 0) j = 2 i+ 3 j

(c) By Equation 9, u ( 6 4) = ( 6 4) · u = (2 i+ 3 j) · 1
2

3 i j = 1
2
2 3 3 = 3 3

2
.

8. ( ) = 2

(a) ( ) = i+ j = 2( 2)i+ (2 ) j =
2

2
i+

2
j

(b) (1 2) = 4 i+ 4 j

(c) By Equation 9, u (1 2) = (1 2) · u = ( 4 i+ 4 j) · 1
3
2 i+ 5 j = 1

3
8 + 4 5 = 4

3
5 2 .

9. ( ) = 2 3

(a) ( ) = h ( ) ( ) ( )i = 2 3 2 3 2 3 2

(b) (2 1 1) = h 4 + 1 4 2 4 + 6i = h 3 2 2i

(c) By Equation 14, u (2 1 1) = (2 1 1) · u = h 3 2 2i · 0 4
5

3
5
= 0 + 8

5
6
5
= 2

5
.

10. ( ) = 2

(a) ( ) = h ( ) ( ) ( )i = 2 ( ) 2 · ( ) + · 2 2 ( )

= 3 ( 2 + 2 ) 3

(b) (0 1 1) = h 1 2 0i

(c) u (0 1 1) = (0 1 1) · u = h 1 2 0i · 3
13

4
13

12
13

= 3
13
+ 8

13
+ 0 = 5

13

11. ( ) = sin ( ) = h sin cos i, (0 3) = 3
2

1
2
, and a

unit vector in the direction of v is u = 1

( 6)2+82
h 6 8i = 1

10
h 6 8i = 3

5
4
5
, so

u (0 3) = (0 3) · u = 3
2

1
2
· 3

5
4
5
= 3 3

10 + 4
10 =

4 3 3
10 .

12. ( ) =
2 + 2

( ) =
( 2 + 2)(1) (2 )

( 2 + 2)2
0 (2 )

( 2 + 2)2
=

2 2

( 2 + 2)2
2

( 2 + 2)2
,

(1 2) = 3
25

4
25
, and a unit vector in the direction of v = h3 5i is u = 1

9+25
h3 5i = 3

34

5

34
, so

u (1 2) = (1 2) · u = 3
25

4
25

· 3

34

5

34
= 9

25 34

20

25 34
= 11

25 34
.

13. ( ) = 4 2 3 ( ) = 4 3 2 3 i+ 3 2 2 j, (2 1) = 28 i 12 j, and a unit

vector in the direction of v is u = 1

12+32
(i + 3 j) = 1

10
(i + 3 j), so

u (2 1) = (2 1) · u = (28 i 12 j) · 1

10
(i+ 3 j) = 1

10
(28 36) = 8

10
or 4 10

5
.
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SECTION 14.6 DIRECTIONAL DERIVATIVES AND THE GRADIENT VECTOR ¤ 439

14. ( ) = tan 1( ) ( ) =
1

1 + ( )2
· i+

1

1 + ( )2
· j =

1 + 2 2
i+

1 + 2 2
j,

(1 2) = 2
5 i+

1
5 j, and a unit vector in the direction of v is u =

1

52+102
(5 i+ 10 j) = 1

5 5
(5 i+ 10 j) = 1

5
i+ 2

5
j,

so u (1 2) = (1 2) · u = ( 2
5
i+ 1

5
j) · ( 1

5
i+ 2

5
j) = 2

5 5
+ 2

5 5
= 4

5 5
or 4 5

25
.

15. ( ) = + + ( ) = h + + + i, (0 0 0) = h1 1 1i, and a unit

vector in the direction of v is u = 1
25+1+4

h5 1 2i = 1

30
h5 1 2i, so

u (0 0 0) = (0 0 0) · u = h1 1 1i · 1

30
h5 1 2i = 4

30
.

16. ( ) =

( ) = 1
2
( ) 1 2 · 1

2
( ) 1 2 · 1

2
( ) 1 2 · =

2 2 2
,

(3 2 6) = 12

2 36

18

2 36

6

2 36
= 1 3

2
1
2
, and a unit vector in the

direction of v is u = 1
1+ 4+4

h 1 2 2i = 1
3

2
3

2
3
, so

u (3 2 6) = (3 2 6) · u = 1 3
2

1
2
· 1

3
2
3

2
3
= 1

3
1 + 1

3
= 1.

17. ( ) = ln(3 + 6 + 9 ) ( ) = h3 (3 + 6 + 9 ) 6 (3 + 6 + 9 ) 9 (3 + 6 + 9 )i,

(1 1 1) = 1
6

1
3

1
2
, and a unit vector in the direction of v = 4 i + 12 j + 6k

is u = 1
16+144+36

(4 i+ 12 j+ 6k) = 2
7
i + 6

7
j + 3

7
k, so

u (1 1 1) = (1 1 1) · u = 1
6

1
3

1
2
· 2

7
6
7

3
7
= 1

21
+ 2

7
+ 3

14
= 23

42
.

18. u (2 2) = (2 2) · u, the scalar projection of (2 2) onto u, so we draw a

perpendicular from the tip of (2 2) to the line containing u. We can use the

point (2 2) to determine the scale of the axes, and we estimate the length of the

projection to be approximately 3.0 units. Since the angle between (2 2) and u

is greater than 90 , the scalar projection is negative. Thus u (2 2) 3.

19. ( ) = ( ) = 1
2
( ) 1 2( ) 1

2
( ) 1 2( ) =

2 2
, so (2 8) = 1 1

4
.

The unit vector in the direction of = h5 2 4 8i = h3 4i is u = 3
5

4
5
, so

u (2 8) = (2 8) · u = 1 1
4
· 3

5
4
5
= 2

5
.

20. ( ) = + + ( ) = h + + + i, so (1 1 3) = h2 4 0i. The unit vector in the

direction of = h1 5 2i is u = 1

30
h1 5 2i, so u (1 1 3) = (1 1 3) · u = h2 4 0i · 1

30
h1 5 2i = 22

30
.
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21. ( ) = 4 ( ) = 4 · 1
2

1 2 4 = h2 4 i.

(4 1) = h1 8i is the direction of maximum rate of change, and the maximum rate is | (4 1)| = 1 + 64 = 65.

22. ( ) = ( ) = ( ) ( ) + (1) = 2 ( + 1) .

(0 2) = h4 1i is the direction of maximum rate of change, and the maximum rate is | (0 2)| = 16 + 1 = 17.

23. ( ) = sin( ) ( ) = h cos( ) cos( )i, (1 0) = h0 1i. Thus the maximum rate of change is

| (1 0)| = 1 in the direction h0 1i.

24. ( ) =
+

( ) =
1 1 +

2
, (1 1 1) = h 1 1 2i. Thus the maximum rate of

change is | (1 1 1)| = 1 + 1 + 4 = 6 in the direction h 1 1 2i.

25. ( ) = 2 + 2 + 2

( ) = 1
2 (

2 + 2 + 2) 1 2 · 2 1
2 (

2 + 2 + 2) 1 2 · 2 1
2 (

2 + 2 + 2) 1 2 · 2

=
2 + 2 + 2 2 + 2 + 2 2 + 2 + 2

(3 6 2) = 3

49

6

49

2

49
= 3

7
6
7

2
7
. Thus the maximum rate of change is

| (3 6 2)| = 3
7

2
+ 6

7

2
+ 2

7

2
= 9+ 36+ 4

49
= 1 in the direction 3

7
6
7

2
7
or equivalently h3 6 2i.

26. ( ) = arctan( ) ( ) =
1 + ( )2 1 + ( )2 1 + ( )2

, (1 2 1) = 2
5

1
5

2
5
. Thus

the maximum rate of change is | (1 2 1)| = 4
25
+ 1

25
+ 4

25
= 9

25
= 3

5
in the direction 2

5
1
5

2
5
or equivalently

h2 1 2i.

27. (a) As in the proof of Theorem 15, u = | | cos . Since the minimum value of cos is 1 occurring when = , the

minimum value of u is | | occurring when = , that is when u is in the opposite direction of

(assuming 6= 0).

(b) ( ) = 4 2 3 ( ) = 4 3 2 3 4 3 2 2 , so decreases fastest at the point (2 3) in the

direction (2 3) = h12 92i = h 12 92i.

28. ( ) = ( ) = ( ) = 2 , ( ) = ( ) + = (1 ) and

(0 2) = 4 0 = 4, (0 2) = (1 0) 0 = 1. If u is a unit vector which makes an angle with the positive -axis,

then u (0 2) = (0 2) cos + (0 2) sin = 4 cos + sin . We want u (0 2) = 1, so 4 cos + sin = 1

sin = 1 + 4 cos sin2 = (1 + 4 cos )2 1 cos2 = 1 + 8 cos + 16 cos2
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17 cos2 + 8cos = 0 cos (17 cos + 8) = 0 cos = 0 or cos = 8
17
. If cos = 0 then =

2
or = 3

2

but 3
2
does not satisfy the original equation. If cos = 8

17
then = cos 1 8

17
or = 2 cos 1 8

17
but

= cos 1 8
17

is not a solution of the original equation. Thus the directions are =
2
or

= 2 cos 1 8
17

4 22 rad.

29. The direction of fastest change is ( ) = (2 2) i+ (2 4) j, so we need to find all points ( ) where ( ) is

parallel to i+ j (2 2) i+ (2 4) j = (i+ j) = 2 2 and = 2 4. Then 2 2 = 2 4

= + 1 so the direction of fastest change is i+ j at all points on the line = + 1.

30. The fisherman is traveling in the direction h 80 60i. A unit vector in this direction is u = 1
100
h 80 60i = 4

5
3
5
,

and if the depth of the lake is given by ( ) = 200 + 0 02 2 0 001 3, then ( ) = 0 04 0 003 2 .

u (80 60) = (80 60) · u = h3 2 10 8i · 4
5

3
5
= 3 92. Since u (80 60) is positive, the depth of the lake is

increasing near (80 60) in the direction toward the buoy.

31. =
2 + 2 + 2

and 120 = (1 2 2) =
3
so = 360.

(a) u = h1 1 1i
3

,

u (1 2 2) = (1 2 2) ·u = 360 2 + 2 + 2 3 2h i
(1 2 2)

·u = 40
3
h1 2 2i · 1

3
h1 1 1i = 40

3 3

(b) From (a), = 360 2 + 2 + 2 3 2h i, and since h i is the position vector of the point ( ), the

vector h i, and thus , always points toward the origin.

32. = 400
2 3 2 9 2h 3 9 i

(a) u = 1

6
h1 2 1i, (2 1 2) = 400 43h2 3 18i and

u (2 1 2) =
400 43

6
(26) =

5200 6

3 43
C m.

(b) (2 1 2) = 400 43h 2 3 18i or equivalently h 2 3 18i.

(c) | | = 400 2 3 2 9 2
2 + 9 2 + 81 2 C m is the maximum rate of increase. At (2 1 2) the maximum rate

of increase is 400 43 337 C m.

33. ( ) = h10 3 + 3 i, (3 4 5) = h38 6 12i

(a) u (3 4 5) = h38 6 12i · 1

3
h1 1 1i = 32

3

(b) (3 4 5) = h38 6 12i, or equivalently, h19 3 6i.

(c) | (3 4 5)| = 382 + 62 + 122 = 1624 = 2 406
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442 ¤ CHAPTER 14 PARTIAL DERIVATIVES

34. = ( ) = 1000 0 005 2 0 01 2 ( ) = h 0 01 0 02 i and (60 40) = h 0 6 0 8i.

(a) Due south is in the direction of the unit vector u = j and

u (60 40) = (60 40) · h0 1i = h 0 6 0 8i · h0 1i = 0 8. Thus, if you walk due south from (60 40 966)
you will ascend at a rate of 0 8 vertical meters per horizontal meter.

(b) Northwest is in the direction of the unit vector u = 1

2
h 1 1i and

u (60 40) = (60 40) · 1
2
h 1 1i = h 0 6 0 8i · 1

2
h 1 1i = 0 2

2
0 14. Thus, if you walk northwest

from (60 40 966) you will descend at a rate of approximately 0 14 vertical meters per horizontal meter.

(c) (60 40) = h 0 6 0 8i is the direction of largest slope with a rate of ascent given by
| (60 40)| = ( 0 6)2 + ( 0 8)2 = 1. The angle above the horizontal in which the path begins is given by

tan = 1 = 45 .

35. A unit vector in the direction of is i and a unit vector in the direction of is j. Thus (1 3) = (1 3) = 3 and

(1 3) = (1 3) = 26. Therefore (1 3) = h (1 3) (1 3)i = h3 26i, and by definition,

(1 3) = · u where u is a unit vector in the direction of , which is 5
13

12
13
. Therefore,

(1 3) = h3 26i · 5
13

12
13

= 3 · 5
13
+ 26 · 12

13
= 327

13
.

36. The curves of steepest ascent or descent are perpendicular to all of the contour lines (see Figure 12) so we sketch curves

beginning at A and B that head toward lower elevations, crossing each contour line at a right angle.

37. (a) ( + ) =
( + ) ( + )

= + + = +

= +

(b) ( ) = + + = + = +
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(c) =
2 2

=
2

=
2

(d) =
( ) ( )

= 1 1 = 1

38. If we place the initial point of the gradient vector (4 6) at (4 6), the vector is perpendicular to the level curve of that

includes (4 6), so we sketch a portion of the level curve through (4 6) (using the nearby level curves as a guideline)

and draw a line perpendicular to the curve at (4 6). The gradient vector is

parallel to this line, pointing in the direction of increasing function values, and

with length equal to the maximum value of the directional derivative of at

(4 6). We can estimate this length by finding the average rate of change in the

direction of the gradient. The line intersects the contour lines corresponding to

2 and 3 with an estimated distance of 0 5 units. Thus the rate of change is

approximately 2 ( 3)

0 5
= 2, and we sketch the gradient vector with

length 2.

39. ( ) = 3 + 5 2 + 3

u ( ) = ( ) · u = 3 2 + 10 5 2 + 3 2 · 3
5

4
5
= 9

5
2 +6 + 4 2 + 12

5
2 = 29

5
2 +6 + 12

5
2. Then

2
u ( ) = u [ u ( )] = [ u ( )] · u = 58

5
+ 6 6 + 24

5
· 3

5
4
5

= 174
25

+ 18
5
+ 24

5
+ 96

25
= 294

25
+ 186

25

and 2
u (2 1) = 294

25
(2) + 186

25
(1) = 774

25
.

40. (a) From Equation 9 we have u = · u = h i · h i = + and from Exercise 39 we have

2
u = u [ u ] = [ u ] · u = h + + i · h i = 2 + + + 2.

But = by Clairaut’s Theorem, so 2
u = 2 + 2 + 2.

(b) ( ) = 2 = 2 , = 2 2 , = 0, = 2 2 , = 4 2 and a

unit vector in the direction of v is u = 1

42+62
h4 6i = 2

13

3

13
= h i. Then

2
u = 2 + 2 + 2 = 0 · 2

13

2

+ 2 · 2 2 2

13

3

13
+ 4 2 3

13

2

= 24
13

2 + 36
13

2 .

41. Let ( ) = 2( 2)2 + ( 1)2 + ( 3)2. Then 2( 2)2 + ( 1)2 + ( 3)2 = 10 is a level surface of .

( ) = 4( 2) (3 3 5) = 4, ( ) = 2( 1) (3 3 5) = 4, and

( ) = 2( 3) (3 3 5) = 4.

(a) Equation 19 gives an equation of the tangent plane at (3 3 5) as 4( 3) + 4( 3) + 4( 5) = 0

4 + 4 + 4 = 44 or equivalently + + = 11.
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444 ¤ CHAPTER 14 PARTIAL DERIVATIVES

(b) By Equation 20, the normal line has symmetric equations 3

4
=

3

4
=

5

4
or equivalently

3 = 3 = 5. Corresponding parametric equations are = 3 + , = 3 + , = 5 + .

42. Let ( ) = 2 2 . Then = 2 2 2 2 = 0 is a level surface of . ( ) = 2

(4 7 3) = 8, ( ) = 1 (4 7 3) = 1, and ( ) = 2 (4 7 3) = 6.

(a) An equation of the tangent plane at (4 7 3) is 8( 4) 1( 7) 6( 3) = 0 or 8 6 = 7.

(b) The normal line has symmetric equations 4

8
=

7

1
=

3

6
and parametric equations = 4 + 8 , = 7 ,

= 3 6 .

43. Let ( ) = 2. Then 2 = 6 is a level surface of and ( ) = 2 2 2 .

(a) (3 2 1) = h2 3 12i is a normal vector for the tangent plane at (3 2 1), so an equation of the tangent plane
is 2( 3) + 3( 2) + 12( 1) = 0 or 2 + 3 + 12 = 24.

(b) The normal line has direction h2 3 12i, so parametric equations are = 3 + 2 , = 2 + 3 , = 1 + 12 , and

symmetric equations are 3

2
=

2

3
=

1

12
.

44. Let ( ) = + + . Then + + = 5 is a level surface of and ( ) = h + + + i.

(a) (1 2 1) = h3 2 3i is a normal vector for the tangent plane at (1 2 1), so an equation of the tangent plane
is 3( 1) + 2( 2) + 3( 1) = 0 or 3 + 2 + 3 = 10.

(b) The normal line has direction h3 2 3i, so parametric equations are = 1 + 3 , = 2 + 2 , = 1 + 3 , and symmetric

equations are 1

2
=

2

1
=

1

3
.

45. Let ( ) = + + . Then + + = is the level surface ( ) = 0,

and ( ) = h1 1 1 i.

(a) (0 0 1) = h1 1 1i is a normal vector for the tangent plane at (0 0 1), so an equation of the tangent plane
is 1( 0) + 1( 0) + 1( 1) = 0 or + + = 1.

(b) The normal line has direction h1 1 1i, so parametric equations are = , = , = 1 + , and symmetric equations are

= = 1.

46. Let ( ) = 4 + 4 + 4 3 2 2 2. Then 4 + 4 + 4 = 3 2 2 2 is the level surface ( ) = 0,

and ( ) = 4 3 6 2 2 4 3 6 2 2 4 3 6 2 2 .

(a) (1 1 1) = h 2 2 2i or equivalently h1 1 1i is a normal vector for the tangent plane at (1 1 1), so an equation
of the tangent plane is 1( 1) + 1( 1) + 1( 1) = 0 or + + = 3.

(b) The normal line has direction h1 1 1i, so parametric equations are = 1 + , = 1 + , = 1 + , and symmetric

equations are 1 = 1 = 1 or equivalently = = .
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47. ( ) = + + ,

( ) = h + + + i,
(1 1 1) = h2 2 2i, so an equation of the tangent

plane is 2 + 2 + 2 = 6 or + + = 3, and the

normal line is given by 1 = 1 = 1 or

= = . To graph the surface we solve for :

=
3

+
.

48. ( ) = , ( ) = h i,
(1 2 3) = h6 3 2i, so an equation of the tangent

plane is 6 + 3 + 2 = 18, and the normal line is given

by 1

6
=

2

3
=

3

2
or = 1 + 6 , = 2 + 3 ,

= 3 + 2 . To graph the surface we solve for : =
6 .

49. ( ) = ( ) = h i, (3 2) = h2 3i. (3 2)

is perpendicular to the tangent line, so the tangent line has equation

(3 2) · h 3 2i = 0 h2 3i · h 3 2i = 0
2( 3) + 3( 2) = 0 or 2 + 3 = 12.

50. ( ) = 2 + 2 4 ( ) = h2 4 2 i,
(1 2) = h 2 4i. (1 2) is perpendicular to the tangent line, so

the tangent line has equation (1 2) · h 1 2i = 0
h 2 4i · h 1 2i = 0 2( 1) + 4( 2) = 0

2 + 4 = 6 or equivalently + 2 = 3.

51. ( 0 0 0) =
2 0

2

2 0

2

2 0

2
. Thus an equation of the tangent plane at ( 0 0 0) is

2 0

2
+
2 0

2
+
2 0

2
= 2

2
0

2
+

2
0

2
+

2
0

2
= 2(1) = 2 since ( 0 0 0) is a point on the ellipsoid. Hence

0

2
+

0

2
+

0

2
= 1 is an equation of the tangent plane.
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446 ¤ CHAPTER 14 PARTIAL DERIVATIVES

52. ( 0 0 0) =
2 0

2

2 0

2

2 0

2
, so an equation of the tangent plane at ( 0 0 0) is

2 0

2
+
2 0

2

2 0

2
= 2

2
0

2
+

2
0

2

2
0

2
= 2 or 0

2
+

0

2

0

2
= 1.

53. ( 0 0 0) =
2 0

2

2 0

2

1 , so an equation of the tangent plane is 2 0

2
+
2 0

2

1
=
2 2

0

2
+
2 2

0

2

0

or 2 0

2
+
2 0

2
= + 2

2
0

2
+

2
0

2

0 . But 0
=

2
0

2
+

2
0

2
, so the equation can be written as

2 0

2
+
2 0

2
=

+ 0 .

54. Let ( ) = 2 + 2 ; then the paraboloid = 2 + 2 is a level surface of . ( ) = h2 1 2 i is a
normal vector to the surface at ( ) and so it is a normal vector for the tangent plane there. The tangent plane is parallel

to the plane + 2 + 3 = 1 when the normal vectors of the planes are parallel, so we need a point ( 0 0 0) on the

paraboloid where h2 0 1 2 0i = h1 2 3i. Comparing -components we have = 1
2
, so

h2 0 1 2 0i = 1
2 1 3

2
and 2 0 =

1
2 0 =

1
4 , 2 0 =

3
2 0 =

3
4 . Then

0 =
2
0 +

2
0 =

1
4

2
+ 3

4

2
= 5

8
and the point is 1

4
5
8

3
4
.

55. The hyperboloid 2 2 2 = 1 is a level surface of ( ) = 2 2 2 and ( ) = h2 2 2 i is a
normal vector to the surface and hence a normal vector for the tangent plane at ( ). The tangent plane is parallel to the

plane = + or + = 0 if and only if the corresponding normal vectors are parallel, so we need a point ( 0 0 0)

on the hyperboloid where h2 0 2 0 2 0i = h1 1 1i or equivalently h 0 0 0i = h1 1 1i for some 6= 0.
Then we must have 0 = , 0 = , 0 = and substituting into the equation of the hyperboloid gives

2 ( )2 2 = 1 2 = 1, an impossibility. Thus there is no such point on the hyperboloid.

56. First note that the point (1 1 2) is on both surfaces. The ellipsoid is a level surface of ( ) = 3 2 + 2 2 + 2 and

( ) = h6 4 2 i. A normal vector to the surface at (1 1 2) is (1 1 2) = h6 4 4i and an equation of the
tangent plane there is 6( 1) + 4( 1) + 4( 2) = 0 or 6 + 4 + 4 = 18 or 3 + 2 + 2 = 9. The sphere is a level

surface of ( ) = 2 + 2 + 2 8 6 8 + 24 and ( ) = h2 8 2 6 2 8i. A normal vector to
the sphere at (1 1 2) is (1 1 2) = h 6 4 4i and the tangent plane there is 6( 1) 4( 1) 4( 2) = 0 or

3 + 2 + 2 = 9. Since these tangent planes are identical, the surfaces are tangent to each other at the point (1 1 2).

57. Let ( 0 0 0) be a point on the cone [other than (0 0 0)]. The cone is a level surface of ( ) = 2 + 2 2 and

( ) = h2 2 2 i, so ( 0 0 0) = h2 0 2 0 2 0i is a normal vector to the cone at this point and an

equation of the tangent plane there is 2 0 ( 0) + 2 0 ( 0) 2 0 ( 0) = 0 or 0 + 0 0 = 2
0 +

2
0

2
0 .

But 2
0 +

2
0 =

2
0 so the tangent plane is given by 0 + 0 0 = 0, a plane which always contains the origin.
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58. Let ( 0 0 0) be a point on the sphere. Then the normal line is given by 0

2 0
=

0

2 0
=

0

2 0
. For the center

(0 0 0) to be on the line, we need 0

2 0
=

0

2 0
=

0

2 0
or equivalently 1 = 1 = 1, which is true.

59. Let ( ) = 2 + 2 . Then the paraboloid is the level surface ( ) = 0 and ( ) = h2 2 1i, so

(1 1 2) = h2 2 1i is a normal vector to the surface. Thus the normal line at (1 1 2) is given by = 1 + 2 ,

= 1+ 2 , = 2 . Substitution into the equation of the paraboloid = 2 + 2 gives 2 = (1+ 2 )2 + (1+ 2 )2

2 = 2 + 8 + 8 2 8 2 + 9 = 0 (8 + 9) = 0. Thus the line intersects the paraboloid when = 0,

corresponding to the given point (1 1 2), or when = 9
8
, corresponding to the point 5

4
5
4

25
8
.

60. The ellipsoid is a level surface of ( ) = 4 2 + 2 + 4 2 and ( ) = h8 2 8 i, so (1 2 1) = h8 4 8i

or equivalently h2 1 2i is a normal vector to the surface. Thus the normal line to the ellipsoid at (1 2 1) is given
by = 1 + 2 , = 2 + , = 1 + 2 . Substitution into the equation of the sphere gives

(1+2 )2+(2+ )2+(1+2 )2 = 102 6+12 +9 2 = 102 9 2+12 96 = 0 3( +4)(3 8) = 0.

Thus the line intersects the sphere when = 4, corresponding to the point ( 7 2 7), and when = 8
3
, corresponding to

the point 19
3

14
3

19
3
.

61. Let ( 0 0 0) be a point on the surface. Then an equation of the tangent plane at the point is

2 0
+
2 0

+
2 0

=
0 + 0 + 0

2
. But 0 + 0 + 0 = , so the equation is

0
+

0
+

0
= . The -, -, and -intercepts are 0, 0 and 0 respectively. (The -intercept is found by

setting = = 0 and solving the resulting equation for , and the - and -intercepts are found similarly.) So the sum of the

intercepts is 0 + 0 + 0 = , a constant.

62. The surface = 1 is a level surface of ( ) = and ( ) = h i is normal to the surface, so a

normal vector for the tangent plane to the surface at ( 0 0 0) is h 0 0 0 0 0 0i. An equation for the tangent plane there

is 0 0( 0) + 0 0( 0) + 0 0( 0) = 0 0 0 + 0 0 + 0 0 = 3 0 0 0 or
0
+

0
+

0
= 3.

If ( 0 0 0) is in the first octant, then the tangent plane cuts off a pyramid in the first octant with vertices (0 0 0),

(3 0 0 0), (0 3 0 0), (0 0 3 0). The base in the -plane is a triangle with area 1
2
(3 0) (3 0) and the height (along the

-axis) of the pyramid is 3 0. The volume of the pyramid for any point ( 0 0 0) on the surface = 1 in the first octant is

1
3
(base) (height) = 1

3
· 1
2
(3 0) (3 0) · 3 0 =

9
2 0 0 0 =

9
2
since 0 0 0 = 1.
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63. If ( ) = 2 2 and ( ) = 4 2 + 2 + 2, then the tangent line is perpendicular to both and

at ( 1 1 2). The vector v = × will therefore be parallel to the tangent line.

We have ( ) = h 2 2 1i ( 1 1 2) = h2 2 1i, and ( ) = h8 2 2 i

( 1 1 2) = h 8 2 4i. Hence v = × =

i j k

2 2 1

8 2 4

= 10 i 16 j 12k.

Parametric equations are: = 1 10 , = 1 16 , = 2 12 .

64. (a) Let ( ) = + and ( ) = 2 + 2. Then the required tangent

line is perpendicular to both and at (1 2 1) and the vector

v = × is parallel to the tangent line. We have

( ) = h0 1 1i (1 2 1) = h0 1 1i, and
( ) = h2 2 0i (1 2 1) = h2 4 0i. Hence

v = × =

i j k

0 1 1

2 4 0

= 4 i+ 2 j 2k. So parametric equations

of the desired tangent line are = 1 4 , = 2 + 2 , = 1 2 .

(b)

65. (a) The direction of the normal line of is given by , and that of by . Assuming that

6= 0 6= , the two normal lines are perpendicular at if · = 0 at

h i · h i = 0 at + + = 0 at .

(b) Here = 2 + 2 2 and = 2 + 2 + 2 2, so

· = h2 2 2 i · h2 2 2 i = 4 2 + 4 2 4 2 = 4 = 0, since the point ( ) lies on the graph of

= 0. To see that this is true without using calculus, note that = 0 is the equation of a sphere centered at the origin and

= 0 is the equation of a right circular cone with vertex at the origin (which is generated by lines through the origin). At

any point of intersection, the sphere’s normal line (which passes through the origin) lies on the cone, and thus is

perpendicular to the cone’s normal line. So the surfaces with equations = 0 and = 0 are everywhere orthogonal.

66. (a) The function ( ) = ( )1 3 is continuous on R2 since it is a composition of a polynomial and the cube root function,

both of which are continuous. (See the text just after Example 14.2.8.)

(0 0) = lim
0

(0 + 0) (0 0)
= lim

0

( · 0)1 3 0
= 0,

(0 0) = lim
0

(0 0 + ) (0 0)
= lim

0

(0 · )1 3 0
= 0.

Therefore, (0 0) and (0 0) do exist and are equal to 0. Now let u be any unit vector other than i and j (these

correspond to and respectively.) Then u = i+ j where 6= 0 and 6= 0. Thus
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u (0 0) = lim
0

(0 + 0 + ) (0 0)
= lim

0

3 ( )( )
= lim

0

3

1 3
and this limit does not exist, so

u (0 0) does not exist.

(b) Notice that if we start at the origin and proceed in the direction of

the - or -axis, then the graph is flat. But if we proceed in any

other direction, then the graph is extremely steep.

67. Let u = h i and v = h i. Then we know that at the given point, u = · u = + and

v = · v = + . But these are just two linear equations in the two unknowns and , and since u and v are

not parallel, we can solve the equations to find = h i at the given point. In fact,

=
u v v u .

68. Since = ( ) is differentiable at x0 = ( 0 0), by Definition 14.4.7 we have

= ( 0 0) + ( 0 0) + 1 + 2 where 1 2 0 as ( ) (0 0). Now

= (x) (x0), h i = x x0 so ( ) (0 0) is equivalent to x x0 and

h ( 0 0) ( 0 0)i = (x0). Substituting into 14.4.7 gives (x) (x0) = (x0) · (x x0)+ h 1 2i · h i

or h 1 2i · (x x0) = (x) (x0) (x0) · (x x0),

and so (x) (x0) (x0) · (x x0)

|x x0| =
h 1 2i · (x x0)

|x x0| . But x x0
|x x0| is a unit vector so

lim
x x0

h 1 2i · (x x0)

|x x0| = 0 since 1 2 0 as x x0. Hence lim
x x0

(x) (x0) (x0) · (x x0)

|x x0| = 0.

14.7 Maximum and Minimum Values

1. (a) First we compute (1 1) = (1 1) (1 1) [ (1 1)]2 = (4)(2) (1)2 = 7. Since (1 1) 0 and

(1 1) 0, has a local minimum at (1 1) by the Second Derivatives Test.

(b) (1 1) = (1 1) (1 1) [ (1 1)]2 = (4)(2) (3)2 = 1. Since (1 1) 0, has a saddle point at (1 1) by

the Second Derivatives Test.

2. (a) = (0 2) (0 2) [ (0 2)]2 = ( 1)(1) (6)2 = 37. Since 0, has a saddle point at (0 2) by the

Second Derivatives Test.
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450 ¤ CHAPTER 14 PARTIAL DERIVATIVES

(b) = (0 2) (0 2) [ (0 2)]2 = ( 1)( 8) (2)2 = 4. Since 0 and (0 2) 0, has a local

maximum at (0 2) by the Second Derivatives Test.

(c) = (0 2) (0 2) [ (0 2)]2 = (4)(9) (6)2 = 0. In this case the Second Derivatives Test gives no

information about at the point (0 2).

3. In the figure, a point at approximately (1 1) is enclosed by level curves which are oval in shape and indicate that as we move

away from the point in any direction the values of are increasing. Hence we would expect a local minimum at or near (1 1).

The level curves near (0 0) resemble hyperbolas, and as we move away from the origin, the values of increase in some

directions and decrease in others, so we would expect to find a saddle point there.

To verify our predictions, we have ( ) = 4 + 3 + 3 3 ( ) = 3 2 3 , ( ) = 3 2 3 . We

have critical points where these partial derivatives are equal to 0: 3 2 3 = 0, 3 2 3 = 0. Substituting = 2 from the

first equation into the second equation gives 3( 2)2 3 = 0 3 ( 3 1) = 0 = 0 or = 1. Then we have

two critical points, (0 0) and (1 1). The second partial derivatives are ( ) = 6 , ( ) = 3, and ( ) = 6 ,

so ( ) = ( ) ( ) [ ( )]2 = (6 )(6 ) ( 3)2 = 36 9. Then (0 0) = 36(0)(0) 9 = 9,

and (1 1) = 36(1)(1) 9 = 27. Since (0 0) 0, has a saddle point at (0 0) by the Second Derivatives Test. Since

(1 1) 0 and (1 1) 0, has a local minimum at (1 1).

4. In the figure, points at approximately ( 1 1) and ( 1 1) are enclosed by oval-shaped level curves which indicate that as we

move away from either point in any direction, the values of are increasing. Hence we would expect local minima at or near

( 1 ±1). Similarly, the point (1 0) appears to be enclosed by oval-shaped level curves which indicate that as we move away
from the point in any direction the values of are decreasing, so we should have a local maximum there. We also show

hyperbola-shaped level curves near the points ( 1 0), (1 1), and (1 1). The values of increase along some paths leaving

these points and decrease in others, so we should have a saddle point at each of these points.

To confirm our predictions, we have ( ) = 3 3 2 2 + 4 ( ) = 3 3 2, ( ) = 4 + 4 3.

Setting these partial derivatives equal to 0, we have 3 3 2 = 0 = ±1 and 4 + 4 3 = 0

2 1 = 0 = 0 ±1. So our critical points are (±1 0), (±1 ±1).

The second partial derivatives are ( ) = 6 , ( ) = 0, and ( ) = 12 2 4, so

( ) = ( ) ( ) [ ( )]2 = ( 6 )(12 2 4) (0)2 = 72 2 + 24 .

We use the Second Derivatives Test to classify the 6 critical points:

Critical Point Conclusion

(1 0) 24 6 0, 0 has a local maximum at (1 0)

(1 1) 48 0 has a saddle point at (1 1)

(1 1) 48 0 has a saddle point at (1 1)

( 1 0) 24 0 has a saddle point at ( 1 0)

( 1 1) 48 6 0, 0 has a local minimum at ( 1 1)

( 1 1) 48 6 0, 0 has a local minimum at ( 1 1)
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SECTION 14.7 MAXIMUM AND MINIMUM VALUES ¤ 451

5. ( ) = 2 + + 2 + = 2 + , = + 2 + 1, = 2, = 1, = 2. Then = 0 implies

= 2 , and substitution into = + 2 + 1 = 0 gives + 2 ( 2 ) + 1 = 0 3 = 1 = 1
3
.

Then = 2
3
and the only critical point is 1

3
2
3
.

( ) = ( )2 = (2)(2) (1)2 = 3, and since

1
3

2
3
= 3 0 and 1

3
2
3
= 2 0, 1

3
2
3
= 1

3
is a local

minimum by the Second Derivatives Test.

6. ( ) = 2 2 2 2 = 2 2 ,

= 2 2 , = 2, = 1, = 2. Then = 0 implies

= 2 + 2, and substitution into = 0 gives 2 2(2 + 2) = 0

3 = 6 = 2. Then = 2 and the only critical point is

( 2 2). ( ) = ( )2 = ( 2)( 2) 12 = 3, and since

( 2 2) = 3 0 and ( 2 2) = 2 0, ( 2 2) = 4 is a

local maximum by the Second Derivatives Test.

7. ( ) = ( )(1 ) = 2 + 2 = 1 2 + 2, = 1 2 + 2 , = 2 ,

= 2 + 2 , = 2 . Then = 0 implies 1 2 + 2 = 0 and = 0 implies 1 2 + 2 = 0. Adding the

two equations gives 1 + 2 1 2 = 0 2 = 2 = ± , but if = then = 0 implies

1 + 2 2 + 2 = 0 3 2 = 1 which has no real solution. If =

then substitution into = 0 gives 1 2 2 + 2 = 0 2 = 1

= ±1, so the critical points are (1 1) and ( 1 1). Now

(1 1) = ( 2)(2) 02 = 4 0 and

( 1 1) = (2)( 2) 02 = 4 0, so (1 1) and ( 1 1) are

saddle points.

8. ( ) = 2 2 2 2
= (1 4 2) 2 2 2 2

, = 4 2 2 2 2
, = (16 2 12) 2 2 2 2

,

= (16 2 4) 2 2 2 2
, = (16 2 4) 2 2 2 2

. Then = 0 implies 1 4 2 = 0 = ±1
2
, and

substitution into = 0 4 = 0 gives = 0, so the critical points are ± 1
2
0 . Now
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452 ¤ CHAPTER 14 PARTIAL DERIVATIVES

1
2
0 = ( 4 1 2)( 2 1 2) 02 = 8 1 0 and

1
2
0 = 4 1 2 0, so 1

2
0 = 1

2
1 2 is a local maximum.

1
2
0 = (4 1 2)(2 1 2) 02 = 8 1 0 and

1
2 0 = 4 1 2 0, so 1

2 0 = 1
2

1 2

is a local minimum.

9. ( ) = 3 + 3 2 6 2 6 2 + 2 = 6 12 , = 3 2 + 3 2 12 , = 6 12, = 6 ,

= 6 12. Then = 0 implies 6 ( 2) = 0, so = 0 or = 2. If = 0 then substitution into = 0 gives

3 2 12 = 0 3 ( 4) = 0 = 0 or = 4, so we have critical points (0 0) and (0 4). If = 2,

substitution into = 0 gives 12 + 3 2 24 = 0 2 = 4

= ±2, so we have critical points (±2 2).

(0 0) = ( 12)( 12) 02 = 144 0 and (0 0) = 12 0, so

(0 0) = 2 is a local maximum. (0 4) = (12)(12) 02 = 144 0

and (0 4) = 12 0, so (0 4) = 30 is a local minimum.

(±2 2) = (0)(0) (±12)2 = 144 0, so (±2 2) are saddle points.

10. ( ) = (1 ) = 2 2 = 2 2, = 2 2 , = 2 ,

= 1 2 2 , = 2 . Then = 0 implies (1 2 ) = 0, so = 0 or = 1 2 . If = 0 then

substitution into = 0 gives 2 = 0 (1 ) = 0 = 0 or = 1, so we have critical points (0 0) and

(1 0). If = 1 2 , substitution into = 0 gives 2 2 (1 2 ) = 0 3 2 = 0 (3 1) = 0

= 0 or = 1
3
. If = 0 then = 1, and if = 1

3
then = 1

3
, so (0 1) and 1

3
1
3
are critical points.

(0 0) = (0)(0) 12 = 1 0,

(1 0) = (0)( 2) ( 1)2 = 1 0, and

(0 1) = ( 2)(0) ( 1)2 = 1 0, so (0 0), (1 0), and (0 1) are

saddle points. 1
3

1
3
= ( 2

3
)( 2

3
) ( 1

3
)2 = 1

3
0 and

1
3

1
3
= 2

3
0, so 1

3
1
3
= 1

27
is a local maximum.

11. ( ) = 3 12 + 8 3 = 3 2 12 , = 12 + 24 2, = 6 , = 12, = 48 . Then = 0

implies 2 = 4 and = 0 implies = 2 2. Substituting the second equation into the first gives (2 2)2 = 4
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SECTION 14.7 MAXIMUM AND MINIMUM VALUES ¤ 453

4 4 = 4 4 ( 3 1) = 0 = 0 or = 1. If = 0 then

= 0 and if = 1 then = 2, so the critical points are (0 0) and (2 1).

(0 0) = (0)(0) ( 12)2 = 144 0, so (0 0) is a saddle point.

(2 1) = (12)(48) ( 12)2 = 432 0 and (2 1) = 12 0 so

(2 1) = 8 is a local minimum.

12. ( ) = +
1
+
1

=
1
2
, =

1
2
, =

2
3
,

= 1, =
2
3
. Then = 0 implies =

1
2
and = 0 implies

=
1
2
. Substituting the first equation into the second gives

=
1

(1 2)2
= 4 ( 3 1) = 0 = 0 or = 1.

is not defined when = 0, and when = 1 we have = 1, so the only critical point is (1 1).

(1 1) = (2)(2) 12 = 3 0 and (1 1) = 2 0, so (1 1) = 3 is a local minimum.

13. ( ) = cos = cos , = sin .

Now = 0 implies cos = 0 or =
2
+ for an integer.

But sin
2
+ 6= 0, so there are no critical points.

14. ( ) = cos = sin , = cos , = cos ,

= sin , = 0. Then = 0 if and only if =
2
+ for an

integer. But sin
2 + 6= 0, so = 0 = 0 and the critical

points are
2
+ 0 , an integer.

2
+ 0 = (0)(0) (±1)2 = 1 0, so each critical point is

a saddle point.

15. ( ) = ( 2 + 2)
2 2

= ( 2 + 2)
2 2

( 2 ) + 2
2 2

= 2
2 2

(1 2 2),

= ( 2 + 2)
2 2

(2 ) + 2
2 2

= 2
2 2

(1 + 2 + 2),
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454 ¤ CHAPTER 14 PARTIAL DERIVATIVES

= 2
2 2

( 2 ) + (1 2 2) 2 2
2 2

+ 2
2 2

= 2
2 2

((1 2 2)(1 2 2) 2 2),

= 2
2 2

( 2 ) + 2 (2 )
2 2

(1 2 2) = 4
2 2

( 2 + 2),

= 2
2 2

(2 ) + (1 + 2 + 2) 2 2
2 2

+ 2
2 2

= 2
2 2

((1 + 2 + 2)(1 + 2 2) + 2 2).

= 0 implies = 0, and substituting into = 0 gives

2
2

(1 2) = 0 = 0 or = ±1. Thus the critical points are
(0 0) and (±1 0). Now (0 0) = (2)(2) 0 0 and (0 0) = 2 0,

so (0 0) = 0 is a local minimum. (±1 0) = ( 4 1)(4 1) 0 0

so (±1 0) are saddle points.

16. ( ) = ( 2 2) = 2 , = (2 + 2 2) ,

= 2 , = 2 , = (2 + 4 + 2 2) . Then = 0

implies = 0 and substituting into = 0 gives (2 + 2) = 0

(2 + ) = 0 = 0 or = 2, so the critical points are (0 0) and

(0 2). (0 0) = ( 2)(2) (0)2 = 4 0 so (0 0) is a saddle point.

(0 2) = ( 2 2)( 2 2) (0)2 = 4 4 0 and (0 2) = 2 2 0, so (0 2) = 4 2 is a local

maximum.

17. ( ) = 2 2 cos = 2 sin , = 2 2 cos ,

= 2 cos , = 2 sin , = 2. Then = 0 implies = 0 or

sin = 0 = 0, , or 2 for 1 7. Substituting = 0 into

= 0 gives cos = 0 =
2
or 3

2
, substituting = 0 or = 2

into = 0 gives = 1, and substituting = into = 0 gives = 1.

Thus the critical points are (0 1),
2
0 , ( 1), 3

2
0 , and (2 1).

2
0 = 3

2
0 = 4 0 so

2
0 and 3

2
0 are saddle points. (0 1) = ( 1) = (2 1) = 4 0 and

(0 1) = ( 1) = (2 1) = 2 0, so (0 1) = ( 1) = (2 1) = 1 are local minima.

18. ( ) = sin sin = cos sin , = sin cos , = sin sin , = cos cos ,

= sin sin . Here we have and , so = 0 implies cos = 0 or sin = 0. If cos = 0

then =
2
or

2
, and if sin = 0 then = 0. Substituting = ±

2
into = 0 gives cos = 0 =

2
or

2
, and
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SECTION 14.7 MAXIMUM AND MINIMUM VALUES ¤ 455

substituting = 0 into = 0 gives sin = 0 = 0. Thus the critical points are
2
±
2
,

2
±
2
, and (0 0).

(0 0) = 1 0 so (0 0) is a saddle point.

2 ± 2
=

2 ± 2
= 1 0 and

2 2
=

2 2
= 1 0 while

2 2
=

2 2
= 1 0, so

2 2
=

2 2
= 1

are local maxima and
2 2

=
2 2

= 1 are local minima.

19. ( ) = 2 + 4 2 4 + 2 = 2 4 , = 8 4 , = 2, = 4, = 8. Then = 0

and = 0 each implies = 1
2
, so all points of the form 0

1
2 0 are critical points and for each of these we have

0
1
2 0 = (2)(8) ( 4)2 = 0. The Second Derivatives Test gives no information, but

( ) = 2 + 4 2 4 + 2 = ( 2 )2 + 2 2 with equality if and only if = 1
2
. Thus 0

1
2 0 = 2 are all local

(and absolute) minima.

20. ( ) = 2 2 2

= 2 2 2
( 2 ) + 2

2 2
= 2 (1 2)

2 2
,

= 2 2 2
( 2 ) + 2 2 2

= 2(1 2 2)
2 2

,

= 2 (2 4 5 2 + 1)
2 2

,

= 2 (1 2)(1 2 2)
2 2

, = 2 2 (2 2 3)
2 2

.

= 0 implies = 0, = 0, or = ±1. If = 0 then = 0 for any -value, so all points of the form (0 ) are critical

points. If = 0 then = 0 2 2
= 0 = 0, so (0 0) (already included above) is a critical point. If = ±1

then (1 2 2) 1 2
= 0 = ± 1

2
, so ±1 1

2
and ±1 1

2
are critical points. Now

±1 1

2
= 8 3 0, ±1 1

2
= 2 2 3 2 0 and ±1 1

2
= 8 3 0,

±1 1

2
= 2 2 3 2 0, so ±1 1

2
= 1

2

3 2 are local maximum points while

±1 1

2
= 1

2

3 2 are local minimum points. At all critical points (0 ) we have (0 ) = 0, so the Second

Derivatives Test gives no information. However, if 0 then 2 2 2

0 with equality only when = 0, so we have

local minimum values (0 ) = 0, 0. Similarly, if 0 then 2 2 2
0 with equality when = 0 so

(0 ) = 0, 0 are local maximum values, and (0 0) is a saddle point.
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21. ( ) = 2 + 2 + 2 2

From the graphs, there appear to be local minima of about (1 ±1) = ( 1 ±1) 3 (and no local maxima or saddle

points). = 2 2 3 2, = 2 2 2 3, = 2 + 6 4 2, = 4 3 3, = 2 + 6 2 4. Then

= 0 implies 2 4 2 2 = 0 or 4 2 = 1 or 2 = 4. Note that neither nor can be zero. Now = 0 implies

2 2 4 2 = 0, and with 2 = 4 this implies 2 6 2 = 0 or 6 = 1. Thus = ±1 and if = 1, = ±1; if = 1,

= ±1. So the critical points are (1 1), (1 1),( 1 1) and ( 1 1). Now (1 ±1) = ( 1 ±1) = 64 16 0 and

0 always, so (1 ±1) = ( 1 ±1) = 3 are local minima.

22. ( ) =
2 2

There appear to be local maxima of about (±0 7 ±0 7) 0 18 and local minima of about (±0 7 0 7) 0 18. Also,

there seems to be a saddle point at the origin.

=
2 2

(1 2 2), =
2 2

(1 2 2), = 2
2 2

(2 2 3), = 2
2 2

(2 2 3),

= (1 2 2)
2 2

(1 2 2). Then = 0 implies = 0 or = ± 1

2
.

Substituting these values into = 0 gives the critical points (0 0), 1

2
± 1

2
, 1

2
± 1

2
. Then

( ) = 2( 2 2) 4 2 2(2 2 3)(2 2 3) (1 2 2)2(1 2 2)2 , so (0 0) = 1, while 1

2
± 1

2
0

and 1

2
± 1

2
0. But 1

2

1

2
0, 1

2

1

2
0, 1

2

1

2
0, 1

2

1

2
0.

Hence (0 0) is a saddle point; 1

2

1

2
= 1

2

1

2
= 1

2
are local minima and

1

2

1

2
= 1

2

1

2
= 1

2 are local maxima.
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SECTION 14.7 MAXIMUM AND MINIMUM VALUES ¤ 457

23. ( ) = sin + sin + sin( + ), 0 2 , 0 2

From the graphs it appears that has a local maximum at about (1 1) with value approximately 2 6, a local minimum

at about (5 5) with value approximately 2 6, and a saddle point at about (3 3).

= cos + cos( + ), = cos + cos( + ), = sin sin( + ), = sin sin( + ),

= sin( + ). Setting = 0 and = 0 and subtracting gives cos cos = 0 or cos = cos . Thus =

or = 2 . If = , = 0 becomes cos + cos 2 = 0 or 2 cos2 + cos 1 = 0, a quadratic in cos . Thus

cos = 1 or 1
2
and = ,

3
, or 5

3
, giving the critical points ( ),

3 3
and 5

3
5
3
. Similarly if

= 2 , = 0 becomes (cos ) + 1 = 0 and the resulting critical point is ( ). Now

( ) = sin sin + sin sin( + )+ sin sin( + ). So ( ) = 0 and the Second Derivatives Test doesn’t apply.

However, along the line = we have ( ) = 2 sin + sin 2 = 2 sin + 2 sin cos = 2 sin (1 + cos ), and

( ) 0 for 0 while ( ) 0 for 2 . Thus every disk with center ( ) contains points where is

positive as well as points where is negative, so the graph crosses its tangent plane ( = 0) there and ( ) is a saddle point.

3 3
= 9

4
0 and

3 3
0 so

3 3
= 3 3

2
is a local maximum while 5

3
5
3

= 9
4

0 and

5
3

5
3

0, so 5
3

5
3

= 3 3
2
is a local minimum.

24. ( ) = sin + sin + cos( + ), 0
4
, 0

4

[continued]
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From the graphs, it seems that has a local maximum at about (0 5 0 5). = cos sin( + ),

= cos sin( + ), = sin cos( + ), = sin cos( + ), = cos( + ). Setting = 0

and = 0 and subtracting gives cos = cos . Thus = . Substituting = into = 0 gives cos sin 2 = 0 or

cos (1 2 sin ) = 0. But cos 6= 0 for 0
4
and 1 2 sin = 0 implies =

6
, so the only critical point is

6 6
.

Here
6 6

= 1 0 and
6 6

= ( 1)2 1
4

0. Thus
6 6

= 3
2
is a local maximum.

25. ( ) = 4 + 4 4 2 + 2 ( ) = 4 3 8 and ( ) = 4 3 4 2 + 2. = 0

4 ( 2 2 ) = 0, so = 0 or 2 = 2 . If = 0 then substitution into = 0 gives 4 3 = 2 = 1
3 2
, so

0 1
3 2

is a critical point. Substituting 2 = 2 into = 0 gives 4 3 8 + 2 = 0. Using a graph, solutions are

approximately = 1 526, 0 259, and 1 267. (Alternatively, we could have used a calculator or a CAS to find these roots.)

We have 2 = 2 = ± 2 , so = 1 526 gives no real-valued solution for , but

= 0 259 ±0 720 and = 1 267 ±1 592. Thus to three decimal places, the critical points are

0 1
3 2

(0 0 794), (±0 720 0 259), and (±1 592 1 267). Now since = 12 2 8 , = 8 , = 12 2,

and = (12 2 8 )(12 2) 64 2, we have (0 0 794) 0, (0 0 794) 0, (±0 720 0 259) 0,

(±1 592 1 267) 0, and (±1 592 1 267) 0. Therefore (0 0 794) 1 191 and (±1 592 1 267) 1 310

are local minima, and (±0 720 0 259) are saddle points. There is no highest point on the graph, but the lowest points are

approximately (±1 592 1 267 1 310).

26. ( ) = 6 2 4 + 2 2 + ( ) = 2 and ( ) = 6 5 8 3 2 + 1. = 0 implies = 0, and

the graph of shows that the roots of = 0 are approximately = 1 273, 0 347, and 1 211. (Alternatively, we could

have found the roots of = 0 directly, using a calculator or CAS.) So to three decimal places, the critical points are

(0 1 273), (0 0 347), and (0 1 211). Now since = 2, = 0, = 30 4 24 2 2, and = 60 4 48 2 4,

we have (0 1 273) 0, (0 1 273) 0, (0 0 347) 0, (0 1 211) 0, and (0 1 211) 0, so
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SECTION 14.7 MAXIMUM AND MINIMUM VALUES ¤ 459

(0 1 273) 3 890 and (0 1 211) 1 403 are local minima, and (0 0 347) is a saddle point. The lowest point on

the graph is approximately (0 1 273 3 890).

27. ( ) = 4 + 3 3 2 + 2 + 2 + 1 ( ) = 4 3 6 + 1 and ( ) = 3 2 + 2 2. From the

graphs, we see that to three decimal places, = 0 when 1 301, 0 170, or 1 131, and = 0 when 1 215 or

0 549. (Alternatively, we could have used a calculator or a CAS to find these roots. We could also use the quadratic formula to

find the solutions of = 0.) So, to three decimal places, has critical points at ( 1 301 1 215), ( 1 301 0 549),

(0 170 1 215), (0 170 0 549), (1 131 1 215), and (1 131 0 549). Now since = 12 2 6, = 0, = 6 + 2,

and = (12 2 6)(6 + 2), we have ( 1 301 1 215) 0, ( 1 301 0 549) 0, ( 1 301 0 549) 0,

(0 170 1 215) 0, (0 170 1 215) 0, (0 170 0 549) 0, (1 131 1 215) 0, (1 131 0 549) 0, and

(1 131 0 549) 0. Therefore, to three decimal places, ( 1 301 0 549) 3 145 and (1 131 0 549) 0 701 are

local minima, (0 170 1 215) 3 197 is a local maximum, and ( 1 301 1 215), (0 170 0 549), and (1 131 1 215)

are saddle points. There is no highest or lowest point on the graph.
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28. ( ) = 20
2 2

sin 3 cos 3

( ) = 20 cos 3
2 2

(3 cos 3 ) + (sin 3 )
2 2

( 2 )

= 20
2 2

cos 3 (3 cos 3 2 sin 3 )

( ) = 20 sin 3
2 2

( 3 sin 3 ) + (cos 3 )
2 2

( 2 )

= 20
2 2

sin 3 (3 sin 3 + 2 cos 3 )

Now = 0 implies cos 3 = 0 or 3 cos 3 2 sin 3 = 0. For | | 1, the solutions to cos 3 = 0 are

= ±
6

±0 524. Using a graph (or a calculator or CAS), we estimate the roots of 3 cos 3 2 sin 3 for | | 1 to be

±0 430. = 0 implies sin 3 = 0, so = 0, or 3 sin 3 + 2 cos 3 = 0. From a graph (or calculator or CAS), the

roots of 3 sin 3 + 2 cos 3 between 1 and 1 are approximately 0 and ±0 872. So to three decimal places, has critical

points at (±0 430 0), (0 430 ±0 872), ( 0 430 ±0 872), and (0 ±0 524). Now

= 20
2 2

cos 3 [(4 2 11) sin 3 12 cos 3 ]

= 20
2 2

(3 cos 3 2 sin 3 )(3 sin 3 + 2 cos 3 )

= 20
2 2

sin 3 [(4 2 11) cos 3 12 sin 3 ]

and = 2 . Then (±0 430 0) 0, (0 430 0) 0, ( 0 430 0) 0, (0 430 ±0 872) 0,

(0 430 ±0 872) 0, ( 0 430 ±0 872) 0, ( 0 430 ±0 872) 0, and (0 ±0 524) 0, so

(0 430 0) 15 973 and ( 0 430 ±0 872) 6 459 are local maxima, ( 0 430 0) 15 973 and

(0 430 ±0 872) 6 459 are local minima, and (0 ±0 524) are saddle points. The highest point on the graph is

approximately (0 430 0 15 973) and the lowest point is approximately ( 0 430 0 15 973).
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29. Since is a polynomial it is continuous on , so an absolute maximum and minimum exist. Here = 2 2, = 2 , and

setting = = 0 gives (1 0) as the only critical point (which is inside ), where (1 0) = 1. Along 1: = 0 and

(0 ) = 2 for 2 2, a quadratic function which attains its minimum at = 0, where (0 0) = 0, and its maximum

at = ±2, where (0 ±2) = 4. Along 2: = 2 for 0 2, and ( 2) = 2 2 6 + 4 = 2 3
2

2 1
2
,

a quadratic which attains its minimum at = 3
2
, where 3

2
1
2
= 1

2
, and its maximum at = 0, where (0 2) = 4.

Along 3: = 2 for 0 2, and

( 2 ) = 2 2 6 + 4 = 2 3
2

2 1
2
, a quadratic which attains

its minimum at = 3
2
, where 3

2
1
2
= 1

2
, and its maximum at = 0,

where (0 2) = 4. Thus the absolute maximum of on is (0 ±2) = 4
and the absolute minimum is (1 0) = 1.

30. Since is a polynomial it is continuous on , so an absolute maximum and minimum exist. = 1 , = 1 , and

setting = = 0 gives (1 1) as the only critical point (which is inside ), where (1 1) = 1. Along 1: = 0 and

( 0) = for 0 4, an increasing function in , so the maximum value is (4 0) = 4 and the minimum value is

(0 0) = 0. Along 2: = 2 1
2
and 2 1

2
= 1

2
2 3

2
+ 2 = 1

2
3
2

2
+ 7

8
for 0 4, a quadratic

function which has a minimum at = 3
2
, where 3

2
5
4
= 7

8
, and a maximum at = 4, where (4 0) = 4.

Along 3: = 0 and (0 ) = for 0 2, an increasing function in

, so the maximum value is (0 2) = 2 and the minimum value is

(0 0) = 0. Thus the absolute maximum of on is (4 0) = 4 and the

absolute minimum is (0 0) = 0.

31. ( ) = 2 + 2 , ( ) = 2 + 2, and setting = = 0

gives (0 0) as the only critical point in , with (0 0) = 4.

On 1: = 1, ( 1) = 5, a constant.

On 2: = 1, (1 ) = 2 + + 5, a quadratic in which attains its

maximum at (1 1), (1 1) = 7 and its minimum at 1 1
2
, 1 1

2
= 19

4
.

On 3: ( 1) = 2 2 + 5 which attains its maximum at ( 1 1) and (1 1)

with (±1 1) = 7 and its minimum at (0 1), (0 1) = 5.

On 4: ( 1 ) = 2 + + 5 with maximum at ( 1 1), ( 1 1) = 7 and minimum at 1 1
2
, 1 1

2
= 19

4
.

Thus the absolute maximum is attained at both (±1 1) with (±1 1) = 7 and the absolute minimum on is attained at

(0 0) with (0 0) = 4.
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32. ( ) = 4 2 and ( ) = 6 2 , so the only critical point is (2 3) (which is in ) where (2 3) = 13.

Along 1: = 0, so ( 0) = 4 2 = ( 2)2 + 4, 0 4, which has a maximum value when = 2 where

(2 0) = 4 and a minimum value both when = 0 and = 4, where (0 0) = (4 0) = 0. Along 2: = 4, so

(4 ) = 6 2 = ( 3)2 + 9, 0 5, which has a maximum value when = 3 where (4 3) = 9 and a

minimum value when = 0 where (4 0) = 0. Along 3: = 5, so ( 5) = 2 + 4 + 5 = ( 2)2 + 9,

0 4, which has a maximum value when = 2 where (2 5) = 9 and

a minimum value both when = 0 and = 4, where (0 5) = (4 5) = 5.

Along 4: = 0, so (0 ) = 6 2 = ( 3)2 + 9, 0 5,

which has a maximum value when = 3 where (0 3) = 9 and a minimum

value when = 0 where (0 0) = 0. Thus the absolute maximum is

(2 3) = 13 and the absolute minimum is attained at both (0 0) and (4 0),

where (0 0) = (4 0) = 0.

33. ( ) = 4+ 4 4 + 2 is a polynomial and hence continuous on , so

it has an absolute maximum and minimum on . ( ) = 4 3 4 and

( ) = 4 3 4 ; then = 0 implies = 3, and substitution into

= 0 = 3 gives 9 = 0 ( 8 1) = 0 = 0

or = ±1. Thus the critical points are (0 0), (1 1), and ( 1 1), but only

(1 1) with (1 1) = 0 is inside . On 1: = 0, ( 0) = 4 + 2,

0 3, a polynomial in which attains its maximum at = 3, (3 0) = 83, and its minimum at = 0, (0 0) = 2.

On 2: = 3, (3 ) = 4 12 + 83, 0 2, a polynomial in which attains its minimum at = 3 3,

3 3 3 = 83 9 3 3 70 0, and its maximum at = 0, (3 0) = 83.

On 3: = 2, ( 2) = 4 8 + 18, 0 3, a polynomial in which attains its minimum at = 3 2,
3 2 2 = 18 6 3 2 10 4, and its maximum at = 3 (3 2) = 75. On 4: = 0, (0 ) = 4 + 2, 0 2, a

polynomial in which attains its maximum at = 2, (0 2) = 18, and its minimum at = 0, (0 0) = 2. Thus the absolute

maximum of on is (3 0) = 83 and the absolute minimum is (1 1) = 0.

34. = 2 and = 2 , and since = 0 = 0, there are no critical

points in the interior of . Along 1: = 0 and ( 0) = 0.

Along 2: = 0 and (0 ) = 0. Along 3: = 3 2, so let

( ) = 3 2 = 3 3 for 0 3. Then

0( ) = 3 3 2 = 0 = 1. The maximum value is 1 2 = 2

and the minimum occurs both at = 0 and = 3 where
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0 3 = 3 0 = 0. Thus the absolute maximum of on is 1 2 = 2, and the absolute minimum is 0 which

occurs at all points along 1 and 2.

35. ( ) = 6 2 and ( ) = 4 3. And so = 0 and = 0 only occur when = = 0. Hence, the only critical point

inside the disk is at = = 0 where (0 0) = 0. Now on the circle 2 + 2 = 1, 2 = 1 2 so let

( ) = ( ) = 2 3 + (1 2)2 = 4 + 2 3 2 2 + 1, 1 1. Then 0( ) = 4 3 + 6 2 4 = 0 = 0,

2, or 12 . (0 ±1) = (0) = 1, 1
2 ± 3

2
= 1

2
= 13

16 , and ( 2 3) is not in . Checking the endpoints, we get

( 1 0) = ( 1) = 2 and (1 0) = (1) = 2. Thus the absolute maximum and minimum of on are (1 0) = 2 and

( 1 0) = 2.

Another method: On the boundary 2 + 2 = 1 we can write = cos , = sin , so (cos sin ) = 2 cos3 + sin4 ,

0 2 .

36. ( ) = 3 2 3 and ( ) = 3 2 + 12 and the critical

points are (1 2), (1 2), ( 1 2), and ( 1 2). But only (1 2)

and ( 1 2) are in and (1 2) = 14, ( 1 2) = 18. Along 1:

= 2 and ( 2 ) = 2 3 + 12 , 2 3, which has

a maximum at = 2 where ( 2 2) = 14 and a minimum at

= 2 where ( 2 2) = 18. Along 2: = 2 and

(2 ) = 2 3 + 12 , 2 3, which has a maximum at = 2 where (2 2) = 18 and a minimum at = 3 where

(2 3) = 11. Along 3: = 3 and ( 3) = 3 3 + 9, 2 2, which has a maximum at = 1 and = 2 where

( 1 3) = (2 3) = 11 and a minimum at = 1 and = 2 where (1 3) = ( 2 3) = 7.

Along 4: = and ( ) = 9 , 2 2, which has a maximum at = 2 where (2 2) = 18 and a minimum at

= 2 where ( 2 2) = 18. So the absolute maximum value of on is (2 2) = 18 and the minimum is

( 2 2) = 18.

37. ( ) = ( 2 1)2 ( 2 1)2 ( ) = 2( 2 1)(2 ) 2( 2 1)(2 1) and

( ) = 2( 2 1) 2. Setting ( ) = 0 gives either = 0 or 2 1 = 0.

There are no critical points for = 0, since (0 ) = 2, so we set 2 1 = 0 =
+ 1
2

[ 6= 0],

so + 1
2

= 2( 2 1)(2 ) 2 2 + 1
2

1 2
+ 1
2

1 = 4 ( 2 1). Therefore

( ) = ( ) = 0 at the points (1 2) and ( 1 0). To classify these critical points, we calculate
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( ) = 12 2 12 2 2 + 12 + 4 + 2, ( ) = 2 4,

and ( ) = 8 3 + 6 2 + 4 . In order to use the Second Derivatives

Test we calculate

( 1 0) = ( 1 0) ( 1 0) [ ( 1 0)]2 = 16 0,

( 1 0) = 10 0, (1 2) = 16 0, and (1 2) = 26 0, so

both ( 1 0) and (1 2) give local maxima.

38. ( ) = 3 3 3 is differentiable everywhere, so the requirement

for critical points is that = 3 3 2 = 0 (1) and

= 3 3 3 = 0 (2). From (1) we obtain = 2, and then (2) gives

3 3 3 6 = 0 = 1 or 0, but only = 1 is valid, since = 0

makes (1) impossible. So substituting = 1 into (1) gives = 0, and the

only critical point is (1 0).

The Second Derivatives Test shows that this gives a local maximum, since

(1 0) = 6 (3 9 3 ) (3 )2
(1 0)

= 27 0 and (1 0) = [ 6 ](1 0) = 6 0. But (1 0) = 1 is not an

absolute maximum because, for instance, ( 3 0) = 17. This can also be seen from the graph.

39. Let be the distance from (2 0 3) to any point ( ) on the plane + + = 1, so = ( 2)2 + 2 + ( + 3)2

where = 1 , and we minimize 2 = ( ) = ( 2)2 + 2 + (4 )2. Then

( ) = 2( 2) + 2(4 )( 1) = 4 + 2 12, ( ) = 2 + 2(4 )( 1) = 2 + 4 8. Solving

4 + 2 12 = 0 and 2 + 4 8 = 0 simultaneously gives = 8
3
, = 2

3
, so the only critical point is 8

3
2
3
. An absolute

minimum exists (since there is a minimum distance from the point to the plane) and it must occur at a critical point, so the

shortest distance occurs for = 8
3
, = 2

3
for which = 8

3
2
2
+ 2

3

2
+ 4 8

3
2
3

2
= 4

3
= 2

3
.

40. Here the distance from a point on the plane to the point (0 1 1) is = 2 + ( 1)2 + ( 1)2,

where = 2 1
3 + 2

3 . We can minimize
2 = ( ) = 2 + ( 1)2 + 1 1

3 + 2
3

2, so

( ) = 2 + 2 1 1
3
+ 2

3
1
3
= 20

9
4
9

2
3
and

( ) = 2( 1) + 2 1 1
3
+ 2

3
2
3
= 4

9
+ 26

9
2
3
. Solving 20

9
4
9

2
3
= 0 and 4

9
+ 26

9
2
3
= 0

simultaneously gives = 5
14
and = 2

7
, so the only critical point is 5

14
2
7
.

This point must correspond to the minimum distance, so the point on the plane closest to (0 1 1) is 5
14

2
7

29
14
.

41. Let be the distance from the point (4 2 0) to any point ( ) on the cone, so = ( 4)2 + ( 2)2 + 2 where

2 = 2 + 2, and we minimize 2 = ( 4)2 + ( 2)2 + 2 + 2 = ( ). Then

( ) = 2 ( 4) + 2 = 4 8, ( ) = 2 ( 2) + 2 = 4 4, and the critical points occur when
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= 0 = 2, = 0 = 1. Thus the only critical point is (2 1). An absolute minimum exists (since there is a

minimum distance from the cone to the point) which must occur at a critical point, so the points on the cone closest

to (4 2 0) are 2 1 ± 5 .

42. The distance from the origin to a point ( ) on the surface is = 2 + 2 + 2 where 2 = 9 + , so we minimize

2 = 2 + 9 + + 2 = ( ). Then = 2 + , = + 2 , and = 0, = 0 = 0, = 0, so the only

critical point is (0 0). (0 0) = (2)(2) 1 = 3 0 with (0 0) = 2 0, so this is a minimum. Thus
2 = 9 + 0 = ±3 and the points on the surface closest to the origin are (0 ±3 0).

43. + + = 100, so maximize ( ) = (100 ). = 100 2 2, = 100 2 2 ,

= 2 , = 2 , = 100 2 2 . Then = 0 implies = 0 or = 100 2 . Substituting = 0 into

= 0 gives = 0 or = 100 and substituting = 100 2 into = 0 gives 3 2 100 = 0 so = 0 or 100
3
.

Thus the critical points are (0 0), (100 0), (0 100) and 100
3

100
3
.

(0 0) = (100 0) = (0 100) = 10,000 while 100
3

100
3

= 10,000
3

and 100
3

100
3

= 200
3

0. Thus (0 0),

(100 0) and (0 100) are saddle points whereas 100
3
, 100
3

is a local maximum. Thus the numbers are = = = 100
3
.

44. Let , , , be the positive numbers. Then + + = 12 and we want to minimize
2 + 2 + 2 = 2 + 2 + (12 )2 = ( ) for 0 , 12. = 2 + 2(12 )( 1) = 4 + 2 24,

= 2 + 2(12 )( 1) = 2 + 4 24, = 4, = 2, = 4. Then = 0 implies 4 + 2 = 24 or

= 12 2 and substituting into = 0 gives 2 + 4(12 2 ) = 24 6 = 24 = 4 and then = 4, so

the only critical point is (4 4). (4 4) = 16 4 0 and (4 4) = 4 0, so (4 4) is a local minimum. (4 4) is also

the absolute minimum [compare to the values of as 0 or 12] so the numbers are = = = 4.

45. Center the sphere at the origin so that its equation is 2 + 2 + 2 = 2, and orient the inscribed rectangular box so that its

edges are parallel to the coordinate axes. Any vertex of the box satisfies 2 + 2 + 2 = 2, so take ( ) to be the vertex

in the first octant. Then the box has length 2 , width 2 , and height 2 = 2 2 2 2 with volume given by

( ) = (2 )(2 ) 2 2 2 2 = 8 2 2 2 for 0 , 0 . Then

= (8 ) · 1
2
( 2 2 2) 1 2( 2 ) + 2 2 2 · 8 =

8 ( 2 2 2 2)
2 2 2

and =
8 ( 2 2 2 2)

2 2 2
.

Setting = 0 gives = 0 or 2 2 + 2 = 2, but 0 so only the latter solution applies. Similarly, = 0 with 0

implies 2 + 2 2 = 2. Substituting, we have 2 2 + 2 = 2 + 2 2 2 = 2 = . Then 2 + 2 2 = 2

3 2 = 2 = 2 3 = 3 = . Thus the only critical point is 3 3 . There must be a maximum

volume and here it must occur at a critical point, so the maximum volume occurs when = = 3 and the maximum

volume is
3 3

= 8
3 3

2
3

2

3

2

=
8

3 3
3.
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46. Let , , and be the dimensions of the box. We wish to minimize surface area= 2 + 2 + 2 , but we have

volume = = 1000 =
1000 so we minimize

( ) = 2 + 2
1000

+ 2
1000

= 2 +
2000

+
2000 . Then = 2

2000
2
and = 2

2000
2
. Setting

= 0 implies =
1000

2
and substituting into = 0 gives

4

1000
= 0 3 = 1000 [since 6= 0] = 10.

The surface area has a minimum but no maximum and it must occur at a critical point, so the minimal surface area occurs for a

box with dimensions = 10 cm, = 1000 102 = 10 cm, = 1000 102 = 10 cm.

47. Maximize ( ) =
3
(6 2 ), then the maximum volume is = .

= 1
3
(6 2 2) = 1

3
(6 2 2 ) and = 1

3
(6 4 ). Setting = 0 and = 0 gives the critical point

(2 1) which geometrically must give a maximum. Thus the volume of the largest such box is = (2)(1) 2
3
= 4

3
.

48. Surface area = 2( + + ) = 64 cm2, so + + = 32 or =
32

+
. Maximize the volume

( ) =
32

+
. Then =

32 2 2 3 2 2

( + )2
= 2 32 2 2

( + )2
and = 2 32 2 2

( + )2
. Setting

= 0 implies =
32 2

2
and substituting into = 0 gives 32(4 2) (32 2)(4 2) (32 2)2 = 0 or

3 4 + 64 2 (32)2 = 0. Thus 2 = 64
6
or = 8

6
, = 64 3

16 6
= 8

6
and = 8

6
. Thus the box is a cube with edge

length 8
6
cm.

49. Let the dimensions be , , and ; then 4 + 4 + 4 = and the volume is

= = 1
4 = 1

4
2 2, 0, 0. Then = 1

4 2 2 and = 1
4

2 2 ,

so = 0 = when 2 + = 1
4
and + 2 = 1

4
. Solving, we get = 1

12
, = 1

12
and = 1

4
= 1

12
. From

the geometrical nature of the problem, this critical point must give an absolute maximum. Thus the box is a cube with edge

length 1
12
.

50. The cost equals 5 + 2( + ) and = , so ( ) = 5 + 2 ( + ) ( ) = 5 + 2 ( 1 + 1). Then

= 5 2 2, = 5 2 2, = 0 implies = 2 (5 2), = 0 implies = 3 2
5

= . Thus the

dimensions of the aquarium which minimize the cost are = = 3 2
5

units, = 1 3 5
2

2 3.

51. Let the dimensions be , and , then minimize + 2( + ) if = 32,000 cm3. Then

( ) = + [64,000( + ) ] = + 64,000( 1 + 1), = 64,000 2, = 64,000 2.

And = 0 implies = 64,000 2; substituting into = 0 implies 3 = 64,000 or = 40 and then = 40. Now

( ) = [(2)(64,000)]2 3 3 1 0 for (40 40) and (40 40) 0 so this is indeed a minimum. Thus the

dimensions of the box are = = 40 cm, = 20 cm.
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52. Let be the length of the north and south walls, the length of the east and west walls, and the height of the building. The

heat loss is given by = 10(2 ) + 8(2 ) + 1( ) + 5( ) = 6 + 16 + 20 The volume is 4000 m3, so

= 4000, and we substitute = 4000 to obtain the heat loss function ( ) = 6 + 80,000 + 64,000 .

(a) Since = 4000 4, 1000 1000 . Also 30 and

30, so the domain of is = {( ) | 30 30 1000 }.

(b) ( ) = 6 + 80,000 1 + 64,000 1

= 6 80,000 2, = 6 64,000 2.

= 0 implies 6 2 = 80,000 =
80,000
6 2

and substituting into

= 0 gives 6 = 64,000 6 2

80,000

2
3 =

80,0002

6 · 64,000 =
50,000
3

, so

= 3 50,000
3

= 10 3 50

3
=

80
3 60

, and the only critical point of is 10 3 50

3

80
3 60

(25 54 20 43)

which is not in . Next we check the boundary of .

On 1: = 30, ( 30) = 180 + 80,000 + 6400 3, 30 100
3
. Since 0( 30) = 180 80,000 2 0 for

30 100
3
, ( 30) is an increasing function with minimum (30 30) = 10,200 and maximum

100
3
30 10,533.

On 2: = 1000 , ( 1000 ) = 6000 + 64 + 80,000 , 30 100
3
.

Since 0( 1000 ) = 64 80,000 2 0 for 30 100
3
, ( 1000 ) is a decreasing function with minimum

100
3
30 10,533 and maximum 30 100

3
10,587.

On 3: = 30, (30 ) = 180 + 64,000 + 8000 3, 30 100
3
. 0(30 ) = 180 64,000 2 0 for

30 100
3
, so (30 ) is an increasing function of with minimum (30 30) = 10,200 and maximum

30 100
3

10,587.

Thus the absolute minimum of is (30 30) = 10,200, and the dimensions of the building that minimize heat loss are

walls 30 m in length and height 4000
302

= 40
9

4 44 m.

(c) From part (b), the only critical point of , which gives a local (and absolute) minimum, is approximately

(25 54 20 43) 9396. So a building of volume 4000 m2 with dimensions 25 54 m, 20 43 m,
4000

(25 54)(20 43)
7 67 m has the least amount of heat loss.

53. Let , be the dimensions of the rectangular box. Then the volume of the box is and

= 2 + 2 + 2 2 = 2 + 2 + 2 = 2 2 2.

Substituting, we have volume ( ) = 2 2 2 ( 0).

= · 1
2
( 2 2 2) 1 2( 2 ) + 2 2 2 = 2 2 2

2

2 2 2
,
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= 2 2 2
2

2 2 2
. = 0 implies ( 2 2 2) = 2 ( 2 2 2 2) = 0

2 2 + 2 = 2 (since 0), and = 0 implies ( 2 2 2) = 2 ( 2 2 2 2) = 0

2 + 2 2 = 2 (since 0). Substituting 2 = 2 2 2 into 2 + 2 2 = 2 gives 2 + 2 2 4 2 = 2

3 2 = 2 = 3 (since 0) and then = 2 2 3
2
= 3.

So the only critical point is 3 3 which, from the geometrical nature of the problem, must give an absolute

maximum. Thus the maximum volume is 3 3 = 3
2

2 3
2

3
2
= 3 3 3

cubic units.

54. Since + + = 1 we can substitute = 1 into giving

= ( ) = 2(1 ) + 2(1 ) + 2 = 2 2 2 + 2 2 2 2 . Since , and represent proportions

and + + = 1, we know 0, 0, and + 1. Thus, we want to find the absolute maximum of the continuous

function ( ) on the closed set enclosed by the lines = 0, = 0, and + = 1. To find any critical points, we set the

partial derivatives equal to zero: ( ) = 2 4 2 = 0 and ( ) = 2 4 2 = 0. The first equation gives

= 1 2 , and substituting into the second equation we have 2 4(1 2 ) 2 = 0 = 1
3
. Then we have one

critical point, 1
3

1
3
, where 1

3
1
3
= 2

3
. Next we find the maximum values of on the boundary of which consists of

three line segments. For the segment given by = 0, 0 1, ( ) = ( 0) = 2 2 2, 0 1. This represents

a parabola with maximum value 1
2
0 = 1

2
. On the segment = 0, 0 1 we have (0 ) = 2 2 2, 0 1.

This represents a parabola with maximum value 0 1
2
= 1

2 . Finally, on the segment + = 1, 0 1,

( ) = ( 1 ) = 2 2 2, 0 1 which has a maximum value of 1
2

1
2
= 1

2
. Comparing these values with

the value of at the critical point, we see that the absolute maximum value of ( ) on is 2
3
.

55. Note that here the variables are and , and ( ) =
=1

[ ( + )]2. Then =
=1

2 [ ( + )] = 0

implies
=1

2 = 0 or
=1

=
=1

2 +
=1

and =
=1

2[ ( + )] = 0 implies

=1

=
=1

+
=1

=
=1

+ . Thus we have the two desired equations.

Now =
=1

2 2, =
=1

2 = 2 and =
=1

2 . And ( ) 0 always and

( ) = 4
=1

2 4
=1

2

= 4
=1

2

= 1

2

0 always so the solutions of these two

equations do indeed minimize
=1

2.

56. Any such plane must cut out a tetrahedron in the first octant. We need to minimize the volume of the tetrahedron that passes

through the point (1 2 3). Writing the equation of the plane as + + = 1, the volume of the tetrahedron is given by
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=
6
. But (1 2 3) must lie on the plane, so we need 1 + 2

+
3
= 1 ( ) and thus can think of as a function of and .

Then =
6

+ and =
6

+ . Differentiating ( ) with respect to we get 2 3 2 = 0

=
2

3 2
, and differentiating ( ) with respect to gives 2 2 3 2 = 0 =

2 2

3 2
. Then

=
6

+
2

3 2
= 0 = 3 , and =

6
+

2 2

3 2
= 0 = 3

2
. Thus 3 = 3

2
or = 2 . Putting

these into ( ) gives 3 = 1 or = 3 and then = 6, = 9. Thus the equation of the required plane is
3
+
6
+
9
= 1

or 6 + 3 + 2 = 18.

APPLIED PROJECT Designing a Dumpster

Note: The difficulty and results of this project vary widely with the type of container studied. In addition to the variation of basic

shapes of containers, dumpsters may include additional constructed parts such as supports, lift pockets, wheels, etc. Also, a CAS or

graphing utility may be needed to solve the resulting equations.

Here we present a typical solution for one particular trash Dumpster.

1. The basic shape and dimensions (in inches) of an

actual trash Dumpster are as shown in the figure.

The front and back, as well as both sides, have an extra one-inch-wide flap that is folded under and welded to the base. In

addition, the side panels each fold over one inch onto the front and back pieces where they are welded. Each side has a

rectangular lift pocket, with cross-section 5 by 8 inches, made of the same material. These are attached with an extra one-inch

width of steel on both top and bottom where each pocket is welded to the side sheet. All four sides have a “lip” at the top; the

front and back panels have an extra 5 inches of steel at the top which is folded outward in three creases to form a rectangular

tube. The edge is then welded back to the main sheet. The two sides form a top lip with separate sheets of steel 5 inches wide,

similarly bent into three sides and welded to the main sheets (requiring two welds each). These extend beyond the main side

sheets by 1 5 inches at each end in order to join with the lips on the front and back panels. The container has a hinged lid, extra

steel supports on the base at each corner, metal “fins” serving as extra support for the side lift pockets, and wheels underneath.

The volume of the container is = 1
2 (40 + 49)× 42× 72 = 134,568 in3 or 77 875 ft3.

2. First, we assume that some aspects of the construction do not change with different dimensions, so they may be considered

fixed costs. This includes the lid (with hinges), wheels, and extra steel supports. Also, the upper “lip” we previously described
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470 ¤ CHAPTER 14 PARTIAL DERIVATIVES

extends beyond the side width to connect to the other pieces. We can safely assume that this extra portion, including any

associated welds, costs the same regardless of the container’s dimensions, so we will consider just the portion matching the

measurement of the side panels in our calculations. We will further assume that the angle of the top of the container should be

preserved. Then to compute the variable costs, let be the width, the length, and the height of the front of the container.

The back of the container is 9 inches, or 34 ft, taller than the front, so using similar triangles we can say the back

panel has height + 3
14
. Measuring in feet, we want the volume to remain constant, so

= 1
2

+ + 3
14

( )( ) = + 3
28

2 = 77 875. To determine a function for the variable cost, we first find the area

of each sheet of metal needed. The base has area ft2. The front panel has visible area plus 1
12

for the portion folded

onto the base and 5
12

for the steel at the top used to form the lip, so + 1
2

ft2 in total. Similarly, the back sheet has area

+ 3
14

+ 1
12

+ 5
12

= + 3
14

+ 1
2
. Each side has visible area 1

2
+ + 3

14
( ), and the sheet includes

one-inch flaps folding onto the front and back panels, so with area 1
12

and 1
12

+ 3
14

, and a one-inch flap to fold onto the

base with area 1
12
. The lift pocket is constructed of a piece of steel 20 inches by ft (including the 2 extra inches used by the

welds). The additional metal used to make the lip at the top of the panel has width 5 inches and length that we can determine

using the Pythagorean Theorem: 2 + 3
14

2
= length2, so length = 205

14
1 0227 . Thus the area of steel needed for

each side panel is approximately

1
2

+ + 3
14

( ) + 1
12

+ 1
12

+ 3
14

+ 1
12

+ 5
3
+ 5

12
(1 0227 ) + 3

28
2 + 1

6
+ 2 194

We also have the following welds:

Weld Length

Front, back welded to base 2

Sides welded to base 2

Sides welded to front 2

Sides welded to back 2 + 3
14

Weld on front and back lip 2

Two welds on each side lip 4(1 0227 )

Two welds for each lift pocket 4

Thus the total length of welds needed is

2 + 2 + 2 + 2 + 3
14

+ 2 + 4(1 0227 ) + 4 10 519 + 4 + 4

Finally, the total variable cost is approximately

0 90( ) + 0 70 + 1
2

+ + 3
14

+ 1
2

+ 2 + 3
28

2 + 1
6
+ 2 194 + 0 18(10 519 + 4 + 4 )

1 05 + 1 4 + 1 42 + 1 4 + 0 15 2 + 0 953 + 4 965

We would like to minimize this function while keeping volume constant, so since + 3
28

2 = 77 875
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we can substitute =
77 875 3

28
giving variable cost as a function of and :

( ) 0 9 +
109 0

+ 1 42 +
109 0

+
74 2

+ 4 86

Using a CAS, we solve the system of equations ( ) = 0 and ( ) = 0; the only critical point within an appropriate

domain is approximately (3 58 5 29). From the nature of the function (or from a graph) we can determine that has an

absolute minimum at (3 58 5 29), and so the minimum cost is attained for 3 58 ft (or 43 0 in), 5 29 ft (or 63 5 in),

and 77 875
3 58(5 29)

3
28
(3 58) 3 73 ft (or 44 8 in).

3. The fixed cost aspects of the container which we did not include in our calculations, such as the wheels and lid, don’t affect the

validity of our results. Some of our other assumptions, however, may influence the accuracy of our findings. We simplified the

price of the steel sheets to include cuts and bends, and we simplified the price of welding to include the labor and materials.

This may not be accurate for areas of the container, such as the lip and lift pockets, that require several cuts, bends, and welds

in a relatively small surface area. Consequently, increasing some dimensions of the container may not increase the cost in the

same manner as our computations predict. If we do not assume that the angle of the sloped top of the container must be

preserved, it is likely that we could further improve our cost. Finally, our results show that the length of the container should be

changed to minimize cost; this may not be possible if the two lift pockets must remain a fixed distance apart for handling by

machinery.

4. The minimum variable cost using our values found in Problem 2 is (3 58 5 29) $96 95, while the current dimensions

give an estimated variable cost of (3 5 6 0) $97 30. If we determine that our assumptions and simplifications are

acceptable, our work shows that a slight savings can be gained by adjusting the dimensions of the container. However, the

difference in cost is modest, and may not justify changes in the manufacturing process.

DISCOVERY PROJECT Quadratic Approximations and Critical Points

1. ( ) = ( ) + ( )( ) + ( )( ) + 1
2

( )( )2

+ ( )( )( ) + 1
2

( )( )2,

so

( ) = ( ) + 1
2

( )(2)( ) + ( )( ) = ( ) + ( )( ) + ( )( )

At ( ) we have ( ) = ( ) + ( ) ( ) + ( )( ) = ( ).

Similarly, ( ) = ( ) + ( )( ) + ( )( )

( ) = ( ) + ( )( ) + ( )( ) = ( ).

[continued]
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For the second-order partial derivatives we have

( ) = [ ( ) + ( )( ) + ( )( )] = ( ) ( ) = ( )

( ) = [ ( ) + ( )( ) + ( )( )] = ( ) ( ) = ( )

( ) = [ ( ) + ( )( ) + ( )( )] = ( ) ( ) = ( )

2. (a) First we find the partial derivatives and values that will be needed:

( ) =
2 2

(0 0) = 1

( ) = 2
2 2

(0 0) = 0

( ) = 2
2 2

(0 0) = 0

( ) = (4 2 2)
2 2

(0 0) = 2

( ) = 4
2 2

(0 0) = 0

( ) = (4 2 2)
2 2

(0 0) = 2

Then the first-degree Taylor polynomial of at (0 0) is

( ) = (0 0) + (0 0)( 0) + (0 0)( 0) = 1 + (0)( 0) + (0)( 0) = 1

The second-degree Taylor polynomial is given by

( ) = (0 0) + (0 0)( 0) + (0 0)( 0) + 1
2

(0 0)( 0)2

+ (0 0)( 0)( 0) + 1
2

(0 0)( 0)2

= 1 2 2

(b) As we see from the graph, approximates well only for points

( ) extremely close to the origin. is a much better

approximation; the shape of its graph looks similar to that of the

graph of near the origin, and the values of appear to be good

estimates for the values of within a significant radius of the origin.

3. (a) First we find the partial derivatives and values that will be needed:

( ) = (1 0) = 1

( ) = (1 0) = 1

( ) = (1 0) = 1

( ) = 0 (1 0) = 0

( ) = (1 0) = 1

( ) = (1 0) = 1

Then the first-degree Taylor polynomial of at (1 0) is

( ) = (1 0) + (1 0)( 1) + (1 0)( 0) = 1 + (1)( 1) + (1)( 0) = +
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The second-degree Taylor polynomial is given by

( ) = (1 0) + (1 0)( 1) + (1 0)( 0) + 1
2

(1 0)( 1)2

+ (1 0)( 1)( 0) + 1
2

(1 0)( 0)2

= 1
2

2 + +

(b) (0 9 0 1) = 0 9 + 0 1 = 1 0

(0 9 0 1) = 1
2
(0 1)2 + 0 9 + (0 9)(0 1) = 0 995

(0 9 0 1) = 0 9 0 1 0 9947

(c) As we see from the graph, and both

approximate reasonably well near the point

(1 0). As we venture farther from the point,

the graph of follows the shape of the graph

of more closely than .

4. (a) ( ) = 2 + + 2 = 2 + + 2 = 2 + +
2

2

2

2

+ 2

= +
2

2 2

4 2
2 + 2 = +

2

2

+
4 2

4 2
2

(b) For = 4 2, from part (a) we have ( ) = +
2

2

+
4 2

2 . If 0,

4 2
2 0 and +

2

2

0, so +
2

2

+
4 2

2 0. Here 0, thus

( ) = +
2

2

+
4 2

2 0. We know (0 0) = 0, so (0 0) ( ) for all ( ), and by

definition has a local minimum at (0 0).

(c) As in part (b), +
2

2

+
4 2

2 0, and since 0 we have

( ) = +
2

2

+
4 2

2 0. Since (0 0) = 0, we must have (0 0) ( ) for all ( ), so by

definition has a local maximum at (0 0).

(d) ( ) = 2 + + 2, so ( ) = 2 + (0 0) = 0 and ( ) = + 2 (0 0) = 0.

Since (0 0) = 0 and and its partial derivatives are continuous, we know from Equation 14.4.2 that the tangent plane to

the graph of at (0 0) is the plane = 0. Then has a saddle point at (0 0) if the graph of crosses the tangent plane at
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474 ¤ CHAPTER 14 PARTIAL DERIVATIVES

(0 0), or equivalently, if some paths to the origin have positive function values while other paths have negative function

values. Suppose we approach the origin along the -axis; then we have = 0 ( 0) = 2 which has the same

sign as . We must now find at least one path to the origin where ( ) gives values with sign opposite that of . Since

( ) = +
2

2

+
4 2

2 , if we approach the origin along the line =
2

, we have

2
=

2
+
2

2

+
4 2

2 =
4

2. Since 0, these values have signs opposite that

of . Thus, has a saddle point at (0 0).

5. (a) Since the partial derivatives of exist at (0 0) and (0 0) is a critical point, we know (0 0) = 0 and (0 0) = 0. Then

the second-degree Taylor polynomial of at (0 0) can be expressed as

( ) = (0 0) + (0 0)( 0) + (0 0)( 0) + 1
2

(0 0)( 0)2

+ (0 0)( 0)( 0) + 1
2

(0 0)( 0)2

= 1
2

(0 0) 2 + (0 0) + 1
2

(0 0) 2

(b) ( ) = 1
2 (0 0) 2 + (0 0) + 1

2 (0 0) 2 fits the form of the polynomial function in

Problem 4 with = 1
2

(0 0), = (0 0), and = 1
2

(0 0). Then we know is a paraboloid, and

that has a local maximum, local minimum, or saddle point at (0 0). Here,

= 4 2 = 4 1
2

(0 0) 1
2

(0 0) [ (0 0)]2 = (0 0) (0 0) [ (0 0)]2, and if 0 with

= 1
2

(0 0) 0 (0 0) 0, we know from Problem 4 that has a local minimum at (0 0). Similarly, if

0 and 0 (0 0) 0, has a local maximum at (0 0), and if 0, has a saddle point at (0 0).

(c) Since ( ) ( ) near (0 0), part (b) suggests that for = (0 0) (0 0) [ (0 0)]2, if 0 and

(0 0) 0, has a local minimum at (0 0). If 0 and (0 0) 0, has a local maximum at (0 0), and if

0, has a saddle point at (0 0). Together with the conditions given in part (a), this is precisely the Second

Derivatives Test from Section 14.7.

14.8 Lagrange Multipliers

1. At the extreme values of , the level curves of just touch the curve ( ) = 8 with a common tangent line. (See Figure 1

and the accompanying discussion.) We can observe several such occurrences on the contour map, but the level curve

( ) = with the largest value of which still intersects the curve ( ) = 8 is approximately = 59, and the smallest

value of corresponding to a level curve which intersects ( ) = 8 appears to be = 30. Thus we estimate the maximum

value of subject to the constraint ( ) = 8 to be about 59 and the minimum to be 30.
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2. (a) The values = ±1 and = 1 25 seem to give curves which are

tangent to the circle. These values represent possible extreme values

of the function 2 + subject to the constraint 2 + 2 = 1.

(b) = h2 1i, = h2 2 i. So 2 = 2 either

= 1 or = 0. If = 1, then = 1
2
and so = ± 3

2
(from the

constraint). If = 0, then = ±1. Therefore has possible extreme

values at the points (0 ±1) and ± 3
2

1
2
. We calculate

± 3
2

1
2
= 5

4
(the maximum value), (0 1) = 1, and (0 1) = 1 (the minimum value). These are our answers

from part (a).

3. ( ) = 2 + 2, ( ) = = 1, and = h2 2 i = h i, so 2 = , 2 = , and = 1.

From the last equation, 6= 0 and 6= 0, so 2 = = 2 . Substituting, we have 2 = (2 )

2 = 2 = ± . But = 1, so = = ±1 and the possible points for the extreme values of are (1 1) and

( 1 1). Here there is no maximum value, since the constraint = 1 allows or to become arbitrarily large, and hence

( ) = 2 + 2 can be made arbitrarily large. The minimum value is (1 1) = ( 1 1) = 2.

4. ( ) = 3 + , ( ) = 2 + 2 = 10, and = h3 1i = h2 2 i, so 3 = 2 , 1 = 2 , and

2 + 2 = 10. From the first two equations we have 3
2

= =
1

2
= 3 (note that the first two equations imply

6= 0 and 6= 0) and substitution into the third equation gives 9 2 + 2 = 10 2 = 1 = ±1. Then has

possible extreme values at the points (3 1) and ( 3 1). We compute (3 1) = 10 and ( 3 1) = 10, so the

maximum value of on 2 + 2 = 10 is (3 1) = 10 and the minimum value is ( 3 1) = 10.

5. ( ) = 2 2, ( ) = 1
4

2 + 2 = 1, and = h 2 2 i = 1
2

2 , so 2 = 1
2

, 2 = 2 ,

and 1
4

2 + 2 = 1. From the first equation we have (4 + ) = 0 = 0 or = 4. If = 0 then the third equation

gives = ±1. If = 4 then the second equation gives 2 = 8 = 0, and substituting into the third equation,

we have = ±2. Thus the possible extreme values of occur at the points (0 ±1) and (±2 0). Evaluating at these points,

we see that the maximum value is (0 ±1) = 1 and the minimum is (±2 0) = 4.

6. ( ) = , ( ) = 3 + 3 = 16, and = h i = 3 2 3 2 , so = 3 2 and

= 3 2. Note that = 0 = 0 which contradicts 3 + 3 = 16, so we may assume 6= 0, 6= 0, and then
= (3 2) = (3 2) 3 = 3 = . But 3 + 3 = 16, so 2 3 = 16 = 2 = .

Here there is no minimum value, since we can choose points satisfying the constraint 3 + 3 = 16 that make ( ) =

arbitrarily close to 0 (but never equal to 0). The maximum value is (2 2) = 4.
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7. ( ) = 2 + 2 + , ( ) = 2 + 2 + 2 = 9, and = h2 2 1i = h2 2 2 i, so 2 = 2,

2 = 2, 2 = 1, and 2 + 2 + 2 = 9. The first three equations imply =
1 , =

1 , and =
1

2
. But substitution into

the fourth equation gives 1
2

+
1

2

+
1

2

2

= 9
9

4 2 = 9 = ±1
2
, so has possible extreme values at

the points (2 2 1) and ( 2 2 1). The maximum value of on 2 + 2 + 2 = 9 is (2 2 1) = 9, and the minimum is

( 2 2 1) = 9.

8. ( ) = 2 + 2 + 2, ( ) = + + = 12, and = h2 2 2 i = h i. Then
2 = = 2 = 2 = = , and substituting into + + = 12 we have

+ + = 12 = 4 = = . Here there is no maximum value, since we can choose points satisfying the

constraint + + = 12 that make ( ) = 2 + 2 + 2 arbitrarily large. The minimum value is (4 4 4) = 48.

9. ( ) = , ( ) = 2 + 2 2 + 3 2 = 6. = h i = h2 4 6 i. If any of , , or is

zero then = = = 0 which contradicts 2 + 2 2 + 3 2 = 6. Then = ( ) (2 ) = ( ) (4 ) = ( ) (6 ) or

2 = 2 2 and 2 = 2
3

2. Thus 2 + 2 2 + 3 2 = 6 implies 6 2 = 6 or = ±1. Then the possible points are

2 ±1 2
3
, 2 ±1 2

3
, 2 ±1 2

3
, 2 ±1 2

3
. The maximum value of on the ellipsoid is

2

3
, occurring when all coordinates are positive or exactly two are negative and the minimum is 2

3
occurring when 1 or 3 of

the coordinates are negative.

10. ( ) = 2 2 2, ( ) = 2 + 2 + 2 = 1 = 2 2 2 2 2 2 2 2 2 , = h2 2 2 i.

Then = implies (1) = 2 2 = 2 2 = 2 2 and 6= 0, or (2) = 0 and one or two (but not three) of the

coordinates are 0. If (1) then 2 = 2 = 2 = 1
3
. The minimum value of on the sphere occurs in case (2) with a value of 0

and the maximum value is 1
27
which arises from all the points from (1), that is, the points ± 1

3

1

3

1

3
,

± 1

3

1

3

1

3
, ± 1

3

1

3

1

3
.

11. ( ) = 2 + 2 + 2, ( ) = 4 + 4 + 4 = 1 = h2 2 2 i, = 4 3 4 3 4 3 .

Case 1: If 6= 0, 6= 0 and 6= 0, then = implies = 1 (2 2) = 1 (2 2) = 1 (2 2) or 2 = 2 = 2 and

3 4 = 1 or = ± 1
4 3
giving the points ± 1

4 3

1
4 3

1
4 3

, ± 1
4 3

1
4 3

1
4 3

, ± 1
4 3

1
4 3

1
4 3

, ± 1
4 3

1
4 3

1
4 3

all with an -value of 3.

Case 2: If one of the variables equals zero and the other two are not zero, then the squares of the two nonzero coordinates are

equal with common value 1

2
and corresponding value of 2.

Case 3: If exactly two of the variables are zero, then the third variable has value±1 with the corresponding value of 1. Thus

on 4 + 4 + 4 = 1, the maximum value of is 3 and the minimum value is 1.
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12. ( ) = 4 + 4 + 4, ( ) = 2 + 2 + 2 = 1 = 4 3 4 3 4 3 , = h2 2 2 i.
Case 1: If 6= 0, 6= 0 and 6= 0 then = implies = 2 2 = 2 2 = 2 2 or 2 = 2 = 2 = 1

3
giving 8 points

each with an -value of 1
3
.

Case 2: If one of the variables is 0 and the other two are not, then the squares of the two nonzero coordinates are equal with

common value 1
2
and the corresponding -value is 1

2
.

Case 3: If exactly two of the variables are 0, then the third variable has value±1 with corresponding -value of 1. Thus on
2 + 2 + 2 = 1, the maximum value of is 1 and the minimum value is 1

3
.

13. ( ) = + + + , ( ) = 2 + 2 + 2 + 2 = 1 h1 1 1 1i = h2 2 2 2 i, so
= 1 (2 ) = 1 (2 ) = 1 (2 ) = 1 (2 ) and = = = . But 2 + 2 + 2 + 2 = 1, so the possible points are

± 1
2
± 1
2
± 1
2
± 1
2
. Thus the maximum value of is 1

2
1
2

1
2

1
2
= 2 and the minimum value is

1
2

1
2

1
2

1
2
= 2.

14. ( 1 2 ) = 1 + 2 + · · ·+ , ( 1 2 ) = 2
1 +

2
2 + · · · + 2 = 1

h1 1 1i = h2 1 2 2 2 i, so = 1 (2 1) = 1 (2 2) = · · · = 1 (2 ) and 1 = 2 = · · · = .

But 2
1 +

2
2 + · · ·+ 2 = 1, so = ±1 for = 1, , . Thus the maximum value of is

(1 1 , , 1 ) = and the minimum value is ( 1 1 , , 1 ) = .

15. ( ) = + 2 , ( ) = + + = 1, ( ) = 2 + 2 = 4 = h1 2 0i, = h i
and = h0 2 2 i. Then 1 = , 2 = + 2 and 0 = + 2 so = 1

2
= or = 1 (2 ), = 1 (2 ).

Thus + + = 1 implies = 1 and 2 + 2 = 4 implies = ± 1

2 2
. Then the possible points are 1 ± 2 2

and the maximum value is 1 2 2 = 1 + 2 2 and the minimum value is 1 2 2 = 1 2 2.

16. ( ) = 3 3 , ( ) = + = 0, ( ) = 2 + 2 2 = 1 = h3 1 3i,
= h i, = (2 0 4 ). Then 3 = + 2 , 1 = and 3 = + 4 , so = 1, = 1,

= 2. Thus ( ) = 1 implies 4
2
+ 2

1
2

= 1 or = ± 6, so = 1

6
; = ± 2

6
; and ( ) = 0

implies = 3

6
. Hence the maximum of subject to the constraints is 6

3
6
2

6
6

= 2 6 and the minimum

is 6
3

6
2

6
6

= 2 6.

17. ( ) = + , ( ) = = 1, ( ) = 2 + 2 = 1 = h + i, = h 0i,
= h0 2 2 i. Then = implies = 1 [ 6= 0 since ( ) = 1], + = + 2 and = 2 . Thus

= (2 ) = (2 ) or 2 = 2, and so 2 + 2 = 1 implies = ± 1

2
, = ± 1

2
. Then = 1 implies = ± 2 and

the possible points are ± 2 ± 1

2

1

2
, ± 2 ± 1

2

1

2
. Hence the maximum of subject to the constraints is

± 2 ± 1

2
± 1

2
= 3

2
and the minimum is ± 2 ± 1

2

1

2
= 1

2
.

Note: Since = 1 is one of the constraints we could have solved the problem by solving ( ) = + 1 subject to
2 + 2 = 1.
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478 ¤ CHAPTER 14 PARTIAL DERIVATIVES

18. ( ) = 2 + 2 + 2, ( ) = = 1, ( ) = 2 2 = 1 = h2 2 2 i,
= h 0i, and = h0 2 2 i. Then 2 = , 2 = + 2 , and 2 = 2 = 0 or = 1.

If = 0 then 2 2 = 1 implies 2 = 1 = ±1. If = 1, = 1 implies = 2, and if = 1 we have

= 0, so possible points are (2 1 0) and (0 1 0). If = 1 then 2 = + 2 implies 4 = , but = 2 so

4 = 2 = 2 and = 1 implies 3 = 1 = 1
3
. But then 2 2 = 1 implies 2 = 8

9
, an

impossibility. Thus the maximum value of subject to the constraints is (2 1 0) = 5 and the minimum is (0 1 0) = 1.

Note: Since = 1 = + 1 is one of the constraints we could have solved the problem by solving

( ) = ( + 1)2 + 2 + 2 subject to 2 2 = 1.

19. ( ) = 2 + 2 + 4 4 . For the interior of the region, we find the critical points: = 2 + 4, = 2 4, so the

only critical point is ( 2 2) (which is inside the region) and ( 2 2) = 8. For the boundary, we use Lagrange multipliers.

( ) = 2 + 2 = 9, so = h2 + 4 2 4i = h2 2 i. Thus 2 + 4 = 2 and 2 4 = 2 .

Adding the two equations gives 2 + 2 = 2 + 2 + = ( + ) ( + )( 1) = 0, so

+ = 0 = or 1 = 0 = 1. But = 1 leads to a contradition in 2 + 4 = 2 , so = and

2 + 2 = 9 implies 2 2 = 9 = ± 3

2
. We have 3

2

3

2
= 9 + 12 2 25 97 and

3

2

3

2
= 9 12 2 7 97, so the maximum value of on the disk 2 + 2 9 is 3

2

3

2
= 9 + 12 2

and the minimum is ( 2 2) = 8.

20. ( ) = 2 2 + 3 2 4 5 = h4 4 6 i = h0 0i = 1, = 0. Thus (1 0) is the only critical point

of , and it lies in the region 2 + 2 16. On the boundary, ( ) = 2 + 2 = 16 = h2 2 i, so
6 = 2 either = 0 or = 3. If = 0, then = ±4; if = 3, then 4 4 = 2 = 2 and

= ±2 3. Now (1 0) = 7, (4 0) = 11, ( 4 0) = 43, and 2 ±2 3 = 47. Thus the maximum value of

( ) on the disk 2 + 2 16 is 2 ±2 3 = 47, and the minimum value is (1 0) = 7.

21. ( ) = . For the interior of the region, we find the critical points: = , = , so the only

critical point is (0 0), and (0 0) = 1. For the boundary, we use Lagrange multipliers. ( ) = 2 + 4 2 = 1

= h2 8 i, so setting = we get = 2 and = 8 . The first of these gives

= 2 , and then the second gives ( 2 ) = 8 2 = 4 2. Solving this last equation with the

constraint 2 + 4 2 = 1 gives = ± 1

2
and = ± 1

2 2
. Now ± 1

2

1

2 2
= 1 4 1 284 and

± 1

2
± 1

2 2
= 1 4 0 779. The former are the maxima on the region and the latter are the minima.

22. (a) ( ) = 2 + 3 , ( ) = + = 5 = h2 3i = =
1

2

1

2
. Then

2 =
2

and 3 =
2

so 4 = = 6 = 2
3

. With + = 5 we have + 2
3

= 5

= 3 = 9. Substituting into = 2
3

gives = 2 or = 4. Thus the only possible extreme value

subject to the constraint is (9 4) = 30. (The question remains whether this is indeed the maximum of .)
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SECTION 14.8 LAGRANGE MULTIPLIERS ¤ 479

(b) (25 0) = 50 which is larger than the result of part (a).

(c) We can see from the level curves of that the maximum

occurs at the left endpoint (0 25) of the constraint curve .

The maximum value is (0 25) = 75.

(d) Here does not exist if = 0 or = 0, so the method will not locate any associated points. Also, the method of

Lagrange multipliers identifies points where the level curves of share a common tangent line with the constraint curve .

This normally does not occur at an endpoint, although an absolute maximum or minimum may occur there.

(e) Here (9 4) is the absolute minimum of subject to .

23. (a) ( ) = , ( ) = 2 + 4 3 = 0 = h1 0i = = 4 3 3 2 2 . Then

1 = (4 3 3 2) (1) and 0 = 2 (2). We have 6= 0 from (1), so (2) gives = 0. Then, from the constraint equation,
4 3 = 0 3( 1) = 0 = 0 or = 1. But = 0 contradicts (1), so the only possible extreme value

subject to the constraint is (1 0) = 1. (The question remains whether this is indeed the minimum of .)

(b) The constraint is 2 + 4 3 = 0 2 = 3 4. The left side is non-negative, so we must have 3 4 0

which is true only for 0 1. Therefore the minimum possible value for ( ) = is 0 which occurs for = = 0.

However, (0 0) = h0 0 0i = h0 0i and (0 0) = h1 0i, so (0 0) 6= (0 0) for all values of .

(c) Here (0 0) = 0 but the method of Lagrange multipliers requires that 6= 0 everywhere on the constraint curve.

24. (a) The graphs of ( ) = 3 7 and ( ) = 350 seem to be tangent to the circle,

and so 3 7 and 350 are the approximate minimum and maximum values of the

function ( ) subject to the constraint ( 3)2 + ( 3)2 = 9.

(b) Let ( ) = ( 3)2 + ( 3)2. We calculate ( ) = 3 2 + 3 ,

( ) = 3 2 + 3 , ( ) = 2 6, and ( ) = 2 6, and use a

CAS to search for solutions to the equations ( ) = ( 3)2 + ( 3)2 = 9,

= , and = . The solutions are ( ) = 3 3
2
2 3 3

2
2 (0 879 0 879) and

( ) = 3 + 3
2
2 3 + 3

2
2 (5 121 5 121). These give 3 3

2
2 3 3

2
2 = 351

2
243
2

2 3 673 and

3 + 3
2
2 3 + 3

2
2 = 351

2
+ 243

2
2 347 33, in accordance with part (a).
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480 ¤ CHAPTER 14 PARTIAL DERIVATIVES

25. ( ) = 1 , ( ) = + = = 1 1 (1 ) , = h i.

Then ( )1 = and (1 ) ( ) = and + = , so ( )1 = (1 ) ( ) or

[ (1 )] = ( ) ( )1 or = [ (1 )]. Substituting into + = gives = (1 )

and = for the maximum production.

26. ( ) = + , ( ) = 1 = = h i, = 1 1 (1 ) .

Then
1

=
(1 )

and 1 =
(1 )

=
1

=
(1 )

and so
(1 )

1 = . Hence =
( [ (1 )])

=
(1 )

and =
1(1 ) 1

1 1
=

1 1

1 (1 )1
minimizes cost.

27. Let the sides of the rectangle be and . Then ( ) = , ( ) = 2 + 2 = ( ) = h i,
= h2 2 i. Then = 1

2
= 1

2
implies = and the rectangle with maximum area is a square with side length 1

4
.

28. Let ( ) = ( )( )( ), ( ) = + + . Then

= h ( )( ) ( )( ) ( )( )i, = h i. Thus
( )( ) = ( )( ) (1), and ( )( ) = ( )( ) (2). (1) implies = while (2) implies = ,

so = = = 3 and the triangle with maximum area is equilateral.

29. The distance from (2 0 3) to a point ( ) on the plane is = ( 2)2 + 2 + ( + 3)2, so we seek to minimize

2 = ( ) = ( 2)2 + 2 + ( + 3)2 subject to the constraint that ( ) lies on the plane + + = 1, that is,

that ( ) = + + = 1. Then = h2( 2) 2 2( + 3)i = h i, so = ( + 4) 2,

= 2, = ( 6) 2. Substituting into the constraint equation gives + 4

2
+
2
+

6

2
= 1 3 2 = 2

= 4
3
, so = 8

3
, = 2

3
, and = 7

3
. This must correspond to a minimum, so the shortest distance is

= 8
3 2

2
+ 2

3

2
+ 7

3 + 3
2
= 4

3 =
2

3
.

30. The distance from (0 1 1) to a point ( ) on the plane is = 2 + ( 1)2 + ( 1)2, so we minimize

2 = ( ) = 2 + ( 1)2 + ( 1)2 subject to the constraint that ( ) lies on the plane 2 + 3 = 6, that is,

( ) = 2 + 3 = 6. Then = h2 2( 1) 2( 1)i = h 2 3 i, so = 2, = 1 ,

= (3 + 2) 2. Substituting into the constraint equation gives
2

2(1 ) + 3 · 3 + 2

2
= 6 = 5

7
, so = 5

14
,

= 2
7
, and = 29

14
. This must correspond to a minimum, so the point on the plane closest to the point (0 1 1) is 5

14
2
7

29
14
.

31. Let ( ) = 2 = ( 4)2 + ( 2)2 + 2. Then we want to minimize subject to the constraint

( ) = 2 + 2 2 = 0. = h2 ( 4) 2 ( 2) 2 i = h2 2 2 i, so 4 = ,
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SECTION 14.8 LAGRANGE MULTIPLIERS ¤ 481

2 = , and = . From the last equation we have + = 0 (1 + ) = 0, so either = 0 or = 1.

But from the constraint equation we have = 0 2 + 2 = 0 = = 0 which is not possible from the first

two equations. So = 1 and 4 = = 2, 2 = = 1, and 2 + 2 2 = 0

4 + 1 2 = 0 = ± 5. This must correspond to a minimum, so the points on the cone closest to (4 2 0)

are 2 1 ± 5 .

32. Let ( ) = 2 = 2 + 2 + 2. Then we want to minimize subject to the constraint ( ) = 2 = 9.

= h2 2 2 i = h 2 i, so 2 = , = , and 2 = . If = 0 then the last equation

implies = 0, and from the constraint 2 = 9 we have = ±3. If 6= 0, then the first and third equations give
= 2 = 2 2 = 2. From the second equation we have = 0 or = 1. If = 0 then
2 = 9 = 9 and 2 = 2 2 = 81 2 = ±3. Since = 9 ,

= 3 = 3 and = 3 = 3. If = 1, then 2 = and 2 = which implies = = 0,

contradicting the assumption that 6= 0. Thus the possible points are (0 ±3 0), (3 0 3), ( 3 0 3). We have

(0 ±3 0) = 9 and (3 0 3) = ( 3 0 3) = 18, so the points on the surface that are closest to the origin are (0 ±3 0).

33. ( ) = , ( ) = + + = 100 = h i = = h i. Then = = =

implies = = = 100
3
.

34. Minimize ( ) = 2 + 2 + 2 subject to ( ) = + + = 12 with 0, 0, 0. Then

= h2 2 2 i = h1 1 1i 2 = , 2 = , 2 = = = , so

+ + = 12 3 = 12 = 4 = = . By comparing nearby values we can confirm that this gives a

minimum and not a maximum. Thus the three numbers are 4, 4, and 4.

35. If the dimensions are 2 , 2 , and 2 , then maximize ( ) = (2 )(2 )(2 ) = 8 subject to

( ) = 2 + 2 + 2 = 2 ( 0, 0, 0). Then = h8 8 8 i = h2 2 2 i

8 = 2 , 8 = 2 , and 8 = 2 , so =
4

=
4

=
4 . This gives 2 = 2 2 = 2 (since 6= 0)

and 2 = 2 2 = 2, so 2 = 2 = 2 = = , and substituting into the constraint

equation gives 3 2 = 2 = 3 = = . Thus the largest volume of such a box is

3 3 3
= 8

3 3 3
=

8

3 3
3.

36. If the dimensions of the box are , , and then minimize ( ) = 2 + 2 + 2 subject to ( ) = = 1000

( 0, 0, 0). Then = h2 + 2 2 + 2 2 + 2 i = h i 2 + 2 = ,

2 + 2 = , 2 + 2 = . Solving for in each equation gives =
2
+
2
=
2
+
2
=
2
+
2

= = .

From = 1000 we have 3 = 1000 = 10 and the dimensions of the box are = = = 10 cm.
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37. ( ) = , ( ) = + 2 + 3 = 6 = h i = = h 2 3 i.
Then = = 1

2
= 1

3
implies = 2 , = 2

3
. But 2 + 2 + 2 = 6 so = 1, = 2, = 2

3
and the volume

is = 4
3
.

38. ( ) = , ( ) = + + = 32 = h i = = h ( + ) ( + ) ( + )i.
Then ( + ) = (1), ( + ) = (2), and ( + ) = (3). And (1) minus (2) implies ( ) = ( )

so = or = . If = , then (1) implies ( + ) = or = 0 which is false. Thus = . Similarly (2) minus (3)

implies ( ) = ( ) so = or = . As above, 6= , so = = and 3 2 = 32 or = = = 8

6
cm.

39. ( ) = , ( ) = 4( + + ) = = h i, = h4 4 4 i. Thus
4 = = = or = = = 1

12
are the dimensions giving the maximum volume.

40. ( ) = 5 + 2 + 2 , ( ) = =

= h5 + 2 5 + 2 2 + 2 i = = h i. Then = 5 + 2 (1), = 5 + 2 (2),

= 2 ( + ) (3), and = (4). Now (1) (2) implies ( ) = 5( ), so = or = 5 , but can’t

be 0, so = . Then twice (2) minus five times (3) together with = implies (2 5 ) = 2(2 5 ) which gives

= 5
2
[again 6= 2 or else (3) implies = 0]. Hence 5

2
3 = and the dimensions which minimize cost are

= = 3 2
5

units, = 1 3 5
2

2 3 units.

41. If the dimensions of the box are given by , , and , then we need to find the maximum value of ( ) =

[ 0] subject to the constraint = 2 + 2 + 2 or ( ) = 2 + 2 + 2 = 2. =

h i = h2 2 2 i, so = 2 =
2
, = 2 =

2
, and = 2 =

2
.

Thus =
2
=
2

2 = 2 [since 6= 0] = and =
2

=
2

= [since 6= 0].

Substituting into the constraint equation gives 2 + 2 + 2 = 2 2 = 2 3 = 3 = = and the

maximum volume is 3
3
= 3 3 3 .

42. Let the dimensions of the box be , , and , so its volume is ( ) = , its surface area is 2 + 2 + 2 = 1500

and its total edge length is 4 + 4 + 4 = 200. We find the extreme values of ( ) subject to the

constraints ( ) = + + = 750 and ( ) = + + = 50. Then

= h i = + = h ( + ) ( + ) ( + )i+ h i. So = ( + ) + (1),

= ( + ) + (2), and = ( + ) + (3). Notice that the box can’t be a cube or else = = = 50
3

but then + + = 2500
3
6= 750. Assume is the distinct side, that is, 6= , 6= . Then (1) minus (2) implies

( ) = ( ) or = , and (1) minus (3) implies ( ) = ( ) or = . So = = and + + = 50

implies = 50 2 ; also + + = 750 implies (2 ) + 2 = 750. Hence 50 2 =
750 2

2
or
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3 2 100 + 750 = 0 and =
50± 5 10

3
, giving the points 1

3
50 10 10 , 1

3
50± 5 10 , 1

3
50± 5 10 .

Thus the minimum of is 1
3
50 10 3 , 13 50 + 5 10 , 13 50 + 5 10 = 1

27
87,500 2500 10 , and its

maximum is 1
3
50 + 10 10 , 1

3
50 5 10 , 1

3
50 5 10 = 1

27
87,500 + 2500 10 .

Note: If either or is the distinct side, then symmetry gives the same result.

43. We need to find the extreme values of ( ) = 2 + 2 + 2 subject to the two constraints ( ) = + + 2 = 2

and ( ) = 2 + 2 = 0. = h2 2 2 i, = h 2 i and = h2 2 i. Thus we need
2 = + 2 (1), 2 = + 2 (2), 2 = 2 (3), + + 2 = 2 (4), and 2 + 2 = 0 (5).

From (1) and (2), 2( ) = 2 ( ), so if 6= , = 1. Putting this in (3) gives 2 = 2 1 or = + 1
2
, but putting

= 1 into (1) says = 0. Hence + 1
2
= 0 or = 1

2
. Then (4) and (5) become + 3 = 0 and 2 + 2 + 1

2
= 0. The

last equation cannot be true, so this case gives no solution. So we must have = . Then (4) and (5) become 2 + 2 = 2 and

2 2 = 0 which imply = 1 and = 2 2. Thus 2 2 = 1 or 2 2 + 1 = (2 1)( + 1) = 0 so = 1
2
or

= 1. The two points to check are 1
2

1
2

1
2
and ( 1 1 2): 1

2
1
2

1
2
= 3

4
and ( 1 1 2) = 6. Thus 1

2
1
2

1
2
is

the point on the ellipse nearest the origin and ( 1 1 2) is the one farthest from the origin.

44. (a) After plotting = 2 + 2, the top half of the cone, and the plane

= (5 4 + 3 ) 8 we see the ellipse formed by the intersection of the

surfaces. The ellipse can be plotted explicitly using cylindrical coordinates

(see Section 15.7): The cone is given by = , and the plane is

4 cos 3 sin + 8 = 5. Substituting = into the plane equation

gives 4 cos 3 sin + 8 = 5 =
5

4 cos 3 sin + 8
.

Since = on the ellipse, parametric equations (in cylindrical coordinates)

are = , = =
5

4 cos 3 sin + 8
, 0 2 .

(b) We need to find the extreme values of ( ) = subject to the two

constraints ( ) = 4 3 + 8 = 5 and ( ) = 2 + 2 2 = 0.

= + h0 0 1i = h4 3 8i+ h2 2 2 i, so we need 4 + 2 = 0 = 2 (1),

3 + 2 = 0 = 3
2
(2), 8 2 = 1 = 8 1

2
(3), 4 3 + 8 = 5 (4), and

2 + 2 = 2 (5). [Note that 6= 0, else = 0 from (1), but substitution into (3) gives a contradiction.]

Substituting (1), (2), and (3) into (4) gives 4 2 3 3
2

+ 8 8 1
2

= 5 = 39 8
10

and into (5) gives

2
2

+ 3
2

2

= 8 1
2

2

16 2 + 9 2 = (8 1)2 39 2 16 + 1 = 0 = 1
13
or = 1

3
.

If = 1
13
then = 1

2
and = 4

13
, = 3

13
, = 5

13
. If = 1

3
then = 1

2
and = 4

3
, = 1, = 5

3
. Thus the

highest point on the ellipse is 4
3
1 5

3
and the lowest point is 4

13
3
13

5
13
.
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45. ( ) = , ( ) = 9 2 + 4 2 + 36 2 = 36, ( ) = + = 1. = +

= h18 8 72 i+ h + i, so = 18 + , = 8 + ( + ),

= 72 + , 9 2 + 4 2 + 36 2 = 36, + = 1. Using a CAS to solve these 5 equations simultaneously for ,

, , , and (in Maple, use the allvalues command), we get 4 real-valued solutions:

0 222444, 2 157012, 0 686049, 0 200401, 2 108584

1 951921, 0 545867, 0 119973, 0 003141, 0 076238

0 155142, 0 904622, 0 950293, 0 012447, 0 489938

1 138731, 1 768057, 0 573138, 0 317141, 1 862675

Substituting these values into gives (0 222444 2 157012 0 686049) 5 3506,

( 1 951921 0 545867 0 119973) 0 0688, (0 155142 0 904622 0 950293) 0 4084,

(1 138731 1 768057 0 573138) 9 7938. Thus the maximum is approximately 9 7938, and the minimum is

approximately 5 3506.

46. ( ) = + + , ( ) = 2 2 = 0, ( ) = 2 + 2 = 4.

= + h1 1 1i = h2 2 1i+ h2 0 2 i, so 1 = 2 + 2 , 1 = 2 , 1 = + 2 ,

2 2 = , 2 + 2 = 4. Using a CAS to solve these 5 equations simultaneously for , , , , and , we get 4 real-valued

solutions:

1 652878, 1 964194, 1 126052, 0 254557, 0 557060

1 502800, 0 968872, 1 319694, 0 516064, 0 183352

0 992513, 1 649677, 1 736352, 0 303090, 0 200682

1 895178, 1 718347, 0 638984, 0 290977, 0 554805

Substituting these values into gives ( 1 652878 1 964194 1 126052) 4 7431,

( 1 502800 0 968872 1 319694) 0 7858, ( 0 992513 1 649677 1 736352) 1 0792,

(1 895178 1 718347 0 638984) 4 2525. Thus the maximum is approximately 4 2525, and the minimum is

approximately 4 7431.

47. (a) We wish to maximize ( 1 2, , ) = 1 2 · · · subject to

( 1 2, , ) = 1 + 2 + · · ·+ = and 0.

= 1 ( 1 2 · · · )
1 1( 2 · · · ) , 1 ( 1 2 · · · )

1 1( 1 3 · · · ) , , 1 ( 1 2 · · · )
1 1( 1 · · · 1)

and = h , , i, so we need to solve the system of equations
1 ( 1 2 · · · )

1 1( 2 · · · ) =
1
1

1
2 · · · 1

= 1

1 ( 1 2 · · · )
1 1( 1 3 · · · ) =

1
1

1
2 · · · 1

= 2

...
1 ( 1 2 · · · )

1 1( 1 · · · 1) =
1
1

1
2 · · · 1

=
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This implies 1 = 2 = · · · = . Note 6= 0, otherwise we can’t have all 0. Thus 1 = 2 = · · · = .

But 1 + 2 + · · ·+ = 1 = 1 = = 2 = 3 = · · · = . Then the only point where can

have an extreme value is , , . Since we can choose values for ( 1 2 ) that make as close to

zero (but not equal) as we like, has no minimum value. Thus the maximum value is

, , = · · · · · · = .

(b) From part (a), is the maximum value of . Thus ( 1 2, , ) = 1 2 · · · . But

1 + 2 + · · ·+ = , so 1 2 · · · 1 + 2 + · · ·+ . These two means are equal when attains its

maximum value , but this can occur only at the point , , we found in part (a). So the means are equal only

when 1 = 2 = 3 = · · · = = .

48. (a) Let ( 1 1 ) =
=1

, ( 1 ) =
=1

2, and ( 1 ) =
=1

2. Then

=
=1

= h 1 2 1 2 i, =
=1

2 = h2 1 2 2 2 0 0 0i and

=
=1

2 = h0 0 0 2 1 2 2 2 i. So = + = 2 and = 2 ,

1 . Then 1 =
=1

2 =
=1

4 2 2 = 4 2

= 1

2 = 4 2 = ± 1
2
. If = 1

2
then = 2 1

2
= ,

1 . Thus
=1

=
=1

2 = 1. Similarly if = 1
2
we get = and

=1

= 1. Similarly we get

= ± 1
2 giving = ± , 1 , and

=1

= ±1. Thus the maximum value of
=1

is 1.

(b) Here we assume
=1

2 6= 0 and
=1

2 6= 0. (If
=1

2 = 0, then each = 0 and so the inequality is trivially true.)

=
2

2 =
2

2 = 1, and =
2

2 =
2

2 = 1. Therefore, from part (a),

=
2 2

1 2 2.

APPLIED PROJECT Rocket Science

1. Initially the rocket engine has mass = 1 and payload mass = 2 + 3 + . Then the change in velocity resulting

from the first stage is 1 = ln 1
(1 ) 1

2 + 3 + + 1
. After the first stage is jettisoned we can consider the

rocket engine to have mass = 2 and the payload to have mass = 3 + . The resulting change in velocity from the
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second stage is 2 = ln 1
(1 ) 2

3 + + 2
. When only the third stage remains, we have = 3 and = , so

the resulting change in velocity is 3 = ln 1
(1 ) 3

+ 3
. Since the rocket started from rest, the final velocity

attained is

= 1 + 2 + 3

= ln 1
(1 ) 1

2 + 3 + + 1
+ ( ) ln 1

(1 ) 2

3 + + 2
+ ( ) ln 1

(1 ) 3

+ 3

= ln
1 + 2 + 3 + (1 ) 1

1 + 2 + 3 +
+ ln

2 + 3 + (1 ) 2

2 + 3 +

+ ln
3 + (1 ) 3

3 +

= ln
1 + 2 + 3 +

1 + 2 + 3 +
+ ln

2 + 3 +

2 + 3 +
+ ln

3 +

3 +

2. Define 1 =
1 + 2 + 3 +

1 + 2 + 3 +
, 2 =

2 + 3 +

2 + 3 +
, and 3 =

3 +

3 +
. Then

(1 ) 1

1 1
=
(1 )

1 + 2 + 3 +

1 + 2 + 3 +

1
1 + 2 + 3 +

1 + 2 + 3 +

=
(1 )( 1 + 2 + 3 + )

1 + 2 + 3 + ( 1 + 2 + 3 + )

=
(1 )( 1 + 2 + 3 + )

(1 )( 2 + 3 + )
=

1 + 2 + 3 +

2 + 3 +

as desired.
Similarly,

(1 ) 2

1 2
=

(1 )( 2 + 3 + )

2 + 3 + ( 2 + 3 + )
=
(1 )( 2 + 3 + )

(1 )( 3 + )
=

2 + 3 +

3 +

and (1 ) 3

1 3
=

(1 )( 3 + )

3 + ( 3 + )
=
(1 )( 3 + )

(1 )( )
=

3 +

Then

+
=

1 + 2 + 3 +
=

1 + 2 + 3 +

2 + 3 +
· 2 + 3 +

3 +
· 3 +

=
(1 ) 1

1 1
· (1 ) 2

1 2
· (1 ) 3

1 3
=

(1 )3 1 2 3

(1 1)(1 2)(1 3)

3. Since 0, + and consequently + is minimized for the same values as . ln is a strictly increasing function,

so ln + must give a minimum for the same values as + and hence . We then wish to minimize

ln
+ subject to the constraint (ln 1 + ln 2 + ln 3) = . From Problem 2,
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ln
+

= ln
(1 )3 1 2 3

(1 1) (1 2) (1 3)

= 3 ln(1 ) + ln 1 + ln 2 + ln 3 ln(1 1) ln(1 2) ln(1 3)

Using the method of Lagrange multipliers, we need to solve ln
+

= [ (ln 1 + ln 2 + ln 3)] with

(ln 1 + ln 2 + ln 3) = in terms of 1, 2, and 3. The resulting system is

1

1
+
1 1

=
1

1

2
+
1 2

=
2

1

3
+
1 3

=
3

(ln 1 + ln 2 + ln 3) =

One approach to solving the system is isolating in the first three equations which gives

1 +
1

1 1
= = 1 +

2

1 2
= 1 +

3

1 3

1

1 1
=

2

1 2
=

3

1 3

1 = 2 = 3 (Verify!). This says the fourth equation can be expressed as (ln 1 + ln 1 + ln 1) =

3 ln 1 = ln 1 =
3
. Thus the minimum mass of the rocket engine is attained for

1 = 2 = 3 =
(3 ).

4. Using the previous results, +
=

(1 )3 1 2 3

(1 1)(1 2)(1 3)
=
(1 )3 (3 )

3

1 (3 ) 3 =
(1 )3

1 (3 ) 3 .

Then =
(1 )3

1 (3 ) 3 .

5. (a) From Problem 4, =
(1 0 2)3 (17,500 6000)

(1 0 2 [17,500 (3·6000)])3
90 4 = 89 4 .

(b) First, 3 =
3 +

3 +
[17,500 (3·6000)] = 3 +

0 2 3 +
3 =

(1 35 36)

0 2 35 36 1
3 49 .

Then 2 =
2 + 3 +

2 + 3 +
=

2 + 3 49 +

0 2 2 + 3 49 +
2 =

4 49 (1 35 36)

0 2 35 36 1
15 67 and

3 =
1 + 2 + 3 +

1 + 2 + 3 +
=

1 + 15 67 + 3 49 +

0 2 1 + 15 67 + 3 49 +
1 =

20 16 (1 35 36)

0 2 35 36 1
70 36 .

6. As in Problem 5, 3 =
3 +

3 +
24,700 (3·6000) = 3 +

0 2 3 +
3 =

(1 247 180)

0 2 247 180 1
13 9 ,

2 =
2 + 3 +

2 + 3 +
=

2 + 13 9 +

0 2 2 + 13 9 +
2 =

14 9 (1 247 180)

0 2 247 180 1
208 , and

3 =
1 + 2 + 3 +

1 + 2 + 3 +
=

1 + 208 + 13 9 +

0 2 1 + 208 + 13 9 +
1 =

222 9 (1 247 180)

0 2 247 180 1
3110 .

Here = 500, so the mass of each stage of the rocket engine is approximately 1 = 3110(500) = 1,550,000 lb,

2 = 208(500) = 104,000 lb, and 3 = 13 9(500) = 6950 lb.
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APPLIED PROJECT Hydro-Turbine Optimization

1. We wish to maximize the total energy production for a given total flow, so we can say is fixed and we want to maximize

1 + 2 + 3. Notice each has a constant factor 170 1 6 · 10 6 2 , so to simplify the computations we

can equivalently maximize

( 1 2 3) =
1 + 2 + 3

170 1 6 · 10 6 2

= 18 89 + 0 1277 1 4 08 · 10 5 2
1 + 24 51 + 0 1358 2 4 69 · 10 5 2

2

+ 27 02 + 0 1380 3 3 84 · 10 5 2
3

subject to the constraint ( 1 2 3) = 1 + 2 + 3 = . So first we find the values of 1 2 3 where

( 1 2 3) = ( 1 2 3) and 1 + 2 + 3 = which is equivalent to solving the system

0 1277 2(4 08 · 10 5) 1 =

0 1358 2(4 69 · 10 5) 2 =

0 1380 2(3 84 · 10 5) 3 =

1 + 2 + 3 =

Comparing the first and third equations, we have 0 1277 2(4 08 · 10 5) 1 = 0 1380 2(3 84 · 10 5) 3

1 = 126 2255 + 0 9412 3. From the second and third equations,

0 1358 2(4 69 · 10 5) 2 = 0 1380 2(3 84 · 10 5) 3 2 = 23 4542 + 0 8188 3. Substituting

into 1 + 2 + 3 = gives ( 126 2255 + 0 9412 3) + ( 23 4542 + 0 8188 3) + 3 =

2 76 3 = + 149 6797 3 = 0 3623 + 54 23. Then

1 = 126 2255 + 0 9412 3 = 126 2255 + 0 9412(0 3623 + 54 23) = 0 3410 75 18 and

2 = 23 4542 + 0 8188(0 3623 + 54 23) = 0 2967 + 20 95. As long as we maintain 250 1 1110,

250 2 1110, and 250 3 1225, we can reason from the nature of the functions that these values give a

maximum of , and hence a maximum energy production, and not a minimum.

2. From Problem 1, the value of 1 that maximizes energy production is 0 3410 75 18, but since 250 1 1110,

we must have 250 0 3410 75 18 1110 325 18 0 3410 1185 18 953 6 3475 6.

Similarly, 250 2 1110 250 0 2967 + 20 95 1110 772 0 3670 5, and

250 3 1225 250 0 3623 + 54 23 1225 540 4 3231 5. Consolidating these results, we

see that the values from Problem 1 are applicable only for 953 6 3231 5.

3. If = 2500, the results from Problem 1 show that the maximum energy production occurs for

1 = 0 3410 75 18 = 0 3410(2500) 75 18 = 777 3

2 = 0 2967 + 20 95 = 0 2967(2500) + 20 95 = 762 7

3 = 0 3623 + 54 23 = 0 3623(2500) + 54 23 = 960 0
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The energy produced for these values is 1 + 2 + 3 8915 2 + 8285 1 + 11,211 3 28,411 6.

We compute the energy production for a nearby distribution, 1 = 770, 2 = 760, and 3 = 970:

1 + 2 + 3 8839 8 + 8257 4 + 11,313 5 = 28,410 7. For another example, we take 1 = 780, 2 = 765,

and 3 = 955: 1 + 2 + 3 8942 9 + 8308 8 + 11,159 7 = 28,411 4. These distributions are both close to the

distribution from Problem 1 and both give slightly lower energy productions, suggesting that 1 = 777 3, 2 = 762 7, and

3 = 960 0 is indeed the optimal distribution.

4. First we graph each power function in its domain if all of the

flow is directed to that turbine (so = ). If we use only one

turbine, the graph indicates that for a water flow of 1000 ft3 s,

Turbine 3 produces the most power, approximately 12,200 kW.

In comparison, if we use all three turbines, the results of

Problem 1 with = 1000 give 1 = 265 8, 2 = 317 7,

and 3 = 416 5, resulting in a total energy production of

1 + 2 + 3 8397 4 kW. Here, using only one turbine produces significantly more energy! If the flow is only

600 ft3 s, we do not have the option of using all three turbines, as the domain restrictions require a minimum of 250 ft3 s

in each turbine. We can use just one turbine, then, and from the graph Turbine 1 produces the most energy for a water flow

of 600 ft3.

5. If we examine the graph from Problem 4, we see that for water flows above approximately 450 ft3 s, Turbine 2 produces the

least amount of power. Therefore it seems reasonable to assume that we should distribute the incoming flow of 1500 ft3 s

between Turbines 1 and 3. (This can be verified by computing the power produced with the other pairs of turbines for

comparison.) So now we wish to maximize 1 + 3 subject to the constraint 1 + 3 = where = 1500.

As in Problem 1, we can equivalently maximize

( 1 3) =
1 + 3

170 1 6 · 10 6 2

= 18 89 + 0 1277 1 4 08 · 10 5 2
1 + 27 02 + 0 1380 3 3 84 · 10 5 2

3

subject to the constraint ( 1 3) = 1 + 3 = .

Then we solve ( 1 3) = ( 1 3) 0 1277 2 4 08 · 10 5
1 = and

0 1380 2(3 84 · 10 5) 3 = , thus 0 1277 2(4 08 · 10 5) 1 = 0 1380 2(3 84 · 10 5) 3

1 = 126 2255 + 0 9412 3 Substituting into 1 + 3 = gives 126 2255 + 0 9412 3 + 3 = 1500

3 837 7, and then 1 = 3 1500 837 7 = 662 3. So we should apportion approximately 662 3 ft3 s to

Turbine 1 and the remaining 837 7 ft3 s to Turbine 3. The resulting energy production is

1 + 3 7952 1 + 10,256 2 = 18,208 3 kW. (We can verify that this is indeed a maximum energy production by

checking nearby distributions.) In comparison, if we use all three turbines with = 1500 we get 1 = 436 3, 2 = 466 0,

and 3 = 597 7, resulting in a total energy production of 1 + 2 + 3 16,538 7 kW. Clearly, for this flow level

it is beneficial to use only two turbines.
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6. Note that an incoming flow of 3400 ft3 s is not within the domain we established in Problem 2, so we cannot simply use our

previous work to give the optimal distribution. We will need to use all three turbines, due to the capacity limitations of each

individual turbine, but 3400 is less than the maximum combined capacity of 3445 ft3 s, so we still must decide how to

distribute the flows. From the graph in Problem 4, Turbine 3 produces the most power for the higher flows, so it seems

reasonable to use Turbine 3 at its maximum capacity of 1225 and distribute the remaining 2175 ft3 s flow between Turbines 1

and 2. We can again use the technique of Lagrange multipliers to determine the optimal distribution. Following the procedure

we used in Problem 5, we wish to maximize 1 + 2 subject to the constraint 1 + 2 = where = 2175. We

can equivalently maximize

( 1 2) =
1 + 2

170 1 6 · 10 6 2

= 18 89 + 0 1277 1 4 08 · 10 5 2
1 + 24 51 + 0 1358 2 4 69 · 10 5 2

2

subject to the constraint ( 1 2) = 1 + 2 = . Then we solve ( 1 2) = ( 1 2)

0 1277 2(4 08 · 10 5) 1 = and 0 1358 2(4 69 · 10 5) 2 = , thus

0 1277 2(4 08 · 10 5) 1 = 0 1358 2 4 69 · 10 5
2 1 = 99 2647 + 1 1495 2. Substituting

into 1 + 2 = gives 99 2647 + 1 1495 2 + 2 = 2175 2 1058 0, and then 1 1117 0. This value for

1 is larger than the allowable maximum flow to Turbine 1, but the result indicates that the flow to Turbine 1 should be

maximized. Thus we should recommend that the company apportion the maximum allowable flows to Turbines 1 and 3, 1110

and 1225 ft3 s, and the remaining 1065 ft3 s to Turbine 2. Checking nearby distributions within the domain verifies that we

have indeed found the optimal distribution.

14 Review

1. (a) A function of two variables is a rule that assigns to each ordered pair ( ) of real numbers in its domain a unique real

number denoted by ( ).

(b) One way to visualize a function of two variables is by graphing it, resulting in the surface = ( ). Another method for

visualizing a function of two variables is a contour map. The contour map consists of level curves of the function which are

horizontal traces of the graph of the function projected onto the -plane. Also, we can use an arrow diagram such as

Figure 1 in Section 14.1.

2. A function of three variables is a rule that assigns to each ordered triple ( ) in its domain a unique real number

( ). We can visualize a function of three variables by examining its level surfaces ( ) = , where is a constant.

3. lim
( ) ( )

( ) = means the values of ( ) approach the number as the point ( ) approaches the point ( )

along any path that is within the domain of . We can show that a limit at a point does not exist by finding two different paths

approaching the point along which ( ) has different limits.
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4. (a) See Definition 14.2.4.

(b) If is continuous on R2, its graph will appear as a surface without holes or breaks.

5. (a) See (2) and (3) in Section 14.3.

(b) See “Interpretations of Partial Derivatives” on page 927 [ET 903].

(c) To find , regard as a constant and differentiate ( ) with respect to . To find , regard as a constant and

differentiate ( ) with respect to .

6. See the statement of Clairaut’s Theorem on page 931 [ET 907].

7. (a) See (2) in Section 14.4.

(b) See (19) and the preceding discussion in Section 14.6.

8. See (3) and (4) and the accompanying discussion in Section 14.4. We can interpret the linearization of at ( ) geometrically

as the linear function whose graph is the tangent plane to the graph of at ( ). Thus it is the linear function which best

approximates near ( ).

9. (a) See Definition 14.4.7.

(b) Use Theorem 14.4.8.

10. See (10) and the associated discussion in Section 14.4.

11. See (2) and (3) in Section 14.5.

12. See (7) and the preceding discussion in Section 14.5.

13. (a) See Definition 14.6.2. We can interpret it as the rate of change of at ( 0 0) in the direction of u. Geometrically, if is

the point ( 0 0 ( 0 0)) on the graph of and is the curve of intersection of the graph of with the vertical plane

that passes through in the direction u, the directional derivative of at ( 0 0) in the direction of u is the slope of the

tangent line to at . (See Figure 5 in Section 14.6.)

(b) See Theorem 14.6.3.

14. (a) See (8) and (13) in Section 14.6.

(b) u ( ) = ( ) · u or u ( ) = ( ) · u
(c) The gradient vector of a function points in the direction of maximum rate of increase of the function. On a graph of the

function, the gradient points in the direction of steepest ascent.

15. (a) has a local maximum at ( ) if ( ) ( ) when ( ) is near ( ).

(b) has an absolute maximum at ( ) if ( ) ( ) for all points ( ) in the domain of .

(c) has a local minimum at ( ) if ( ) ( ) when ( ) is near ( ).

(d) has an absolute minimum at ( ) if ( ) ( ) for all points ( ) in the domain of .

(e) has a saddle point at ( ) if ( ) is a local maximum in one direction but a local minimum in another.
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16. (a) By Theorem 14.7.2, if has a local maximum at ( ) and the first-order partial derivatives of exist there, then

( ) = 0 and ( ) = 0.

(b) A critical point of is a point ( ) such that ( ) = 0 and ( ) = 0 or one of these partial derivatives does

not exist.

17. See (3) in Section 14.7.

18. (a) See Figure 11 and the accompanying discussion in Section 14.7.

(b) See Theorem 14.7.8.

(c) See the procedure outlined in (9) in Section 14.7.

19. See the discussion beginning on page 981 [ET 957]; see “Two Constraints” on page 985 [ET 961].

1. True. ( ) = lim
0

( + ) ( ) from Equation 14.3.3. Let = . As 0, . Then by substituting,

we get ( ) = lim
( ) ( ) .

2. False. If there were such a function, then = 2 and = 1. So 6= , which contradicts Clairaut’s Theorem.

3. False. =
2

.

4. True. From Equation 14.6.14 we get k ( ) = ( ) · h0 0 1i = ( ).

5. False. See Example 14.2.3.

6. False. See Exercise 14.4.46(a).

7. True. If has a local minimum and is differentiable at ( ) then by Theorem 14.7.2, ( ) = 0 and ( ) = 0, so

( ) = h ( ) ( )i = h0 0i = 0.

8. False. If is not continuous at (2 5), then we can have lim
( ) (2 5)

( ) 6= (2 5). (See Example 14.2.7)

9. False. ( ) = h0 1 i.

10. True. This is part (c) of the Second Derivatives Test (14.7.3).

11. True. = hcos cos i, so | | = cos2 + cos2 . But |cos | 1, so | | 2. Now

u ( ) = · u = | | |u| cos , but u is a unit vector, so | u ( )| 2 · 1 · 1 = 2.

12. False. See Exercise 14.7.37.
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1. ln( + + 1) is defined only when + + 1 0 1,

so the domain of is {( ) | 1}, all those points above the
line = 1.

2. 4 2 2 is defined only when 4 2 2 0 2 + 2 4, and

1 2 is defined only when 1 2 0 1 1, so the domain of

is ( ) | 1 1 4 2 4 2 , which consists of those

points on or inside the circle 2 + 2 = 4 for 1 1.

3. = ( ) = 1 2, a parabolic cylinder 4. = ( ) = 2 + ( 2)2, a circular paraboloid with

vertex (0 2 0) and axis parallel to the -axis

5. The level curves are 4 2 + 2 = or

4 2 + 2 = 2, 0, a family of ellipses.

6. The level curves are + = or = + , a

family of exponential curves.
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7. 8.

9. is a rational function, so it is continuous on its domain. Since is defined at (1 1), we use direct substitution to evaluate

the limit: lim
( ) (1 1)

2
2 + 2 2

=
2(1)(1)

12 + 2(1)2
=
2

3
.

10. As ( ) (0 0) along the -axis, ( 0) = 0 2 = 0 for 6= 0, so ( ) 0 along this line. But

( ) = 2 2 (3 2) = 2
3
, so as ( ) (0 0) along the line = , ( ) 2

3
. Thus the limit doesn’t exist.

11. (a) (6 4) = lim
0

(6 + 4) (6 4) , so we can approximate (6 4) by considering = ±2 and

using the values given in the table: (6 4)
(8 4) (6 4)

2
=
86 80

2
= 3,

(6 4)
(4 4) (6 4)

2
=
72 80

2
= 4. Averaging these values, we estimate (6 4) to be approximately

3 5 C m. Similarly, (6 4) = lim
0

(6 4 + ) (6 4) , which we can approximate with = ±2:

(6 4)
(6 6) (6 4)

2
=
75 80

2
= 2 5, (6 4)

(6 2) (6 4)

2
=
87 80

2
= 3 5. Averaging these

values, we estimate (6 4) to be approximately 3 0 C m.

(b) Here u = 1

2

1

2
, so by Equation 14.6.9, u (6 4) = (6 4) · u = (6 4) 1

2
+ (6 4) 1

2
. Using our

estimates from part (a), we have u (6 4) (3 5) 1

2
+ ( 3 0) 1

2
= 1

2 2
0 35. This means that as we move

through the point (6 4) in the direction of u, the temperature increases at a rate of approximately 0 35 C m.

Alternatively, we can use Definition 14.6.2: u (6 4) = lim
0

6 + 1

2
4 + 1

2
(6 4)

,

which we can estimate with = ±2 2. Then u (6 4)
(8 6) (6 4)

2 2
=
80 80

2 2
= 0,

u (6 4)
(4 2) (6 4)

2 2
=
74 80

2 2
=

3

2
. Averaging these values, we have u (6 4) 3

2 2
1 1 C m.

(c) ( ) = [ ( )] = lim
0

( + ) ( ) , so (6 4) = lim
0

(6 4 + ) (6 4) which we can

estimate with = ±2. We have (6 4) 3 5 from part (a), but we will also need values for (6 6) and (6 2). If we

c° 2012 Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part.

NOT FOR SALE

°°cc 2012 Cengage Learning. All Rights Reserved. May not be scanned, copied, or2012 Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part.duplicated, or posted to a publicly accessible website, in whole or in part.

267



CHAPTER 14 REVIEW ¤ 495

use = ±2 and the values given in the table, we have

(6 6)
(8 6) (6 6)

2
=
80 75

2
= 2 5, (6 6)

(4 6) (6 6)

2
=
68 75

2
= 3 5.

Averaging these values, we estimate (6 6) 3 0. Similarly,

(6 2)
(8 2) (6 2)

2
=
90 87

2
= 1 5, (6 2)

(4 2) (6 2)

2
=
74 87

2
= 6 5.

Averaging these values, we estimate (6 2) 4 0. Finally, we estimate (6 4):

(6 4)
(6 6) (6 4)

2
=
3 0 3 5

2
= 0 25, (6 4)

(6 2) (6 4)

2
=
4 0 3 5

2
= 0 25.

Averaging these values, we have (6 4) 0 25.

12. From the table, (6 4) = 80, and from Exercise 11 we estimated (6 4) 3 5 and (6 4) 3 0. The linear

approximation then is

( ) (6 4) + (6 4)( 6) + (6 4)( 4) 80 + 3 5( 6) 3( 4) = 3 5 3 + 71

Thus at the point (5 3 8), we can use the linear approximation to estimate (5 3 8) 3 5(5) 3(3 8) + 71 77 1 C.

13. ( ) = (5 3 + 2 2 )8 = 8(5 3 + 2 2 )7(4 ) = 32 (5 3 + 2 2 )7,

= 8(5 3 + 2 2 )7(15 2 + 2 2) = (16 2 + 120 2)(5 3 + 2 2 )7

14. ( ) =
+ 2
2 + 2

=
( 2 + 2)(1) ( + 2 )(2 )

( 2 + 2)2
=

2 2 4

( 2 + 2)2
,

=
( 2 + 2)(2) ( + 2 )(2 )

( 2 + 2)2
=
2 2 2 2 2

( 2 + 2)2

15. ( ) = 2 ln( 2 + 2) = 2 · 1
2 + 2 (2 ) + ln( 2 + 2) · 2 =

2 3

2 + 2 + 2 ln( 2 + 2),

= 2 · 1
2 + 2 (2 ) =

2 2

2 + 2

16. ( ) = sin( ) = sin( ), = cos( )(1 ) = ( ) cos( ),

= · cos( )( 2) + sin( ) · = sin( ) ( 2) cos( )

17. ( ) = arctan( ) = arctan( ), = · 1

1 + ( )
2 ( ) =

1 + 2
,

= · 1

1 + ( )
2 · 1

2
1 2 =

2 (1 + 2 )

18. = 1449 2 + 4 6 0 055 2 + 0 00029 3 + (1 34 0 01 )( 35) + 0 016

= 4 6 0 11 + 0 00087 2 0 01( 35), = 1 34 0 01 , and = 0 016. When = 10,

= 35, and = 100 we have = 4 6 0 11(10) + 0 00087(10)2 0 01(35 35) 3 587, thus in 10 C water

with salinity 35 parts per thousand and a depth of 100 m, the speed of sound increases by about 3 59 m s for every degree
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Celsius that the water temperature rises. Similarly, = 1 34 0 01(10) = 1 24, so the speed of sound increases by

about 1 24 m s for every part per thousand the salinity of the water increases. = 0 016, so the speed of sound

increases by about 0 016 m s for every meter that the depth is increased.

19. ( ) = 4 3 2 = 12 2 2, = 2 , = 24 , = 2 , = = 2

20. = 2 = 2 , = 2 2 , = 0, = 4 2 , = = 2 2

21. ( ) = = 1 , = 1 , = 1, = ( 1) 2 ,

= ( 1) 2 , = ( 1) 2, = = 1 1 , = = 1 1,

= = 1 1

22. = cos( + 2 ) = cos( + 2 ), = sin( + 2 ), = 2 sin( + 2 ), = 0, = cos( + 2 ),

= 4 cos( + 2 ), = = sin( + 2 ), = = 2 sin( + 2 ), = = 2 cos( + 2 )

23. = + = + , = + and

+ = + + + = + + + = + + = + .

24. = sin ( + sin ) = cos( + sin ), = cos ( + sin ) cos

2

= sin ( + sin ) cos ,
2

2
= sin ( + sin ) and

2

= cos( + sin ) [ sin ( + sin ) cos ] = cos ( + sin ) (cos ) [ sin ( + sin )] =
2

2
.

25. (a) = 6 + 2 (1 2) = 8 and = 2 (1 2) = 4, so an equation of the tangent plane is

1 = 8( 1) + 4( + 2) or = 8 + 4 + 1.

(b) A normal vector to the tangent plane (and the surface) at (1 2 1) is h8 4 1i. Then parametric equations for the normal

line there are = 1+ 8 , = 2 + 4 , = 1 , and symmetric equations are 1

8
=

+ 2

4
=

1

1
.

26. (a) = cos (0 0) = 1 and = sin (0 0) = 0, so an equation of the tangent plane is

1 = 1( 0) + 0( 0) or = + 1.

(b) A normal vector to the tangent plane (and the surface) at (0 0 1) is h1 0 1i. Then parametric equations for the normal
line there are = , = 0, = 1 , and symmetric equations are = 1 , = 0.

27. (a) Let ( ) = 2 + 2 2 3 2. Then = 2 , = 4 , = 6 , so (2 1 1) = 4, (2 1 1) = 4,

(2 1 1) = 6. From Equation 14.6.19, an equation of the tangent plane is 4( 2) 4( + 1) 6( 1) = 0

or, equivalently, 2 2 3 = 3.

(b) From Equations 14.6.20, symmetric equations for the normal line are 2

4
=

+ 1

4
=

1

6
.
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28. (a) Let ( ) = + + . Then = + , = + , = + , so

(1 1 1) = (1 1 1) = (1 1 1) = 2. From Equation 14.6.19, an equation of the tangent plane is

2( 1) + 2( 1) + 2( 1) = 0 or, equivalently, + + = 3.

(b) From Equations 14.6.20, symmetric equations for the normal line are 1

2
=

1

2
=

1

2
or, equivalently,

= = .

29. (a) Let ( ) = + 2 + 3 sin( ). Then = 1 cos( ), = 2 cos( ), = 3 cos( ),

so (2 1 0) = 1, (2 1 0) = 2, (2 1 0) = 5. From Equation 14.6.19, an equation of the tangent plane is

1( 2) + 2( + 1) + 5( 0) = 0 or + 2 + 5 = 0.

(b) From Equations 14.6.20, symmetric equations for the normal line are 2

1
=

+ 1

2
=
5
or 2 =

+ 1

2
=
5
.

Parametric equations are = 2+ , = 1 + 2 , = 5 .

30. Let ( ) = 2 + 4. Then ( ) = 2 and ( ) = 4 3, so (1 1) = 2,

(1 1) = 4 and an equation of the tangent plane is 2 = 2( 1) + 4( 1)

or 2 + 4 = 4. A normal vector to the tangent plane is h2 4 1i so the

normal line is given by 1

2
=

1

4
=

2

1
or = 1 + 2 , = 1 + 4 ,

= 2 .

31. The hyperboloid is a level surface of the function ( ) = 2 + 4 2 2, so a normal vector to the surface at ( 0 0 0)

is ( 0 0 0) = h2 0 8 0 2 0i. A normal vector for the plane 2 + 2 + = 5 is h2 2 1i. For the planes to be

parallel, we need the normal vectors to be parallel, so h2 0 8 0 2 0i = h2 2 1i, or 0 = , 0 =
1
4 , and 0 =

1
2 .

But 2
0 + 4

2
0

2
0 = 4

2 + 1
4

2 1
4

2 = 4 2 = 4 = ±2. So there are two such points:

2 1
2

1 and 2 1
2
1 .

32. = ln(1 + 2 ) = + =
2

1 + 2
+

2 2

1 + 2

33. ( ) = 3 2 + 2 ( ) = 3 2 2 + 2, ( ) =
3

2 + 2
, ( ) =

3

2 + 2
,

so (2 3 4) = 8(5) = 40, (2 3 4) = 3(4) 25 = 60, (2 3 4) = 3(8)

25
= 24

5
, and (2 3 4) = 4(8)

25
= 32

5
. Then the

linear approximation of at (2 3 4) is

( ) (2 3 4) + (2 3 4)( 2) + (2 3 4)( 3) + (2 3 4)( 4)

= 40 + 60( 2) + 24
5
( 3) + 32

5
( 4) = 60 + 24

5
+ 32

5
120

Then (1 98)3 (3 01)2 + (3 97)2 = (1 98 3 01 3 97) 60(1 98) + 24
5 (3 01) +

32
5 (3 97) 120 = 38 656.
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34. (a) = + = 1
2

+ 1
2

and | | 0 002, | | 0 002. Thus the maximum error in the calculated

area is about = 6(0 002) + 5
2
(0 002) = 0 017 m2 or 170 cm2.

(b) = 2 + 2, =
2 + 2

+
2 + 2

and | | 0 002, | | 0 002. Thus the maximum error in the

calculated hypotenuse length is about = 5
13
(0 002) + 12

13
(0 002) = 0 17

65
0 0026 m or 0 26 cm.

35. = + + = 2 3(1 + 6 ) + 3 2 2( + ) + 4 3( cos + sin )

36. = + = 2 sin + 2 (1) + ( 2 cos + + ) ( ).

= 0, = 1 = 2, = 0, so = 0 + (4 + 1) (1) = 5.

= + = 2 sin + 2 (2) + ( 2 cos + + ) ( ) = 0 + 0 = 0.

37. By the Chain Rule, = + . When = 1 and = 2, = (1 2) = 3 and = (1 2) = 6, so

= (3 6) (1 2) + (3 6) (1 2) = (7)( 1) + (8)( 5) = 47. Similarly, = + , so

= (3 6) (1 2) + (3 6) (1 2) = (7)(4) + (8)(10) = 108.

38. Using the tree diagram as a guide, we have

= + + = + +

= + + = + +

39. = 2 0( 2 2), = 1 2 0( 2 2) where 0 =
( 2 2)

. Then

+ = 2 0( 2 2) + 2 0( 2 2) = .

40. = 1
2 sin , = 3, = 2, = 0 05, and =

1

2
( sin ) + ( sin ) + ( cos ) .

So when = 40, = 50 and =
6
, =

1

2
(25)(3) + (20)( 2) + 1000 3 (0 05) =

35 + 50 3

2
60 8 in2 s.
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41. = +
2
and

2

2
= +

2
3

+
2

=
2
3

+
2

2
+

2

2
+

2

2

2 2
+

2

=
2
3

+ 2
2

2

2 2

2

2

+
2

4

2

2

Also = +
1 and

2

2
= +

1
=

2

2
+

2 1
+
1 2

2

1
+

2

= 2
2

2
+ 2

2

+
1
2

2

2

Thus

2
2

2
2

2

2
=
2

+ 2 2
2

2
2 2

2

+
2

2

2

2
2 2

2

2
2 2

2 2

2

2

2

=
2

4 2
2

= 2 4
2

since = = or 2 = .

42. cos( ) = 1 + 2 2 + 2, so let ( ) = 1 + 2 2 + 2 cos( ) = 0. Then by

Equations 14.5.7 we have = =
2 2 + sin( ) ·
2 + sin( ) · =

2 2 + sin( )

2 + sin( )
,

= =
2 2 + sin( ) ·
2 + sin( ) · =

2 2 + sin( )

2 + sin( )
.

43. ( ) = 2 2
= h i = 2

2
, 2 2 · 2, 2 2 · 2 = 2

2
, 2 2 2

, 2 2 2

44. (a) By Theorem 14.6.15, the maximum value of the directional derivative occurs when u has the same direction as the gradient

vector.

(b) It is a minimum when u is in the direction opposite to that of the gradient vector (that is, u is in the direction of ),

since u = | | cos (see the proof of Theorem 14.6.15) has a minimum when = .

(c) The directional derivative is 0 when u is perpendicular to the gradient vector, since then u = · u = 0.

(d) The directional derivative is half of its maximum value when u = | | cos = 1
2
| | cos = 1

2

=
3
.

45. ( ) = 2 = 2 2 , ( 2 0) = h 4 4i. The direction is given by h4 3i, so
u = 1

42+( 3)2
h4 3i = 1

5
h4 3i and u ( 2 0) = ( 2 0) · u = h 4 4i · 1

5
h4 3i = 1

5
( 16 + 12) = 4

5
.

46. = 2 + 1 + 2 2 1 + , (1 2 3) = 6 1 1
4
, u = 2

3
1
3

2
3
. Then u (1 2 3) = 25

6
.
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47. = 2 2 + 1 2 , | (2 1)| = 4 9
2
. Thus the maximum rate of change of at (2 1) is 145

2
in the

direction 4 9
2
.

48. = h i, (0 1 2) = h2 0 1i is the direction of most rapid increase while the rate is |h2 0 1i| = 5.

49. First we draw a line passing through Homestead and the eye of the hurricane. We can approximate the directional derivative at

Homestead in the direction of the eye of the hurricane by the average rate of change of wind speed between the points where

this line intersects the contour lines closest to Homestead. In the direction of the eye of the hurricane, the wind speed changes

from 45 to 50 knots. We estimate the distance between these two points to be approximately 8 miles, so the rate of change of

wind speed in the direction given is approximately 50 45
8

= 5
8
= 0 625 knot mi.

50. The surfaces are ( ) = 2 2 + 2 = 0 and ( ) = 4 = 0. The tangent line is perpendicular to both

and at ( 2 2 4). The vector v = × is therefore parallel to the line. ( ) = h 4 2 1i

( 2 2 4) = h8 4 1i, ( ) = h0 0 1i h 2 2 4i = h0 0 1i. Hence

v = × =

i j k

8 4 1

0 0 1

= 4 i 8 j. Thus, parametric equations are: = 2 + 4 , = 2 8 , = 4.

51. ( ) = 2 + 2 + 9 6 + 10 = 2 + 9,

= + 2 6, = 2 = , = 1. Then = 0 and = 0 imply

= 1, = 4. Thus the only critical point is ( 4 1) and ( 4 1) 0,

( 4 1) = 3 0, so ( 4 1) = 11 is a local minimum.

52. ( ) = 3 6 + 8 3 = 3 2 6 , = 6 + 24 2, = 6 ,

= 48 , = 6. Then = 0 implies = 2 2, substituting into = 0

implies 6 3 1 = 0, so the critical points are (0 0), 1 1
2
.

(0 0) = 36 0 so (0 0) is a saddle point while 1 1
2
= 6 0 and

1 1
2
= 108 0 so 1 1

2
= 1 is a local minimum.

53. ( ) = 3 2 2 = 3 2 2, = 3 2 2 ,

= 2 , = 2 , = 3 2 2 . Then = 0 implies

(3 2 ) = 0 so = 0 or = 3 2 . Substituting into = 0 implies

(3 ) = 0 or 3 ( 1 + ) = 0. Hence the critical points are (0 0), (3 0),

(0 3) and (1 1). (0 0) = (3 0) = (0 3) = 9 0 so (0 0), (3 0), and

(0 3) are saddle points. (1 1) = 3 0 and (1 1) = 2 0, so

(1 1) = 1 is a local maximum.
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54. ( ) = ( 2 + ) 2 = 2 2, = 2(2 + 2 + ) 2,

= 2 2, = 2(4 + 2 + ) 4, = 2. Then = 0 implies

= 0, so = 0 implies = 2. But (0 2) 0, (0 2) = 2 0 0

so (0 2) = 2 is a local minimum.

55. First solve inside . Here = 4 2 2 2 3, = 8 2 2 3 2.

Then = 0 implies = 0 or = 4 2 , but = 0 isn’t inside . Substituting

= 4 2 into = 0 implies = 0, = 2 or = 1, but = 0 isn’t inside ,

and when = 2, = 0 but (2 0) isn’t inside . Thus the only critical point inside

is (1 2) and (1 2) = 4. Secondly we consider the boundary of .

On 1: ( 0) = 0 and so = 0 on 1. On 2: = + 6 and

( + 6 ) = 2(6 )( 2) = 2(6 2 3) which has critical points

at = 0 and = 4. Then (6 0) = 0 while (2 4) = 64. On 3: (0 ) = 0, so = 0 on 3. Thus on the absolute

maximum of is (1 2) = 4 while the absolute minimum is (2 4) = 64.

56. Inside : = 2
2 2

(1 2 2 2) = 0 implies = 0 or 2 + 2 2 = 1. Then if = 0,

= 2
2 2

(2 2 2 2) = 0 implies = 0 or 2 2 2 = 0 giving the critical points (0 0), (0 ±1). If
2 + 2 2 = 1, then = 0 implies = 0 giving the critical points (±1 0). Now (0 0) = 0, (±1 0) = 1 and

(0 ±1) = 2 1. On the boundary of : 2 + 2 = 4, so ( ) = 4(4 + 2) and is smallest when = 0 and largest

when 2 = 4. But (±2 0) = 4 4, (0 ±2) = 8 4. Thus on the absolute maximum of is (0 ±1) = 2 1 and the

absolute minimum is (0 0) = 0.

57. ( ) = 3 3 + 4 2 2

From the graphs, it appears that has a local maximum ( 1 0) 2, local minima (1 ±1) 3, and saddle points at

( 1 ±1) and (1 0).

To find the exact quantities, we calculate = 3 2 3 = 0 = ±1 and = 4 3 4 = 0

= 0, ±1, giving the critical points estimated above. Also = 6 , = 0, = 12 2 4, so using the Second
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Derivatives Test, ( 1 0) = 24 0 and ( 1 0) = 6 0 indicating a local maximum ( 1 0) = 2;

(1 ±1) = 48 0 and (1 ±1) = 6 0 indicating local minima (1 ±1) = 3; and ( 1 ±1) = 48 and

(1 0) = 24, indicating saddle points.

58. ( ) = 12 + 10 2 2 8 4 ( ) = 4 8 , ( ) = 10 8 4 3. Now ( ) = 0

= 2 , and substituting this into ( ) = 0 gives 10 + 16 4 3 = 0 5 + 8 2 3 = 0.

From the first graph, we see that this is true when 1 542, 0 717, or 2 260. (Alternatively, we could have found the

solutions to = = 0 using a CAS.) So to three decimal places, the critical points are (3 085 1 542), (1 434 0 717),

and ( 4 519 2 260). Now in order to use the Second Derivatives Test, we calculate = 4, = 8, = 12 2, and

= 48 2 64. So since (3 085 1 542) 0, (1 434 0 717) 0, and ( 4 519 2 260) 0, and is always

negative, ( ) has local maxima ( 4 519 2 260) 49 373 and (3 085 1 542) 9 948, and a saddle point at

approximately (1 434 0 717). The highest point on the graph is approximately ( 4 519 2 260 49 373).

59. ( ) = 2 , ( ) = 2 + 2 = 1 = 2 2 = = h2 2 i. Then 2 = 2 implies = 0 or

= . If = 0 then 2 + 2 = 1 gives = ±1 and we have possible points (0 ±1) where (0 ±1) = 0. If = then

2 = 2 implies 2 = 2 2 and substitution into 2 + 2 = 1 gives 3 2 = 1 = ± 1

3
and = ± 2

3
. The

corresponding possible points are ± 2
3 ± 1

3
. The absolute maximum is ± 2

3
1

3
= 2

3 3
while the absolute

minimum is ± 2
3

1

3
= 2

3 3
.

60. ( ) = 1 + 1 , ( ) = 1 2 + 1 2 = 1 = 2 2 = = 2 3 2 3 . Then

2 = 2 3 or = 2 and 2 = 2 3 or = 2 . Thus = , so 1 2 + 1 2 = 2 2 = 1 implies = ± 2

and the possible points are ± 2 ± 2 . The absolute maximum of subject to 2 + 2 = 1 is then 2 2 = 2

and the absolute minimum is 2 2 = 2.

61. ( ) = , ( ) = 2 + 2 + 2 = 3. = h i = h2 2 2 i. If any of , , or is

zero, then = = = 0 which contradicts 2 + 2 + 2 = 3. Then =
2
=
2
=
2

2 2 = 2 2
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2 = 2, and similarly 2 2 = 2 2 2 = 2. Substituting into the constraint equation gives 2 + 2 + 2 = 3

2 = 1 = 2 = 2. Thus the possible points are (1 1 ±1), (1 1 ±1), ( 1 1 ±1), ( 1 1 ±1). The absolute maximum

is (1 1 1) = (1 1 1) = ( 1 1 1) = ( 1 1 1) = 1 and the absolute

minimum is (1 1 1) = (1 1 1) = ( 1 1 1) = ( 1 1 1) = 1.

62. ( ) = 2 + 2 2 + 3 2, ( ) = + + = 1, ( ) = + 2 = 2

= h2 4 6 i = + = h + + 2 i and 2 = + (1), 4 = (2), 6 = + 2 (3),

+ + = 1 (4), + 2 = 2 (5). Then six times (1) plus three times (2) plus two times (3) implies

12( + + ) = 11 + 7 , so (4) gives 11 + 7 = 12. Also six times (1) minus three times (2) plus four times (3) implies

12( + 2 ) = 7 + 17 , so (5) gives 7 + 17 = 24. Solving 11 + 7 = 12, 7 + 17 = 24 simultaneously gives

= 6
23
, = 30

23
. Substituting into (1), (2), and (3) implies = 18

23
, = 6

23
, = 11

23
giving only one point. Then

18
23

6
23

11
23

= 33
23
. Now since (0 0 1) satisfies both constraints and (0 0 1) = 3 33

23
, 18

23
6
23

11
23

= 33
23
is an

absolute minimum, and there is no absolute maximum.

63. ( ) = 2 + 2 + 2, ( ) = 2 3 = 2 = h2 2 2 i = = 2 3 2 3 3 2 2 .

Since 2 3 = 2, 6= 0, 6= 0 and 6= 0, so 2 = 2 3 (1), 1 = 3 (2), 2 = 3 2 (3). Then (2) and (3) imply

1
3
=

2

3 2
or 2 = 2

3
2 so = ± 2

3
. Similarly (1) and (3) imply 2

2 3
=

2

3 2
or 3 2 = 2 so = ± 1

3
. But

2 3 = 2 so and must have the same sign, that is, = 1

3
. Thus ( ) = 2 implies 1

3

2
3

2 3 = 2 or

= ±31 4 and the possible points are (±3 1 4 3 1 4 2 ±31 4), (±3 1 4 3 1 4 2 ±31 4). However at each of these

points takes on the same value, 2 3. But (2 1 1) also satisfies ( ) = 2 and (2 1 1) = 6 2 3. Thus has an

absolute minimum value of 2 3 and no absolute maximum subject to the constraint 2 3 = 2.

Alternate solution: ( ) = 2 3 = 2 implies 2 =
2
3
, so minimize ( ) = 2 +

2
3
+ 2. Then

= 2
2
2 3

, =
6
4
+ 2 , = 2 +

4
3 3

, =
24
5
+ 2 and =

6
2 4

. Now = 0 implies

2 3 3 2 = 0 or = 1 . Substituting into = 0 implies 6 3 + 2 1 = 0 or = 1
4 3
, so the two critical points are

± 1
4 3

± 4 3 . Then ± 1
4 3

± 4 3 = (2 + 4) 2 + 24
3

6

3

2

0 and ± 1
4 3

± 4 3 = 6 0, so each point

is a minimum. Finally, 2 =
2
3
, so the four points closest to the origin are ± 1

4 3

2
4 3

± 4 3 , ± 1
4 3

2
4 3

± 4 3 .

64. = , say is the length and + 2 + 2 108, 0, 0, 0. First maximize subject to + 2 + 2 = 108

with all positive. Then h i = h 2 2 i implies 2 = or = 2 and = or = . Thus

( ) = 108 implies 6 = 108 or = 18 = , = 36, so the volume is = 11,664 cubic units. Since (104 1 1) also
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504 ¤ CHAPTER 14 PARTIAL DERIVATIVES

satisfies ( ) = 108 and (104 1 1) = 104 cubic units, (36 18 18) gives an absolute maximum of subject to

( ) = 108. But if + 2 + 2 108, there exists 0 such that + 2 + 2 = 108 and as above

6 = 108 implies = (108 ) 6 = , = (108 ) 3 with = (108 )3 (62 · 3) (108)3 (62 · 3) = 11,664.

Hence we have shown that the maximum of subject to ( ) 108 is the maximum of subject to ( ) = 108

(an intuitively obvious fact).

65. The area of the triangle is 12 sin and the area of the rectangle is . Thus,

the area of the whole object is ( ) = 1
2

sin + . The perimeter of

the object is ( ) = 2 + 2 + = . To simplify sin in terms of , ,

and notice that 2 sin2 + 1
2

2
= 2 sin =

1

2
4 2 2.

Thus ( ) =
4

4 2 2 + . (Instead of using , we could just have

used the Pythagorean Theorem.) As a result, by Lagrange’s method, we must find , , , and by solving = which

gives the following equations: (4 2 2) 1 2 = 2 (1), = 2 (2), 1
4
(4 2 2)1 2 1

4
2(4 2 2) 1 2 + =

(3), and 2 + 2 + = (4). From (2), = 1
2
and so (1) produces (4 2 2) 1 2 = (4 2 2)1 2 =

4 2 2 = 2 = 3 (5). Similarly, since 4 2 2 1 2
= and = 1

2
, (3) gives

4

2

4
+ =

2
, so from

(5),
4

3

4
+ =

3

2 2

3

2
= =

2
1 + 3 (6). Substituting (5) and (6) into (4) we get:

2 + 1 + 3 + 3 = 3 + 2 3 = =
3 + 2 3

=
2 3 3

3
and thus

=
2 3 3 1 + 3

6
=
3 3

6
and = 2 3 .

66. (a) r( ) = ( ) i+ ( ) j+ ( ( ) ( ))k v =
r
= i+ j+ + k

(by the Chain Rule). Therefore

= 1
2

|v|2 =
2

2

+
2

+ +
2

=
2

1 + 2
2

+ 2 + 1 + 2
2

(b) a = v
=

2

2
i+

2

2
j+

2

+ 2 +
2

+
2

2
+

2

2
k

(c) If = 2 + 2, where = cos and = sin , then = ( ) = 2.

r = cos i + sin j + 2 k v = (cos sin ) i+ (sin + cos ) j + 2 k,

=
2
[(cos sin )2 + (sin + cos )2 + (2 )2] =

2
(1 + 2 + 4 2) =

2
(1 + 5 2), and

a = ( 2 sin cos ) i+ (2 cos sin ) j+ 2k. Notice that it is easier not to use the formulas in (a) and (b).
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PROBLEMS PLUS

1. The areas of the smaller rectangles are 1 = , 2 = ( ) ,

3 = ( )( ), 4 = ( ). For 0 , 0 , let

( ) = 2
1 +

2
2 +

2
3 +

2
4

= 2 2 + ( )2 2 + ( )2( )2 + 2( )2

= [ 2 + ( )2][ 2 + ( )2]

Then we need to find the maximum and minimum values of ( ). Here

( ) = [2 2( )][ 2 + ( )2] = 0 4 2 = 0 or = 1
2
, and

( ) = [ 2 + ( )2][2 2( )] = 0 4 2 = 0 or = 2. Also

= 4[ 2 + ( )2], = 4[ 2 + ( )2], and = (4 2 )(4 2 ). Then

= 16[ 2 + ( )2][ 2 + ( )2] (4 2 )2(4 2 )2. Thus when = 1
2
and = 1

2
, 0 and

= 2 2 0. Thus a minimum of occurs at 1
2

1
2

and this minimum value is 1
2

1
2

= 1
4

2 2.

There are no other critical points, so the maximum must occur on the boundary. Now along the width of the rectangle let

( ) = (0 ) = ( ) = 2[ 2 + ( )2], 0 . Then 0( ) = 2[2 2( )] = 0 = 1
2

.

And 1
2
= 1

2
2 2. Checking the endpoints, we get (0) = ( ) = 2 2. Along the length of the rectangle let

( ) = ( 0) = ( ) = 2[ 2 + ( )2], 0 . By symmetry 0( ) = 0 = 1
2
and

1
2

= 1
2

2 2. At the endpoints we have (0) = ( ) = 2 2. Therefore 2 2 is the maximum value of .

This maximum value of occurs when the “cutting” lines correspond to sides of the rectangle.

2. (a) The level curves of the function ( ) = ( 2+2 2) 104 are the

curves ( 2+2 2) 104 = ( is a positive constant). This equation is

equivalent to 2 + 2 2 =
2

2 +
2

2
2 = 1, where

= 104 ln , a family of ellipses. We sketch level curves for = 1,

2, 3, and 4. If the shark always swims in the direction of maximum

increase of blood concentration, its direction at any point would coincide

with the gradient vector. Then we know the shark’s path is perpendicular

to the level curves it intersects. We sketch one example of such a path.

(b) = 2
104

( 2+2 2) 104( i+ 2 j). And points in the direction of most rapid increase in concentration; that is,

is tangent to the most rapid increase curve. If ( ) = ( ) i+ ( ) j is a parametrization of the most rapid increase
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506 ¤ CHAPTER 14 PROBLEMS PLUS

curve, then r
= i+ j is tangent to the curve, so r

= =
2

104
( 2+2 2) 104 and

=
2

104
( 2+2 2) 104 (2 ). Therefore = = 2 = 2 ln | | = 2 ln | | so that

= 2 for some constant . But ( 0) = 0 0 =
2
0 = 0

2
0 ( 0 = 0 0 = 0 the

shark is already at the origin, so we can assume 0 6= 0.) Therefore the path the shark will follow is along the parabola

= 0( 0)
2.

3. (a) The area of a trapezoid is 1
2
( 1 + 2), where is the height (the distance between the two parallel sides) and 1, 2 are

the lengths of the bases (the parallel sides). From the figure in the text, we see that = sin , 1 = 2 , and

2 = 2 + 2 cos . Therefore the cross-sectional area of the rain gutter is

( ) = 1
2
sin [( 2 ) + ( 2 + 2 cos )] = ( sin )( 2 + cos )

= sin 2 2 sin + 2 sin cos , 0 1
2 , 0 2

We look for the critical points of : = sin 4 sin + 2 sin cos and

= cos 2 2 cos + 2(cos2 sin2 ), so = 0 sin ( 4 + 2 cos ) = 0

cos =
4

2
= 2

2
(0

2
sin 0). If, in addition, = 0, then

0 = cos 2 2 cos + 2(2 cos2 1)

= 2
2

2 2 2
2

+ 2 2 2
2

2

1

= 2 1
2

2 4 2 + + 2 8
4

+
2

2 2
1 = + 3 2 = (3 )

Since 0, we must have = 1
3
, in which case cos = 1

2
, so =

3
, sin = 3

2
, = 3

6
, 1 =

1
3
, 2 =

2
3
,

and = 3
12

2. As in Example 14.7.6, we can argue from the physical nature of this problem that we have found a local

maximum of . Now checking the boundary of , let

( ) = ( 2 ) = 1
2

2 sin 1
2

2 sin + 1
4

2 sin cos = 1
8

2 sin 2 , 0
2
. Clearly is maximized when

sin 2 = 1 in which case = 1
8

2. Also along the line = 2 , let ( ) = 2
= 2 2, 0 1

2

0( ) = 4 = 0 = 1
4
, and 1

4
= 1

4
2 1

4

2
= 1

8
2. Since 1

8
2 3

12
2, we conclude that

the local maximum found earlier was an absolute maximum.

(b) If the metal were bent into a semi-circular gutter of radius , we would have = and = 1
2

2 = 1
2

2

=
2

2
.

Since
2

2

3 2

12
, it would be better to bend the metal into a gutter with a semicircular cross-section.
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CHAPTER 14 PROBLEMS PLUS ¤ 507

4. Since ( + + ) ( 2 + 2 + 2) is a rational function with domain {( ) | ( ) 6= (0 0 0)}, is continuous on

R3 if and only if lim
( ) (0 0 0)

( ) = (0 0 0) = 0. Recall that ( + )2 2 2 + 2 2 and a double application

of this inequality to ( + + )2 gives ( + + )2 4 2 + 4 2 + 2 2 4( 2 + 2 + 2). Now for each ,

|( + + ) | = | + + |2 2
= ( + + )2

2
4( 2 + 2 + 2)

2
= 2 ( 2 + 2 + 2) 2

for ( ) 6= (0 0 0). Thus

| ( ) 0| = ( + + )
2 + 2 + 2

=
|( + + ) |
2 + 2 + 2

2
( 2 + 2 + 2) 2

2 + 2 + 2
= 2 ( 2 + 2 + 2)( 2) 1

for ( ) 6= (0 0 0). Thus if ( 2) 1 0, that is 2, then 2 ( 2 + 2 + 2)( 2) 1 0 as ( ) (0 0 0)

and so lim
( ) (0 0 0)

( + + ) ( 2 + 2 + 2) = 0. Hence for 2, is continuous on R3. Now if 2, then as

( ) (0 0 0) along the -axis, ( 0 0) = 2 = 2 for 6= 0. So when = 2, ( ) 1 6= 0 as
( ) (0 0 0) along the -axis and when 2 the limit of ( ) as ( ) (0 0 0) along the -axis doesn’t

exist and thus can’t be zero. Hence for 2 isn’t continuous at (0 0 0) and thus is not continuous on R3.

5. Let ( ) = . Then ( ) = + 0
2

= 0 and

( ) = 0 1
= 0 . Thus the tangent plane at ( 0 0 0) on the surface has equation

0
0

0
=

0

0
0

1
0

0 0

0
( 0) +

0 0

0
( 0)

0

0
0

1
0

0 0

0
+ 0 0

0
= 0. But any plane whose equation is of the form + + = 0

passes through the origin. Thus the origin is the common point of intersection.

6. (a) At ( 1 1 0) the equations of the tangent planes to = ( ) and = ( ) are

1: ( 1 1) = ( 1 1)( 1) + ( 1 1)( 1)

and 2: ( 1 1) = ( 1 1)( 1) + ( 1 1)( 1)

respectively. 1 intersects the -plane in the line given by ( 1 1)( 1) + ( 1 1)( 1) = ( 1 1),

= 0; and 2 intersects the -plane in the line given by ( 1 1)( 1) + ( 1 1)( 1) = ( 1 1),

= 0. The point ( 2 2 0) is the point of intersection of these two lines, since ( 2 2 0) is the point where the line of

intersection of the two tangent planes intersects the -plane. Thus ( 2 2) is the solution of the simultaneous equations

( 1 1)( 2 1) + ( 1 1)( 2 1) = ( 1 1)

and ( 1 1)( 2 1) + ( 1 1)( 2 1) = ( 1 1)

For simplicity, rewrite ( 1 1) as and similarly for , , , and and solve the equations

( )( 2 1) + ( )( 2 1) = and ( )( 2 1) + ( )( 2 1) = simultaneously for ( 2 1) and

c° 2012 Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part.

NOT FOR SALE

°°cc 2012 Cengage Learning. All Rights Reserved. May not be scanned, copied, or2012 Cengage Learning. All Rights Reserved. May not be scanned, copied, duplicated, or posted to a publicly accessible website, in whole or in part.licated, or posted to a publicly accessible website, in whole or in par

280



508 ¤ CHAPTER 14 PROBLEMS PLUS

( 2 1). Then 2 1 = or 2 = 1 and ( )( 2 1) +
( )( )

= so

2 1 =
[( )( ) ( )]

= . Hence 2 = 1 .

(b) Let ( ) = + 1000 and ( ) = + 100. Then we wish to solve the system of equations ( ) = 0,

( ) = 0. Recall [ ] = (1 + ln ) (differentiate logarithmically), so ( ) = (1 + ln ),

( ) = (1 + ln ), ( ) = 1 + ln , and ( ) = ln + 1. Looking at the graph, we

estimate the first point of intersection of the curves, and thus the solution to the system, to be approximately (2 5 4 5).

Then following the method of part (a), 1 = 2 5, 1 = 4 5 and

2 = 2 5
(2 5 4 5) (2 5 4 5) (2 5 4 5) (2 5 4 5)

(2 5 4 5) (2 5 4 5) (2 5 4 5) (2 5 4 5
2 447674117

2 = 4 5
(2 5 4 5) (2 5 4 5) (2 5 4 5) (2 5 4 5)

(2 5 4 5) (2 5 4 5) (2 5 4 5) (2 5 4 5)
4 555657467

Continuing this procedure, we arrive at the following values. (If you use a CAS, you may need to increase its

computational precision.)

1 = 2 5 1 = 4 5

2 = 2 447674117 2 = 4 555657467

3 = 2 449614877 3 = 4 551969333

4 = 2 449624628 4 = 4 551951420

5 = 2 449624628 5 = 4 551951420

Thus, to six decimal places, the point of intersection is (2 449625 4 551951). The second point of intersection can be

found similarly, or, by symmetry it is approximately (4 551951 2 449625).

7. Since we are minimizing the area of the ellipse, and the circle lies above the -axis,

the ellipse will intersect the circle for only one value of . This -value must

satisfy both the equation of the circle and the equation of the ellipse. Now

2

2
+

2

2
= 1 2 =

2

2
2 2 . Substituting into the equation of the

circle gives
2

2
( 2 2) + 2 2 = 0

2 2

2
2 2 + 2 = 0.

In order for there to be only one solution to this quadratic equation, the discriminant must be 0, so 4 4 2
2 2

2
= 0

2 2 2 + 4 = 0. The area of the ellipse is ( ) = , and we minimize this function subject to the constraint

( ) = 2 2 2 + 4 = 0.
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CHAPTER 14 PROBLEMS PLUS ¤ 509

Now = = (4 3 2 2), = (2 2 2) =
2 (2 2 2)

(1),

=
2 (1 2)

(2), 2 2 2 + 4 = 0 (3). Comparing (1) and (2) gives
2 (2 2 2)

=
2 (1 2)

2 2 = 4 4 2 = 1

2
. Substitute this into (3) to get = 3

2
= 3

2
.

8. The tangent plane to the surface 2 2 = 1, at the point ( 0 0 0) is

2
0

2
0( 0) + 2 0 0

2
0( 0) + 2 0

2
0 0( 0) = 0

2
0

2
0 + 2 0 0

2
0 + 2 0

2
0 0 = 5 0

2
0

2
0 = 5.

Using the formula derived in Example 12.5.8, we find that the distance from (0 0 0) to this tangent plane is

( 0 0 0) =
5 0

2
0

2
0

( 2
0

2
0)
2 + (2 0 0

2
0)
2 + (2 0

2
0 0)2

.

When is a maximum, 2 is a maximum and 2 = 0. Dropping the subscripts, let

( ) = 2 =
25( )2

2 2 + 4 2 2 + 4 2 2
. Now use the fact that for points on the surface 2 2 = 1 we have 2 =

1
2
,

to get ( ) = 2 =
25

1
+
4
2
+ 4 2 2

=
25 2 2

2 + 4 2 + 4 3 4
. Now 2 = 0 = 0 and = 0.

= 0
50 2( 2 + 4 2 + 4 3 4) (8 + 12 2 4)(25 2 2)

( 2 + 4 2 + 4 3 4)2
= 0

2( 2 + 4 2 + 4 3 4) (4 + 6 2 4) 2 2 = 0 4 2 4 6 = 0 4(1 2 3 2) = 0

1 = 2 2 3 (since = 0, = 0 both give a minimum distance of 0). Also = 0

50 2 ( 2 + 4 2 + 4 3 4) (2 + 16 3 3)25 2 2

( 2 + 4 2 + 4 3 4)2
= 0 4 4 4 5 5 = 0 4 (1 4) = 0

1 = 4. Now substituting = 1 4 into 1 = 2 2 3, we get 1 = 2 10 = ±21 10 = 2 2 5

2 =
1
2
=

1

(2 2 5)(21 5)
= 21 5 = ±21 10.

Therefore the tangent planes that are farthest from the origin are at the four points (2 2 5 ±21 10 ±21 10). These points all

give a maximum since the minimum distance occurs when 0 = 0 or 0 = 0 in which case = 0. The equations are

(21 521 5) ± [(2)(2 2 5)(21 10)(21 5)] ± [(2)(2 2 5)(21 5)(21 10)] = 5 (22 5) ± (29 10) ± (29 10) = 5.
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15 MULTIPLE INTEGRALS

15.1 Double Integrals over Rectangles

1. (a) The subrectangles are shown in the figure.

The surface is the graph of ( ) = and = 4, so we estimate
3

=1

2

=1

( )

= (2 2) + (2 4) + (4 2) + (4 4) + (6 2) + (6 4)

= 4(4) + 8(4) + 8(4) + 16(4) + 12(4) + 24(4) = 288

(b)
3

= 1

2

=1

= (1 1) + (1 3) + (3 1) + (3 3) + (5 1) + (5 3)

= 1(4) + 3(4) + 3(4) + 9(4) + 5(4) + 15(4) = 144

2. (a) The subrectangles are shown in the figure.

Here = 2 and we estimate

1 2
2

=1

3

=1

= (2 1) + (2 0) + (2 1) + (4 1) + (4 0) + (4 1)

= ( 1)(2) + 1(2) + ( 1)(2) + ( 3)(2) + 1(2) + ( 3)(2) = 12

(b) 1 2
2

=1

3

=1

= (0 0) + (0 1) + (0 2) + (2 0) + (2 1) + (2 2)

= 1(2) + 1(2) + 1(2) + 1(2) + ( 1)(2) + ( 7)(2) = 8

3. (a) The subrectangles are shown in the figure. Since = 1 · 1
2
= 1

2
, we estimate

2

=1

2

=1

= 1 1
2

+ (1 1) + 2 1
2

+ (2 1)

= 1 2 1
2
+ 1 1

2
+ 2 1 1

2
+ 2 2 1

2
0 990

(b)
2

=1

2

=1

( )

= 1
2

1
4

+ 1
2

3
4

+ 3
2

1
4

+ 3
2

3
4

= 1
2

1 8 1
2
+ 1

2
3 8 1

2
+ 3

2
3 8 1

2
+ 3

2
9 8 1

2
1 151
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512 ¤ CHAPTER 15 MULTIPLE INTEGRALS

4. (a) The subrectangles are shown in the figure.

The surface is the graph of ( ) = 1 + 2 + 3 and = 1
2
· 3
2
= 3

4
,

so we estimate

= (1 + 2 + 3 )
2

=1

2

=1

= (1 0) + 1 3
2

+ 3
2 0 + 3

2
3
2

= 2 3
4
+ 13

2
3
4
+ 13

4
3
4
+ 31

4
3
4
= 39

2
3
4
= 117

8
= 14 625

(b) = (1 + 2 + 3 )
2

=1

2

=1

( )

= 5
4

3
4

+ 5
4

9
4

+ 7
4

3
4

+ 7
4

9
4

= 77
16

3
4
+ 149

16
3
4
+ 101

16
3
4
+ 173

16
3
4
= 375

16
= 23 4375

5. (a) Each subrectangle and its midpoint are shown in the figure.

The area of each subrectangle is = 2, so we evaluate

at each midpoint and estimate

( )
2

= 1

2

=1

= (1 2 5) + (1 3 5)

+ (3 2 5) + (3 3 5)

= 2(2) + ( 1)(2) + 2(2) + 3(2) = 4

(b) The subrectangles are shown in the figure.

In each subrectangle, the sample point closest to the origin

is the lower left corner, and the area of each subrectangle is = 1
2 .

Thus we estimate

( )
4

=1

4

= 1

= (0 2) + (0 2 5) + (0 3) + (0 3 5)

+ (1 2) + (1 2 5) + (1 3) + (1 3 5)

+ (2 2) + (2 2 5) + (2 3) + (2 3 5)

+ (3 2) + (3 2 5) + (3 3) + (3 3 5)

= 3 1
2
+ ( 5) 1

2
+ ( 6) 1

2
+ ( 4) 1

2
+ ( 1) 1

2
+ ( 2) 1

2
+ ( 3) 1

2
+ ( 1) 1

2

+ 1 1
2
+ 0 1

2
+ ( 1) 1

2
+ 1 1

2
+ 2 1

2
+ 2 1

2
+ 1 1

2
+ 3 1

2

= 8
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6. To approximate the volume, let be the planar region corresponding to the surface of the

water in the pool, and place on coordinate axes so that and correspond to the

dimensions given. Then we define ( ) to be the depth of the water at ( ), so the

volume of water in the pool is the volume of the solid that lies above the rectangle

= [0 20]× [0 30] and below the graph of ( ). We can estimate this volume using

the Midpoint Rule with = 2 and = 3, so = 100. Each subrectangle with its

midpoint is shown in the figure. Then

2

=1

3

= 1

= [ (5 5) + (5 15) + (5 25) + (15 5) + (15 15) + (15 25)]

= 100(3 + 7 + 10 + 3 + 5 + 8) = 3600

Thus, we estimate that the pool contains 3600 cubic feet of water.

Alternatively, we can approximate the volume with a Riemann sum where = 4, = 6 and the sample points are taken to

be, for example, the upper right corner of each subrectangle. Then = 25 and

4

=1

6

=1

( )

= 25[3 + 4 + 7 + 8 + 10 + 8 + 4 + 6 + 8 + 10 + 12 + 10 + 3 + 4 + 5 + 6 + 8 + 7 + 2 + 2 + 2 + 3 + 4 + 4]

= 25(140) = 3500

So we estimate that the pool contains 3500 ft3 of water.

7. The values of ( ) = 52 2 2 get smaller as we move farther from the origin, so on any of the subrectangles in the

problem, the function will have its largest value at the lower left corner of the subrectangle and its smallest value at the upper

right corner, and any other value will lie between these two. So using these subrectangles we have . (Note that this

is true no matter how is divided into subrectangles.)

8. Divide into 4 equal rectangles (squares) and identify the midpoint

of each subrectangle as shown in the figure.

The area of each subrectangle is = 1, so using the contour map to estimate the function values at each midpoint, we have

( )
2

= 1

2

= 1

= 1
2

1
2

+ 1
2

3
2

+ 3
2

1
2

+ 3
2

3
2

(1 3)(1) + (3 3)(1) + (3 2)(1) + (5 2)(1) = 13 0

You could improve the estimate by increasing and to use a larger number of smaller subrectangles.
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514 ¤ CHAPTER 15 MULTIPLE INTEGRALS

9. (a) With = = 2, we have = 4. Using the contour map to estimate the value of at the center of each subrectangle,

we have

( )
2

=1

2

=1

= [ (1 1) + (1 3) + (3 1) + (3 3)] 4(27 + 4 + 14 + 17) = 248

(b) ave =
1
( )

( ) 1
16
(248) = 15 5

10. As in Example 4, we place the origin at the southwest corner of the state. Then = [0 388]× [0 276] (in miles) is the
rectangle corresponding to Colorado and we define ( ) to be the temperature at the location ( ). The average

temperature is given by

ave =
1

( )
( ) =

1

388 · 276 ( )

To use the Midpoint Rule with = = 4, we divide into 16 regions of equal size, as shown in the figure, with the center

of each subrectangle indicated.

The area of each subrectangle is = 388
4
· 276

4
= 6693, so using the contour map to estimate the function values at each

midpoint, we have

( )
4

=1

4

= 1

[31 + 28 + 52 + 43 + 43 + 25 + 57 + 46 + 36 + 20 + 42 + 45 + 30 + 23 + 43 + 41]

= 6693(605)

Therefore, ave
6693 · 605
388 · 276 37 8, so the average temperature in Colorado at 4:00 PM on February 26, 2007, was

approximately 37 8 F.
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SECTION 15.1 DOUBLE INTEGRALS OVER RECTANGLES ¤ 515

11. = 3 0, so we can interpret the integral as the volume of the solid that lies below the plane = 3 and above the

rectangle [ 2 2]× [1 6]. is a rectangular solid, thus 3 = 4 · 5 · 3 = 60.

12. = 5 0 for 0 5, so we can interpret the integral as the volume of the solid

that lies below the plane = 5 and above the rectangle [0 5]× [0 3]. is a

triangular cylinder whose volume is 3(area of triangle) = 3 1
2
· 5 · 5 = 37 5. Thus

(5 ) = 37 5

13. = ( ) = 4 2 0 for 0 1. Thus the integral represents the volume of that

part of the rectangular solid [0 1]× [0 1]× [0 4] which lies below the plane = 4 2 .

So

(4 2 ) = (1)(1)(2) + 1
2
(1)(1)(2) = 3

14. Here = 9 2, so 2 + 2 = 9, 0. Thus the integral represents the volume of

the top half of the part of the circular cylinder 2 + 2 = 9 that lies above the rectangle

[0 4]× [0 2].

15. To calculate the estimates using a programmable calculator, we can use an algorithm

similar to that of Exercise 4.1.9 [ET 5.1.9]. In Maple, we can define the function

( ) = 1 + (calling it f), load the student package, and then use the

command

middlesum(middlesum(f,x=0..1,m),

y=0..1,m);

to get the estimate with = 2 squares of equal size. Mathematica has no special

Riemann sum command, but we can define f and then use nested Sum commands to

calculate the estimates.

estimate

1 1 141606

4 1 143191

16 1 143535

64 1 143617

256 1 143637

1024 1 143642

16.
estimate

1 0 934591

4 0 881991

16 0 865750

estimate

64 0 860490

256 0 858745

1024 0 858157
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516 ¤ CHAPTER 15 MULTIPLE INTEGRALS

17. If we divide into subrectangles,
=1 =1

for any choice of sample points .

But = always and
=1 =1

= area of = ( )( ). Thus, no matter how we choose the sample

points,
=1 =1

=
=1 =1

= ( )( ) and so

= lim
=1 =1

= lim
=1 =1

= lim ( )( ) = ( )( ).

18. Because sin is an increasing function for 0 1
4 , we have sin 0 sin sin 4 0 sin 2

2 .

Similarly, cos is a decreasing function for 1
4

1
2
, so 0 = cos

2
cos cos

4
= 2

2
. Thus on ,

0 sin cos 2
2
· 2
2
= 1

2
. Property (9) gives 0 sin cos 1

2
, so by Exercise 17 we

have 0 sin cos 1
2

1
4

0 1
2

1
4
= 1

32
.

15.2 Iterated Integrals

1. 5

0
12 2 3 = 12

3

3
3

=5

=0

= 4 3 3 =5

=0
= 4(5)3 3 4(0)3 3 = 500 3,

1

0
12 2 3 = 12 2

4

4

=1

=0

= 3 2 4 =1

=0
= 3 2(1)4 3 2(0)4 = 3 2

2. 5

0
( + ) = +

2

2

=5

=0

= 5 + 25
2

(0 + 0) = 5 + 25
2

,

1

0
( + ) =

2

2
+

=1

=0

= 1
2
+ 1 (0 + 0) = 1

2
+

3. 4

1

2

0
(6 2 2 ) =

4

1
3 2 2 2

=2

=0
=

4

1
(12 2 4 ) = 4 3 2 2 4

1
= (256 32) (4 2) = 222

4. 1

0

2

1
(4 3 9 2 2) =

1

0
4 3 3 2 3 =2

=1
=

1

0
(8 3 24 2) (4 3 3 2)

=
1

0
(4 3 21 2) = 4 7 3 1

0
= (1 7) (0 0) = 6

5. 2

0

4

0
3 2 =

2

0
2 4

0
3 [as in Example 5] = 1

2
2 2

0
1
4

4
4

0
= 1

2
( 4 1)(64 0) = 32( 4 1)

6. 2

6

5

1
cos =

5

1

2

6
cos [by Equation 5]

=
5

1
sin

2

6
= [5 ( 1)](sin

2
sin

6
) = 6(1 1

2
) = 3

7. 3

3

2

0
( + 2 cos ) =

3

3
+ 2 sin

= 2

=0

=
3

3 2
+ 2 =

4
2 + 1

3
3 3

3

= 9
4 + 9

9
4 9 = 18
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8.
3

1

5

1

ln
=

3

1

1 5

1

ln [as in Example 5]

= [ln | |] 31 1
2
(ln )2

5

1
[substitute = ln = (1 ) ]

= (ln 3 0) · 1
2
[(ln 5)2 0] = 1

2
(ln 3)(ln 5)2

9.
4

1

2

1

+ =
4

1

ln | |+ 1 · 1
2

2
=2

=1

=
4

1

ln 2 +
3

2
= 1

2
2 ln 2 + 3

2
ln | | 4

1

= 8 ln 2 + 3
2
ln 4 1

2
ln 2 = 15

2
ln 2 + 3 ln 41 2 = 21

2
ln 2

10. 1

0

3

0
+3 =

1

0

3

0
3 =

3

0

1

0
3 = [ ]30

1
3

3 1

0

= 3 0 · 1
3

3 0 = 1
3
( 3 1)2 or 1

3
( 6 2 3 + 1)

11. 1

0

1

0
( + 2)4 =

1

0
1
5
( + 2)5

=1

=0
= 1

5

1

0
(1 + 2)5 (0 + 2)5

= 1
5

1

0
(1 + 2)5 11 = 1

5
1
2
· 1
6
(1 + 2)6 1

12
12 1

0

[substitute = 1 + 2 = 2 in the first term]

= 1
60

(26 1) (1 0) = 1
60
(63 1) = 31

30

12. 1

0

1

0
2 + 2 =

1

0
1
3
( 2 + 2)3 2

=1

=0
= 1

3

1

0
[( 2 + 1)3 2 3] = 1

3

1

0
[ ( 2 + 1)3 2 4]

= 1
3

1
5
( 2 + 1)5 2 1

5
5
1

0
= 1

15
25 2 1 1 + 0 = 2

15
2 2 1

13. 2

0 0
sin2 =

2

0 0
sin2 [as in Example 5] = 2

0 0
1
2
(1 cos 2 )

= 1
2

2 2

0
· 1
2

1
2
sin 2

0
= (2 0) · 1

2
1
2
sin 2 0 1

2
sin 0

= 2 · 1
2
[( 0) (0 0)] =

14. 1

0

1

0
+ =

1

0
2
3
( + )3 2

=1

=0
= 2

3

1

0
[(1 + )3 2 3 2] = 2

3
2
5
(1 + )5 2 2

5
5 2

1

0

= 4
15
[(25 2 1) (1 0)] = 4

15
25 2 2 or 8

15
2 2 1

15. sin( ) =
2

0

2

0
sin( ) =

2

0
[cos( )] = 2

=0 =
2

0
cos(

2
) cos

= sin(
2
) sin

2

0
= sin 0 sin

2
sin(

2
) sin 0

= 0 1 ( 1 0) = 0

16. ( + 2) =
2

1

2

0
( + 2) =

2

1
+ 1

2
2 2 =2

=0
=

2

1
2 + 2 2

= 2 2 1 2

1
= (4 1) (1 2) = 4

17.
2

2 + 1
=

1

0

3

3

2

2 + 1
=

1

0
2 + 1

3

3

2 = 1
2
ln( 2 + 1)

1

0

1
3

3
3

3

= 1
2
(ln 2 ln 1) · 1

3
(27 + 27) = 9 ln 2
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518 ¤ CHAPTER 15 MULTIPLE INTEGRALS

18. 1 + 2

1 + 2
=

1

0

1

0

1 + 2

1 + 2
=

1

0

(1 + 2)
1

0

1

1 + 2
= + 1

3
3
1

0
tan 1 1

0

= 1 + 1
3

0
4

0 =
3

19. 6

0

3

0
sin( + )

=
6

0
cos( + )

= 3

=0
=

6

0
cos cos +

3

= sin sin +
3

6

0

6

0
sin sin +

3
[by integrating by parts separately for each term]

=
6

1
2

1 cos + cos +
3

6

0
=

12
3
2
+ 0 1 + 1

2
= 3 1

2 12

20.
1 +

=
1

0

1

0 1 +
=

1

0

ln(1 + )
=1

=0
=

1

0

ln(1 + ) ln 1

=
1

0
ln(1 + ) = (1 + ) ln(1 + )

1

0
[by integrating by parts]

= (2 ln 2 1) (ln 1 0) = 2 ln 2 1

21. =
3

0

2

0
=

3

0

=2

=0
=

3

0
( 2 + 1) = 1

2
2 +

3

0

= 1
2

6 + 3 1
2
+ 0 = 1

2
6 + 5

2

22. 1

1 + +
=

3

1

2

1

1

1 + +
=

3

1
[ln(1 + + )] =2=1 =

3

1
[ln( + 3) ln( + 2)]

= ( + 3) ln( + 3) ( + 3) ( + 2) ln( + 2) ( + 2)
3

1

[by integrating by parts separately for each term]

= (6 ln 6 6 5 ln 5 + 5) (4 ln 4 4 3 ln 3 + 3) = 6 ln 6 5 ln 5 4 ln 4 + 3 ln 3

23. = ( ) = 4 2 0 for 0 1 and 0 1. So the solid

is the region in the first octant which lies below the plane = 4 2

and above [0 1]× [0 1].

24. = 2 2 2 0 for 0 1 and 0 1. So the solid is the

region in the first octant which lies below the circular paraboloid

= 2 2 2 and above [0 1]× [0 1].
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25. The solid lies under the plane 4 + 6 2 + 15 = 0 or = 2 + 3 + 15
2
so

= (2 + 3 + 15
2
) =

1

1

2

1
(2 + 3 + 15

2
) =

1

1
2 + 3 + 15

2

=2

= 1

=
1

1
(19 + 6 ) ( 13

2
3 ) =

1

1
( 51
2
+ 9 ) = 51

2
+ 9

2
2 1

1
= 30 ( 21) = 51

26. = (3 2 2 + 2) =
1

1

2

1
(3 2 2 + 2) =

1

1
3 2 + 2

=2

=1

=
1

1
(12 2 2) (3 2) =

1

1
9 2 = 9 1

3
3 1

1
= 26

3
+ 26

3
= 52

3

27. =
2

2

1

1
1 1

4
2 1

9
2 = 4

2

0

1

0
1 1

4
2 1

9
2

= 4
2

0
1
12

3 1
9

2 = 1

= 0
= 4

2

0
11
12

1
9

2 = 4 11
12

1
27

3 2

0
= 4 · 83

54
= 166

27

28. =
1

1 0
(1 + sin ) =

1

1
cos

=

=0
=

1

1
( + 0 + )

=
1

1
( + 2 ) = + 2

1

1
= 2 + 2 2

29. Here we need the volume of the solid lying under the surface = sec2 and above the rectangle = [0 2]× [0 4] in

the -plane.

=
2

0

4

0
sec2 =

2

0

4

0
sec2 = 1

2
2 2

0
tan

4

0

= (2 0)(tan
4

tan 0) = 2(1 0) = 2

30. The cylinder intersects the -plane along the line = 4, so in the first octant, the solid lies below the surface = 16 2

and above the rectangle = [0 4]× [0 5] in the -plane.

=
5

0

4

0
(16 2) =

4

0
(16 2)

5

0
= 16 1

3
3 4

0

5

0
= (64 64

3
0)(5 0) = 640

3

31. The solid lies below the surface = 2 + 2 + ( 2)2 and above the plane = 1 for 1 1, 0 4. The volume

of the solid is the difference in volumes between the solid that lies under = 2 + 2 + ( 2)2 over the rectangle

= [ 1 1]× [0 4] and the solid that lies under = 1 over .

=
4

0

1

1
[2 + 2 + ( 2)2]

4

0

1

1
(1) =

4

0
2 + 1

3
3 + ( 2)2

=1

= 1

1

1

4

0

=
4

0
(2 + 1

3
+ ( 2)2) ( 2 1

3
( 2)2) [ ]1 1 [ ]

4
0

=
4

0
14
3
+ 2( 2)2 [1 ( 1)][4 0] = 14

3
+ 2

3
( 2)3

4

0
(2)(4)

= 56
3 +

16
3

0 16
3

8 = 88
3 8 = 64

3

32. The solid lies below the plane = + 2 and above the surface

=
2
2 + 1

for 0 2, 0 4. The volume of the solid is

the difference in volumes between the solid that lies under

= + 2 over the rectangle = [0 2]× [0 4] and the solid that

lies under =
2
2 + 1

over .

[continued]
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520 ¤ CHAPTER 15 MULTIPLE INTEGRALS

=
2

0

4

0

( + 2 )
2

0

4

0

2
2 + 1

=
2

0

+ 2 =4

=0

2

0

2
2 + 1

4

0

=
2

0
[(4 + 16) (0 + 0)] ln 2 + 1

2

0
1
2

2 4

0

= 2 2 + 16
2

0
(ln 5 ln 1) (8 0) = (8 + 32 0) 8 ln 5

= 40 8 ln 5

33. In Maple, we can calculate the integral by defining the integrand as f

and then using the command int(int(f,x=0..1),y=0..1);.

In Mathematica, we can use the command

Integrate[f,{x,0,1},{y,0,1}]

We find that 5 3 = 21 57 0 0839. We can use plot3d

(in Maple) or Plot3D (in Mathematica) to graph the function.

34. In Maple, we can calculate the integral by defining

f:=exp(-xˆ2)*cos(xˆ2+yˆ2); and g:=2-xˆ2-yˆ2;

and then [since 2 2 2 2
cos( 2 + 2) for

1 1, 1 1] using the command

evalf(int(int(g-f,x=-1..1),y=-1..1),5);.

The 5 indicates that we want only five significant digits;

this speeds up the calculation considerably.

In Mathematica, we can use the command NIntegrate[g-f,{x,-1,1},{y,-1,1}]. We find that

(2 2 2)
2

cos( 2 + 2) 3 0271. We can use the plot3d command (in Maple) or Plot3D

(in Mathematica) to graph both functions on the same screen.

35. is the rectangle [ 1 1] × [0 5]. Thus, ( ) = 2 · 5 = 10 and

ave =
1

( )
( ) = 1

10

5

0

1

1
2 = 1

10

5

0
1
3

3 = 1

= 1
= 1

10

5

0
2
3

= 1
10

1
3

2 5

0
= 5

6
.

36. ( ) = 4 · 1 = 4, so

ave =
1

( )
( ) = 1

4

4

0

1

0

+ = 1
4

4

0

2
3
( + )3 2

=1

=0

= 1
4
· 2
3

4

0
[( + )3 2 ( + 1)3 2] = 1

6
2
5
( + )5 2 2

5
( + 1)5 2

4

0

= 1
6 · 25 [(4 + )5 2 55 2 5 2 + 1] = 1

15 [(4 + )5 2 5 2 55 2 + 1] 3 327

37.
1 + 4

=
1

1

1

0 1 + 4
=

1

1 1 +
4

1

0

[by Equation 5] but ( ) =
1 + 4

is an odd

function so
1

1

( ) = 0 by (6) in Section 4.5 [ET (7) in Section 5.5]. Thus
1 + 4

= 0 ·
1

0

= 0.
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38. (1 + 2 sin + 2 sin ) = 1 + 2 sin + 2 sin

= ( ) + 2 sin + 2 sin

= (2 )(2 ) + 2 sin + sin 2

But sin is an odd function, so sin = sin = 0 by (6) in Section 4.5 [ET (7) in Section 5.5] and

(1 + 2 sin + 2 sin ) = 4 2 + 0 + 0 = 4 2.

39. Let ( ) =
( + )3

. Then a CAS gives 1

0

1

0
( ) = 1

2
and 1

0

1

0
( ) = 1

2
.

To explain the seeming violation of Fubini’s Theorem, note that has an infinite discontinuity at (0 0) and thus does not

satisfy the conditions of Fubini’s Theorem. In fact, both iterated integrals involve improper integrals which diverge at their

lower limits of integration.

40. (a) Loosely speaking, Fubini’s Theorem says that the order of integration of a function of two variables does not affect the

value of the double integral, while Clairaut’s Theorem says that the order of differentiation of such a function does not

affect the value of the second-order derivative. Also, both theorems require continuity (though Fubini’s allows a finite

number of smooth curves to contain discontinuities).

(b) To find , we first hold constant and use the single-variable Fundamental Theorem of Calculus, Part 1:

= ( ) = ( ) = ( ) . Now we use the Fundamental Theorem again:

= ( ) = ( ).

To find , we first use Fubini’s Theorem to find that ( ) = ( ) , and then use the

Fundamental Theorem twice, as above, to get = ( ). So = = ( ).

15.3 Double Integrals over General Regions

1. 4

0 0
2 =

4

0
1
2

2 2 =

=0
=

4

0
1
2

2[( )2 02] = 1
2

4

0
3 = 1

2
1
4

4 4

0
= 1

2 (64 0) = 32

2. 1

0

2

2
( ) =

1

0
1
2

2 =2

=2
=

1

0
(2) 1

2
(2)2 (2 ) + 1

2
(2 )2

=
1

0
(2 2) = 2 2

1

0
= 1 2 0 + 0 = 1

3. 1

0 2(1 + 2 ) =
1

0
+ 2 =

= 2 =
1

0
+ 2 2 ( 2)2

=
1

0
( 4) = 1

2
2 1

5
5 1

0
= 1

2
1
5

0 + 0 = 3
10

4. 2

0

2
=

2

0
1
2

2 =2

=
=

2

0
1
2
(4 2 2) = 1

2

2

0
3 3 = 3

2
1
4

4 2

0
= 3

2
(4 0) = 6

5. 1

0

2

0
cos( 3) =

1

0
cos( 3)

= 2

=0
=

1

0
2 cos( 3) = 1

3 sin(
3)

1

0
= 1

3 (sin 1 sin 0) = 1
3 sin 1
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6. 1

0 0
1 + =

1

0
1 +

=

=0
=

1

0
1 + = 2

3
(1 + )3 2

1

0

= 2
3
(1 + )3 2 2

3
(1 + 1)3 2 = 2

3
(1 + )3 2 4

3
2

7. 2 =
1

1 2
2 =

1

1
2 =

= 2
=

1

1
2 [ ( 2)]

=
1

1
(2 3 + 2 2) = 1

2
4 + 2

3
3 1

1
= 1

2
+ 2

3
1
2
+ 2

3
= 4

3

8.
5 + 1

=
1

0

2

0
5 + 1

=
1

0

1
5 + 1

2

2

= 2

=0

=
1

2

1

0

4

5 + 1
= 1

2
1
5
ln 5 + 1

1

0

= 1
10
(ln 2 ln 1) = 1

10
ln 2

9. =
0

sin

0
=

0
[ ] =sin=0 =

0
sin

integrate by parts
with = = sin

= cos + sin
0
= cos + sin + 0 sin 0 =

10. 3 =
1

ln

0
3 =

1
3 =ln

=0
=

1
3 ln

integrate by parts
with = ln = 3

= 1
4

4 ln 1
16

4
1
= 1

4
4 1

16
4 0 + 1

16
= 3

16
4 + 1

16

11. (a) At the right we sketch an example of a region that can be described as lying

between the graphs of two continuous functions of (a type I region) but not as

lying between graphs of two continuous functions of (a type II region). The

regions shown in Figures 6 and 8 in the text are additional examples.

(b) Now we sketch an example of a region that can be described as lying between

the graphs of two continuous functions of but not as lying between graphs of two

continuous functions of . The first region shown in Figure 7 is another example.

12. (a) At the right we sketch an example of a region that can be described as lying

between the graphs of two continuous functions of (a type I region) and also as

lying between graphs of two continuous functions of (a type II region). For

additional examples see Figures 9, 10, 12, and 14–16 in the text.

(b) Now we sketch an example of a region that can’t be described as lying between

the graphs of two continuous functions of or between graphs of two continuous

functions of . The region shown in Figure 18 is another example.
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SECTION 15.3 DOUBLE INTEGRALS OVER GENERAL REGIONS ¤ 523

13. As a type I region, lies between the lower boundary = 0 and the upper

boundary = for 0 1, so = {( ) | 0 1, 0 }. If we

describe as a type II region, lies between the left boundary = and the

right boundary = 1 for 0 1, so = {( ) | 0 1, 1}.

Thus =
1

0 0
=

1

0

=

=0
=

1

0
2 = 1

3
3 1

0
= 1

3 (1 0) = 1
3 or

=
1

0

1
=

1

0
1
2

2 =1

=
= 1

2

1

0
(1 2) = 1

2
1
3

3 1

0
= 1

2
1 1

3
0 = 1

3
.

14. The curves = 2 and = 3 intersect at points (0 0), (3 9). As a type I region,

is enclosed by the lower boundary = 2 and the upper boundary = 3 for

0 3, so = ( ) | 0 3, 2 3 . If we describe as a

type II region, is enclosed by the left boundary = 3 and the right boundary

= for 0 9, so = ( ) | 0 9, 3 . Thus

=
3

0

3
2 =

3

0
· 1
2

2 = 3

= 2 = 1
2

3

0
(9 2 4) = 1

2

3

0
(9 3 5)

= 1
2
9 · 1

4
4 1

6
6 3

0
= 1

2
9
4
· 81 1

6
· 729 0 = 243

8

or

=
9

0 3
=

9

0
1
2

2 =

= 3
= 1

2

9

0
1
9

2 = 1
2

9

0
2 1

9
3

= 1
2

1
3

3 1
9
· 1
4

4 9

0
= 1

2
1
3
· 729 1

36
· 6561 0 = 243

8

15. The curves = 2 or = + 2 and = 2 intersect when + 2 = 2

2 2 = 0 ( 2)( + 1) = 0 = 1, = 2, so the points of

intersection are (1 1) and (4 2). If we describe as a type I region, the upper

boundary curve is = but the lower boundary curve consists of two parts,

= for 0 1 and = 2 for 1 4.

Thus = {( ) | 0 1, } {( ) | 1 4, 2 } and

=
1

0
+

4

1 2
. If we describe as a type II region, is enclosed by the left boundary

= 2 and the right boundary = + 2 for 1 2, so = ( ) | 1 2, 2 + 2 and

=
2

1

+2
2 . In either case, the resulting iterated integrals are not difficult to evaluate but the region is
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524 ¤ CHAPTER 15 MULTIPLE INTEGRALS

more simply described as a type II region, giving one iterated integral rather than a sum of two, so we evaluate the latter

integral:

=
2

1

+2
2 =

2

1

= +2

= 2 =
2

1
( + 2 2) =

2

1
( 2 + 2 3)

= 1
3

3 + 2 1
4

4 2

1
= 8

3
+ 4 4 1

3
+ 1 1

4
= 9

4

16. As a type I region, = {( ) | 0 4, 4} and
2 =

4

0

4 2 . As a type II region,

= {( ) | 0 4, 0 } and 2 =
4

0 0
2 .

Evaluating 2 requires integration by parts whereas 2 does not, so

the iterated integral corresponding to as a type II region appears easier to evaluate.

2 =
4

0 0
2 =

4

0

=

=0
=

4

0

2

= 1
2

2 1
2

2
4

0
= 1

2
16 8 1

2
0 = 1

2
16 17

2

17. 1

0

2

0
cos =

1

0
sin

= 2

=0
=

1

0
sin 2 = 1

2
cos 2 1

0
= 1

2
(1 cos 1)

18. ( 2 + 2 ) =
1

0 3(
2 + 2 ) =

1

0
2 + 2 =

= 3

=
1

0
( 3 + 2 5 6) = 1

4
4 + 1

3
3 1

6
6 1

7
7 1

0

= 1
4 +

1
3

1
6

1
7 =

23
84

19. 2 =
2

1

7 3

1

2 =
2

1

2 =7 3

= 1

=
2

1
[(7 3 ) ( 1)] 2 =

2

1
(8 2 4 3)

= 8
3

3 4 2

1
= 64

3
16 8

3
+ 1 = 11

3

20.
2 =

1

1

1 2

0

2

=
1

1
2 1

2
2 = 1 2

=0
= 1

2

1

1
2(1 2)

= 1
2

1

1
( 2 4) = 1

2
1
3

3 1
5

5 1

1

= 1
2

1
3

1
5 +

1
3

1
5
= 2

15
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21. 2

2

4 2

4 2

(2 )

=
2

2

2 1
2

2
= 4 2

= 4 2

=
2

2
2 4 2 1

2
4 2 + 2 4 2 + 1

2
4 2

=
2

2
4 4 2 = 4

3
4 2 3 2 2

2
= 0

[Or, note that 4 4 2 is an odd function, so 2

2
4 4 2 = 0.]

22. 2 =
1

0

3

2
2 =

1

0
2 =3

=2

=
1

0
[(3 )2 (2 )2] =

1

0
( 3 3 6 2 + 9 )

= 3
4

4 2 3 + 9
2

2 1

0
= 3

4 2 + 9
2 =

7
4

23. =
1

0

1 2

1
(1 + 2 ) =

1

0
+ 2 =1 2

=1

=
1

0

(1 2) (1 2) + (1 2)2

(1 ) (1 ) + (1 )2

=
1

0
4 + 3 3 2 + 2 2 2 4 + 2

=
1

0
4 + 3 5 2 + 3 = 1

5
5 + 1

4
4 5

3
3 + 3

2
2 1

0

= 1
5
+ 1

4
5
3
+ 3

2
= 17

60

24. =
2

2

4
2(1 +

2 2)

=
2

2
+ 1

3
3 2 =4

= 2 =
2

2
(4 + 61

3
2 1

3
8)

= 4 + 61
9

3 1
27

9 2

2
= 8 + 488

9
512
27
+ 8 + 488

9
512
27
= 2336

27

25. =
2

1

7 3

1
=

2

1
1
2

2 =7 3

=1

= 1
2

2

1
(48 42 2 + 9 3)

= 1
2
24 2 14 3 + 9

4
4 2

1
= 31

8
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26. =
1

0

1
( 2 + 3 2)

=
1

0
2 + 3 =1

=
=

1

0
( 2 + 1 2 3)

= 1
3

3 + 1
2

4 1

0
= 5

6

27. =
2

0

3 3
2

0
(6 3 2 )

=
2

0
6 3 2 = 3 3

2
=0

=
2

0
6(3 3

2
) 3 (3 3

2
) (3 3

2
)2

=
2

0
9
4

2 9 + 9 = 3
4

3 9
2

2 + 9
2

0
= 6 0 = 6

28. =
1

0

2

=
1

0

=2

=
=

1

0
(2 2 2)

= 2 2
3

3 1

0
= 1

3

29.
=

2

2

4
2

2

=
2

2
2 =4

= 2 =
2

2
(4 2 4)

= 4
3

3 1
5

5 2

2
= 32

3
32
5 +

32
3

32
5 =

128
15

30. =
2

0

2

0
4 2 =

2

0
4 2

=2

=0

=
2

0
2 4 2 = 2

3
4 2 3 2 2

0
= 0 + 16

3
= 16

3

c° 2012 Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part.

NOT FOR SALE

°°cc 2012 Cengage Learning. All Rights Reserved. May not be scanned, copied, or2012 Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part.duplicated, or posted to a publicly accessible website, in whole or in part.

299



SECTION 15.3 DOUBLE INTEGRALS OVER GENERAL REGIONS ¤ 527

31.

=
1

0

1 2

0

=
1

0

2

2

= 1 2

=0

=
1

0

1 2

2
= 1

2
1
3

3 1

0
= 1

3

32. By symmetry, the desired volume is 8 times the volume 1 in the first octant.

Now

1 =
0

2 2

0

2 2 =
0

2 2
= 2 2

=0

=
0
( 2 2) = 2 1

3
3
0
= 2

3
3

Thus = 16
3

3.

33. From the graph, it appears that the two curves intersect at = 0 and

at 1 213. Thus the desired integral is

1 213

0

3 2

4 =
1 213

0

= 3 2

= 4

=
1 213

0
(3 2 3 5) = 3 1

4
4 1

6
6 1 213

0

0 713

34.

The desired solid is shown in the first graph. From the second graph, we estimate that = cos intersects = at

0 7391. Therefore the volume of the solid is

0 7391

0

cos
=

0 7391

0

cos
=

0 7391

0

= cos

=

=
0 7391

0
( cos 2) = cos + sin 1

3
3 0 7391

0
0 1024

Note: There is a different solid which can also be construed to satisfy the conditions stated in the exercise. This is the solid

bounded by all of the given surfaces, as well as the plane = 0. In case you calculated the volume of this solid and want to

check your work, its volume is 0 7391

0 0
+

2

0 7391

cos

0
0 4684.
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35. The two bounding curves = 1 2 and = 2 1 intersect at (±1 0) with 1 2 2 1 on [ 1 1]. Within this

region, the plane = 2 + 2 + 10 is above the plane = 2 , so

=
1

1

1 2

2 1
(2 + 2 + 10)

1

1

1 2

2 1
(2 )

=
1

1

1 2

2 1
(2 + 2 + 10 (2 ))

=
1

1

1 2

2 1
(3 + 3 + 8) =

1

1
3 + 3

2
2 + 8

=1 2

= 2 1

=
1

1
3 (1 2) + 3

2
(1 2)2 + 8(1 2) 3 ( 2 1) 3

2
( 2 1)2 8( 2 1)

=
1

1
( 6 3 16 2 + 6 + 16) = 3

2
4 16

3
3 + 3 2 + 16

1

1

= 3
2

16
3
+ 3 + 16 + 3

2
16
3

3 + 16 = 64
3

36. The two planes intersect in the line = 1, = 3, so the region of

integration is the plane region enclosed by the parabola = 2 and the

line = 1. We have 2 + 3 for 0 1, so the solid region is

bounded above by = 2 + and bounded below by = 3 .

=
1

1

1

2

(2 + )
1

1

1

2

(3 ) =
1

1

1

2

(2 + 3 ) =
1

1

1

2

(2 2 )

=
1

1
2 2

=1

= 2
=

1

1
(1 2 2 + 4) = 2

3
3 + 1

5
5 1

1
= 16

15

37. The solid lies below the plane = 1

or + + = 1 and above the region

= {( ) | 0 1 0 1 }
in the -plane. The solid is a tetrahedron.

38. The solid lies below the plane = 1

and above the region

= ( ) | 0 1 0 1 2

in the -plane.
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39. The two bounding curves = 3 and = 2 + intersect at the origin and at = 2, with 2 + 3 on (0 2).

Using a CAS, we find that the volume is

=
2

0

2 +

3

=
2

0

2 +

3

( 3 4 + 2) =
13,984,735,616
14,549,535

40. For | | 1 and | | 1, 2 2 + 2 8 2 2 2. Also, the cylinder is described by the inequalities 1 1,

1 2 1 2. So the volume is given by

=
1

1

1 2

1 2

(8 2 2 2) (2 2 + 2) =
13

2
[using a CAS]

41. The two surfaces intersect in the circle 2 + 2 = 1, = 0 and the region of integration is the disk : 2 + 2 1.

Using a CAS, the volume is (1 2 2) =
1

1

1 2

1 2

(1 2 2) =
2
.

42. The projection onto the -plane of the intersection of the two surfaces is the circle 2 + 2 = 2

2 + 2 2 = 0 2 + ( 1)2 = 1, so the region of integration is given by 1 1,

1 1 2 1 + 1 2. In this region, 2 2 + 2 so, using a CAS, the volume is

=
1

1

1+ 1 2

1 1 2

[2 ( 2 + 2)] =
2

43. Because the region of integration is

= {( ) | 0 0 1} = {( ) | 1 0 1}

we have 1

0 0
( ) = ( ) =

1

0

1
( ) .

44. Because the region of integration is

= ( ) | 2 4 0 2

= ( ) | 0 0 4

we have 2

0

4
2 ( ) = ( ) =

4

0 0
( ) .

45. Because the region of integration is

= {( ) | 0 cos 0 2}
= ( ) | 0 cos 1 0 1

we have
2

0

cos

0
( ) = ( ) =

1

0

cos 1

0
( ) .
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46. Because the region of integration is

= ( ) | 0 4 2 2 2

= ( ) | 4 2 4 2 0 2

we have

2

2

4 2

0
( ) = ( ) =

2

0

4 2

4 2
( ) .

47. Because the region of integration is

= {( ) | 0 ln , 1 2} = {( ) | 2, 0 ln 2}
we have

2

1

ln

0

( ) = ( ) =
ln 2

0

2

( )

48. Because the region of integration is

= ( ) | arctan
4
, 0 1

= ( ) | 0 tan , 0
4

we have
1

0

4

arctan

( ) = ( ) =
4

0

tan

0

( )

49.
1

0

3

3

2

=
3

0

3

0

2

=
3

0

2 = 3

=0

=
3

0 3

2

= 1
6

2 3

0
=

9 1

6

50.

0

cos( 2) =
0 0

cos( 2)

=
0

cos( 2)
=

=0
=

0

cos( 2)

= 1
2
sin( 2)

0
= 1

2
(sin sin 0) = 0

51. 4

0

2 1
3 + 1

=
2

0

2

0

1
3 + 1

=
2

0

1
3 + 1

= 2

=0
=

2

0

2

3 + 1

= 1
3
ln 3 + 1

2

0
= 1

3
(ln 9 ln 1) = 1

3
ln 9
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52. 1

0

1

=
1

0 0

=
1

0

=

=0

=
1

0
( 1) = 1

2
( 1) 2 1

0

= 1
2
( 1)

53.
1

0

2

arcsin

cos 1 + cos2

=
2

0

sin

0
cos 1 + cos2

=
2

0
cos 1 + cos2

=sin

=0

=
2

0
cos 1 + cos2 sin

Let = cos , = sin ,
= ( sin )

=
0

1
1 + 2 = 1

3
1 + 2 3 2 0

1

= 1
3

8 1 = 1
3
2 2 1

54. 8

0

2

3

4

=
2

0

3

0

4

=
2

0

4 = 3

=0
=

2

0

3 4

= 1
4

4 2

0
= 1

4 (
16 1)

55. = {( ) | 0 1, + 1 1} {( ) | 1 0, + 1 1}
{( ) | 0 1, 1 1} {( ) | 1 0, 1 1}, all type I.

2 =
1

0

1

1

2 +
0

1

1

+ 1

2 +
1

0

1

1

2 +
0

1

1

1

2

= 4
1

0

1

1

2 [by symmetry of the regions and because ( ) = 2 0]

= 4
1

0
3 = 4 1

4
4 1

0
= 1

56. = ( ) | 1 0, 1 3 ( ) | 0 1, 1 3 , both type II.

=
0

1

3

1

+
1

0

3

1

=
0

1

= 3

= 1
+

1

0

= 3

= 1

=
0

1
( 2 4 + ) +

1

0
( 2 4 3 2 + )

= 1
3

3 1
5

5 + 1
2

2 0

1
+ 1

3
3 1

5
5 2

5
5 2 + 1

2
2
1

0

= (0 11
30
) + ( 7

30
0) = 2

15
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532 ¤ CHAPTER 15 MULTIPLE INTEGRALS

57. Here = ( ) | 2 + 2 1
4

0 0 , and 0 ( 2 + 2)2 1
4

2 1
16

( 2 + 2)2 0 so

1 16 ( 2+ 2)2 0 = 1 since is an increasing function. We have ( ) = 1
4

1
2

2
=

16
, so by Property 11,

1 16 ( ) ( 2+ 2)2 1 · ( )
16

1 16 ( 2+ 2)2

16
or we can say

0 1844 ( 2+ 2)2 0 1964. (We have rounded the lower bound down and the upper bound up to preserve the

inequalities.)

58. is the triangle with vertices (0 0), (1 0), and (1 2) so ( ) = 1
2
(1)(2) = 1. We have 0 sin4( + ) 1 for all , ,

and Property 11 gives 0 · ( ) sin4( + ) 1 · ( ) 0 sin4( + ) 1.

59. The average value of a function of two variables defined on a rectangle was

defined in Section 15.1 as ave =
1
( )

( ) . Extending this definition

to general regions , we have ave =
1
( )

( ) .

Here = {( ) | 0 1 0 3 }, so ( ) = 1
2
(1)(3) = 3

2
and

ave =
1
( )

( ) = 1
3 2

1

0

3

0

= 2
3

1

0
1
2

2 =3

=0
= 1

3

1

0
9 3 = 3

4
4 1

0
= 3

4

60. Here = ( ) | 0 1 0 2 , so

( ) =
1

0
2 = 1

3
3 1

0
= 1

3
and

ave =
1
( )

( ) = 1
1 3

1

0

2

0
sin

= 3
1

0
cos

= 2

=0

= 3
1

0
cos( 2) = 3 1

2
2 1

2
sin( 2)

1

0

= 3 1
2

1
2
sin 1 0 = 3

2
(1 sin 1)

61. Since ( ) , ( ) by (8)

1 ( ) 1 by (7) ( ) ( ) ( ) by (10).

62.

( ) =
1

0

2

0

( ) +
3

1

3

0

( )

=
2

0

3

2

( )
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SECTION 15.3 DOUBLE INTEGRALS OVER GENERAL REGIONS ¤ 533

63. First we can write ( + 2) = + 2 . But ( ) = is

an odd function with respect to [that is, ( ) = ( )] and is

symmetric with respect to . Consequently, the volume above and below the

graph of is the same as the volume below and above the graph of , so

= 0. Also, 2 = 2 · ( ) = 2 · 1
2
(3)2 = 9 since is a half

disk of radius 3. Thus ( + 2) = 0 + 9 = 9 .

64. The graph of ( ) = 2 2 2 is the top half of the sphere 2 + 2 + 2 = 2, centered at the origin with radius

, and is the disk in the -plane also centered at the origin with radius . Thus 2 2 2 represents the

volume of a half ball of radius which is 1
2
· 4
3

3 = 2
3

3.

65. We can write (2 + 3 ) = 2 + 3 . 2 represents the volume of the solid lying under the

plane = 2 and above the rectangle . This solid region is a triangular cylinder with length and whose cross-section is a

triangle with width and height 2 . (See the first figure.)

Thus its volume is 1
2
· · 2 · = 2 . Similarly, 3 represents the volume of a triangular cylinder with length ,

triangular cross-section with width and height 3 , and volume 1
2
· · 3 · = 3

2
2. (See the second figure.) Thus

(2 + 3 ) = 2 + 3
2

2

66. In the first quadrant, and are positive and the boundary of is + = 1. But is

symmetric with respect to both axes because of the absolute values, so the region of

integration is the square shown at the left. To evaluate the double integral, we first write

(2 + 2 3 2 sin ) = 2 + 2 3 2 sin .

Now ( ) = 2 3 is odd with respect to [that is, ( ) = ( )]

and is symmetric with respect to , so 2 3 = 0.

Similarly, ( ) = 2 sin is odd with respect to [since ( ) = ( )] and is symmetric with respect to ,

so 2 sin = 0. is a square with side length 2, so 2 = 2 · ( ) = 2 2
2
= 4, and

(2 + 2 3 2 sin ) = 4 + 0 + 0 = 4.
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534 ¤ CHAPTER 15 MULTIPLE INTEGRALS

67. 3 + 3 + 2 2 = 3 + 3 + 2 2 . Now 3 is odd with respect

to and 3 is odd with respect to , and the region of integration is symmetric with respect to both and ,

so 3 = 3 = 0.

2 2 represents the volume of the solid region under the

graph of = 2 2 and above the rectangle , namely a half circular

cylinder with radius and length 2 (see the figure) whose volume is

1
2
· 2 = 1

2
2(2 ) = 2 . Thus

3 + 3 + 2 2 = 0 + 0 + 2 = 2 .

68. To find the equations of the boundary curves, we require that the

-values of the two surfaces be the same. In Maple, we use the command

solve(4-xˆ2-yˆ2=1-x-y,y); and in Mathematica, we use

Solve[4-xˆ2-yˆ2==1-x-y,y]. We find that the curves have

equations =
1± 13 + 4 4 2

2
. To find the two points of intersection

of these curves, we use the CAS to solve 13 + 4 4 2 = 0, finding that

= 1± 14
2

. So, using the CAS to evaluate the integral, the volume of intersection is

=
(1+ 14 ) 2

(1 14 ) 2

1+ 13+ 4 4 2 2

1 13+4 4 2 2

[(4 2 2) (1 )] =
49

8

15.4 Double Integrals in Polar Coordinates

1. The region is more easily described by polar coordinates: = ( ) | 0 4, 0 3
2
.

Thus ( ) =
3 2

0

4

0
( cos sin ) .

2. The region is more easily described by rectangular coordinates: = ( ) | 1 1, 0 1 2 .

Thus ( ) =
1

1

1 2

0
( ) .

3. The region is more easily described by rectangular coordinates: = ( ) | 1 1, 0 1
2
+ 1

2
.

Thus ( ) =
1

1

( +1) 2

0
( ) .

4. The region is more easily described by polar coordinates: = ( ) | 3 6,
2 2

.

Thus ( ) =
2

2

6

3
( cos sin ) .
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SECTION 15.4 DOUBLE INTEGRALS IN POLAR COORDINATES ¤ 535

5. The integral 3 4

4

2

1
represents the area of the region

= {( ) | 1 2, 4 3 4}, the top quarter portion of a
ring (annulus).

3 4

4

2

1
=

3 4

4

2

1

=
3 4

4
1
2

2 2

1
= 3

4 4
· 1
2
(4 1) =

2
· 3
2
= 3

4

6. The integral
2

2 sin

0
represents the area of the region = {( ) | 1 2 sin , 2 }. Since

= 2 sin 2 = 2 sin 2 + 2 = 2

2 + ( 1)2 = 1, is the portion in the second quadrant of a disk of

radius 1 with center (0 1).

2

2 sin

0
=

2
1
2

2 =2 sin

=0
=

2
2 sin2

=
2
2 · 1

2
(1 cos 2 ) = 1

2
sin 2

2

= 0
2
+ 0 =

2

7. The half disk can be described in polar coordinates as = {( ) | 0 5, 0 }. Then
2 =

0

5

0
( cos )2( sin ) =

0
cos2 sin

5

0
4

= 1
3
cos3

0
1
5

5 5

0
= 1

3
( 1 1) · 625 = 1250

3

8. The region is 1
8
of a disk, as shown in the figure, and can be described by = {( ) | 0 2, 4 2}. Thus

(2 ) =
2

4

2

0
(2 cos sin )

=
2

4
(2 cos sin )

2

0
2

= 2 sin + cos
2

4
1
3

3 2

0

= (2 + 0 2 2
2 )

8
3
= 16

3 4 2

9. sin( 2 + 2) =
2

0

3

1
sin( 2) =

2

0

3

1
sin( 2)

=
2

0
1
2 cos(

2)
3

1

=
2

1
2
(cos 9 cos 1) =

4
(cos 1 cos 9)

10.
2

2 + 2
=

2

0

( sin )2

2
=

2

0

sin2

=
2

0
1
2 (1 cos 2 ) = 1

2
1
2 sin 2

2

0
1
2

2

= 1
2
(2 0 0) 1

2
2 2 =

2
( 2 2)
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536 ¤ CHAPTER 15 MULTIPLE INTEGRALS

11.
2 2

=
2

2

2

0

2

=
2

2

2

0

2

=
2

2
1
2

2 2

0
= 1

2
( 4 0) =

2
(1 4)

12. cos 2 + 2 =
2

0

2

0
cos 2 =

2

0

2

0
cos . For the second integral, integrate by parts with

= , = cos . Then cos 2 + 2 =
2

0
[ sin + cos ]20 = 2 (2 sin 2 + cos 2 1).

13. is the region shown in the figure, and can be described

by = {( ) | 0 4 1 2}. Thus

arctan( ) =
4

0

2

1
arctan(tan ) since = tan .

Also, arctan(tan ) = for 0 4, so the integral becomes

4

0

2

1
=

4

0

2

1
= 1

2
2 4

0
1
2

2 2

1
=

2

32
· 3
2
= 3

64
2.

14. =

2 + 2 4
0, 0

( 1)2 + 2 1
0

=
2

0

2

0
2 cos

2

0

2 cos

0
2 cos

=
2

0
1
3 (8 cos )

2

0
1
3 (8 cos

4 )

= 8
3

8
12
cos3 sin + 3

2
( + sin cos )

2

0

= 8
3

2
3
0 + 3

2 2
= 16 3

6

15. One loop is given by the region

= {( ) | 6 6, 0 cos 3 }, so the area is

=
6

6

cos 3

0

=
6

6

1

2
2

=cos 3

=0

=
6

6

1

2
cos2 3 = 2

6

0

1

2

1 + cos 6

2

=
1

2
+
1

6
sin 6

6

0

=
12

16. By symmetry, the area of the region is 4 times the area of the region in the first quadrant enclosed by the cardiod

= 1 cos (see the figure). Here = {( ) | 0 1 cos 0 2}, so the total area is

4 ( ) = 4 = 4
2

0

1 cos

0
= 4

2

0
1
2

2 =1 cos

=0

= 2
2

0
(1 cos )2 = 2

2

0
(1 2 cos + cos2 )

= 2
2

0
1 2 cos + 1

2
(1 + cos 2 )

= 2 2 sin + 1
2
+ 1

4
sin 2

2

0

= 2
2

2 +
4
= 3

2
4
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SECTION 15.4 DOUBLE INTEGRALS IN POLAR COORDINATES ¤ 537

17. In polar coordinates the circle ( 1)2 + 2 = 1 2 + 2 = 2 is 2 = 2 cos = 2 cos ,

and the circle 2 + 2 = 1 is = 1. The curves intersect in the first quadrant when

2 cos = 1 cos = 1
2

= 3, so the portion of the region in the first quadrant is given by

= {( ) | 1 2 cos 0 2}. By symmetry, the total area
is twice the area of :

2 ( ) = 2 = 2
3

0

2 cos

1
= 2

3

0
1
2

2 =2 cos

=1

=
3

0
4 cos2 1 =

3

0
4 · 1

2
(1 + cos 2 ) 1

=
3

0
(1 + 2 cos 2 ) = [ + sin 2 ] 3

0 = 3 +
3
2

18. The region lies between the two polar curves in quadrants I and IV, but in

quadrants II and III the region is enclosed by the cardiod. In the first

quadrant, 1 + cos = 3 cos when cos = 1
2

=
3
, so the area

of the region inside the cardiod and outside the circle is

1 =
2

3

1+cos

3 cos
=

2

3
1
2

2 =1+cos

=3 cos

= 1
2

2

3
(1 + 2 cos 8 cos2 ) = 1

2
+ 2 sin 8 1

2
+ 1

4
sin 2

2

3

= 3
2
+ sin sin 2

2

3
= 3

4
+ 1 0

2
+ 3

2
3
2

= 1
4

The area of the region in the second quadrant is

2 = 2

1+cos

0
=

2
1
2

2 =1+cos

=0
= 1

2 2
(1 + 2 cos + cos2 )

= 1
2

+ 2 sin + 1
2
+ 1

4
sin 2

2
= 1

2
3
4

2 = 3
8

1

By symmetry, the total area is = 2( 1 + 2) = 2 1
4
+ 3

8
1 =

4
.

19. = 2 + 2 4
2 + 2 =

2

0

2

0
2 =

2

0

2

0
2 =

2

0
1
3

3 2

0
= 2 8

3
= 16

3

20. The paraboloid = 18 2 2 2 2 intersects the -plane in the circle 2 + 2 = 9, so

=

2+ 2 9

18 2 2 2 2 =

2+ 2 9

18 2 2 + 2 =
2

0

3

0

18 2 2

=
2

0

3

0
18 2 3 =

2

0
9 2 1

2
4 3

0
=(2 ) 81 81

2
= 81
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538 ¤ CHAPTER 15 MULTIPLE INTEGRALS

21. The hyperboloid of two sheets 2 2 + 2 = 1 intersects the plane = 2 when 2 2 +4 = 1 or 2 + 2 = 3. So the

solid region lies above the surface = 1 + 2 + 2 and below the plane = 2 for 2 + 2 3, and its volume is

=

2 + 2 3

2 1 + 2 + 2 =
2

0

3

0

2 1 + 2

=
2

0

3

0
2 1 + 2 =

2

0
2 1

3
(1 + 2)3 2

3

0

= 2 3 8
3

0 + 1
3
= 4

3

22. The sphere 2 + 2 + 2 = 16 intersects the -plane in the circle 2 + 2 = 16, so

= 2

4 2+ 2 16

16 2 2 [by symmetry] = 2
2

0

4

2

16 2 = 2
2

0

4

2

(16 2)1 2

= 2
2

0
1
3 (16

2)3 2
4

2
= 2

3 (2 )(0 123 2) = 4
3
12 12 = 32 3

23. By symmetry,

= 2

2 + 2 2

2 2 2 = 2
2

0 0

2 2 = 2
2

0 0

2 2

= 2
2

0
1
3
( 2 2)3 2

0
= 2(2 ) 0 + 1

3
3 = 4

3
3

24. The paraboloid = 1 + 2 2 + 2 2 intersects the plane = 7 when 7 = 1 + 2 2 + 2 2 or 2 + 2 = 3 and we are restricted

to the first octant, so

=

2+ 2 3

0 0

7 1 + 2 2 + 2 2 =
2

0

3

0

7 (1 + 2 2)

=
2

0

3

0
6 2 3 =

2

0
3 2 1

2
4 3

0
=

2
· 9
2
= 9

4

25. The cone = 2 + 2 intersects the sphere 2 + 2 + 2 = 1 when 2 + 2 + 2 + 2
2

= 1 or 2 + 2 = 1
2
. So

=

2 + 2 1 2

1 2 2 2 + 2 =
2

0

1 2

0

1 2

=
2

0

1 2

0
1 2 2 =

2

0
1
3
(1 2)3 2 1

3
3
1 2

0
= 2 1

3
1

2
1 =

3
2 2

26. The two paraboloids intersect when 3 2 + 3 2 = 4 2 2 or 2 + 2 = 1. So

=

2 + 2 1

[(4 2 2) 3( 2 + 2)] =
2

0

1

0

4(1 2)

=
2

0

1

0
(4 4 3) =

2

0
2 2 4 1

0
= 2
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SECTION 15.4 DOUBLE INTEGRALS IN POLAR COORDINATES ¤ 539

27. The given solid is the region inside the cylinder 2 + 2 = 4 between the surfaces = 64 4 2 4 2

and = 64 4 2 4 2. So

=

2 + 2 4

64 4 2 4 2 64 4 2 4 2 =

2+ 2 4

2 64 4 2 4 2

= 4
2

0

2

0
16 2 = 4

2

0

2

0
16 2 = 4

2

0
1
3
(16 2)3 2

2

0

= 8 1
3
(123 2 162 3) = 8

3
64 24 3

28. (a) Here the region in the -plane is the annular region 2
1

2 + 2 2
2 and the desired volume is twice that above the

-plane. Hence

= 2

2
1

2 + 2 2
2

2
2

2 2 = 2
2

0

2

1

2
2

2 = 2
2

0

2

1

2
2

2

= 4
3

( 2
2

2)3 2 2

1

= 4
3
( 2
2

2
1)
3 2

(b) A cross-sectional cut is shown in the figure.

So 2
2 =

1
2

2
+ 2

1 or 14
2 = 2

2
2
1 .

Thus the volume in terms of is = 4
3

1
4

2 3 2
= 6

3.

29.
3

3

9 2

0

sin( 2 + 2) =
0

3

0

sin 2

=
0

3

0
sin 2 = [ ]0

1
2
cos 2 3

0

= 1
2
(cos 9 1) =

2
(1 cos 9)

30.
2 0

( cos )2 ( sin ) =
2 0

4 cos2 sin

=
2
cos2 sin

0
4

= 1
3
cos3

2
1
5

5
0

= 1
3
cos3 cos3 2

1
5

5 = 1
15

5

31. 4

0

2

0
( cos + sin ) =

4

0
(cos + sin )

2

0
2

= [sin cos ] 4
0

1
3

3 2

0

= 2
2

2
2

0 + 1 · 1
3
2 2 0 = 2 2

3
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540 ¤ CHAPTER 15 MULTIPLE INTEGRALS

32. 2

0

2 cos

0
2 =

2

0
1
3

3 =2 cos

=0
=

2

0
8
3
cos3

= 8
3

2

0
(1 sin2 ) cos

= 8
3
sin 1

3
sin3

2

0
= 16

9

33. = {( ) | 0 1, 0 2 }, so
( 2+ 2)2 =

2

0

1

0
( 2)2 =

2

0

1

0

4
= 2

1

0

4
. Using a calculator, we estimate

2
1

0

4

4 5951.

34. = {( ) | 0 1, 0 2}, so

1 + 2 + 2 =
2

0

1

0
( cos )( sin ) 1 + 2

=
2

0
sin cos

1

0
3 1 + 2 = 1

2
sin2

2

0

1

0
3 1 + 2

= 1
2

1

0
3 1 + 2 0 1609

35. The surface of the water in the pool is a circular disk with radius 20 ft. If we place on coordinate axes with the origin at

the center of and define ( ) to be the depth of the water at ( ), then the volume of water in the pool is the volume of

the solid that lies above = ( ) | 2 + 2 400 and below the graph of ( ). We can associate north with the

positive -direction, so we are given that the depth is constant in the -direction and the depth increases linearly in the

-direction from (0 20) = 2 to (0 20) = 7. The trace in the -plane is a line segment from (0 20 2) to (0 20 7).

The slope of this line is 7 2
20 ( 20)

= 1
8
, so an equation of the line is 7 = 1

8
( 20) = 1

8
+ 9

2
. Since ( ) is

independent of , ( ) = 1
8
+ 9

2
. Thus the volume is given by ( ) , which is most conveniently evaluated

using polar coordinates. Then = {( ) | 0 20, 0 2 } and substituting = cos , = sin the integral

becomes
2

0

20

0
1
8 sin + 9

2
=

2

0
1
24

3 sin + 9
4

2 = 20

= 0
=

2

0
1000
3 sin + 900

= 1000
3
cos + 900

2

0
= 1800

Thus the pool contains 1800 5655 ft3 of water.

36. (a) If 100, the total amount of water supplied each hour to the region within feet of the sprinkler is

=
2

0 0
=

2

0 0
=

2

0 0

= 2 [ + 0 + 1] = 2 (1 ) ft3

(b) The average amount of water per hour per square foot supplied to the region within feet of the sprinkler is

area of region
=

2
=
2 1

2
ft3 (per hour per square foot). See the definition of the average value of a

function on page 1003 [ET 979].
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SECTION 15.4 DOUBLE INTEGRALS IN POLAR COORDINATES ¤ 541

37. As in Exercise 15.3.59, ave =
1
( )

( ) . Here = {( ) | 0 2 },

so ( ) = 2 2 = ( 2 2) and

ave =
1

( )

1
2 + 2

=
1

( 2 2)

2

0

1
2

=
1

( 2 2)

2

0

=
1

( 2 2)
2

0
=

1

( 2 2)
(2 )( ) =

2( )

( + )( )
=

2

+

38. The distance from a point ( ) to the origin is ( ) = 2 + 2, so the average distance from points in to the origin is

ave =
1
( )

2 + 2 = 1
2

2

0 0
2

= 1
2

2

0 0
2 = 1

2 [ ]
2
0

1
3

3
0
= 1

2 · 2 · 1
3

3 = 2
3

39.
1

1 2 1 2

+
2

1 0

+
2

2

4 2

0

=
4

0

2

1

3 cos sin =
4

0

4

4
cos sin

=2

=1

=
15

4

4

0

sin cos =
15

4

sin2

2

4

0

=
15

16

40. (a) ( 2+ 2) =
2

0 0

2

= 2 1
2

2

0
= 1

2

for each . Then lim 1
2

=

since
2

0 as . Hence ( 2+ 2) = .

(b) ( 2+ 2) =
2 2

=
2 2

for each .

Then, from (a), = R2 ( 2 + 2) , so

= lim ( 2+ 2) = lim
2 2

=
2 2

To evaluate lim
2 2

, we are using the fact that these integrals are bounded. This is true since

on [ 1 1], 0
2

1 while on ( 1), 0
2

and on (1 ), 0
2

. Hence

0
2 1

+
1

1
+

1
= 2( 1 + 1).

(c) Since
2 2

= and can be replaced by ,
2 2

= implies that

2
= ± . But

2
0 for all , so

2
= .

(d) Letting = 2 ,
2

= 1

2

2 2 , so that = 1

2

2 2 or
2 2 = 2 .
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542 ¤ CHAPTER 15 MULTIPLE INTEGRALS

41. (a) We integrate by parts with = and =
2

. Then = and = 1
2

2

, so

0
2 2

= lim
0

2 2
= lim 1

2

2

0
+

0
1
2

2

= lim 1
2

2

+ 1
2 0

2
= 0 + 1

2 0

2
[by l’Hospital’s Rule]

= 1
4

2
[since

2
is an even function]

= 1
4 [by Exercise 40(c)]

(b) Let = . Then 2 = = 2

0
= lim

0
= lim

0

2
2 = 2

0
2 2

= 2 1
4

[by part(a)] = 1
2

.

15.5 Applications of Double Integrals

1. = ( ) =
5

0

5

2
(2 + 4 ) =

5

0
2 + 2 2 =5

=2

=
5

0
(10 + 50 4 8) =

5

0
(6 + 42) = 3 2 + 42

5

0
= 75 + 210 = 285 C

2. = ( ) = 2 + 2 =
2

0

1

0
2

=
2

0

1

0
2 = [ ]20

1
3

3 1

0
= 2 · 1

3
= 2

3
C

3. = ( ) =
3

1

4

1
2 =

3

1

4

1
2 = [ ]31

1
3

3 4

1
= (2)(21) = 42 ,

= 1 ( ) = 1
42

3

1

4

1
2 = 1

42

3

1

4

1
2 = 1

42
1
2

2 3

1
1
3

3 4

1
= 1

42
(4)(21) = 2,

= 1 ( ) = 1
42

3

1

4

1
3 = 1

42

3

1

4

1
3 = 1

42
[ ]31

1
4

4 4

1
= 1

42
(2) 255

4
= 85

28

Hence = 42 , ( ) = 2 85
28
.

4. = ( ) =
0 0

(1 + 2 + 2) =
0

+ 2 + 1
3

3 =

=0
=

0
+ 2 + 1

3
3

= + 1
3

3 + 1
3
3

0
= + 1

3
3 + 1

3
3 = 1

3
(3 + 2 + 2),

= ( ) =
0 0

( + 3 + 2) =
0

+ 3 + 1
3

3 =

=0
=

0
+ 3 + 1

3
3

= 1
2

2 + 1
4

4 + 1
6
3 2

0
= 1

2
2 + 1

4
4 + 1

6
2 3 = 1

12
2 (6 + 3 2 + 2 2), and

= ( ) =
0 0

( + 2 + 3) =
0

1
2

2 + 1
2

2 2 + 1
4

4 =

=0
=

0
1
2
2 + 1

2
2 2 + 1

4
4

= 1
2
2 + 1

6
2 3 + 1

4
4

0
= 1

2
2 + 1

6
3 2 + 1

4
4 = 1

12
2(6 + 2 2 + 3 2).

Hence, ( ) = =
1
12

2 (6 + 3 2 + 2 2)
1
3 (3 + 2 + 2)

1
12

2(6 + 2 2 + 3 2)
1
3 (3 + 2 + 2)

=
(6 + 3 2 + 2 2)

4(3 + 2 + 2)

(6 + 2 2 + 3 2)

4(3 + 2 + 2)
.
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SECTION 15.5 APPLICATIONS OF DOUBLE INTEGRALS ¤ 543

5. =
2

0

3

2
( + ) =

2

0
+ 1

2
2 =3

= 2
=

2

0
3 3

2
+ 1

2
(3 )2 1

8
2

=
2

0
9
8

2 + 9
2

= 9
8

1
3

3 + 9
2

2

0
= 6,

=
2

0

3

2
( 2 + ) =

2

0
2 + 1

2
2 =3

= 2
=

2

0
9
2

9
8

3 = 9
2
,

=
2

0

3

2
( + 2) =

2

0
1
2

2 + 1
3

3 =3

= 2
=

2

0
9 9

2
= 9.

Hence = 6, ( ) = =
3

4

3

2
.

6. Here = {( ) | 0 2 6 2 }.

=
2

0

6 2 2 =
2

0
2 (6 2 ) =

2

0
6 2 3 3 = 2 3 3

4
4 2

0
= 4,

=
2

0

6 2 · 2 =
2

0
3 (6 2 ) =

2

0
6 3 3 4 = 3

2
4 3

5
5 2

0
= 24

5
,

=
2

0

6 2 · 2 =
2

0
2 1

2
(6 2 )2 1

2
2 = 1

2

2

0
3 4 24 3 + 36 2

= 1
2

3
5

5 6 4 + 12 3 2

0
= 48

5
.

Hence = 4, ( ) = 24 5
4

48 5
4

= 6
5

12
5
.

7. =
1

1

1 2

0
=

1

1
1
2

2 =1 2

=0
= 1

2

1

1
(1 2)2 = 1

2

1

1
(1 2 2 + 4)

= 1
2

2
3

3 + 1
5

5 1

1
= 1

2
1 2

3
+ 1

5
+ 1 2

3
+ 1

5
= 8

15
,

=
1

1

1 2

0
=

1

1
1
2

2 =1 2

=0
= 1

2

1

1
(1 2)2 = 1

2

1

1
( 2 3 + 5)

= 1
2

1
2

2 1
2

4 + 1
6

6 1

1
= 1

2
1
2

1
2
+ 1

6
1
2
+ 1

2
1
6
= 0,

=
1

1

1 2

0
2 =

1

1
1
3

3 =1 2

=0
= 1

3

1

1
(1 2)3 = 1

3

1

1
(1 3 2 + 3 4 6)

= 1
3

3 + 3
5

5 1
7

7 1

1
= 1

3
1 1 + 3

5
1
7
+ 1 1 + 3

5
1
7
= 32

105
.

Hence = 8
15
, ( ) = 0 32 105

8 15
= 0 4

7
.

8. The boundary curves intersect when 2 = + 2 2 2 = 0 = 1, = 2. Thus here

= ( ) | 1 2 2 + 2 .

=
2

1

+2
2 =

2

1

= +2

= 2 =
2

1
( 2+2 3) = 1

3
3 + 2 1

4
4 2

1
= 8

3
5
12

= 9
4 ,

=
2

1

+2
2

2 =
2

1
2 = +2

= 2 =
2

1
( 3 + 2 2 4) = 1

4
4 + 2

3
3 1

5
5 2

1
= 63

20
,

=
2

1

+2
2 =

2

1
1
2

2 = +2

= 2 = 1
2

2

1
( 2 + 4 + 4 4)

= 1
2

2

1
( 3 + 4 2 + 4 5) = 1

2
1
4

4 + 4
3

3 + 2 2 1
6

6 2

1
= 45

8
.

Hence = 9
4
, ( ) = 63 20

9 4
45 8
9 4

= 7
5

5
2
.
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544 ¤ CHAPTER 15 MULTIPLE INTEGRALS

9. Note that sin( ) 0 for 0 .

=
0

sin( )

0
=

0
1
2
sin2( ) = 1

2
1
2 4

sin(2 )
0
= 1

4
,

=
0

sin( )

0
· = 1

2 0
sin2( )

integrate by parts with
= = sin2( )

= 1
2
· 1

2 4
sin(2 )

0
1
2 0

1
2 4

sin(2 )

= 1
4

2 1
2

1
4

2 +
2

4 2 cos(2 )
0
= 1

4
2 1

2
1
4

2 +
2

4 2

2

4 2 = 1
8

2

=
0

sin( )

0
· =

0
1
3
sin3( ) = 1

3 0
1 cos2( ) sin( )

[substitute = cos ( )] = sin( )]

= 1
3

cos( ) 1
3 cos

3( )
0
= 3

1 + 1
3 1 + 1

3
= 4

9 .

Hence =
4
, ( ) =

2 8

4

4 (9 )

4
=

2

16

9
.

10. =
1

0 2 =
1

0
( 2)

=
1

0
( 5 2) = 1

2
2 2

7
7 2

1

0
= 3

14
,

=
1

0 2 =
1

0
( 2) =

1

0
( 2 7 2) = 1

3
3 2

9
9 2

1

0
= 1

9
,

=
1

0 2 =
1

0
· 1
2
( 4) = 1

2

1

0
( 3 2 9 2)

= 1
2

2
5

5 2 2
11

11 2
1

0
= 1

2
· 12
55
= 6

55
.

Hence = 3
14
, ( ) = 1 9

3 14
6 55
3 14

= 14
27

28
55
.

11. ( ) = = sin , =
2

0

1

0
2 sin = 1

3

2

0
sin = 1

3
cos

2

0
= 1

3
,

=
2

0

1

0
3 sin cos = 1

4

2

0
sin cos = 1

8
cos 2

2

0
= 1

8
,

=
2

0

1

0
3 sin2 = 1

4

2

0
sin2 = 1

8 + sin 2
2

0
= 16 .

Hence ( ) = 3
8

3
16
.

12. ( ) = ( 2 + 2) = 2, =
2

0

1

0
3 =

8
,

=
2

0

1

0
4 cos = 1

5

2

0
cos = 1

5
sin

2

0
= 1

5
,
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SECTION 15.5 APPLICATIONS OF DOUBLE INTEGRALS ¤ 545

=
2

0

1

0
4 sin = 1

5

2

0
sin = 1

5
cos

2

0
= 1

5
.

Hence ( ) = 8
5

8
5
.

13. ( ) = 2 + 2 = ,

= ( ) =
0

2

1
·

=
0

2

1
2 = ( ) 1

3
3 2

1
= 7

3
,

= ( ) =
0

2

1
( cos )( ) =

0
cos

2

1
3

= sin
0

1
4

4 2

1
= (0) 15

4
= 0

[this is to be expected as the region and density

function are symmetric about the y-axis]

= ( ) =
0

2

1
( sin )( ) =

0
sin

2

1
3

= cos
0

1
4

4 2

1
= (1 + 1) 15

4
= 15

2

Hence ( ) = 0 15 2
7 3

= 0 45
14

.

14. Now ( ) = 2 + 2 = , so

= ( ) =
0

2

1
( ) =

0

2

1
= ( )(1) = ,

= ( ) =
0

2

1
( cos )( ) =

0
cos

2

1

= sin
0

1
2

2 2

1
= (0) 3

2
= 0,

= ( ) =
0

2

1
( sin )( ) =

0
sin

2

1

= cos
0

1
2

2 2

1
= (1 + 1) 3

2
= 3 .

Hence ( ) = 0 3 = 0 3 .

15. Placing the vertex opposite the hypotenuse at (0 0), ( ) = ( 2 + 2). Then

=
0 0

2 + 2 =
0

2 3 + 1
3
( )3 = 1

3
3 1

4
4 1

12
( )4

0
= 1

6
4.

By symmetry,

= =
0 0

( 2 + 2) =
0

1
2
( )2 2 + 1

4
( )4

= 1
6

2 3 1
4

4 + 1
10

5 1
20
( )5

0
= 1

15
5

Hence ( ) = 2
5

2
5
.
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546 ¤ CHAPTER 15 MULTIPLE INTEGRALS

16. ( ) = 2 + 2 = .

=
5 6

6

2 sin

1

=
5 6

6

[(2 sin ) 1]

= 2 cos
5 6

6
= 2 3

3

By symmetry of and ( ) = , = 0, and

=
5 6

6

2 sin

1
sin = 1

2

5 6

6
(4 sin3 sin )

= 1
2 3 cos + 4

3 cos
3 5 6

6
= 3

Hence ( ) = 0 3 3

2(3 3 )
.

17. = 2 ( ) =
1

1

1 2

0
2 · =

1

1
1
4

4 =1 2

=0
= 1

4

1

1
(1 2)4

= 1
4

1

1
( 8 4 6 + 6 4 4 2 + 1) = 1

4
1
9

9 4
7

7 + 6
5

5 4
3

3 +
1

1
= 64

315
,

= 2 ( ) =
1

1

1 2

0
2 =

1

1
1
2

2 2 =1 2

=0
= 1

2

1

1
2(1 2)2

= 1
2

1

1
( 2 2 4 + 6) = 1

2
1
3

3 2
5

5 + 1
7

7 1

1
= 8

105
,

and 0 = + = 64
315

+ 8
105

= 88
315

.

18. =
2

0

1

0
( 2 sin2 )( 2) = 1

6

2

0
sin2 = 1

6
1
4
(2 sin 2 )

2

0
=

24
,

=
2

0

1

0
( 2 cos2 )( 2) = 1

6

6

0
cos2 = 1

6
1
4
(2 + sin 2 )

2

0
=

24
,

and 0 = + =
12
.

19. As in Exercise 15, we place the vertex opposite the hypotenuse at (0 0) and the equal sides along the positive axes.

=
0 0

2 ( 2 + 2) =
0 0

( 2 2 + 4) =
0

1
3

2 3 + 1
5

5 =

=0

=
0

1
3

2( )3 + 1
5 ( )5 = 1

3
1
3

3 3 3
4

2 4 + 3
5

5 1
6

6 1
30 ( )6

0
= 7

180
6,

=
0 0

2 ( 2 + 2) =
0 0

( 4 + 2 2) =
0

4 + 1
3

2 3 =

=0

=
0

4 ( ) + 1
3

2 ( )3 = 1
5

5 1
6

6 + 1
3

1
3

3 3 3
4

2 4 + 3
5

5 1
6

6
0
= 7

180
6,

and 0 = + = 7
90

6.

20. If we find the moments of inertia about the - and -axes, we can determine in which direction rotation will be more difficult.

(See the explanation following Example 4.) The moment of inertia about the -axis is given by

= 2 ( ) =
2

0

2

0
2(1 + 0 1 ) =

2

0
(1 + 0 1 ) 1

3
3 =2

=0

= 8
3

2

0
(1 + 0 1 ) = 8

3
+ 0 1 · 1

2
2 2

0
= 8

3
(2 2) 5 87
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SECTION 15.5 APPLICATIONS OF DOUBLE INTEGRALS ¤ 547

Similarly, the moment of inertia about the -axis is given by

= 2 ( ) =
2

0

2

0
2(1 + 0 1 ) =

2

0
2(1 + 0 1 )

=2

=0

= 2
2

0
( 2 + 0 1 3) = 2 1

3
3 + 0 1 · 1

4
4 2

0
= 2 8

3
+ 0 4 6 13

Since , more force is required to rotate the fan blade about the -axis.

21. = 2 ( ) =
0 0

2 =
0 0

2 =
0

1
3

3
0
= 1

3
3 = 1

3
3,

= 2 ( ) =
0 0

2 =
0

2
0

= 1
3

3
0
[ ]0 =

1
3

3 ,

and = (area of rectangle) = since the lamina is homogeneous. Hence 2
= =

1
3

3

=
2

3
=

3

and 2
= =

1
3

3

=
2

3
=

3
.

22. Here we assume 0, 0 but note that we arrive at the same results if 0 or 0. We have

= ( ) | 0 0 , so

=
0 0

2 =
0

1
3

3 =

=0
= 1

3 0

3

= 1
3

1
4

4

0
=

12
(0 4) = 1

12
3,

=
0 0

2 =
0

2 =
0

2 3

=
3

3
4

4
0
= (

3

3

3

4
) = 1

12
3 ,

and =
0 0

=
0

=
2

2
0
= 1

2
. Hence 2

= =
1
12

3

1
2

=
2

6

=
6
and 2

= =
1
12

3

1
2

=
2

6
=

6
.

23. In polar coordinates, the region is = ( ) | 0 0 2
, so

= 2 =
2

0 0
( sin )2 =

2

0
sin2

0
3

= 1
2

1
4
sin 2

2

0
1
4

4
0
=

4
1
4

4 = 1
16

4 ,

= 2 =
2

0 0
( cos )2 =

2

0
cos2

0
3

= 1
2
+ 1

4
sin 2

2

0
1
4

4
0
=

4
1
4

4 = 1
16

4 ,

and = · ( ) = · 14 2 since the lamina is homogeneous. Hence 2
=

2
=

1
16

4

1
4

2
=

2

4
= =

2
.

24. =
0

sin

0
=

0
sin = cos

0
= 2 ,

=
0

sin

0
2 = 1

3 0
sin3 = 1

3 0
(1 cos2 ) sin = 1

3
cos + 1

3
cos3

0
= 4

9
,
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548 ¤ CHAPTER 15 MULTIPLE INTEGRALS

=
0

sin

0
2 =

0
2 sin = 2 cos + 2 sin + 2 cos

0
[by integrating by parts twice]

= ( 2 4).

Then 2
= =

2

9
, so =

2

3
and 2

= =
2 4

2
, so =

2 4

2
.

25. The right loop of the curve is given by = {( ) | 0 cos 2 , 4 4}. Using a CAS, we

find = ( ) = ( 2 + 2) =
4

4

cos 2

0
2 =

3

64
. Then

=
1

( ) =
64

3

4

4

cos 2

0

( cos ) 2 =
64

3

4

4

cos 2

0

4 cos =
16384 2

10395
and

=
1

( ) =
64

3

4

4

cos 2

0

( sin ) 2 =
64

3

4

4

cos 2

0

4 sin = 0, so

( ) =
16384 2

10395
0 .

The moments of inertia are

= 2 ( ) =
4

4

cos 2

0
( sin )2 2 =

4

4

cos 2

0
5 sin2 =

5

384

4

105
,

= 2 ( ) =
4

4

cos 2

0
( cos )2 2 =

4

4

cos 2

0
5 cos2 =

5

384
+

4

105
, and

0 = + =
5

192
.

26. Using a CAS, we find = ( ) =
2

0 0
2 2 = 8

729
(5 899 6). Then

=
1

( ) =
729

8(5 899 6)

2

0 0

3 2 =
2(5 6 1223)

5 6 899
and

=
1

( ) =
729

8(5 899 6)

2

0 0

2 3 =
729(45 6 42037 2)

32768(5 6 899)
, so

( ) =
2(5 6 1223)

5 6 899

729(45 6 42037 2)

32768(5 6 899)
.

The moments of inertia are = 2 ( ) =
2

0 0
2 4 = 16

390625
(63 305593 10),

= 2 ( ) =
2

0 0
4 2 = 80

2187
(7 2101 6), and

0 = + = 16
854296875

(13809656 4103515625 6 668331891 10).

27. (a) ( ) is a joint density function, so we know R2 ( ) = 1. Since ( ) = 0 outside the

rectangle [0 1]× [0 2], we can say

R2 ( ) = ( ) =
1

0

2

0
(1 + )

=
1

0
+ 1

2
2 =2

=0
=

1

0
4 = 2 2 1

0
= 2

Then 2 = 1 = 1
2
.
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SECTION 15.5 APPLICATIONS OF DOUBLE INTEGRALS ¤ 549

(b) ( 1 1) =
1 1

( ) =
1

0

1

0
1
2
(1 + )

=
1

0
1
2 + 1

2
2 = 1

= 0
=

1

0
1
2

3
2

= 3
4

1
2

2 1

0
= 3

8 or 0 375

(c) ( + 1) = (( ) ) where is the triangular region shown in

the figure. Thus

( + 1) = ( ) =
1

0

1

0
1
2
(1 + )

=
1

0
1
2 + 1

2
2 =1

=0
=

1

0
1
2

1
2

2 2 + 3
2

= 1
4

1

0
3 4 2 + 3 = 1

4

4

4
4

3

3
+ 3

2

2

1

0

= 5
48

0 1042

28. (a) ( ) 0, so is a joint density function if R2 ( ) = 1. Here, ( ) = 0 outside the square [0 1]× [0 1],

so R2 ( ) =
1

0

1

0
4 =

1

0
2 2 =1

=0
=

1

0
2 = 2 1

0
= 1.

Thus, ( ) is a joint density function.

(b) (i) No restriction is placed on , so
1
2
=

1 2
( ) =

1

1 2

1

0
4 =

1

1 2
2 2 =1

=0
=

1

1 2
2 = 2 1

1 2
= 3

4
.

(ii) 1
2

1
2
=

1 2

1 2
( ) =

1

1 2

1 2

0
4

=
1

1 2
2 2 = 1 2

= 0
=

1

1 2
1
2

= 1
2
· 1
2

2 1

1 2
= 3

16

(c) The expected value of is given by

1 = R2 ( ) =
1

0

1

0
(4 ) =

1

0
2 2 2 =1

=0
= 2

1

0
2 = 2 1

3
3 1

0
= 2

3

The expected value of is

2 = R2 ( ) =
1

0

1

0
(4 ) =

1

0
4 1

3
3 = 1

= 0
= 4

3

1

0
= 4

3
1
2

2 1

0
= 2

3

29. (a) ( ) 0, so is a joint density function if R2 ( ) = 1. Here, ( ) = 0 outside the first quadrant, so

R2 ( ) =
0 0

0 1 (0 5 + 0 2 ) = 0 1
0 0

0 5 0 2 = 0 1
0

0 5
0

0 2

= 0 1 lim
0

0 5 lim
0

0 2 = 0 1 lim 2 0 5
0
lim 5 0 2

0

= 0 1 lim 2( 0 5 1) lim 5( 0 2 1) = (0 1) · ( 2)(0 1) · ( 5)(0 1) = 1

Thus ( ) is a joint density function.

(b) (i) No restriction is placed on , so

( 1) =
1

( ) =
0 1

0 1 (0 5 +0 2 )

= 0 1
0

0 5
1

0 2 = 0 1 lim
0

0 5 lim
1

0 2

= 0 1 lim 2 0 5
0
lim 5 0 2

1
= 0 1 lim 2( 0 5 1) lim 5( 0 2 0 2)

(0 1) · ( 2)(0 1) · ( 5)(0 0 2) = 0 2 0 8187
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550 ¤ CHAPTER 15 MULTIPLE INTEGRALS

(ii) ( 2 4) =
2 4

( ) =
2

0

4

0
0 1 (0 5 +0 2 )

= 0 1
2

0
0 5 4

0
0 2 = 0 1 2 0 5 2

0
5 0 2 4

0

= (0 1) · ( 2)( 1 1) · ( 5)( 0 8 1)

= ( 1 1)( 0 8 1) = 1 + 1 8 0 8 1 0 3481

(c) The expected value of is given by

1 = R2 ( ) =
0 0

0 1 (0 5 +0 2 )

= 0 1
0

0 5
0

0 2 = 0 1 lim
0

0 5 lim
0

0 2

To evaluate the first integral, we integrate by parts with = and = 0 5 (or we can use Formula 96

in the Table of Integrals): 0 5 = 2 0 5 2 0 5 = 2 0 5 4 0 5 = 2( + 2) 0 5 .

Thus

1 = 0 1 lim 2( + 2) 0 5
0
lim 5 0 2

0

= 0 1 lim ( 2) ( + 2) 0 5 2 lim ( 5) 0 2 1

= 0 1( 2) lim
+ 2
0 5

2 ( 5)( 1) = 2 [by l’Hospital’s Rule]

The expected value of is given by

2 = R2 ( ) =
0 0

0 1 (0 5+0 2 )

= 0 1
0

0 5
0

0 2 = 0 1 lim
0

0 5 lim
0

0 2

To evaluate the second integral, we integrate by parts with = and = 0 2 (or again we can use Formula 96 in

the Table of Integrals) which gives 0 2 = 5 0 2 + 5 0 2 = 5( + 5) 0 2 . Then

2 = 0 1 lim 2 0 5
0
lim 5( + 5) 0 2

0

= 0 1 lim 2( 0 5 1) lim 5 ( + 5) 0 2 5

= 0 1( 2)( 1) · ( 5) lim
+ 5
0 2

5 = 5 [by l’Hospital’s Rule]

30. (a) The lifetime of each bulb has exponential density function

( ) =
0 if 0

1
1000

1000 if 0

If and are the lifetimes of the individual bulbs, then and are independent, so the joint density function is the

product of the individual density functions:

( ) =
10 6 ( + ) 1000 if 0, 0

0 otherwise
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SECTION 15.5 APPLICATIONS OF DOUBLE INTEGRALS ¤ 551

The probability that both of the bulbs fail within 1000 hours is

( 1000 1000) =
1000 1000

( ) =
1000

0

1000

0
10 6 ( + ) 1000

= 10 6 1000

0
1000 1000

0
1000

= 10 6 1000 1000
1000

0
1000 1000

1000

0

= 1 1
2

0 3996

(b) Now we are asked for the probability that the combined lifetimes of both

bulbs is 1000 hours or less. Thus we want to find ( + 1000), or

equivalently (( ) ) where is the triangular region shown in the

figure. Then

( + 1000) = ( )

=
1000

0

1000

0
10 6 ( + ) 1000

= 10 6 1000

0
1000 ( + ) 1000

=1000

=0
= 10 3 1000

0
1 1000

= 10 3 1 + 1000 1000
1000

0
= 1 2 1 0 2642

31. (a) The random variables and are normally distributed with 1 = 45, 2 = 20, 1 = 0 5, and 2 = 0 1.

The individual density functions for and , then, are 1( ) =
1

0 5 2
( 45)2 0 5 and

2 ( ) =
1

0 1 2
( 20)2 0 02. Since and are independent, the joint density function is the product

( ) = 1( ) 2( ) =
1

0 5 2
( 45)2 0 5 1

0 1 2
( 20)2 0 02 = 10 2( 45)2 50( 20)2

Then (40 50, 20 25) =
50

40

25

20
( ) = 10 50

40

25

20
2( 45)2 50( 20)2 .

Using a CAS or calculator to evaluate the integral, we get (40 50, 20 25) 0 500.

(b) (4( 45)2 + 100( 20)2 2) = 10 2( 45)2 50( 20)2 , where is the region enclosed by the ellipse

4( 45)2 + 100( 20)2 = 2. Solving for gives = 20± 1
10 2 4( 45)2, the upper and lower halves of the

ellipse, and these two halves meet where = 20 [since the ellipse is centered at (45 20)] 4( 45)2 = 2

= 45± 1

2
. Thus

10 2( 45)2 50( 20)2 = 10
45+1 2

45 1 2

20+ 1
10

2 4( 45)2

20 1
10 2 4( 45)2

2( 45)2 50( 20)2 .

Using a CAS or calculator to evaluate the integral, we get (4( 45)2 + 100( 20)2 2) 0 632.
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552 ¤ CHAPTER 15 MULTIPLE INTEGRALS

32. Because and are independent, the joint density function for Xavier’s and Yolanda’s arrival times is the product of the

individual density functions:

( ) = 1( ) 2( ) =

1
50

if 0, 0 10

0 otherwise

Since Xavier won’t wait for Yolanda, they won’t meet unless .

Additionally, Yolanda will wait up to half an hour but no longer, so they

won’t meet unless 30. Thus the probability that they meet is

(( ) ) where is the parallelogram shown in the figure. The

integral is simpler to evaluate if we consider as a type II region, so

(( ) ) = ( ) =
10

0

+30 1
50

= 1
50

10

0

= +30

=
= 1

50

10

0
( ( +30) + )

= 1
50
(1 30)

10

0

By integration by parts (or Formula 96 in the Table of Integrals), this is

1
50
(1 30) ( + 1)

10

0
= 1

50
(1 30)(1 11 10) 0 020. Thus there is only about a 2% chance they will meet.

Such is student life!

33. (a) If ( ) is the probability that an individual at will be infected by an individual at , and is the number of

infected individuals in an element of area , then ( ) is the number of infections that should result from

exposure of the individual at to infected people in the element of area . Integration over gives the number of

infections of the person at due to all the infected people in . In rectangular coordinates (with the origin at the city’s

center), the exposure of a person at is

= ( ) = 1
20
[20 ( )] = 1 1

20
( 0)2 + ( 0)2

(b) If = (0 0), then

= 1 1
20

2 + 2

=
2

0

10

0

1 1
20

= 2 1
2

2 1
60

3 10

0

= 2 50 50
3
= 200

3
209

For at the edge of the city, it is convenient to use a polar coordinate system centered at . Then the polar equation for

the circular boundary of the city becomes = 20 cos instead of = 10, and the distance from to a point in the city
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SECTION 15.6 SURFACE AREA ¤ 553

is again (see the figure). So

=
2

2

20 cos

0

1 1
20

=
2

2

1
2

2 1
60

3 =20 cos

=0

=
2

2
200 cos2 400

3
cos3 = 200

2

2
1
2
+ 1

2
cos 2 2

3
1 sin2 cos

= 200 1
2
+ 1

4
sin 2 2

3
sin + 2

3
· 1
3
sin3

2

2
= 200

4
+ 0 2

3
+ 2

9
+

4
+ 0 2

3
+ 2

9

= 200
2

8
9

136

Therefore the risk of infection is much lower at the edge of the city than in the middle, so it is better to live at the edge.

15.6 Surface Area

1. Here = ( ) = 2 + 3 + 4 and is the rectangle [0 5]× [1 4], so by Formula 2 the area of the surface is

( ) = [ ( )]2 + [ ( )]2 + 1 = 32 + 42 + 1 = 26

= 26 ( ) = 26 (5)(3) = 15 26

2. = ( ) = 10 2 5 and is the disk 2 + 2 9, so by Formula 2

( ) = ( 2)2 + ( 5)2 + 1 = 30 = 30 ( ) = 30 ( · 32) = 9 30

3. = ( ) = 6 3 2 which intersects the -plane in the line 3 + 2 = 6, so is the triangular region given by

( ) 0 2 0 3 3
2

. Thus

( ) = ( 3)2 + ( 2)2 + 1 = 14 = 14 ( ) = 14 1
2
· 2 · 3 = 3 14

4. = ( ) = 1 + 3 + 2 2 with 0 2 , 0 1. Thus by Formula 2,

( ) = 1 + (3)2 + (4 )2 =
1

0

2

0
10 + 16 2 =

1

0
10 + 16 2 =2

=0

=
1

0
2 10 + 16 2 = 2 · 1

32 · 23 (10 + 16 2)3 2
1

0
= 1

24 (26
3 2 103 2)

5. 2 + 2 = 9 = 9 2. = 0, = (9 2) 1 2

( ) =
4

0

2

0

02 + [ (9 2) 1 2]2 + 1 =
4

0

2

0

2

9 2
+ 1

=
4

0

2

0

3

9 2
= 3

4

0

sin 1

3

=2

=0
= 3 sin 1 2

3

4

0
= 12 sin 1 2

3

6. = ( ) = 4 2 2 and is the projection of the paraboloid = 4 2 2 onto the -plane, that is,

= ( ) | 2 + 2 4 . So = 2 , = 2

( ) = ( 2 )2 + ( 2 )2 + 1 = 4( 2 + 2) + 1 =
2

0

2

0
4 2 + 1

=
2

0
1
12 (4

2 + 1)3 2
=2

=0
=

2

0
1
12
17 17 1 = 6

17 17 1
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554 ¤ CHAPTER 15 MULTIPLE INTEGRALS

7. = ( ) = 2 2 with 1 2 + 2 4. Then

( ) = 1 + 4 2 + 4 2 =
2

0

2

1
1 + 4 2 =

2

0

2

1
1 + 4 2

=
2

0
1
12
(1 + 4 2)3 2

2

1
=

6
17 17 5 5

8. = ( ) = 2
3
( 3 2 + 3 2) and = {( ) | 0 1 0 1}. Then = 1 2, = 1 2 and

( ) =
2
+ ( )2 + 1 =

1

0

1

0

+ + 1 =
1

0

2
3
( + + 1)3 2

=1

=0

= 2
3

1

0
( + 2)3 2 ( + 1)3 2 = 2

3
2
5
( + 2)5 2 2

5
( + 1)5 2

1

0

= 4
15
(35 2 25 2 25 2 + 1) = 4

15
(35 2 27 2 + 1)

9. = ( ) = with 2 + 2 1, so = , =

( ) = 2 + 2 + 1 =
2

0

1

0
2 + 1 =

2

0
1
3
( 2 + 1)3 2

=1

=0

=
2

0
1
3
2 2 1 = 2

3
2 2 1

10. Given the sphere 2 + 2 + 2 = 4, when = 1, we get 2 + 2 = 3 so = ( ) | 2 + 2 3 and

= ( ) = 4 2 2. Thus

( ) = [( )(4 2 2) 1 2]2 + [( )(4 2 2) 1 2]2 + 1

=
2

0

3

0

2

4 2
+ 1 =

2

0

3

0

2 + 4 2

4 2

=
2

0

3

0

2

4 2

=
2

0
2(4 2)1 2

= 3

=0
=

2

0
( 2 + 4) = 2

2

0
= 4

11. = 2 2 2, = ( 2 2 2) 1 2, = ( 2 2 2) 1 2,

( ) =
2 + 2

2 2 2
+ 1

=
2

2

cos

0

2

2 2
+ 1

=
2

2

cos

0
2 2

=
2

2

2 2
= cos

=0

=
2

2

2 2 cos2 = 2 2
2

0

1 1 cos2

= 2 2
2

0

2 2
2

0

sin2 = 2 2 2
2

0

sin = 2( 2)
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12. To find the region : = 2 + 2 implies + 2 = 4 or 2 3 = 0. Thus = 0 or = 3 are the planes where the

surfaces intersect. But 2 + 2 + 2 = 4 implies 2 + 2 + ( 2)2 = 4, so = 3 intersects the upper hemisphere. Thus

( 2)2 = 4 2 2 or = 2 + 4 2 2. Therefore is the region inside the circle 2 + 2 + (3 2)2 = 4, that

is, = ( ) | 2 + 2 3 .

( ) = [( )(4 2 2) 1 2]2 + [( )(4 2 2) 1 2]2 + 1

=
2

0

3

0

2

4 2
+ 1 =

2

0

3

0

2

4 2
=

2

0

2(4 2)1 2
= 3

=0

=
2

0
( 2 + 4) = 2

2

0
= 4

13. = ( ) =
2 2

, = 2
2 2

, = 2
2 2

. Then

( ) =
2+ 2 4

( 2 2 2)2 + ( 2 2 2)2 + 1 =
2+ 2 4

4( 2 + 2) 2( 2+ 2) + 1 .

Converting to polar coordinates we have

( ) =
2

0

2

0
4 2 2 2 + 1 =

2

0

2

0
4 2 2 2 + 1

= 2
2

0
4 2 2 2 + 1 13 9783 using a calculator.

14. = ( ) = cos( 2 + 2), = 2 sin( 2 + 2), = 2 sin( 2 + 2).

( ) =
2+ 2 1

4 2 sin2( 2 + 2) + 4 2 sin2( 2 + 2) + 1 =
2+ 2 1

4( 2 + 2) sin2( 2 + 2) + 1 .

Converting to polar coordinates gives

( ) =
2

0

1

0
4 2 sin2( 2) + 1 =

2

0

1

0
4 2 sin2( 2) + 1

= 2
1

0
4 2 sin2( 2) + 1 4 1073 using a calculator.

15. (a) The midpoints of the four squares are 1
4

1
4
, 1

4
3
4
, 3

4
1
4
, and 3

4
3
4
. Here ( ) = 2 + 2, so the Midpoint Rule

gives

( ) = [ ( )]2 + [ ( )]2 + 1 = (2 )2 + (2 )2 + 1

1
4

2 1
4

2
+ 2 1

4

2
+ 1 + 2 1

4

2
+ 2 3

4

2
+ 1

+ 2 3
4

2
+ 2 1

4

2
+ 1 + 2 3

4

2
+ 2 3

4

2
+ 1

= 1
4

3
2
+ 2 7

2
+ 11

2
1 8279

(b) A CAS estimates the integral to be ( ) = 1 + (2 )2 + (2 )2 =
1

0

1

0
1 + 4 2 + 4 2 1 8616.

This agrees with the Midpoint estimate only in the first decimal place.
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16. (a) With = = 2 we have four squares with midpoints 1
2

1
2
, 1

2
3
2
, 3

2
1
2
, and 3

2
3
2
. Since = + 2 + 2, the

Midpoint Rule gives

( ) = 1 +
2

+
2

= 1+ ( + 2 )2 + ( + 2 )2

1 1 + 3
2

2
+ 3

2

2
+ 1 + 5

2

2
+ 7

2

2
+ 1 + 7

2

2
+ 5

2

2
+ 1+ 9

2

2
+ 9

2

2

= 22
2
+ 78

2
+ 78

2
+ 166

2
17.619

(b) Using a CAS, we have

( ) = 1 + ( + 2 )2 + ( + 2 )2 =
2

0

2

0
1 + ( + 2 )2 + ( + 2 )2 17 7165. This is within

about 0 1 of the Midpoint Rule estimate.

17. = 1 + 2 + 3 + 4 2, so

( ) = 1 +
2

+
2

=
4

1

1

0

1 + 4 + (3 + 8 )2 =
4

1

1

0

14 + 48 + 64 2 .

Using a CAS, we have 4

1

1

0
14 + 48 + 64 2 = 45

8
14+ 15

16
ln 11 5 + 3 14 5 15

16
ln 3 5 + 14 5

or 45
8

14 + 15
16
ln
11 5 + 3 70

3 5 + 70
.

18. ( ) = 1 + + + 2 = 1 + 2 , = 1. We use a

CAS to calculate the integral

( ) =
1

2

1

1
2 + 2 + 1

=
1

2

1

1
(1 + 2 )2 + 2 = 2

1

2
4 2 + 4 + 3

and find that ( ) = 3 11 + 2 sinh 1 3 2
2

or

( ) = 3 11 + ln 10 + 3 11 .

19. ( ) = 1 + 2 2 = 2 2, = 2 2 . We use a CAS (with precision reduced to five significant digits, to speed

up the calculation) to estimate the integral

( ) =
1

1

1 2

1 2

2 + 2 + 1 =
1

1

1 2

1 2

4 2 4 + 4 4 2 + 1 , and find that ( ) 3 3213.

20. Let ( ) =
1 + 2

1 + 2
. Then =

2

1 + 2
,

= 1 + 2 2

(1 + 2)2
=

2 1 + 2

(1 + 2)2
. We use a CAS

to estimate 1

1

1 | |
(1 | |)

2 + 2 + 1 2 6959. In

order to graph only the part of the surface above the square, we use

(1 | |) 1 | | as the -range in our plot command.
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SECTION 15.7 TRIPLE INTEGRALS ¤ 557

21. Here = ( ) = + + , ( ) = , ( ) = , so

( ) = 2 + 2 + 1 = 2 + 2 + 1 = 2 + 2 + 1 ( ).

22. Let be the upper hemisphere. Then = ( ) = 2 2 2, so

( ) = [ ( 2 2 2) 1 2]2 + [ ( 2 2 2) 1 2]2 + 1

=
2 + 2

2 2 2
+ 1 = lim

2

0 0

2

2 2
+ 1

= lim
2

0 0
2 2

= 2 lim 2 2

0
= 2 lim 2 2

= 2 ( )( ) = 2 2. Thus the surface area of the entire sphere is 4 2.

23. If we project the surface onto the -plane, then the surface lies “above” the disk 2 + 2 25 in the -plane.

We have = ( ) = 2 + 2 and, adapting Formula 2, the area of the surface is

( ) =
2+ 2 25

[ ( )]2 + [ ( )]2 + 1 =
2+ 2 25

4 2 + 4 2 + 1

Converting to polar coordinates = cos , = sin we have

( ) =
2

0

5

0
4 2 + 1 =

2

0

5

0
(4 2 + 1)1 2 =

2

0
1
12
(4 2 + 1)3 2

5

0
=

6
101 101 1

24. First we find the area of the face of the surface that intersects the positive -axis. As in Exercise 23, we can project the face

onto the -plane, so the surface lies “above” the disk 2 + 2 1. Then = ( ) = 1 2 and the area is

( ) =

2+ 2 1

[ ( )]2 + [ ( )]2 + 1 =

2+ 2 1

0 +
1 2

2

+ 1

=

2+ 2 1

2

1 2
+ 1 =

1

1

1 2

1 2

1

1 2

= 4
1

0

1 2

0

1

1 2
[by the symmetry of the surface]

This integral is improper (when = 1), so

( ) = lim
1
4

0

1 2

0

1

1 2
= lim

1
4

0

1 2

1 2
= lim

1
4

0

= lim
1
4 = 4.

Since the complete surface consists of four congruent faces, the total surface area is 4(4) = 16.

15.7 Triple Integrals

1. 2 =
1

0

3

0

2

1
2 =

1

0

3

0
1
2

2 2 =2

= 1
=

1

0

3

0
3
2

2

=
1

0
1
2

3 =3

=0
=

1

0
27
2

= 27
4

2 1

0
= 27

4
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558 ¤ CHAPTER 15 MULTIPLE INTEGRALS

2. There are six different possible orders of integration.

( + 2) =
2

0

1

0

3

0
( + 2) =

2

0

1

0
+ 1

3
3 =3

=0
=

2

0

1

0
(3 + 9)

=
2

0
3
2

2 + 9
=1

=0
=

2

0
3
2
+ 9 = 3

4
2 + 9

2

0
= 21

( + 2) =
1

0

2

0

3

0
( + 2) =

1

0

2

0
+ 1

3
3 =3

=0
=

1

0

2

0
(3 + 9)

=
1

0
3
2

2 + 9
=2

=0
=

1

0
(6 + 18) = 3 2 + 18

1

0
= 21

( + 2) =
2

0

3

0

1

0
( + 2) =

2

0

3

0
1
2

2 + 2 =1

=0
=

2

0

3

0
1
2
+ 2

=
2

0
1
2 + 1

3
3 =3

=0
=

2

0
3
2 + 9 = 3

4
2 + 9

2

0
= 21

( + 2) =
3

0

2

0

1

0
( + 2) =

3

0

2

0
1
2

2 + 2 =1

=0
=

3

0

2

0
1
2
+ 2

=
3

0
1
4

2 + 2 =2

=0
=

3

0
1 + 2 2 = + 2

3
3 3

0
= 21

( + 2) =
1

0

3

0

2

0
( + 2) =

1

0

3

0
1
2

2 + 2 =2

=0
=

1

0

3

0
2 + 2 2

=
1

0
2 + 2

3
3 =3

=0
=

1

0
(6 + 18) = 3 2 + 18

1

0
= 21

( + 2) =
3

0

1

0

2

0
( + 2) =

3

0

1

0
1
2

2 + 2 =2

=0
=

3

0

1

0
2 + 2 2

=
3

0
2 + 2 2 =1

=0
=

3

0
1 + 2 2 = + 2

3
3 3

0
= 21

3. 2

0

2

0 0
(2 ) =

2

0

2

0
2 =

=0
=

2

0

2

0
( )2 ( )

=
2

0

2

0
2 =

2

0
2 1

2
2 = 2

=0
=

2

0
4 1

2
5

= 1
5

5 1
12

6 2

0
= 32

5
64
12 =

16
15

4. 1

0

2

0
2 =

1

0

2 2 =

=0
=

1

0

2 3

=
1

0
1
4

4 =2

=
=

1

0
15
4

5 = 5
8

6 1

0
= 5

8

5. 2

1

2

0

ln

0
=

2

1

2

0

=ln

=0
=

2

1

2

0
ln + 0

=
2

1

2

0
( 1 + ) =

2

1
+ 1

2
2 =2

=0

=
2

1
2 + 2 2 = 2 + 2

3
3 2

1
= 4 + 16

3
+ 1 2

3
= 5

3

6.
1

0

1

0

1 2

0 + 1
=

1

0

1

0 + 1
·

= 1 2

=0

=
1

0

1

0

1 2

+ 1

=
1

0

1
3
(1 2)3 2

+ 1

=1

=0

=
1

3

1

0

1

+ 1
=
1

3
ln( + 1)

1

0

= 1
3
(ln 2 ln 1) = 1

3
ln 2

c° 2012 Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part.

NOT FOR SALE

°°cc 2012 Cengage Learning. All Rights Reserved. May not be scanned, copied, or2012 Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part.duplicated, or posted to a publicly accessible website, in whole or in part.

331



SECTION 15.7 TRIPLE INTEGRALS ¤ 559

7. 2

0 0 0
cos( + + ) =

2

0 0
sin( + + )

=

=0

=
2

0 0
[sin(2 + ) sin( + )]

=
2

0
1
2
cos(2 + ) + cos( + )

=

=0

=
2

0
1
2
cos 3 + cos 2 + 1

2
cos cos

= 1
6
sin 3 + 1

2
sin 2 1

2
sin

2

0
= 1

6
1
2
= 1

3

8.
0 0 0

2 sin =
0 0

2 cos
=

=0
=

0 0
( 2 2 cos )

=
0

2 sin
=

=0
=

0
( 3 sin 2)

= 1
4

4 + 1
2
cos 2

0
= 1

4
2 1

2
1
2
= 1

4
2 1

9. =
3

0 0

+
=

3

0 0

= +

=
=

3

0 0
2 2

=
3

0
2
3

3 =

=0
=

3

0
2
3

3 = 1
6

4 3

0
= 81

6
= 27

2

10. =
1

0

1

0
=

1

0

1
=

=0

=
1

0

1
( ) =

1

0

=1

=
=

1

0
+ 2

= 1
2

2 1
2

2 ( 1) + 1
3

3 1

0
[integrate by parts]

= 1
2

1
2
+ 1

3
1 = 1

2
7
6

11.
2 + 2

=
4

1

4

0
2 + 2

=
4

1

4

· 1 tan 1
=

=0

=
4

1

4
tan 1(1) tan 1(0) =

4

1

4

4
0 =

4

4

1

=4

=

=
4

4

1
(4 ) =

4
4 1

2
2 4

1
=

4
16 8 4 + 1

2
= 9

8

12. Here = {( ) | 0 0 0 }, so
sin =

0 0 0
sin =

0 0
sin

=

=0
=

0 0
sin

=
0

cos
=

=0
=

0
[ cos( ) + ]

= sin( ) cos( ) + 1
2

2
0

[integrate by parts]

= 0 1 + 1
2

2 0 1 0 = 1
2

2 2

13. Here = {( ) | 0 1 0 0 1 + + }, so
6 =

1

0 0

1+ +

0
6 =

1

0 0
6

=1+ +

=0

=
1

0 0
6 (1 + + ) =

1

0
3 2 + 3 2 2 + 2 3 =

=0

=
1

0
(3 2 + 3 3 + 2 5 2) = 3 + 3

4
4 + 4

7
7 2

1

0
= 65

28
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560 ¤ CHAPTER 15 MULTIPLE INTEGRALS

14. is the solid above the region shown in the -plane and below the plane = + .

Thus,

=
1

0 2
+

0
=

1

0 2 ( + )

=
1

0 2 ( 2 + 2) =
1

0
1
2

2 2 + 1
3

3 =

= 2

=
1

0
( 1
2

3 + 1
3

5 2 1
2

6 1
3

7)

= 1
8

4 + 2
21

7 2 1
14

7 1
24

8
1

0
= 1

8
+ 2

21
1
14

1
24
= 3

28

15. Here = {( ) | 0 1 0 1 0 1 }, so
2 =

1

0

1

0

1

0
2 =

1

0

1

0
2(1 )

=
1

0

1

0
( 2 3 2 ) =

1

0
2 3 1

2
2 2 =1

=0

=
1

0
2(1 ) 3(1 ) 1

2
2(1 )2

=
1

0
1
2

4 3 + 1
2

2 = 1
10

5 1
4

4 + 1
6

3 1

0

= 1
10

1
4
+ 1

6
= 1

60

16. Here = {( ) | 0 1 0 0 }, so

=
1

0 0 0
=

1

0 0
1
2

2 =

=0

=
1

0 0
1
2

( )2 = 1
2

1

0 0
( 3 2 2 2 + 3)

= 1
2

1

0
1
2

3 2 2
3

2 3 + 1
4

4 =

=0

= 1
2

1

0
1
2

5 2
3

5 + 1
4

5

= 1
2

1

0
1
12

5 = 1
144

6 1

0
= 1

144

17. The projection of on the -plane is the disk 2 + 2 1. Using polar

coordinates = cos and = sin , we get

=
4

4 2 +4 2 = 1
2

42 (4 2 + 4 2)2

= 8
2

0

1

0
(1 4) = 8

2

0

1

0
( 5)

= 8(2 ) 1
2

2 1
6

6 1

0
= 16

3

18.
1

0

3

3

9 2

0
=

1

0

3

3
1
2
(9 2)

=
1

0
9
2

1
6

3 = 3

= 3

=
1

0
9 27

2
+ 9

2
3

= 9 27
4

2 + 9
8

4 1

0
= 27

8
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SECTION 15.7 TRIPLE INTEGRALS ¤ 561

19. The plane 2 + + = 4 intersects the -plane when

2 + + 0 = 4 = 4 2 , so

= {( ) | 0 2, 0 4 2 , 0 4 2 } and

=
2

0

4 2

0

4 2

0
=

2

0

4 2

0
(4 2 )

=
2

0
4 2 1

2
2 =4 2

=0

=
2

0
4(4 2 ) 2 (4 2 ) 1

2
(4 2 )2

=
2

0
(2 2 8 + 8) = 2

3
3 4 2 + 8

2

0
= 16

3

20. The paraboloids intersect when 2 + 2 = 8 2 2 2 + 2 = 4, thus the intersection is the circle 2 + 2 = 4,

= 4. The projection of onto the -plane is the disk 2 + 2 4, so

= ( ) | 2 + 2 8 2 2 2 + 2 4 . Let

= ( ) | 2 + 2 4 . Then using polar coordinates = cos

and = sin , we have

= =
8 2 2

2+ 2 = (8 2 2 2 2)

=
2

0

2

0
(8 2 2) =

2

0

2

0
(8 2 3)

=
2

0
4 2 1

2
4 2

0
= 2 (16 8) = 16

21. The plane + = 1 intersects the -plane in the line = 1, so

= ( ) | 1 1, 2 1, 0 1 and

= =
1

1

1
2

1

0
=

1

1

1
2 (1 )

=
1

1
1
2

2 =1

= 2 =
1

1
1
2

2 + 1
2

4

= 1
2

1
3

3 + 1
10

5 1

1
= 1

2
1
3
+ 1

10
+ 1

2
1
3
+ 1

10
= 8

15

22. Here = ( ) | 1 4 2 + 2 4 , so

=
2

2

4 2

4 2

4

1

=
2

2

4 2

4 2

(4 + 1)

=
2

2

5 1
2

2
= 4 2

= 4 2
=

2

2

10 4 2

= 10
2
4 2 + 2 sin 1

2

2

2

using trigonometric substitution or
Formula 30 in the Table of Integrals

= 10 2 sin 1(1) 2 sin 1( 1) = 20 2 2
= 20

[continued]
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562 ¤ CHAPTER 15 MULTIPLE INTEGRALS

Alternatively, use polar coordinates to evaluate the double integral:

2

2

4 2

4 2

(5 ) =
2

0

2

0

(5 sin )

=
2

0
5
2

2 1
3

3 sin
=2

=0

=
2

0
10 8

3
sin

= 10 + 8
3
cos

2

0
= 20

23. (a) The wedge can be described as the region

= ( ) | 2 + 2 1, 0 1, 0

= ( ) | 0 1, 0 , 0 1 2

So the integral expressing the volume of the wedge is

=
1

0 0

1 2

0
.

(b) A CAS gives 1

0 0

1 2

0
= 4

1
3 .

(Or use Formulas 30 and 87 from the Table of Integrals.)

24. (a) Divide into 8 cubes of size = 8. With ( ) = 2 + 2 + 2, the Midpoint Rule gives

2 + 2 + 2
2

=1

2

= 1

2

=1

= 8[ (1 1 1) + (1 1 3) + (1 3 1) + (1 3 3) + (3 1 1)

+ (3 1 3) + (3 3 1) + (3 3 3)]

239 64

(b) Using a CAS we have 2 + 2 + 2 =
4

0

4

0

4

0
2 + 2 + 2 245 91. This differs from the

estimate in part (a) by about 2.5%.

25. Here ( ) = cos( ) and = 1
2
· 1
2
· 1
2
= 1

8
, so the Midpoint Rule gives

( )
=1 =1 =1

= 1
8

1
4

1
4

1
4
+ 1

4
1
4

3
4
+ 1

4
3
4

1
4
+ 1

4
3
4

3
4

+ 3
4

1
4

1
4
+ 3

4
1
4

3
4
+ 3

4
3
4

1
4
+ 3

4
3
4

3
4

= 1
8
cos 1

64
+ cos 3

64
+ cos 3

64
+ cos 9

64
+ cos 3

64
+ cos 9

64
+ cos 9

64
+ cos 27

64
0 985
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SECTION 15.7 TRIPLE INTEGRALS ¤ 563

26. Here ( ) = and = 2 · 1
2
· 1 = 1, so the Midpoint Rule gives

( )
=1 =1 =1

= 1 1 1
4

1
2
+ 1 1

4
3
2
+ 1 3

4
1
2
+ 1 3

4
3
2

+ 3 1
4

1
2
+ 3 1

4
3
2
+ 3 3

4
1
2
+ 3 3

4
3
2

= 1 8 + 3 8 + 3 8 + 9 8 + 3 3 8 + 3 9 8 + 3 9 8 + 3 27 8 70 932

27. = {( ) | 0 1, 0 1 , 0 2 2 },
the solid bounded by the three coordinate planes and the planes

= 1 , = 2 2 .

28. = ( ) | 0 2 0 2 0 4 2

the solid bounded by the three coordinate planes, the plane = 2 ,

and the cylindrical surface = 4 2.

29.

If 1, 2, 3 are the projections of on the -, -, and -planes, then

1 = ( ) | 2 2, 0 4 2 = ( ) | 0 4, 4 4

2 = ( ) | 0 4, 1
2
4 1

2
4 = ( ) | 1 1, 0 4 4 2

3 = ( ) | 2 + 4 2 4

[continued]
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564 ¤ CHAPTER 15 MULTIPLE INTEGRALS

Therefore

= ( ) | 2 2, 0 4 2, 1
2

4 2 1
2

4 2

= ( ) | 0 4, 4 4 , 1
2 4 2 1

2 4 2

= ( ) | 1 1, 0 4 4 2, 4 4 2 4 4 2

= ( ) | 0 4, 1
2
4 1

2
4 , 4 4 2 4 4 2

= ( ) | 2 2, 1
2
4 2 1

2
4 2, 0 4 2 4 2

= ( ) | 1 1, 4 4 2 4 4 2, 0 4 2 4 2

Then

( ) =
2

2

4 2

0

4 2 2

4 2 2
( ) =

4

0

4

4

4 2 2

4 2 2
( )

=
1

1

4 4 2

0

4 4 2

4 4 2
( ) =

4

0

4 2

4 2

4 4 2

4 4 2
( )

=
2

2

4 2 2

4 2 2

4 2 4 2

0
( ) =

1

1

4 4 2

4 4 2

4 2 4 2

0
( )

30.

If 1, 2, 3 are the projections of on the -, -, and -planes, then

1 = {( ) | 2 2, 3 3}

2 = ( ) | 2 + 2 9

3 = {( ) | 2 2, 3 3}
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SECTION 15.7 TRIPLE INTEGRALS ¤ 565

Therefore

= ( ) | 2 2, 3 3, 9 2 9 2

= ( ) | 3 3, 9 2 9 2, 2 2

= ( ) | 3 3, 9 2 9 2, 2 2

= ( ) | 2 2, 3 3, 9 2 9 2

and

( ) =
2

2

3

3

9 2

9 2
( ) =

3

3

2

2

9 2

9 2
( )

=
3

3

9 2

9 2

2

2
( ) =

3

3

9 2

9 2

2

2
( )

=
2

2

3

3

9 2

9 2
( ) =

3

3

2

2

9 2

9 2
( )

31.

If 1, 2, and 3 are the projections of on the -, -, and -planes, then

1 = ( ) | 2 2 2 4 = ( ) | 0 4 ,

2 = ( ) | 0 4 0 2 1
2

= ( ) | 0 2 0 4 2 , and

3 = ( ) | 2 2 0 2 1
2

2 = ( ) | 0 2 4 2 4 2

[continued]
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566 ¤ CHAPTER 15 MULTIPLE INTEGRALS

Therefore = ( ) | 2 2, 2 4, 0 2 1
2

= ( ) | 0 4, , 0 2 1
2

= ( ) | 0 4, 0 2 1
2
,

= ( ) | 0 2, 0 4 2 ,

= ( ) | 2 2, 0 2 1
2

2, 2 4 2

= ( ) | 0 2, 4 2 4 2 , 2 4 2

Then ( ) =
2

2

4
2

2 2

0
( ) =

4

0

2 2

0
( )

=
4

0

2 2

0
( ) =

2

0

4 2

0
( )

=
2

2

2 2 2

0

4 2
2 ( ) =

2

0

4 2

4 2

4 2
2 ( )

32.

If 1, 2, and 3 are the projections of on the -, -, and -planes, then

1 = {( ) | 0 2, 2 2} = {( ) | 0 2, 2 2} ,

2 = ( ) | 0 2, 0 1
2

= {( ) | 0 1, 2 2} , and

3 = ( ) | 0 2, 0 1
2

= {( ) | 0 1, 2 2}

Therefore = ( ) | 0 2, 2 2, 0 1
2
( + 2)

= ( ) | 0 2, 2 2, 0 1
2
( + 2)

= ( ) | 0 2, 0 1
2
, 2 + 2 2

= {( ) | 0 1, 2 2, 2 + 2 2}
= ( ) | 0 2, 0 1

2
, 2 + 2 2

= {( ) | 0 1, 2 2, 2 + 2 2}
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Then ( ) =
2

0

2

2

( + 2) 2

0
( ) =

2

0

2

2

( + 2) 2

0
( )

=
2

0

2

0

2

2 +2
( ) =

1

0

2

2

2

2 +2
( )

=
2

0

2

0

2

2 +2
( ) =

1

0

2

2

2

2 +2
( )

33.
The diagrams show the projections

of on the -, -, and -planes.

Therefore

1

0

1 1

0
( ) =

1

0

2

0

1

0
( ) =

1

0

1

0

2

0
( )

=
1

0

1

0

2

0
( ) =

1

0

1

0

1
( )

=
1

0

(1 )2

0

1
( )

34.

The projections of onto the

- and -planes are as in the

first two diagrams and so

1

0

1 2

0

1

0
( ) =

1

0

1

0

1

0
( )

=
1

0

1

0

1 2

0
( ) =

1

0

1

0

1 2

0
( )

Now the surface = 1 2 intersects the plane = 1 in a curve whose projection in the -plane is = 1 (1 )2

or = 2 2. So we must split up the projection of on the -plane into two regions as in the third diagram. For ( )

in 1, 0 1 and for ( ) in 2, 0 1 , and so the given integral is also equal to

1

0

1 1

0

1

0
( ) +

1

0

1

1 1

1

0
( )

=
1

0

2 2

0

1

0
( ) +

1

0

1

2 2
1

0
( )

35.

1

0

1

0
( ) = ( ) where = {( ) | 0 , 1, 0 1}.

[continued]
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If 1, 2, and 3 are the projections of on the -, - and -planes then

1 = {( ) | 0 1, 1} = {( ) | 0 1, 0 },

2 = {( ) | 0 1, 0 } = {( ) | 0 1, 1}, and

3 = {( ) | 0 1, 0 } = {( ) | 0 1, 1}.

Thus we also have

= {( ) | 0 1, 0 , 0 } = {( ) | 0 1, 0 , 1}
= {( ) | 0 1, 1, 1} = {( ) | 0 1, 0 , }
= {( ) | 0 1, 1, } .

Then
1

0

1

0
( ) =

1

0 0 0
( ) =

1

0 0

1
( )

=
1

0

1 1
( ) =

1

0 0
( )

=
1

0

1
( )

36.

1

0

1

0
( ) = ( ) where = {( ) | 0 , 1, 0 1}.

Notice that is bounded below by two different surfaces, so we must split the projection of onto the -plane into two

regions as in the second diagram. If 1, 2, and 3 are the projections of on the -, - and -planes then

1 = 1 2 = {( ) | 0 1, 0 } {( ) | 0 1, 1}
= {( ) | 0 1, 1} {( ) | 0 1, 0 },

2 = {( ) | 0 1, 1} = {( ) | 0 1, 0 }, and

3 = {( ) | 0 1, 1} = {( ) | 0 1, 0 }.

Thus we also have

= {( ) | 0 1, 0 , 1} {( ) | 0 1, 1, 1}
= {( ) | 0 1, 1, 1} {( ) | 0 1, 0 , 1}
= {( ) | 0 1, 0 , 0 } = {( ) | 0 1, 1, 0 }
= {( ) | 0 1, 0 , 0 } .
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Then
1

0

1

0
( ) =

1

0 0

1
( ) +

1

0

1 1
( )

=
1

0

1 1
( ) +

1

0 0

1
( )

=
1

0 0 0
( ) =

1

0

1

0
( )

=
1

0 0 0
( )

37. The region is the solid bounded by a circular cylinder of radius 2 with axis the -axis for 2 2. We can write

(4 + 5 2 2) = 4 + 5 2 2 , but ( ) = 5 2 2 is an odd function with

respect to . Since is symmetrical about the -plane, we have 5 2 2 = 0. Thus

(4 + 5 2 2) = 4 = 4 · ( ) = 4 · (2)2(4) = 64 .

38. We can write ( 3 + sin + 3) = 3 + sin + 3 . But 3 is an odd function with respect

to and the region is symmetric about the -plane, so 3 = 0. Similarly, sin is an odd

function with respect to and is symmetric about the -plane, so sin = 0. Thus

( 3 + sin + 3) = 3 = 3 · ( ) = 3 · 4
3
(1)3 = 4 .

39. = ( ) =
1

0 0

1+ +

0
2 =

1

0 0
2(1 + + )

=
1

0
2 + 2 + 2 =

=0
=

1

0
2 + 2 3 2 + = 4

3
3 2 + 4

5
5 2 + 1

2
2
1

0
= 79

30

= ( ) =
1

0 0

1+ +

0
2 =

1

0 0
2 (1 + + )

=
1

0
2 + 2 2 + 2 =

=0
=

1

0
(2 3 2 + 2 5 2 + 2) = 4

5
5 2 + 4

7
7 2 + 1

3
3
1

0
= 179

105

= ( ) =
1

0 0

1+ +

0
2 =

1

0 0
2 (1 + + )

=
1

0
2 + 2 + 2

3
3 =

=0
=

1

0
+ 2 + 2

3
3 2 = 1

2
2 + 1

3
3 + 4

15
5 2

1

0
= 11

10

= ( ) =
1

0 0

1+ +

0
2 =

1

0 0
2 =1+ +

=0
=

1

0 0
(1 + + )2

=
1

0 0
(1 + 2 + 2 + 2 + 2 + 2) =

1

0
+ 2 + 2 + 2 + 2 + 1

3
3 =

=0

=
1

0
+ 7

3
3 2 + + 2 + 5 2 = 2

3
3 2 + 14

15
5 2 + 1

2
2 + 1

3
3 + 2

7
7 2

1

0
= 571

210

Thus the mass is 7930 and the center of mass is ( ) = =
358

553

33

79

571

553
.

40. =
1

1

1 2

0

1

0
4 = 4

1

1

1 2

0
(1 ) = 4

1

1
1
2

2 =1 2

=0
= 2

1

1
(1 4) = 16

5
,

=
1

1

1 2

0

1

0
4 = 2

1

1

1 2

0
(1 )2 = 2

1

1
1
3 (1 )3

=1 2

=0

= 2
3

1

1
1 6 = 4

3
6
7
= 24

21

[continued]
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=
1

1

1 2

0

1

0
4 =

1

1

1 2

0
4 (1 )

=
1

1
4 (1 2) 2 (1 2)2 =

1

1
(2 2 5) = 0 [the integrand is odd]

=
1

1

1 2

0

1

0
4 =

1

1

1 2

0
(4 4 2) = 2

1

1
(1 2)2 2

3
(1 2)3

= 2
1

1
1
3

4 + 2
3

6 = 4
3

4
5

5 + 8
21

7 1

0
= 96

105
= 32

35

Thus, ( ) = 5
14
0 2

7

41. =
0 0 0

( 2 + 2 + 2) =
0 0

1
3

3 + 2 + 2 =

=0
=

0 0
1
3

3 + 2 + 2

=
0

1
3

3 + 1
3

3 + 2 =

=0
=

0
2
3

4 + 2 2 = 2
3

4 + 1
3

2 3
0
= 2

3
5 + 1

3
5 = 5

=
0 0 0

3 + ( 2 + 2) =
0 0

1
4

4 + 1
2

2( 2 + 2)

=
0

1
4

5 + 1
6

5 + 1
2

3 2 = 1
4

6 + 1
3

6 = 7
12

6 = = by symmetry of and ( )

Hence ( ) = 7
12

7
12

7
12

.

42. =
1

0

1

0

1

0
=

1

0

1

0
(1 ) 2

=
1

0
1
2
(1 )3 1

3
(1 )3 = 1

6

1

0
(1 )3 = 1

24

=
1

0

1

0

1

0
=

1

0

1

0
( 2) 2

=
1

0
1
2
(1 )3 1

3
(1 )3 = 1

6

1

0
3 2 + 3 3 4 = 1

6
1
2

1 + 3
4

1
5
= 1

120

=
1

0

1

0

1

0
2 =

1

0

1

0
(1 ) 2 3

=
1

0
1
3
(1 )4 1

4
(1 )4 = 1

12
1
5
(1 )5

1

0
= 1

60

=
1

0

1

0

1

0
=

1

0

1

0
1
2
(1 )2

= 1
2

1

0

1

0
(1 )2 2(1 ) 2 + 3 = 1

2

1

0
1
2
(1 )4 2

3
(1 )4 + 1

4
(1 )4

= 1
24

1

0
(1 )4 = 1

24
1
5
(1 )5

1

0
= 1

120

Hence ( ) = 1
5

2
5

1
5
.

43. =
0 0 0

( 2 + 2) =
0 0

2 + 1
3

3 =
0

2
3

4 = 2
3

5.

By symmetry, = = = 2
3

5.

44. =
2

2

2

2

2

2
( 2 + 2) =

2

2

2

2
( 2 + 2)

=
2

2
1
3

3 + 2 = 2

= 2
=

2

2
1
12

3 + 2 = 1
12

3 + 1
3

3 2

2

= 1
12

3 + 1
12

3 = 1
12

( 2 + 2)

By symmetry, = 1
12

( 2 + 2) and = 1
12

( 2 + 2).
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45. = ( 2 + 2) ( ) =
2+ 2 2

0
( 2 + 2) =

2+ 2 2

( 2 + 2)

=
2

0 0
( 2) =

2

0 0
3 = (2 ) 1

4
4
0
= 2 · 1

4
4 = 1

2
4

46. = ( 2 + 2) ( ) =
2+ 2 2

2+ 2 ( 2 + 2)

=
2+ 2 2

( 2 + 2) 2 + 2 =
2

0 0
2( )

=
2

0 0
3 4 = (2 ) 1

4
4 1

5
5
0
= 2 1

4
5 1

5
5 = 1

10
5

47. (a) =
1

1

1
2

1

0
2 + 2

(b) ( ) where = 1 1

1

1
2

1

0
2 + 2 , = 1 1

1

1
2

1

0
2 + 2 , and

= 1 1

1

1
2

1

0
2 + 2 .

(c) =
1

1

1
2

1

0
( 2 + 2) 2 + 2 =

1

1

1
2

1

0
( 2 + 2)3 2

48. (a) =
1

1

1 2

1 2

1 2 2

0
2 + 2 + 2

(b) ( ) where = 1 1

1

1 2

1 2

1 2 2

0
2 + 2 + 2 ,

= 1 1

1

1 2

1 2

1 2 2

0
2 + 2 + 2 ,

= 1 1

1

1 2

1 2

1 2 2

0
2 + 2 + 2

(c) =
1

1

1 2

1 2

1 2 2

0
( 2 + 2)(1 + + + )

49. (a) =
1

0

1 2

0 0
(1 + + + ) = 3

32
+ 11

24

(b) ( ) = 1 1

0

1 2

0 0
(1 + + + )

1 1

0

1 2

0 0
(1 + + + )

1 1

0

1 2

0 0
(1 + + + )

=
28

9 + 44

30 + 128

45 + 220

45 + 208

135 + 660

(c) =
1

0

1 2

0 0

( 2 + 2)(1 + + + ) =
68 + 15

240

50. (a) =
1

0

3

3

9 2

0
( 2 + 2) = 56

5
= 11 2
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(b) ( ) where = 1 1

0

3

3

9 2

0
( 2 + 2) 0 375,

= 1 1

0

3

3

9 2

0
( 2 + 2) = 45

64
2 209,

= 1 1

0

3

3

9 2

0
( 2 + 2) = 15

16 = 0 9375.

(c) =
1

0

3

3

9 2

0
( 2 + 2)2 = 10,464

175
59 79

51. (a) ( ) is a joint density function, so we know R3 ( ) = 1. Here we have

R3 ( ) = ( ) =
2

0

2

0

2

0

=
2

0

2

0

2

0
= 1

2
2 2

0
1
2

2 2

0
1
2

2 2

0
= 8

Then we must have 8 = 1 = 1
8
.

(b) ( 1 1 1) =
1 1 1

( ) =
1

0

1

0

1

0
1
8

= 1
8

1

0

1

0

1

0
= 1

8
1
2

2 1

0
1
2

2 1

0
1
2

2 1

0
= 1

8
1
2

3
= 1

64

(c) ( + + 1) = (( ) ) where is the solid region in the first octant bounded by the coordinate planes

and the plane + + = 1. The plane + + = 1 meets the -plane in the line + = 1, so we have

( + + 1) = ( ) =
1

0

1

0

1

0
1
8

= 1
8

1

0

1

0
1
2

2 =1

=0
= 1

16

1

0

1

0
(1 )2

= 1
16

1

0

1

0
[( 3 2 2 + ) + (2 2 2 ) 2 + 3]

= 1
16

1

0
( 3 2 2 + ) 1

2
2 + (2 2 2 ) 1

3
3 + 1

4
4 =1

=0

= 1
192

1

0
( 4 2 + 6 3 4 4 + 5) = 1

192
1
30

= 1
5760

52. (a) ( ) is a joint density function, so we know R3 ( ) = 1. Here we have

R3 ( ) = ( ) =
0 0 0

(0 5 +0 2 +0 1 )

=
0

0 5
0

0 2
0

0 1

= lim
0

0 5 lim
0

0 2 lim
0

0 1

= lim 2 0 5
0
lim 5 0 2

0
lim 10 0 1

0

= lim 2( 0 5 1) lim 5( 0 2 1) lim 10( 0 1 1)

= · ( 2)(0 1) · ( 5)(0 1) · ( 10)(0 1) = 100

So we must have 100 = 1 = 1
100
.
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(b) We have no restriction on , so

( 1 1) =
1 1

( ) =
1

0

1

0 0
1
100

(0 5 +0 2 +0 1 )

= 1
100

1

0
0 5 1

0
0 2

0
0 1

= 1
100

2 0 5 1

0
5 0 2 1

0
lim 10 0 1

0
[by part (a)]

= 1
100

(2 2 0 5)(5 5 0 2)(10) = (1 0 5)(1 0 2) 0 07132

(c) ( 1 1 1) =
1 1 1

( ) =
1

0

1

0

1

0
1
100

(0 5 +0 2 +0 1 )

= 1
100

1

0
0 5 1

0
0 2 1

0
0 1

= 1
100

2 0 5 1

0
5 0 2 1

0
10 0 1 1

0

= (1 0 5)(1 0 2)(1 0 1) 0 006787

53. ( ) = 3
ave =

1
3

0 0 0

=
1
3

0 0 0

=
1
3

2

2 0

2

2 0

2

2 0

=
1
3

2

2

2

2

2

2
=

3

8

54. ( ) =
1

1

1 2

1 2

1 2 2

0
=

1

1

1 2

1 2
(1 2 2)

=
2

0

1

0
(1 2) =

2

0

1

0
( 3) = 2

2

2

4

4

1

0
=

2
.

Then ave =
1
2

( 2 + 2 ) = 2 1

1

1 2

1 2

1 2 2

0
( 2 + 2)

= 2 1

1

1 2

1 2
( 2 + 2) · 1

2
(1 2 2)2 = 1 2

0

1

0
2(1 2)2

= 1 2

0

1

0
( 3 2 5 + 7) = 1 (2 ) 1

4
4 1

3
6 + 1

8
8 1

0
= 2 1

24
= 1

12

55. (a) The triple integral will attain its maximum when the integrand 1 2 2 2 3 2 is positive in the region and negative

everywhere else. For if contains some region where the integrand is negative, the integral could be increased by

excluding from , and if fails to contain some part of the region where the integrand is positive, the integral could

be increased by including in . So we require that 2 + 2 2 + 3 2 1. This describes the region bounded by the

ellipsoid 2 + 2 2 + 3 2 = 1.

(b) The maximum value of (1 2 2 2 3 2) occurs when is the solid region bounded by the ellipsoid
2 + 2 2 + 3 2 = 1. The projection of on the -plane is the planar region bounded by the ellipse 2 + 2 2 = 1, so

= ( ) | 1 1 1
2
(1 2) 1

2
(1 2) 1

3
(1 2 2 2) 1

3
(1 2 2 2)

and

(1 2 2 2 3 2) =
1

1

1
2 (1 2)

1
2 (1 2)

1
3 (1 2 2 2)

1
3 (1 2 2 2)

(1 2 2 2 3 2) =
4 6

45

using a CAS.
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DISCOVERY PROJECT Volumes of Hyperspheres

In this project we use to denote the -dimensional volume of an -dimensional hypersphere.

1. The interior of the circle is the set of points ( ) | , 2 2 2 2 . So, substituting

= sin and then using Formula 64 to evaluate the integral, we get

2 =

2 2

2 2

= 2 2 2 =
2

2
2 1 sin2 ( cos )

= 2 2
2

2

cos2 = 2 2 1
2
+ 1

4
sin 2

2

2
= 2 2

2
= 2

2. The region of integration is

( ) | 2 2 2 2 2 2 2 2 2 2 . Substituting

= 2 2 sin and using Formula 64 to integrate cos2 , we get

3 =

2 2

2 2

2 2 2

2 2 2

=

2 2

2 2

2 2 2 2

=
2

2

2 2 2 1 sin2 2 2 cos

= 2 ( 2 2)
2

2

cos2 = 2
4 3

3 2
=
4 3

3

3. Here we substitute = 2 2 2 sin and, later, = sin . Because 2

2
cos seems to occur frequently in

these calculations, it is useful to find a general formula for that integral. From Exercises 49 and 50 in Section 7.1,
we have

2

0

sin2 =
1 · 3 · 5 · · · · · (2 1)

2 · 4 · 6 · · · · · 2 2
and

2

0

sin2 + 1 =
2 · 4 · 6 · · · · · 2

1 · 3 · 5 · · · · · (2 + 1)

and from the symmetry of the sine and cosine functions, we can conclude that
2

2

cos2 = 2
2

0

sin2 =
1 · 3 · 5 · · · · · (2 1)

2 · 4 · 6 · · · · · 2 (1)

2

2

cos2 +1 = 2
2

0

sin2 +1 =
2 · 2 · 4 · 6 · · · · · 2
1 · 3 · 5 · · · · · (2 + 1)

(2)

Thus 4 =

2 2

2 2

2 2 2

2 2 2

2 2 2 2

2 2 2 2

= 2

2 2

2 2

2 2 2

2 2 2

2 2 2 2

= 2

2 2

2 2

2

2
( 2 2 2) cos2

= 2

2 2

2 2

( 2 2 2)
2

2

cos2

= 2
2

4
3
( 2 2)3 2 = 4

3

2

2
4 cos4 =

4

3
4 · 1 · 3 ·

2 · 4 =
2 4

2
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SECTION 15.8 TRIPLE INTEGRALS IN CYLINDRICAL COORDINATES ¤ 575

4. By using the substitutions = 2 2 2
1 · · · 2

+ 1 cos and then applying Formulas 1 and 2 from

Problem 3, we can write

=

2 2

2 2

· · ·
2 2 2

1 ··· 2
3

2 2 2
1 ··· 2

3

2 2 2
1 ··· 2

3
2
2

2 2 2
1 ··· 2

3
2
2

1 2 · · · 1

= 2
2

2

cos2 2 2

2

2

cos3 3 3 · · ·
2

2

cos 1
1 1

2

2

cos

=

2 ·
2

2 · 2
1 · 3 ·

1 · 3
2 · 4

2 · 2 · 4
1 · 3 · 5 ·

1 · 3 · 5
2 · 4 · 6 · · · 2 · · · · · ( 2)

1 · · · · · ( 1)
· 1 · · · · · ( 1)

2 · · · · · even

2
2
· 2 · 2
1 · 3

1 · 3
2 · 4 · 2 · 2 · 4

1 · 3 · 5 · · · 1 · · · · · ( 2)

2 · · · · · ( 1)
· 2 · · · · · ( 1)

1 · · · · · odd

By canceling within each set of brackets, we find that

=

2

2
· 2
4
· 2
6
· · · · · 2 =

(2 ) 2

2 · 4 · 6 · · · · · =
2

1
2

!
even

2 · 2
3
· 2
5
· 2
7
· · · · · 2 =

2(2 )( 1) 2

3 · 5 · 7 · · · · · =
2 1

2
( 1) ! ( 1) 2

!
odd

15.8 Triple Integrals in Cylindrical Coordinates

1. (a) From Equations 1, = cos = 4 cos
3
= 4 · 1

2
= 2,

= sin = 4 sin
3
= 4 · 3

2
= 2 3, = 2, so the point is

2 2 3 2 in rectangular coordinates.

(b) = 2cos
2
= 0, = 2 sin

2
= 2,

and = 1, so the point is (0 2 1) in rectangular coordinates.

2. (a) = 2cos
3

4
= 2 2

2
= 1,

= 2 sin
3

4
= 2 2

2
= 1, and = 2,

so the point is ( 1 1 2) in rectangular coordinates.
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576 ¤ CHAPTER 15 MULTIPLE INTEGRALS

(b) = 1cos 1 = cos 1, = 1 sin 1 = sin 1, and = 1,

so the point is (cos 1 sin 1 1) in rectangular coordinates.

3. (a) From Equations 2 we have 2 = ( 1)2 + 12 = 2 so = 2; tan = 1
1 = 1 and the point ( 1 1 ) is in the second

quadrant of the -plane, so = 3
4
+ 2 ; = 1. Thus, one set of cylindrical coordinates is 2 3

4
1 .

(b) 2 = ( 2)2 + (2 3)2 = 16 so = 4; tan = 2 3
2
= 3 and the point 2 2 3 is in the second quadrant of the

-plane, so = 2
3
+ 2 ; = 3. Thus, one set of cylindrical coordinates is 4 2

3
3 .

4. (a) 2 = 2 3
2
+ 22 = 16 so = 4; tan = 2

2 3
= 1

3
and the point 2 3 2 is in the first quadrant of the -plane, so

=
6
+ 2 ; = 1. Thus, one set of cylindrical coordinates is 4

6
1 .

(b) 2 = 42 + ( 3)2 = 25 so = 5; tan = 3
4
and the point (4 3) is in the fourth quadrant of the -plane,

so = tan 1 3
4
+ 2 0 64 + 2 ; = 2. Thus, one set of cylindrical coordinates

is 5 tan 1 3
4
+ 2 2 (5 5 64 2).

5. Since = 4 but and may vary, the surface is a vertical half-plane including the -axis and intersecting the -plane in the

half-line = , 0.

6. Since = 5, 2 + 2 = 25 and the surface is a circular cylinder with radius 5 and axis the -axis.

7. = 4 2 = 4 ( 2 + 2) or 4 2 2, so the surface is a circular paraboloid with vertex (0 0 4), axis the -axis, and

opening downward.

8. Since 2 2 + 2 = 1 and 2 = 2 + 2, we have 2( 2 + 2) + 2 = 1 or 2 2 + 2 2 + 2 = 1, an ellipsoid centered at the

origin with intercepts = ± 1

2
, = ± 1

2
, = ±1.

9. (a) Substituting 2 + 2 = 2 and = cos , the equation 2 + 2 + 2 = 1 becomes 2 cos + 2 = 1 or
2 = 1 + cos 2.

(b) Substituting = cos and = sin , the equation = 2 2 becomes
= ( cos )2 ( sin )2 = 2(cos2 sin2 ) or = 2 cos 2 .

10. (a) Substituting = cos and = sin , the equation 3 + 2 + = 6 becomes 3 cos + 2 sin + = 6 or

= 6 (3 cos + 2 sin ).

(b) The equation 2 2 + 2 = 1 can be written as ( 2 + 2) + 2 = 1 which becomes 2 + 2 = 1 or 2 = 1 + 2

in cylindrical coordinates.
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SECTION 15.8 TRIPLE INTEGRALS IN CYLINDRICAL COORDINATES ¤ 577

11. 0 2 and 0 1 describe a solid circular cylinder with

radius 2, axis the -axis, and height 1, but 2 2 restricts

the solid to the first and fourth quadrants of the -plane, so we have

a half-cylinder.

12. = = 2 + 2 is a cone that opens upward. Thus 2 is the region above this

cone and beneath the horizontal plane = 2. 0
2
restricts the solid to that part of

this region in the first octant.

13. We can position the cylindrical shell vertically so that its axis coincides with the -axis and its base lies in the -plane. If we

use centimeters as the unit of measurement, then cylindrical coordinates conveniently describe the shell as 6 7,

0 2 , 0 20.

14. In cylindrical coordinates, the equations are = 2 and = 5 2. The

curve of intersection is 2 = 5 2 or = 5 2. So we graph the surfaces

in cylindrical coordinates, with 0 5 2. In Maple, we can use the

coords=cylindrical option in a regular plot3d command. In

Mathematica, we can use RevolutionPlot3D or

ParametricPlot3D.

15. The region of integration is given in cylindrical coordinates by

= ( ) | 2 2, 0 2, 0 2 . This

represents the solid region above quadrants I and IV of the -plane enclosed

by the circular cylinder = 2, bounded above by the circular paraboloid

= 2 ( = 2 + 2), and bounded below by the -plane ( = 0).

2

2

2

0

2

0
=

2

2

2

0

= 2

=0
=

2

2

2

0
3

=
2

2

2

0
3 =

2

2
1
4

4 2

0

= (4 0) = 4
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578 ¤ CHAPTER 15 MULTIPLE INTEGRALS

16. The region of integration is given in cylindrical coordinates by

= {( ) | 0 2 , 0 2, 0 }. This represents the
solid region enclosed by the circular cylinder = 2, bounded above by the

cone = , and bounded below by the -plane.

2

0

2

0 0
=

2

0

2

0

=

=0
=

2

0

2

0
2

=
2

0
2 2

0
= 1

3
3 2

0

2

0
= 8

3
· 2 = 16

3

17. In cylindrical coordinates, is given by {( ) | 0 2 0 4 5 4}. So

2 + 2 =
2

0

4

0

4

5
2 =

2

0

4

0
2 4

5

=
2

0
1
3

3 4

0

4

5
= (2 ) 64

3
(9) = 384

18. The paraboloid = 2 + 2 = 2 intersects the plane = 4 in the circle 2 + 2 = 4 or 2 = 4 = 2, so in

cylindrical coordinates, is given by ( ) 0 2 0 2 2 4 . Thus

=
2

0

2

0

4
2( ) =

2

0

2

0
1
2

2 =4

= 2

=
2

0

2

0
8 1

2
5 =

2

0

2

0
8 1

2
5 = 2 4 2 1

12
6 2

0

= 2 16 16
3
= 64

3

19. The paraboloid = 4 2 2 = 4 2 intersects the -plane in the circle 2 + 2 = 4 or 2 = 4 = 2, so in

cylindrical coordinates, is given by ( ) 0 2 0 2 0 4 2 . Thus

( + + ) =
2

0

2

0

4 2

0
( cos + sin + ) =

2

0

2

0
2(cos + sin ) + 1

2
2 =4 2

=0

=
2

0

2

0
(4 2 4)(cos + sin ) + 1

2
(4 2)2

=
2

0
4
3

3 1
5

5 (cos + sin ) 1
12
(4 2)3

=2

=0

=
2

0
64
15
(cos + sin ) + 16

3
= 64

15
(sin cos ) + 16

3

2

0

= 64
15 (1 0) + 16

3 · 2 64
15 (0 1) 0 = 8

3 + 128
15

20. In cylindrical coordinates is bounded by the planes = 0, = cos + sin + 5 and the cylinders = 2 and = 3, so

is given by {( ) | 0 2 2 3 0 cos + sin + 5}. Thus

=
2

0

3

2

cos + sin +5

0
( cos ) =

2

0

3

2
( 2 cos )[ ] = cos + sin +5

=0

=
2

0

3

2
( 2 cos )( cos + sin + 5) =

2

0

3

2
( 3(cos2 + cos sin ) + 5 2 cos )

=
2

0
1
4

4(cos2 + cos sin ) + 5
3

3 cos
=3

=2

=
2

0
81
4

16
4
(cos2 + cos sin ) + 5

3 (27 8) cos

=
2

0
65
4

1
2
(1 + cos 2 ) + cos sin + 95

3
cos = 65

8
+ 65

16
sin 2 + 65

8
sin2 + 95

3
sin

2

0
= 65

4
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SECTION 15.8 TRIPLE INTEGRALS IN CYLINDRICAL COORDINATES ¤ 579

21. In cylindrical coordinates, is bounded by the cylinder = 1, the plane = 0, and the cone = 2 . So

= {( ) | 0 2 0 1 0 2 } and
2 =

2

0

1

0

2

0
2 cos2 =

2

0

1

0
3 cos2

=2

=0
=

2

0

1

0
2 4 cos2

=
2

0
2
5

5 cos2
=1

=0
= 2

5

2

0
cos2 = 2

5

2

0
1
2
(1 + cos 2 ) = 1

5
+ 1

2
sin 2

2

0
= 2

5

22. In cylindrical coordinates is the solid region within the cylinder = 1 bounded above and below by the sphere 2 + 2 = 4,

so = ( ) | 0 2 0 1 4 2 4 2 . Thus the volume is

=
2

0

1

0

4 2

4 2
=

2

0

1

0
2 4 2

=
2

0

1

0
2 4 2 = 2 2

3 (4
2)3 2

1

0
= 4

3 (8 33 2)

23. In cylindrical coordinates, is bounded below by the cone = and above by the sphere 2 + 2 = 2 or = 2 2. The

cone and the sphere intersect when 2 2 = 2 = 1, so = ( ) | 0 2 0 1 2 2

and the volume is

=
2

0

1

0

2 2

=
2

0

1

0
[ ] = 2 2

= =
2

0

1

0
2 2 2

=
2

0

1

0
2 2 2 = 2 1

3
(2 2)3 2 1

3
3
1

0

= 2 1
3
(1 + 1 23 2) = 2

3
2 2 2 = 4

3
2 1

24. In cylindrical coordinates, is bounded below by the paraboloid = 2 and above by the sphere 2 + 2 = 2 or

= 2 2. The paraboloid and the sphere intersect when 2 + 4 = 2 ( 2 + 2)( 2 1) = 0 = 1, so

= ( ) | 0 2 0 1 2 2 2 and the volume is

=
2

0

1

0

2 2

2 =
2

0

1

0
[ ]

= 2 2

= 2 =
2

0

1

0
2 2 3

=
2

0

1

0
2 2 3 = 2 1

3
(2 2)3 2 1

4
4
1

0

= 2 ( 1
3

1
4
+ 1

3
· 23 2 0) = 2 7

12
+ 2

3
2 = 7

6
+ 4

3
2

25. (a) The paraboloids intersect when 2 + 2 = 36 3 2 3 2 2 + 2 = 9, so the region of integration

is = ( ) | 2 + 2 9 . Then, in cylindrical coordinates,

= ( ) | 2 36 3 2, 0 3, 0 2 and

=
2

0

3

0

36 3 2

2 =
2

0

3

0
36 4 3 =

2

0
18 2 4 =3

=0
=

2

0
81 = 162 .
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580 ¤ CHAPTER 15 MULTIPLE INTEGRALS

(b) For constant density , = = 162 from part (a). Since the region is homogeneous and symmetric,

= = 0 and

=
2

0

3

0

36 3 2

2 ( ) =
2

0

3

0
1
2

2 =36 3 2

= 2

=
2

2

0

3

0
((36 3 2)2 4) =

2

2

0

3

0
(8 5 216 3 + 1296 )

=
2
(2 ) 8

6
6 216

4
4 + 1296

2
2 3

0
= (2430) = 2430

Thus ( ) = = 0 0 2430
162

= (0 0 15).

26. (a) =
2

2

cos

0

2 2

2 2

= 4
2

0

cos

0

2 2

0

= 4
2

0

cos

0
2 2

= 4
3

2

0
( 2 2)3 2

= cos

=0

= 4
3

2

0
( 2 2 cos2 )3 2 3

= 4
3

2

0
( 2 sin2 )3 2 3

= 4
3

2

0
( 3 sin3 3)

=
4 3

3

2

0

sin (1 cos2 ) 1

=
4 3

3
cos + 1

3
cos3

2

0
=

4 3

3 2
+ 2

3
= 2

9
3(3 4)

To plot the cylinder and the sphere on the same screen in Maple, we can use the sequence of commands

sphere:=plot3d(1,theta=0..2*Pi,phi=0..Pi,coords=spherical):

cylinder:=plot3d(cos(theta),theta=-Pi/2..Pi/2,z=-1..1,coords=cylindrical):

with(plots): display3d({sphere,cylinder});

In Mathematica, we can use

sphere=SphericalPlot3D[1,{phi,0,Pi},{theta,0,2Pi}]

cylinder=ParametricPlot3D[{(Cos[theta])ˆ2,Cos[theta]*Sin[theta],z},

{theta,-Pi/2,Pi/2},{z,-1,1}]
Show[sphere,cylinder]

(b)

27. The paraboloid = 4 2 + 4 2 intersects the plane = when = 4 2 + 4 2 or 2 + 2 = 1
4 . So, in cylindrical

coordinates, = ( ) | 0 1
2

0 2 4 2 . Thus

=
2

0

2

0 4 2

=
2

0

2

0

( 4 3)

=
2

0

1
2

2 4 = 2

=0
=

2

0

1
16

2 = 1
8

2
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SECTION 15.8 TRIPLE INTEGRALS IN CYLINDRICAL COORDINATES ¤ 581

Since the region is homogeneous and symmetric, = = 0 and

=
2

0

2

0 4 2

=
2

0

2

0

1
2

2 8 5

=
2

0

1
4

2 2 4
3

6 = 2

=0
=

2

0

1
24

3 = 1
12

3

Hence ( ) = 0 0 2
3
.

28. Since density is proportional to the distance from the -axis, we can say ( ) = 2 + 2. Then

= 2
2

0 0

2 2

0
2 = 2

2

0 0
2 2 2

= 2
2

0
1
8
(2 2 2) 2 2 + 1

8
4 sin 1( )

=

=0
= 2

2

0
1
8

4
2

= 1
4

4 2

29. The region of integration is the region above the cone = 2 + 2, or = , and below the plane = 2. Also, we have

2 2 with 4 2 4 2 which describes a circle of radius 2 in the -plane centered at (0 0). Thus,

2

2

4 2

4 2

2

2+ 2

=
2

0

2

0

2

( cos ) =
2

0

2

0

2
2 (cos )

=
2

0

2

0
2 (cos ) 1

2
2 =2

=
= 1

2

2

0

2

0
2 (cos ) 4 2

= 1
2

2

0
cos

2

0
4 2 4 = 1

2
[sin ]20

4
3

3 1
5

5 2

0
= 0

30. The region of integration is the region above the plane = 0 and below the paraboloid = 9 2 2. Also, we have

3 3 with 0 9 2 which describes the upper half of a circle of radius 3 in the -plane centered at (0 0).

Thus,
3

3

9 2

0

9 2 2

0

2 + 2 =
0

3

0

9 2

0

2 =
0

3

0

9 2

0

2

=
0

3

0
2 9 2 =

0

3

0
9 2 4

=
0
3 3 1

5
5 3

0
= 81 243

5
= 162

5

31. (a) The mountain comprises a solid conical region . The work done in lifting a small volume of material with density

( ) to a height ( ) above sea level is ( ) ( ) . Summing over the whole mountain we get

= ( ) ( ) .

(b) Here is a solid right circular cone with radius = 62,000 ft, height = 12,400 ft,

and density ( ) = 200 lb ft3 at all points in . We use cylindrical coordinates:

=
2

0 0

(1 )

0
· 200 = 2

0
200 1

2
2 = (1 )

=0

= 400
0

2

2
1

2

= 200 2

0

2 2

+
3

2

= 200 2
2

2

2 3

3
+

4

4 2
0

= 200 2
2

2

2 2

3
+

2

4

= 50
3

2 2 = 50
3 (62,000)2(12,400)2 3 1× 1019 ft-lb

= = 1
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DISCOVERY PROJECT The Intersection of Three Cylinders

1. The three cylinders in the illustration in the text can be

visualized as representing the surfaces 2 + 2 = 1,

2 + 2 = 1, and 2 + 2 = 1. Then we sketch the solid

of intersection with the coordinate axes and equations

indicated. To be more precise, we start by finding the

bounding curves of the solid (shown in the first graph

below) enclosed by the two cylinders 2 + 2 = 1 and

2 + 2 = 1: = ± = ± 1 2 are the symmetric

equations, and these can be expressed parametrically as = , = ± = ± 1 2, 1 1. Now the cylinder

2 + 2 = 1 intersects these curves at the eight points ± 1

2
± 1

2
± 1

2
. The resulting solid has twelve curved faces

bounded by “edges” which are arcs of circles, as shown in the third diagram. Each cylinder defines four of the twelve faces.

2. To find the volume, we split the solid into sixteen congruent

pieces, one of which lies in the part of the first octant with

0 4 . (Naturally, we use cylindrical coordinates!)

This piece is described by

( ) | 0 1 0
4
, 0 1 2 ,

and so, substituting = cos , the volume of the entire

solid is

= 16
4

0

1

0

1 2

0

= 16
4

0

1

0
1 2 cos2

= 16 8 2 4 6863
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DISCOVERY PROJECT THE INTERSECTION OF THREE CYLINDERS ¤ 583

3. To graph the edges of the solid, we use parametrized

curves similar to those found in Problem 1 for the
intersection of two cylinders. We must restrict the

parameter intervals so that each arc extends exactly to

the desired vertex. One possible set of parametric

equations (with all sign choices allowed) is

= , = ± , = ± 1 2, 1

2

1

2
;

= ± , = ± 1 2, = , 1

2

1

2
;

= ± 1 2, = , = ± , 1

2

1

2
.

4. Let the three cylinders be 2 + 2 = 2, 2 + 2 = 1, and 2 + 2 = 1.

If 1, then the four faces defined by the cylinder 2 + 2 = 1 in Problem 1 collapse into a single face, as in the first

graph. If 1 2, then each pair of vertically opposed faces, defined by one of the other two cylinders, collapse into a

single face, as in the second graph. If 2, then the vertical cylinder encloses the solid of intersection of the other two

cylinders completely, so the solid of intersection coincides with the solid of intersection of the two cylinders 2 + 2 = 1 and
2 + 2 = 1, as illustrated in Problem 1.

If we were to vary or instead of , we would get solids with the same shape, but differently oriented.

= 0 95, = = 1 = 1 1, = = 1

5. If 1, the solid looks similar to the first graph in Problem 4. As in Problem 2, we split the solid into sixteen congruent

pieces, one of which can be described as the solid above the polar region ( ) | 0 , 0
4
in the -plane

and below the surface = 1 2 = 1 2 cos2 . Thus, the total volume is = 16
4

0 0
1 2 cos2 .

If 1 and 2, we have a solid similar to

the second graph in Problem 4. Its intersection

with the -plane is graphed at the right. Again we

split the solid into sixteen congruent pieces, one of

which is the solid above the region shown in the

second figure and below the surface = 1 2 = 1 2 cos2 .
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584 ¤ CHAPTER 15 MULTIPLE INTEGRALS

We split the region of integration where the outside boundary changes from the vertical line = 1 to the circle
2 + 2 = 2 or = 1. 1 is a right triangle, so cos = 1 . Thus, the boundary between 1 and 2 is = cos 1 1 in

polar coordinates, or = 2 1 in rectangular coordinates. Using rectangular coordinates for the region 1 and polar

coordinates for 2, we find the total volume of the solid to be

= 16
1

0

2 1

0

1 2 +
4

cos 1(1 ) 0

1 2 cos2

If 2, the cylinder 2 + 2 = 1 completely encloses the intersection of the other two cylinders, so the solid of

intersection of the three cylinders coincides with the intersection of 2 + 2 = 1 and 2 + 2 = 1 as illustrated in

Exercise 15.6.24. Its volume is = 16
1

0 0
1 2 .

15.9 Triple Integrals in Spherical Coordinates

1. (a) From Equations 1, = sin cos = 6 sin
6
cos

3
= 6 · 1

2
· 1
2
= 3

2
,

= sin sin = 6 sin
6
sin

3
= 6 · 1

2
· 3
2
= 3 3

2
, and

= cos = 6 cos
6
= 6 · 3

2
= 3 3, so the point is 3

2
3 3
2

3 3 in

rectangular coordinates.

(b) = 3 sin 3
4
cos

2
= 3 · 2

2
· 0 = 0,

= 3 sin 3
4
sin

2
= 3 · 2

2
· 1 = 3 2

2
, and

= 3 cos 3
4
= 3 2

2
= 3 2

2
, so the point is 0 3 2

2
3 2
2

in

rectangular coordinates.

2. (a) = 2 sin
2
cos

2
= 2 · 1 · 0 = 0, = 2 sin

2
sin

2
= 2 · 1 · 1 = 2,

= 2 cos
2
= 2 · 0 = 0 so the point is (0 2 0) in rectangular coordinates.

(b) = 4 sin
3
cos

4
= 4 · 3

2
· 2
2
= 6,

= 4 sin
3
sin

4
= 4 3

2
2
2

= 6,

= 4cos 3 = 4 · 12 = 2 so the point is 6 6 2 in rectangular

coordinates.
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SECTION 15.9 TRIPLE INTEGRALS IN SPHERICAL COORDINATES ¤ 585

3. (a) From Equations 1 and 2, = 2 + 2 + 2 = 02 + ( 2)2 + 02 = 2, cos = =
0

2
= 0 =

2
, and

cos =
sin

=
0

2 sin( 2)
= 0 =

3

2
[since 0]. Thus spherical coordinates are 2

3

2 2
.

(b) = 1 + 1 + 2 = 2, cos = =
2

2
=
3

4
, and

cos =
sin

=
1

2 sin(3 4)
=

1

2 2 2
=

1

2
=
3

4
[since 0]. Thus spherical coordinates

are 2
3

4

3

4
.

4. (a) = 2 + 2 + 2 = 1 + 0 + 3 = 2, cos = =
3

2
=
6
, and cos =

sin
=

1

2 sin( 6)
= 1

= 0. Thus spherical coordinates are 2 0
6
.

(b) = 3 + 1 + 12 = 4, cos = =
2 3

4
=

3

2
=
6
, and cos =

sin
=

3

4 sin( 6)
=

3

2

=
11

6
[since 0]. Thus spherical coordinates are 4

11

6 6
.

5. Since =
3
, the surface is the top half of the right circular cone with vertex at the origin and axis the positive -axis.

6. Since = 3, 2 + 2 + 2 = 9 and the surface is a sphere with center the origin and radius 3.

7. = sin sin 2 = sin sin 2 + 2 + 2 = 2 + 2 + 1
4
+ 2 = 1

4

2 + ( 1
2
)2 + 2 = 1

4
. Therefore, the surface is a sphere of radius 1

2
centered at 0 1

2
0 .

8. 2 sin2 sin2 + cos2 = 9 ( sin sin )2 + ( cos )2 = 9 2 + 2 = 9. Thus the surface is a circular

cylinder of radius 3 with axis the -axis.

9. (a) = sin cos , = sin sin , and = cos , so the equation 2 = 2 + 2 becomes

( cos )2 = ( sin cos )2 + ( sin sin )2 or 2 cos2 = 2 sin2 . If 6= 0, this becomes cos2 = sin2 . ( = 0

corresponds to the origin which is included in the surface.) There are many equivalent equations in spherical coordinates,

such as tan2 = 1, 2 cos2 = 1, cos 2 = 0, or even =
4
, = 3

4
.

(b) 2 + 2 = 9 ( sin cos )2 + ( cos )2 = 9 2 sin2 cos2 + 2 cos2 = 9 or

2 sin2 cos2 + cos2 = 9.

10. (a) 2 2 + 2 + 2 = 0 ( 2 + 2 + 2) 2 = 0 2 2 ( sin cos ) = 0 or = 2 sin cos .

(b) + 2 + 3 = 1 sin cos + 2 sin sin + 3 cos = 1 or = 1 (sin cos + 2 sin sin + 3 cos ).
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586 ¤ CHAPTER 15 MULTIPLE INTEGRALS

11. 2 4 represents the solid region between and including the spheres of

radii 2 and 4, centered at the origin. 0
3
restricts the solid to that

portion on or above the cone =
3
, and 0 further restricts the

solid to that portion on or to the right of the -plane.

12. 1 2 represents the solid region between and including the spheres of

radii 1 and 2, centered at the origin. 0 2 restricts the solid to that

portion on or above the -plane, and
2

3
2
further restricts the solid

to that portion on or behind the -plane.

13. 1 represents the solid sphere of radius 1 centered at the origin.

3
4

restricts the solid to that portion on or below the cone = 3
4
.

14. 2 represents the solid sphere of radius 2 centered at the origin. Notice

that 2 + 2 = ( sin cos )2 + ( sin sin )2 = 2 sin2 . Then

= csc sin = 1 2 sin2 = 2 + 2 = 1, so csc

restricts the solid to that portion on or inside the circular cylinder

2 + 2 = 1.

15. 2 + 2 because the solid lies above the cone. Squaring both sides of this inequality gives 2 2 + 2

2 2 2 + 2 + 2 = 2 2 = 2 cos2 1
2

2 cos2 1
2
. The cone opens upward so that the inequality is

cos 1

2
, or equivalently 0

4
. In spherical coordinates the sphere = 2 + 2 + 2 is cos = 2

= cos . 0 cos because the solid lies below the sphere. The solid can therefore be described as the region in

spherical coordinates satisfying 0 cos , 0 4 .

c° 2012 Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part.

NOT FOR SALE

°°cc 2012 Cengage Learning. All Rights Reserved. May not be scanned, copied, or2012 Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part.duplicated, or posted to a publicly accessible website, in whole or in part.

359



SECTION 15.9 TRIPLE INTEGRALS IN SPHERICAL COORDINATES ¤ 587

16. (a) The hollow ball is a spherical shell with outer radius 15 cm and inner radius 14.5 cm. If we center the ball at the origin of

the coordinate system and use centimeters as the unit of measurement, then spherical coordinates conveniently describe the

hollow ball as 14 5 15, 0 2 , 0 .

(b) If we position the ball as in part (a), one possibility is to take the half of the ball that is above the -plane which is

described by 14 5 15, 0 2 , 0 2.

17. The region of integration is given in spherical coordinates by

= {( ) | 0 3 0 2 0 6}. This represents the solid
region in the first octant bounded above by the sphere = 3 and below by the cone

= 6.

6

0

2

0

3

0
2 sin =

6

0
sin

2

0

3

0
2

= cos
6

0

2

0
1
3

3 3

0

= 1
3

2 2
(9) =

9

4
2 3

18. The region of integration is given in spherical coordinates by

= {( ) | 1 2 0 2 2 }. This represents the solid
region between the spheres = 1 and = 2 and below the -plane.

2

0 2

2

1
2 sin =

2

0 2
sin

2

1
2

=
2

0
cos

2
1
3

3 2

1

= 2 (1) 7
3
= 14

3

19. The solid is most conveniently described if we use cylindrical coordinates:

= ( ) | 0
2
0 3 0 2 . Then

( ) =
2

0

3

0

2

0
( cos sin ) .

20. The solid is most conveniently described if we use spherical coordinates:

= ( ) | 1 2
2

2 0
2
. Then

( ) =
2

0

2

2

2

1
( sin cos sin sin cos ) 2 sin .

21. In spherical coordinates, is represented by {( ) | 0 5 0 2 0 }. Thus

( 2 + 2 + 2)2 =
0

2

0

5

0
( 2)2 2 sin =

0
sin

2

0

5

0
6

= cos
0

2

0
1
7

7 5

0
= (2)(2 ) 78,125

7

= 312,500
7

140,249 7
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588 ¤ CHAPTER 15 MULTIPLE INTEGRALS

22. In spherical coordinates, is represented by ( ) 0 3 0 2 0
2
. Thus

(9 2 2) =
2

0

2

0

3

0
9 ( 2 sin2 cos2 + 2 sin2 sin2 ) 2 sin

=
2

0

2

0

3

0
(9 2 sin2 ) 2 sin

=
2

0

2

0
3 3 1

5
5 sin2

=3

=0
sin

=
2

0

2

0
81 sin 243

5
sin3

=
2

0

2

0
81 sin 243

5
(1 cos2 ) sin

= 2 81 cos 243
5

1
3
cos3 cos

2

0

= 2 0 + 81 + 243
5

2
3

= 486
5

23. In spherical coordinates, is represented by {( ) | 2 3 0 2 0 } and
2 + 2 = 2 sin2 cos2 + 2 sin2 sin2 = 2 sin2 cos2 + sin2 = 2 sin2 . Thus

( 2 + 2) =
0

2

0

3

2
( 2 sin2 ) 2 sin =

0
sin3

2

0

3

2
4

=
0
(1 cos2 ) sin

2

0
1
5

5 3

2
= cos + 1

3
cos3

0
(2 ) · 1

5
(243 32)

= 1 1
3
+ 1 1

3
(2 ) 211

5
= 1688

15

24. In spherical coordinates, is represented by {( ) | 0 3 0 0 }. Thus
2 =

0 0

3

0
( sin sin )2 2 sin =

0
sin3

0
sin2

3

0
4

=
0
(1 cos2 ) sin

0
1
2
(1 cos 2 )

3

0
4

= cos + 1
3
cos3

0
1
2

1
2
sin 2

0
1
5

5 3

0

= 2
3
+ 2

3
1
2

1
5
(243) = 4

3 2
243
5

= 162
5

25. In spherical coordinates, is represented by ( ) 0 1 0
2
0

2
. Thus

2+ 2+ 2
=

2

0

2

0

1

0
( sin cos )

2 2 sin =
2

0
sin2

2

0
cos

1

0
3 2

=
2

0
1
2
(1 cos 2 )

2

0
cos 1

2
2 2 1

0

1

0

2

integrate by parts with = 2, =
2

= 1
2

1
4
sin 2

2

0
[sin ] 2

0
1
2

2 2 1
2

2 1

0
=

4
0 (1 0) 0 + 1

2
=

8

26. =
3

0

2

0

4

2
( sin cos )( sin sin )( cos ) 2 sin

=
3

0
sin3 cos

2

0
sin cos

4

2
5 = 1

4
sin4

3

0
1
2
sin2

2

0
1
6

6 4

2
= 0
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SECTION 15.9 TRIPLE INTEGRALS IN SPHERICAL COORDINATES ¤ 589

27. The solid region is given by = ( ) | 0 0 2
6 3

and its volume is

= =
3

6

2

0 0
2 sin =

3

6
sin

2

0 0
2

= [ cos ]
3
6 [ ]

2
0

1
3

3
0
= 1

2
+ 3

2
(2 ) 1

3
3 = 3 1

3
3

28. If we center the ball at the origin, then the ball is given by

= {( ) | 0 0 2 0 } and the distance from any point ( ) in the ball to the

center (0 0 0) is 2 + 2 + 2 = . Thus the average distance is

1

( )
=

1
4
3

3
0

2

0 0

· 2 sin =
3

4 3
0

sin
2

0 0

3

=
3

4 3
cos

0

2

0
1
4

4
0
=

3

4 3
(2)(2 ) 1

4
4 = 3

4

29. (a) Since = 4cos implies 2 = 4 cos , the equation is that of a sphere of radius 2 with center at (0 0 2). Thus

=
2

0

3

0

4 cos

0
2 sin =

2

0

3

0
1
3

3 =4 cos

=0
sin =

2

0

3

0
64
3
cos3 sin

=
2

0
16
3
cos4

= 3

=0
=

2

0
16
3

1
16

1 = 5
2

0
= 10

(b) By the symmetry of the problem = = 0. Then

=
2

0

3

0

4 cos

0
3 cos sin =

2

0

3

0
cos sin 64 cos4

=
2

0
64 1

6
cos6

= 3

=0
=

2

0
21
2

= 21

Hence ( ) = (0 0 2 1).

30. In spherical coordinates, the sphere 2 + 2 + 2 = 4 is equivalent to = 2 and the cone = 2 + 2 is represented

by =
4
. Thus, the solid is given by ( ) 0 2 0 2

4 2
and

=
2

4

2

0

2

0
2 sin =

2

4
sin

2

0

2

0
2

= cos
2

4

2

0
1
3

3 2

0
= 2

2
(2 ) 8

3
= 8 2

3

31. (a) By the symmetry of the region, = 0 and = 0. Assuming constant density ,

= = = 8 (from Example 4). Then

= =
2

0

4

0

cos

0
( cos ) 2 sin =

2

0

4

0
sin cos 1

4
4 =cos

=0

= 1
4

2

0

4

0
sin cos cos4 = 1

4

2

0

4

0
cos5 sin

= 1
4

2

0
1
6
cos6

4

0
= 1

4
(2 ) 1

6
2
2

6

1 =
12

7
8
= 7

96

Thus the centroid is ( ) = = 0 0
7 96

8
= 0 0 7

12
.
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590 ¤ CHAPTER 15 MULTIPLE INTEGRALS

(b) As in Exercise 23, 2 + 2 = 2 sin2 and

= ( 2 + 2) =
2

0

4

0

cos

0
( 2 sin2 ) 2 sin =

2

0

4

0
sin3 1

5
5 =cos

=0

= 1
5

2

0

4

0
sin3 cos5 = 1

5

2

0

4

0
cos5 1 cos2 sin

= 1
5

2

0
1
6
cos6 + 1

8
cos8

4

0

= 1
5
(2 ) 1

6
2
2

6

+ 1
8

2
2

8

+ 1
6

1
8
= 2

5
11
384

= 11
960

32. (a) Placing the center of the base at (0 0 0), ( ) = 2 + 2 + 2 is the density function. So

=
2

0

2

0 0
3 sin =

2

0

2

0
sin

0
3

=
2

0
cos

2

0
1
4

4
0
= (2 )(1) 1

4
4 = 1

2
4

(b) By the symmetry of the problem = = 0. Then

=
2

0

2

0 0
4 sin cos =

2

0

2

0
sin cos

0
4

=
2

0
1
2
sin2

2

0
1
5

5
0
= (2 ) 1

2
1
5

5 = 1
5

5

Hence ( ) = 0 0 2
5
.

(c) =
2

0

2

0 0
( 3 sin )( 2 sin2 ) =

2

0

2

0
sin3

0
5

=
2

0
cos + 1

3
cos3

2

0
1
6

6
0
= (2 ) 2

3
1
6

6 = 2
9

6

33. (a) The density function is ( ) = , a constant, and by the symmetry of the problem = = 0. Then

=
2

0

2

0 0
3 sin cos = 1

2
4 2

0
sin cos = 1

8
4. But the mass is (volume of

the hemisphere) = 2
3

3, so the centroid is 0 0 3
8
.

(b) Place the center of the base at (0 0 0); the density function is ( ) = . By symmetry, the moments of inertia about

any two such diameters will be equal, so we just need to find :

=
2

0

2

0 0
( 2 sin ) 2 (sin2 sin2 + cos2 )

=
2

0

2

0
(sin3 sin2 + sin cos2 ) 1

5
5

= 1
5

5 2

0
sin2 cos + 1

3
cos3 + 1

3
cos3

= 2

=0
= 1

5
5 2

0
2
3
sin2 + 1

3

= 1
5

5 2
3

1
2

1
4
sin 2 + 1

3

2

0
= 1

5
5 2

3
( 0) + 1

3
(2 0) = 4

15
5

34. Place the center of the base at (0 0 0), then the density is ( ) = , a constant. Then

=
2

0

2

0 0
( cos ) 2 sin = 2

2

0
cos sin · 1

4
4 = 1

2
4 1

4
cos 2

2

0
=

4
4.

By the symmetry of the problem = = 0, and

=
2

0

2

0 0
4 cos2 sin = 2

5
5 2

0
cos2 sin = 2

5
5 1

3
cos3

2

0
= 2

15
5.

Hence ( ) = 0 0 8
15

.
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35. In spherical coordinates = 2 + 2 becomes cos = sin or =
4
. Then

=
2

0

4

0

1

0
2 sin =

2

0

4

0
sin

1

0
2 = 2 2

2
+ 1 1

3
= 1

3
2 2 ,

=
2

0

4

0

1

0
3 sin cos = 2 1

4
cos 2

4

0
1
4
=

8
and by symmetry = = 0.

Hence ( ) = 0 0
3

8 2 2
.

36. Place the center of the sphere at (0 0 0), let the diameter of intersection be along the -axis, one of the planes be the -plane

and the other be the plane whose angle with the -plane is =
6
. Then in spherical coordinates the volume is given by

=
6

0 0 0
2 sin =

6

0 0
sin

0
2 =

6
(2) 1

3
3 = 1

9
3.

37. In cylindrical coordinates the paraboloid is given by = 2 and the plane by = 2 sin and they intersect in the circle

= 2 sin . Then =
0

2 sin

0

2 sin
2 = 5

6
[using a CAS].

38. (a) The region enclosed by the torus is {( ) | 0 2 , 0 , 0 sin }, so its volume is

=
2

0 0

sin

0
2 sin = 2

0
1
3
sin4 = 2

3
3
8

1
4
sin 2 + 1

16
sin 4

0
= 1

4
2.

(b) In Maple, we can plot the torus using the command

plot3d(sin(phi),theta=0..2*Pi,

phi=0..Pi,coords=spherical);.

In Mathematica, use

SphericalPlot3D[Sin[phi],

{phi,0,Pi},{theta,0,2Pi}].

39. The region of integration is the region above the cone = 2 + 2 and below the sphere 2 + 2 + 2 = 2 in the first

octant. Because is in the first octant we have 0
2
. The cone has equation =

4
(as in Example 4), so 0

4
,

and 0 2. So the integral becomes

4

0

2

0

2

0
( sin cos ) ( sin sin ) 2 sin

=
4

0
sin3

2

0
sin cos

2

0
4 =

4

0
1 cos2 sin 1

2
sin2

2

0
1
5

5 2

0

= 1
3
cos3 cos

4

0
· 1
2
· 1
5

2
5
= 2

12
2
2

1
3

1 · 2 2
5
= 4 2 5

15

40. The region of integration is the solid sphere 2 + 2 + 2 2, so 0 2 , 0 , and 0 . Also
2 + 2 + 3 = ( 2 + 2 + 2) = 2 = 3 cos , so the integral becomes

0

2

0 0
3 cos 2 sin =

0
sin cos

2

0 0
5 = 1

2
sin2

0

2

0
1
6

6
0
= 0

41. The region of integration is the solid sphere 2 + 2 + ( 2)2 4 or equivalently
2 sin2 + ( cos 2)2 = 2 4 cos + 4 4 4 cos , so 0 2 , 0

2
, and
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0 4 cos . Also ( 2 + 2 + 2)3 2 = ( 2)3 2 = 3, so the integral becomes

2

0

2

0

4 cos

0
3 2 sin =

2

0

2

0
sin 1

6
6 =4 cos

=0
= 1

6

2

0

2

0
sin 4096 cos6

= 1
6
(4096)

2

0
cos6 sin

2

0
= 2048

3
1
7
cos7

2

0

2

0

= 2048
3

1
7
(2 ) = 4096

21

42. The solid region between the ground and an altitude of 5 km (5000 m) is given by

= ( ) | 6 370× 106 6 375× 106 0 2 0 . Then the mass of the atmosphere in this

region is

= =
2

0 0

6 375×106
6 370×106 (619 09 0 000097 ) 2 sin

=
2

0 0
sin

6 375×106
6 370×106 619 09 2 0 000097 3

=
2

0
[ cos ]0

619 09
3

3 0 000097
4

4 6 375×106
6 370×106

= (2 ) (2) 619 09
3

(6 375× 106)3 (6 370× 106)3 0 000097
4

(6 375× 106)4 (6 370× 106)4

4 1 944× 1017 2 44× 1018 kg

43. In cylindrical coordinates, the equation of the cylinder is = 3, 0 10.

The hemisphere is the upper part of the sphere radius 3, center (0 0 10), equation

2 + ( 10)2 = 32, 10. In Maple, we can use the coords=cylindrical option

in a regular plot3d command. In Mathematica, we can use ParametricPlot3D.

44. We begin by finding the positions of Los Angeles and Montréal in spherical coordinates, using the method described in the

exercise:

Montréal Los Angeles

= 3960 mi = 3960 mi

= 360 73 60 = 286 40 = 360 118 25 = 241 75

= 90 45 50 = 44 50 = 90 34 06 = 55 94

Now we change the above to Cartesian coordinates using = cos sin , = sin sin and = cos to get two

position vectors of length 3960 mi (since both cities must lie on the surface of the earth). In particular:

Montréal: h783 67 2662 67 2824 47i Los Angeles: h 1552 80 2889 91 2217 84i

To find the angle between these two vectors we use the dot product:

h783 67 2662 67 2824 47i · h 1552 80 2889 91 2217 84i = (3960)2 cos cos 0 8126

0 6223 rad. The great circle distance between the cities is = 3960(0 6223) 2464 mi.
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SECTION 15.9 TRIPLE INTEGRALS IN SPHERICAL COORDINATES ¤ 593

45. If is the solid enclosed by the surface = 1 + 1
5
sin 6 sin 5 , it can be described in spherical coordinates as

= ( ) | 0 1 + 1
5
sin 6 sin 5 0 2 0 . Its volume is given by

( ) = =
0

2

0

1+ (sin 6 sin 5 ) 5

0
2 sin = 136

99
[using a CAS].

46. The given integral is equal to lim
2

0 0 0

2 2 sin = lim
2

0 0
sin

0
3 2

. Now use

integration by parts with = 2, =
2

to get

lim 2 (2) 2 1
2

2

0
0
2 1

2

2
= lim 4 1

2
2 2

+ 1
2

2

0

= 4 lim 1
2

2 2 1
2

2

+ 1
2
= 4 1

2
= 2

(Note that 2 2

0 as by l’Hospital’s Rule.)

47. (a) From the diagram, = cot 0 to = 2 2, = 0

to = sin 0 (or use 2 2 = 2 cot2 0). Thus

=
2

0

sin 0

0

2 2

cot 0

= 2
sin 0

0
2 2 2 cot 0

= 2
3

( 2 2)3 2 3 cot 0

sin 0

0

= 2
3

2 2 sin2 0
3 2 3 sin3 0 cot 0 +

3

= 2
3

3 1 cos3 0 + sin
2

0 cos 0 = 2
3

3(1 cos 0)

(b) The wedge in question is the shaded area rotated from = 1 to = 2.
Letting

= volume of the region bounded by the sphere of radius

and the cone with angle ( = 1 to 2)

and letting be the volume of the wedge, we have

= ( 22 21) ( 12 11)

= 1
3
( 2 1)

3
2(1 cos 2)

3
2(1 cos 1)

3
1(1 cos 2) +

3
1(1 cos 1)

= 1
3 ( 2 1)

3
2

3
1 (1 cos 2)

3
2

3
1 (1 cos 1) =

1
3 ( 2 1)

3
2

3
1 (cos 1 cos 2)

Or: Show that =
2

1

2 sin 2

1 sin 1

cot 1

cot 2

.

(c) By the Mean Value Theorem with ( ) = 3 there exists some ˜ with 1 ˜ 2 such that

( 2) ( 1) =
0(˜)( 2 1) or 3

1
3
2 = 3˜

2 . Similarly there exists with 1
˜

2

such that cos 2 cos 1 = sin ˜ . Substituting into the result from (b) gives

= (˜2 )( 2 1)(sin ˜) = ˜2 sin ˜ .
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594 ¤ CHAPTER 15 MULTIPLE INTEGRALS

APPLIED PROJECT Roller Derby

1. = 1
2

2 + 1
2

2 = 1
2
( + 2) 2, so 2 =

2

+ 2
=

2

1 +
.

2. The vertical component of the speed is sin , so

=
2

1 +
sin =

2

1 +
sin .

3. Solving the separable differential equation, we get =
2

1 +
sin 2 =

2

1 +
(sin ) + .

But = 0 when = 0, so = 0 and we have 2 =
2

1 +
(sin ) . Solving for when = gives

=
2

sin

1 +

2
=

2 (1 + )

sin2
.

4. Assume that the length of each cylinder is . Then the density of the solid cylinder is
2
, and from Formulas 15.7.16, its

moment of inertia (using cylindrical coordinates) is

=
2
( 2 + 2) =

0

2

0 0
2

2 =
2
2 1

4
4

0
=

2

2

and so =
2
=
1

2
.

For the hollow cylinder, we consider its entire mass to lie a distance from the axis of rotation, so 2 + 2 = 2 is a

constant. We express the density in terms of mass per unit area as =
2

, and then the moment of inertia is calculated as a

double integral: = ( 2 + 2)
2

=
2

2
= 2, so =

2
= 1.

5. The volume of such a ball is 43 ( 3 3) = 4
3 (1 3), and so its density is 4

3
3(1 3)

. Using Formula 15.9.3, we get

= ( 2 + 2) 4
3

3(1 3)

= 4
3

3(1 3)

2

0 0

( 2 sin 2 )( 2 sin )

= 4
3

3(1 3)
· 2 (2 + sin2 ) cos

3 0

5

5
[from the Table of Integrals]

= 4
3

3(1 3)
· 2 · 4

3
·

5 5

5
=
2 5(1 5)

5 3(1 3)
=
2(1 5) 2

5(1 3)

Therefore =
2(1 5)

5(1 3)
. Since represents the inner radius, 0 corresponds to a solid ball, and corresponds to

a hollow ball.
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SECTION 15.10 CHANGE OF VARIABLES IN MULTIPLE INTEGRALS ¤ 595

6. For a solid ball, 0 0, so = lim
0

2(1 5)

5(1 3)
=
2

5
. For a hollow ball, 1, so

= lim
1

2(1 5)

5(1 3)
=
2

5
lim

1

5 4

3 2
=
2

5

5

3
=
2

3
[by l’Hospital’s Rule]

Note: We could instead have calculated = lim
1

2(1 )(1 + + 2 + 3 + 4)

5(1 )(1 + + 2)
=
2 · 5
5 · 3 =

2

3
.

Thus the objects finish in the following order: solid ball = 2
5
, solid cylinder = 1

2
, hollow ball = 2

3
, hollow

cylinder ( = 1).

15.10 Change of Variables in Multiple Integrals

1. = 5 , = + 3 .

The Jacobian is ( )

( )
= =

5 1

1 3
= 5(3) ( 1)(1) = 16.

2. = , = .

( )

( )
= =

1 2
=

2

1
= =

2

3. = sin , = cos .

( )

( )
= =

sin cos

cos sin
= sin2 cos2 = sin2 cos2 or cos 2

4. = + , = .

( )

( )
= =

+ +

= + + = 2 2

5. = , = , = .

( )

( )
= =

1 2 0

0 1 2

2 0 1

=
1 1 2

0 1 2

0 2

2 1
+ 0

0 1

2 0

=
1 1

0 +
2
0

2
+ 0 =

1 1
= 0

6. = + 2, = + 2, = + 2.

( )

( )
=

0 1 2

2 0 1

1 2 0

= 0
0 1

2 0
1
2 1

1 0
+ 2

2 0

1 2
= 0 (0 1) + 2 (4 0) = 1 + 8
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596 ¤ CHAPTER 15 MULTIPLE INTEGRALS

7. The transformation maps the boundary of to the boundary of the image , so we first look at side 1 in the -plane. 1 is

described by = 0, 0 3, so = 2 + 3 = 2 and = = . Eliminating , we have = 2 , 0 6. 2 is

the line segment = 3, 0 2, so = 6 + 3 and = 3 . Then = 3 = 6 + 3(3 ) = 15 3 ,

6 12. 3 is the line segment = 2, 0 3, so = 2 + 6 and = 2, giving = + 2 = 2 + 10,

6 12. Finally, 4 is the segment = 0, 0 2, so = 3 and = = 3 , 0 6. The image of

set is the region shown in the -plane, a parallelogram bounded by these four segments.

8. 1 is the line segment = 0, 0 1, so = = 0 and = (1 + 2) = . Since 0 1, the image is the line

segment = 0, 0 1. 2 is the segment = 1, 0 1, so = and = (1 + 2) = 1 + 2. Thus the image is

the portion of the parabola = 1 + 2 for 0 1. 3 is the segment = 1, 0 1, so = 1 and = 2 . The image

is the segment = 1, 0 2. 4 is described by = 0, 0 1, so 0 = 1 and = (1 + 2) = 0. The

image is the line segment = 0, 0 1. Thus, the image of is the region bounded by the parabola = 1 + 2, the

-axis, and the lines = 0, = 1.

9. 1 is the line segment = , 0 1, so = = and = 2 = 2. Since 0 1, the image is the portion of the

parabola = 2, 0 1. 2 is the segment = 1, 0 1, thus = = 1 and = 2, so 0 1. The image is

the line segment = 1, 0 1. 3 is the segment = 0, 0 1, so = 2 = 0 and = 0 1. The

image is the segment = 0, 0 1. Thus, the image of is the region in the first quadrant bounded by the parabola

= 2, the -axis, and the line = 1.
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SECTION 15.10 CHANGE OF VARIABLES IN MULTIPLE INTEGRALS ¤ 597

10. Substituting = , = into 2 + 2 1 gives

2

2
+

2

2
1, so the image of 2 + 2 1 is the

elliptical region
2

2
+

2

2
1.

11. is a parallelogram enclosed by the parallel lines = 2 1, = 2 + 1 and the parallel lines = 1 , = 3 . The

first pair of equations can be written as 2 = 1, 2 = 1. If we let = 2 then these lines are mapped to the

vertical lines = 1, = 1 in the -plane. Similarly, the second pair of equations can be written as + = 1, + = 3,

and setting = + maps these lines to the horizontal lines = 1, = 3 in the -plane. Boundary curves are mapped to

boundary curves under a transformation, so here the equations = 2 , = + define a transformation 1 that

maps in the -plane to the square enclosed by the lines = 1, = 1, = 1, = 3 in the -plane. To find the

transformation that maps to we solve = 2 , = + for , : Subtracting the first equation from the second

gives = 3 = 1
3
( ) and adding twice the second equation to the first gives + 2 = 3

= 1
3
( + 2 ). Thus one possible transformation (there are many) is given by = 1

3
( ), = 1

3
( + 2 ).

12. The boundaries of the parallelogram are the lines = 3
4 or 4 3 = 0, = 3

4 + 5
2 or 4 3 = 10, = 1

2 or

+ 2 = 0, = 1
2
+ 5 or + 2 = 10. Setting = 4 3 and = + 2 defines a transformation 1 that maps

in the -plane to the square enclosed by the lines = 0, = 10, = 0, = 10 in the -plane. Solving = 4 3 ,

= + 2 for and gives 2 = 5 = 1
5
(2 ), + 3 = 10 = 1

10
( + 3 ). Thus one possible

transformation is given by = 1
5 (2 ), = 1

10 ( + 3 ).
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598 ¤ CHAPTER 15 MULTIPLE INTEGRALS

13. is a portion of an annular region (see the figure) that is easily described in polar coordinates as

= ( ) | 1 2 0 2 . If we converted a double integral over to polar coordinates the resulting region

of integration is a rectangle (in the -plane), so we can create a transformation here by letting play the role of and the

role of . Thus is defined by = cos , = sin and maps the rectangle = ( ) | 1 2 0 2

in the -plane to in the -plane.

14. The boundaries of the region are the curves = 1 or = 1, = 4 or = 4, = or = 1, = 4 or

= 4. Setting = and = defines a transformation 1 that maps in the -plane to the square enclosed by

the lines = 1, = 4, = 1, = 4 in the -plane. Solving = , = for and gives 2 =

= [since , , , are all positive], 2 = = . Thus one possible transformation is given by

= , = .

15. ( )

( )
=

2 1

1 2
= 3 and 3 = (2 + ) 3( + 2 ) = 5 . To find the region in the -plane that

corresponds to we first find the corresponding boundary under the given transformation. The line through (0 0) and (2 1) is

= 1
2
which is the image of + 2 = 1

2
(2 + ) = 0; the line through (2 1) and (1 2) is + = 3 which is the

image of (2 + ) + ( + 2 ) = 3 + = 1; the line through (0 0) and (1 2) is = 2 which is the image of

+ 2 = 2(2 + ) = 0. Thus is the triangle 0 1 , 0 1 in the -plane and

( 3 ) =
1

0

1

0
( 5 ) |3| = 3

1

0
+ 5

2
2 =1

=0

= 3
1

0
2 + 5

2
(1 )2 = 3 1

2
2 1

3
3 5

6
(1 )3

1

0
= 3 1

2
1
3
+ 5

6
= 3
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16. ( )

( )
=

1 4 1 4

3 4 1 4
=
1

4
, 4 + 8 = 4 · 1

4
( + ) + 8 · 1

4
( 3 ) = 3 5 . is a parallelogram bounded by the

lines = 4, = 4, 3 + = 0, 3 + = 8. Since = and = 3 + , is the image of the rectangle

enclosed by the lines = 4, = 4, = 0, and = 8. Thus

(4 + 8 ) =
4

4

8

0
(3 5 ) 1

4
= 1

4

4

4
3
2

2 5
=8

=0

= 1
4

4

4
(96 40 ) = 1

4
96 20 2 4

4
= 192

17. ( )

( )
=

2 0

0 3
= 6, 2 = 4 2 and the planar ellipse 9 2 + 4 2 36 is the image of the disk 2 + 2 1. Thus

2 =
2+ 2 1

(4 2)(6) =
2

0

1

0
(24 2 cos2 ) = 24

2

0
cos2

1

0
3

= 24 1
2
+ 1

4
sin 2

2

0
1
4

4 1

0
= 24( ) 1

4
= 6

18. ( )

( )
=

2 2 3

2 2 3
=

4

3
, 2 + 2 = 2 2 + 2 2 and the planar ellipse 2 + 2 2

is the image of the disk 2 + 2 1. Thus

( 2 + 2) =
2+ 2 1

(2 2 + 2 2) 4

3
=

2

0

1

0
8

3

3 = 4

3

19. ( )

( )
=

1 2

0 1
=
1 , = , = is the image of the parabola 2 = , = 3 is the image of the parabola

2 = 3 , and the hyperbolas = 1, = 3 are the images of the lines = 1 and = 3 respectively. Thus

=
3

1

3 1
=

3

1

ln 3 ln =
3

1
ln 3 = 4 ln 3 = 2 ln 3.

20. Here = , =
2

so ( )

( )
=

2 2 2

2 1
=
1 and is the

image of the square with vertices (1 1), (2 1), (2 2), and (1 2). So

2 =
2

1

2

1

2

2

1
=

2

1 2
=
3

4

21. (a) ( )

( )
=

0 0

0 0

0 0

= and since = , = , = the solid enclosed by the ellipsoid is the image of the

ball 2 + 2 + 2 1. So

=
2+ 2+ 2 1

= ( )(volume of the ball) = 4
3
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(b) If we approximate the surface of the earth by the ellipsoid
2

63782
+

2

63782
+

2

63562
= 1, then we can estimate

the volume of the earth by finding the volume of the solid enclosed by the ellipsoid. From part (a), this is

= 4
3
(6378)(6378)(6356) 1 083× 1012 km3.

(c) The moment of intertia about the -axis is = 2 + 2 ( ) , where is the solid enclosed by

2

2
+

2

2
+

2

2
= 1. As in part (a), we use the transformation = , = , = , so ( )

( )
= and

= 2 + 2 =
2+ 2+ 2 1

( 2 2 + 2 2)( )

=
0

2

0

1

0
( 2 2 sin2 cos2 + 2 2 sin2 sin2 ) 2 sin

= 2
0

2

0

1

0
( 2 sin2 cos2 ) 2 sin + 2

0

2

0

1

0
( 2 sin2 sin2 ) 2 sin

= 3
0
sin3

2

0
cos2

1

0
4 + 3

0
sin3

2

0
sin2

1

0
4

= 3 1
3
cos3 cos

0
1
2
+ 1

4
sin 2

2

0
1
5

5 1

0
+ 3 1

3
cos3 cos

0
1
2

1
4
sin 2

2

0
1
5

5 1

0

= 3 4
3
( ) 1

5
+ 3 4

3
( ) 1

5
= 4

15
2 + 2

22. is the region enclosed by the curves = , = , 1 4 = , and 1 4 = , so if we let = and = 1 4 then

is the image of the rectangle enclosed by the lines = , = ( ) and = , = ( ). Now

= = ( ) 1 4 = 0 4 0 4 = 1 = ( 1 )1 0 4 = 2 5 2 5 and

= 1 = ( 2 5 2 5) 1 = 3 5 2 5, so

( )

( )
=

3 5 2 5 2 5 2 5 3 5 3 5

2 5 3 5 2 5 2 5 2 5 1 5
= 8 75 1 6 25 1 = 2 5 1. Thus the area of , and the work done by

the engine, is

= 2 5 1 = 2 5 (1 ) = 2 5 ln | | = 2 5( )(ln ln ) = 2 5( ) ln .

23. Letting = 2 and = 3 , we have = 1
5
(2 ) and = 1

5
( 3 ). Then ( )

( )
=

1 5 2 5

3 5 1 5
=
1

5

and is the image of the rectangle enclosed by the lines = 0, = 4, = 1, and = 8. Thus

2

3
=

4

0

8

1

1

5
=
1

5

4

0

8

1

1
= 1

5
1
2

2 4

0
ln | | 8

1
= 8

5
ln 8.

24. Letting = + and = , we have = 1
2 ( + ) and = 1

2 ( ). Then ( )

( )
=

1 2 1 2

1 2 1 2
=

1

2
and is

the image of the rectangle enclosed by the lines = 0, = 3, = 0, and = 2. Thus

( + )
2 2

=
3

0

2

0
1
2

= 1
2

3

0

=2

=0
= 1

2

3

0
( 2 1)

= 1
2

1
2

2 3

0
= 1

2
1
2

6 3 1
2
= 1

4 (
6 7)
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25. Letting = , = + , we have = 1
2
( + ), = 1

2
( ). Then ( )

( )
=

1 2 1 2

1 2 1 2
=

1

2
and is the

image of the trapezoidal region with vertices ( 1 1), ( 2 2), (2 2), and (1 1). Thus

cos
+

=
2

1

cos
1

2
=
1

2

2

1

sin
=

=
=
1

2

2

1

2 sin(1) = 3
2
sin 1

26. Letting = 3 , = 2 , we have 9 2 + 4 2 = 2 + 2, = 1
3
, and = 1

2
. Then ( )

( )
=
1

6
and is the image of the

quarter-disk given by 2 + 2 1, 0, 0. Thus

sin(9 2 + 4 2) = 1
6
sin( 2 + 2) =

2

0

1

0
1
6
sin( 2) =

12
1
2
cos 2 1

0
=

24
(1 cos 1)

27. Let = + and = + . Then + = 2 = 1
2
( + ) and = 2 = 1

2
( ).

( )

( )
=

1 2 1 2

1 2 1 2
=
1

2
. Now | | = | + | | |+ | | 1 1 1, and

| | = | + | | |+ | | 1 1 1. is the image of the square

region with vertices (1 1), (1 1), ( 1 1), and ( 1 1).

So + = 1
2

1

1

1

1
= 1

2

1

1

1

1
= 1.

28. Let = + and = , then = , = , ( )

( )
= 1 and is the image under of the triangular region with

vertices (0 0), (1 0) and (1 1). Thus

( + ) =
1

0 0
(1) ( ) =

1

0
( )

=

=0
=

1

0
( ) as desired.

15 Review

1. (a) A double Riemann sum of is
=1 =1

, where is the area of each subrectangle and is a

sample point in each subrectangle. If ( ) 0, this sum represents an approximation to the volume of the solid that lies

above the rectangle and below the graph of .

(b) ( ) = lim
=1 =1

(c) If ( ) 0, ( ) represents the volume of the solid that lies above the rectangle and below the surface

= ( ). If takes on both positive and negative values, ( ) is the difference of the volume above but

below the surface = ( ) and the volume below but above the surface = ( ).

(d) We usually evaluate ( ) as an iterated integral according to Fubini’s Theorem (see Theorem 15.2.4).
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(e) The Midpoint Rule for Double Integrals says that we approximate the double integral ( ) by the double

Riemann sum
=1 =1

where the sample points are the centers of the subrectangles.

(f ) ave =
1

( )
( ) where ( ) is the area of .

2. (a) See (1) and (2) and the accompanying discussion in Section 15.3.

(b) See (3) and the accompanying discussion in Section 15.3.

(c) See (5) and the preceding discussion in Section 15.3.

(d) See (6)–(11) in Section 15.3.

3. We may want to change from rectangular to polar coordinates in a double integral if the region of integration is more easily

described in polar coordinates. To accomplish this, we use ( ) = ( cos sin ) where is

given by 0 , .

4. (a) = ( )

(b) = ( ) , = ( )

(c) The center of mass is ( ) where = and = .

(d) = 2 ( ) , = 2 ( ) , 0 = ( 2 + 2) ( )

5. (a) ( ) = ( )

(b) ( ) 0 and R2 ( ) = 1.

(c) The expected value of is 1 = R2 ( ) ; the expected value of is 2 = R2 ( ) .

6. ( ) = [ ( )]2 + [ ( )]2 + 1

7. (a) ( ) = lim
=1 =1 =1

(b) We usually evaluate ( ) as an iterated integral according to Fubini’s Theorem for Triple Integrals

(see Theorem 15.7.4).

(c) See the paragraph following Example 15.7.1.

(d) See (5) and (6) and the accompanying discussion in Section 15.7.

(e) See (10) and the accompanying discussion in Section 15.7.

(f ) See (11) and the preceding discussion in Section 15.7.
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CHAPTER 15 REVIEW ¤ 603

8. (a) = ( )

(b) = ( ) , = ( ) , = ( ) .

(c) The center of mass is ( ) where = , = , and = .

(d) = ( 2 + 2) ( ) , = ( 2 + 2) ( ) , = ( 2 + 2) ( ) .

9. (a) See Formula 15.8.4 and the accompanying discussion.

(b) See Formula 15.9.3 and the accompanying discussion.

(c) We may want to change from rectangular to cylindrical or spherical coordinates in a triple integral if the region of

integration is more easily described in cylindrical or spherical coordinates or if the triple integral is easier to evaluate using

cylindrical or spherical coordinates.

10. (a) ( )

( )
= =

(b) See (9) and the accompanying discussion in Section 15.10.

(c) See (13) and the accompanying discussion in Section 15.10.

1. This is true by Fubini’s Theorem.

2. False. 1

0 0
+ 2 describes the region of integration as a Type I region. To reverse the order of integration, we

must consider the region as a Type II region: 1

0

1
+ 2 .

3. True by Equation 15.2.5.

4. 1

1

1

0

2 + 2
sin =

1

0

2 1

1

2
sin =

1

0

2
(0) = 0, since

2
sin is an odd function.

Therefore the statement is true.

5. True. By Equation 15.2.5 we can write 1

0

1

0
( ) ( ) =

1

0
( )

1

0
( ) . But 1

0
( ) =

1

0
( ) so

this becomes 1

0
( )

1

0
( ) =

1

0
( )

2

.

6. This statement is true because in the given region, 2 + sin( 2 2) (1 + 2)(1) = 3, so

4

1

1

0
2 + sin( 2 2)

4

1

1

0
3 = 3 ( ) = 3(3) = 9.

7. True: 4 2 2 = the volume under the surface 2 + 2 + 2 = 4 and above the -plane

= 1
2
the volume of the sphere 2 + 2 + 2 = 4 = 1

2
· 4
3
(2)3 = 16

3
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604 ¤ CHAPTER 15 MULTIPLE INTEGRALS

8. True. The moment of inertia about the -axis of a solid with constant density is

= ( 2 + 2) ( ) = ( 2) = 3 .

9. The volume enclosed by the cone = 2 + 2 and the plane = 2 is, in cylindrical coordinates,

=
2

0

2

0

2 6= 2

0

2

0

2 , so the assertion is false.

1. As shown in the contour map, we divide into 9 equally sized subsquares, each with area = 1. Then we approximate

( ) by a Riemann sum with = = 3 and the sample points the upper right corners of each square, so

( )
3

= 1

3

= 1

( )

= [ (1 1) + (1 2) + (1 3) + (2 1) + (2 2) + (2 3) + (3 1) + (3 2) + (3 3)]

Using the contour lines to estimate the function values, we have

( ) 1[2 7 + 4 7 + 8 0 + 4 7 + 6 7 + 10 0 + 6 7 + 8 6 + 11 9] 64 0

2. As in Exercise 1, we have = = 3 and = 1. Using the contour map to estimate the value of at the center of each

subsquare, we have

( )
3

= 1

3

= 1

= [ (0 5 0 5) + (0 5 1 5) + (0 5 2 5) + (1 5 0 5) + (1 5 1 5)

+ (1 5 2 5) + (2 5 0 5) + (2 5 1 5) + (2 5 2 5)]

1[1 2 + 2 5 + 5 0 + 3 2 + 4 5 + 7 1 + 5 2 + 6 5 + 9 0] = 44 2

3. 2

1

2

0
( + 2 ) =

2

1
+ 2 =2

=0
=

2

1
(2 + 4 ) = 2 + 4

2

1

= 4 + 4 2 1 4 = 4 2 4 + 3

4. 1

0

1

0
=

1

0

=1

=0
=

1

0
( 1) =

1

0
= 2

5. 1

0 0
cos( 2) =

1

0
cos( 2)

=

=0
=

1

0
cos( 2) = 1

2
sin( 2)

1

0
= 1

2
sin 1

6. 1

0
3 2 =

1

0
3 =

=
=

1

0
( 3 4) = 1

3
3 1

0

1

0
1
3

3 1
5

5 1

0

integrate by parts
in the first term

= 1
3

3 1
9

3 1

0
1
5
= 2

9
3 4

45

7.
0

1

0

1 2

0
sin =

0

1

0
( sin )

= 1 2

=0
=

0

1

0
1 2 sin

=
0

1
3
(1 2)3 2 sin

=1

=0
=

0
1
3
sin = 1

3
cos

0
= 2

3
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CHAPTER 15 REVIEW ¤ 605

8. 1

0 0

1
6 =

1

0 0
3 2 =1

=
=

1

0 0
(3 3 3 )

=
1

0
3
2

2 3
4

4 =

=0
=

1

0
3
2

3 3
4

5 = 3
8

4 1
8

6 1

0
= 1

4

9. The region is more easily described by polar coordinates: = {( ) | 2 4, 0 }. Thus

( ) =
0

4

2
( cos sin ) .

10. The region is a type II region that can be described as the region enclosed by the lines = 4 , = 4 + ,

and the -axis. So using rectangular coordinates, we can say = {( ) | 4 4 0 4}

and ( ) =
4

0

4

4
( ) .

11. The region whose area is given by 2

0

sin 2

0
is

( ) | 0
2 0 sin 2 , which is the region contained in the

loop in the first quadrant of the four-leaved rose = sin 2 .

12. The solid is ( ) | 1 2 0
2
0

2
which is the region in the first octant on or between the two

spheres = 1 and = 2.

13. 1

0

1
cos( 2) =

1

0 0
cos( 2)

=
1

0
cos( 2)

=

=0
=

1

0
cos( 2)

= 1
2
sin( 2)

1

0
= 1

2
sin 1

14. 1

0

1 2

3
=

1

0

2

0

2

3
=

1

0

2

3
1
2

2 = 2

=0

=
1

0

1
2

2

= 1
4

2 1

0
= 1

4 ( 1)

15. =
3

0

2

0
=

3

0

=2

=0
=

3

0
( 2 1) = 1

2
2 3

0
= 1

2
6 3 1

2
= 1

2
6 7

2

16. =
1

0

+2
2 =

1

0
1
2

2 = +2

= 2 = 1
2

1

0
(( + 2)2 4)

= 1
2

1

0
( 3 + 4 2 + 4 5) = 1

2
1
4

4 + 4
3

3 + 2 2 1
6

6 1

0
= 41

24
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606 ¤ CHAPTER 15 MULTIPLE INTEGRALS

17.

1 + 2
=

1

0 0 1 + 2
=

1

0

1

1 + 2
1
2

2 =

=0

= 1
2

1

0 1 + 2
= 1

4
ln(1 + 2)

1

0
= 1

4
ln 2

18. 1

1 + 2
=

1

0

1 1

1 + 2
=

1

0

1

1 + 2

=1

=
=

1

0

1

1 + 2
=

1

0

1

1 + 2 1 + 2

= tan 1 1
2 ln(1 +

2)
1

0
= tan 1 1 1

2 ln 2 tan 1 0 1
2 ln 1 = 4

1
2 ln 2

19. =
2

0

8 2

2

=
2

0

=8 2

= 2 =
2

0
(8 2 2)

=
2

0
(8 2 3) = 4 2 1

2
4 2

0
= 8

20.
=

2

1 1

=
2

1

1

=
2

1
2 1 = 1

3
3 2

1

= 8
3

2 1
3

1 = 4
3

21.
2 + 2 3 2

=
3

0

3

0

( 2)3 2

=
3

0

3

0

4 =
3

0
1
5

5 3

0

=
3

35

5
=
81

5

22. =
2

0

2

1
( cos ) =

2

0
cos

2

1
2 = sin

2

0
1
3

3 2

1

= 1 · 1
3
(23 2 1) = 1

3
(23 2 1)

23. =
3

0 0

+

0
=

3

0 0

= +

=0
=

3

0 0
( + )

=
3

0 0
( 2 + 2) =

3

0
1
2

2 2 + 1
3

3 =

=0
=

3

0
1
2

4 + 1
3

4

= 5
6

3

0
4 = 1

6
5 3

0
= 81

2 = 40 5
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24. =
1 3

0

1 3

0

1 3

0
=

1 3

0

1 3

0
(1 3 )

=
1 3

0

1 3

0
( 3 2 2)

=
1 3

0
1
2

2 3
2

2 2 1
3

3 =1 3

=0

=
1 3

0
1
2
(1 3 )2 3

2
2(1 3 )2 1

3
(1 3 )3

=
1 3

0
1
6

3
2

2 + 9
2

3 9
2

4

= 1
12

2 1
2

3 + 9
8

4 9
10

5 1 3

0
= 1

1080

25. 2 2 =
1

1

1 2

1 2

1 2 2

0
2 2 =

1

1

1 2

1 2

2 2(1 2 2)

=
2

0

1

0
( 2 cos2 )( 2 sin2 )(1 2) =

2

0

1

0
1
4
sin2 2 ( 5 7)

=
2

0
1
8 (1 cos 4 ) 1

6
6 1

8
8 =1

=0
= 1

192
1
4 sin 4

2

0
= 2

192 = 96

26. =
1

0

1 2

0

2

0
=

1

0

1 2

0
(2 ) =

1

0
1
2
(2 )(1 2)

=
1

0
1
2
(2 2 2 + 3) = 13

24

27. =
2

2

4 2

0 0
=

2

2

4 2

0
1
2

3 =
0

2

0
1
2

3(sin3 )

= 16
5 0

sin3 = 16
5

cos + 1
3
cos3

0
= 64

15

28. 3 2 + 2 + 2 =
2

0

2

0

1

0
( 3 cos3 ) ( 2 sin )

=
2

0

2

0
cos3 sin

1

0
6 = 2 1

4 cos
4 2

0
1
7
=

14

29. =
2

0

4

1
( 2 + 4 2) =

2

0
2 + 4

3
3 =4

=1
=

2

0
(3 2 + 84) = 176

30. =
1

0

4 2

+1

2

0
=

1

0

4 2

+1
2

=
1

0
1
3
(4 2 )3 ( + 1)3

=
1

0
3( 4 + 5 3 11 2 + 7 ) = 3 1

5 +
5
4

11
3 +

7
2
= 53

20

31.
=

2

0 0

(2 ) 2

0
=

2

0 0
1 1

2

=
2

0
1
2

2 = 2
3

32. =
2

0

2

0

3 sin

0
=

2

0

2

0
(3 2 sin ) =

2

0
6 8

3
sin = 6 ]20 + 0 = 12

c° 2012 Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part.°°cc 2012 Cengage Learning. All Rights Reserved. May not be scanned, copied, or2012 Cengage Learning. All Rights Reserved. May not be scanned, copied, duplicated, or posted to a publicly accessible website, in whole or in part.licated, or posted to a publicly accessible website, in whole or in par

380



608 ¤ CHAPTER 15 MULTIPLE INTEGRALS

33. Using the wedge above the plane = 0 and below the plane = and noting that we have the same volume for 0 as

for 0 (so use 0), we have

= 2
3

0

2 9 2

0
= 2

3

0
1
2
( 2 9 2) = 2 3 3 3

0
= 1

3
3 1

9
3 = 2

9
3.

34. The paraboloid and the half-cone intersect when 2 + 2 = 2 + 2, that is when 2 + 2 = 1 or 0. So

=
2+ 2 1

2+ 2

2+ 2 =
2

0

1

0 2 =
2

0

1

0
( 2 3) =

2

0
1
3

1
4

= 1
12
(2 ) =

6
.

35. (a) =
1

0

1 2

0
=

1

0
( 3) = 1

2
1
4
= 1

4

(b) =
1

0

1 2

0
=

1

0
1
2
(1 2)2 = 1

12
(1 2)3

1

0
= 1

12
,

=
1

0

1 2

0
2 =

1

0
( 2 4) = 2

15
. Hence ( ) = 1

3
8
15
.

(c) =
1

0

1 2

0
3 =

1

0
( 3 5) = 1

12
,

=
1

0

1 2

0
2 =

1

0
1
3
(1 2)3 = 1

24
(1 2)4

1

0
= 1

24
,

0 = + = 1
8
, 2

= 1 12
1 4

= 1
3

= 1

3
, and 2

= 1 24
1 4

= 1
6

= 1

6
.

36. (a) = 1
4

2 where is constant,

= 2+ 2 2 =
2

0 0
2 cos = 1

3
3 2

0
cos = 1

3
3 , and

=
2

0 0
2 sin = 1

3
3 [by symmetry = ].

Hence the centroid is ( ) = 4
3

4
3

.

(b) =
2

0 0
4 cos sin2 = 1

3
sin3

2

0
1
5

5 = 1
15

5,

=
2

0 0
5 cos2 sin2 = 1

8
1
4
sin 4

2

0
1
6

6 = 1
96

6, and

=
2

0 0
5 cos sin3 = 1

4
sin4

2

0
1
6

6 = 1
24

6. Hence ( ) = 5
32

5
8
.

37. (a) The equation of the cone with the suggested orientation is ( ) = 2 + 2, 0 . Then = 1
3

2 is the

volume of one frustum of a cone; by symmetry = = 0; and

=

2+ 2 2

( ) 2+ 2

0

=
2

0 0

( )( )

0

=
0

2

2
( )2

=
2

2
0

( 2 2 2 + 3) =
2

2

4

2

2 4

3
+

4

4
=

2 2

12

Hence the centroid is ( ) = 0 0 1
4

.

(b) =
2

0 0

( )( )

0

3 = 2
0

( 3 4) =
2 5

4

5

5
=

4

10
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38. 1 2 4 1 2 2 + 2 4 2. Let = ( ) | 1 2 2 + 2 4 2 . = ( ) = 2 + 2, so

( ) = ( 2 + 2) 1 2, ( ) = ( 2 + 2) 1 2, and

( ) =
2 2 + 2 2

2 + 2
+ 1 = 2 + 1 = 2 + 1 ( )

= 2 + 1
2

2
1

2

=
3
2

2 + 1

39. Let represent the given triangle; then can be described as the area enclosed by the - and -axes and the line = 2 2 ,

or equivalently = {( ) | 0 1, 0 2 2 }. We want to find the surface area of the part of the graph of

= 2 + that lies over , so using Equation 15.6.3 we have

( ) = 1 +
2

+
2

= 1+ (2 )2 + (1)2 =
1

0

2 2

0

2 + 4 2

=
1

0
2 + 4 2 =2 2

=0
=

1

0
(2 2 ) 2 + 4 2 =

1

0
2 2 + 4 2 1

0
2 2 + 4 2

Using Formula 21 in the Table of Integrals with = 2, = 2 , and = 2 , we have

2 2 + 4 2 = 2 + 4 2 + ln 2 + 2 + 4 2 . If we substitute = 2 + 4 2 in the second integral, then

= 8 and 2 2 + 4 2 = 1
4

= 1
4
· 2
3

3 2 = 1
6
(2 + 4 2)3 2. Thus

( ) = 2 + 4 2 + ln 2 + 2 + 4 2 1
6 (2 + 4

2)3 2
1

0

= 6 + ln 2 + 6 1
6
(6)3 2 ln 2 + 2

3
= ln 2+ 6

2
+ 2

3

= ln 2 + 3 + 2
3

1.6176

40. Using Formula 15.6.3 with = sin ,

= cos , we get

=
3

3
sin2 + 2 cos2 + 1 62 9714.

41.
3

0

9 2

9 2

( 3 + 2) =
3

0

9 2

9 2

( 2 + 2)

=
2

2

3

0
( cos )( 2)

=
2

2
cos

3

0
4

= sin
2

2
1
5

5 3

0
= 2 · 1

5
(243) = 486

5
= 97 2
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42. The region of integration is the solid hemisphere 2 + 2 + 2 4, 0.

2

2

4 2

0

4 2 2

4 2 2

2 2 + 2 + 2

=
2

2 0

2

0
( sin sin )2 2 2 sin =

2

2
sin2

0
sin3

2

0
5

= 1
2

1
4
sin 2

2

2
1
3
(2 + sin2 ) cos

0
1
6

6 2

0
=

2
2
3
+ 2

3
32
3
= 64

9

43. From the graph, it appears that 1 2 = at 0 71 and at

= 0, with 1 2 on ( 0 71 0). So the desired integral is
2 0

0 71

1 2
2

= 1
3

0

0 71
[(1 2)3 3 ]

= 1
3

3 + 3
5

5 1
7

7 1
3

3 0

0 71
0 0512

44. Let the tetrahedron be called . The front face of is given by the plane + 1
2 + 1

3 = 1, or = 3 3 3
2 ,

which intersects the -plane in the line = 2 2 . So the total mass is

= ( ) =
1

0

2 2

0

3 3 3 2

0
( 2 + 2 + 2) = 7

5
. The center of mass is

( ) = 1 ( ) 1 ( ) 1 ( ) = 4
21

11
21

8
7
.

45. (a) ( ) is a joint density function, so we know that R2 ( ) = 1. Since ( ) = 0 outside the rectangle

[0 3]× [0 2], we can say

R2 ( ) = ( ) =
3

0

2

0
( + )

=
3

0
+ 1

2
2 =2

=0
=

3

0
(2 + 2) = 2 + 2

3

0
= 15

Then 15 = 1 = 1
15
.

(b) ( 2 1) =
2

1
( ) =

2

0

2

1
1
15 ( ) = 1

15

2

0
+ 1

2
2 =2

=1

= 1
15

2

0
+ 3

2
= 1

15
1
2

2 + 3
2

2

0
= 1

3

(c) ( + 1) = (( ) ) where is the triangular region shown in
the figure. Thus

( + 1) = ( ) =
1

0

1

0
1
15 ( + )

= 1
15

1

0
+ 1

2
2 =1

=0

= 1
15

1

0
(1 ) + 1

2
(1 )2

= 1
30

1

0
(1 2) = 1

30
1
3

3 1

0
= 1

45
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46. Each lamp has exponential density function

( ) =
0 if 0

1
800

800 if 0

If , , and are the lifetimes of the individual bulbs, then , , and are independent, so the joint density function is the

product of the individual density functions:

( ) =
1

8003
( + + ) 800 if 0, 0, 0

0 otherwise

The probability that all three bulbs fail within a total of 1000 hours is ( + + 1000), or equivalently

(( ) ) where is the solid region in the first octant bounded by the coordinate planes and the plane

+ + = 1000. The plane + + = 1000 meets the -plane in the line + = 1000, so we have

( + + 1000) = ( ) =
1000

0

1000

0

1000

0
1

8003
( + + ) 800

= 1
8003

1000

0

1000

0
800 ( + + ) 800

=1000

=0

= 1
8002

1000

0

1000

0
[ 5 4 ( + ) 800]

= 1
8002

1000

0
5 4 + 800 ( + ) 800

=1000

=0

= 1
8002

1000

0
[ 5 4(1800 ) 800 800]

= 1
8002

1
2

5 4(1800 )2 + 8002 800
1000

0

= 1
8002

1
2

5 4(800)2 + 8002 5 4 + 1
2

5 4(1800)2 8002

= 1 97
32

5 4 0 1315

47. 1

1

1
2

1

0
( ) =

1

0

1

0
( )

48.

2

0

3

0

2

0
( ) = ( ) where = ( ) | 0 2, 0 3, 0 2 .
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612 ¤ CHAPTER 15 MULTIPLE INTEGRALS

If 1, 2, and 3 are the projections of on the -, -, and -planes, then

1 = ( ) | 0 2, 0 3 = {( ) | 0 8, 3 2},

2 = {( ) | 0 4, 2} = ( ) | 0 2, 0 2 , 3 = {( ) | 0 8, 0 4}.
Therefore we have

2

0

3

0

2

0
( ) =

8

0

2
3

2

0
( ) =

4

0

2 3

0
( )

=
2

0

2

0

3

0
( )

=
8

0

2 3

0

2
3 ( ) +

8

0

4
2 3

2
( )

=
4

0

3 2

0

2
( ) +

4

0

8
3 2

2
3 ( )

49. Since = and = + , = 1
2
( + ) and = 1

2
( ).

Thus ( )

( )
=

1 2 1 2

1 2 1 2
=
1

2
and

+
=

4

2

0

2

1

2
=

4

2

= ln 2.

50. ( )

( )
=

2 0 0

0 2 0

0 0 2

= 8 , so

= =
1

0

1

0

1

0
8 =

1

0

1

0
4 (1 )2

=
1

0

1

0
4 (1 )2 8 (1 ) 2 + 4 3

=
1

0
2 (1 )4 8

3
(1 )4 + (1 )4 =

1

0
1
3
(1 )4

=
1

0
1
3
(1 )4 (1 )5 = 1

3
1
5
(1 )5 + 1

6
(1 )6

1

0
= 1

3
1
6
+ 1

5
= 1

90

51. Let = and = + so = = ( ) = 1
2
( ) and = 1

2
( ) = 1

2
( + ).

( )

( )
= = 1

2
1
2

1
2

1
2

= 1
2
= 1

2
. is the image under this transformation of the square

with vertices ( ) = (0 0), ( 2 0), (0 2), and ( 2 2). So

=
2

0

0

2

2 2

4

1

2
= 1

8

2

0
2 1

3
3 =0

= 2
= 1

8

2

0
2 2 8

3
= 1

8
2
3

3 8
3

2

0
= 0

This result could have been anticipated by symmetry, since the integrand is an odd function of and is symmetric about

the -axis.

52. By the Extreme Value Theorem (14.7.8), has an absolute minimum value and an absolute maximum value in . Then

by Property 15.3.11, ( ) ( ) ( ). Dividing through by the positive number ( ), we get

1

( )
( ) . This says that the average value of over lies between and . But is continuous

on and takes on the values and , and so by the Intermediate Value Theorem must take on all values between and .
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CHAPTER 15 REVIEW ¤ 613

Specifically, there exists a point ( 0 0) in such that ( 0 0) =
1

( )
( ) or equivalently

( ) = ( 0 0) ( ).

53. For each such that lies within the domain, ( ) = 2, and by the Mean Value Theorem for Double Integrals there

exists ( ) in such that ( ) =
1
2

( ) . But lim
0+
( ) = ( ),

so lim
0+

1
2

( ) = lim
0+

( ) = ( ) by the continuity of .

54. (a) 1

( 2 + 2) 2
=

2

0

1

( 2) 2
= 2 1

=

2

2
2 =

2

2
( 2 2 ) if 6= 2

2 ln( ) if = 2

(b) The integral in part (a) has a limit as 0+ for all values of such that 2 0 2.

(c) 1

( 2 + 2 + 2) 2
=

0

2

0

1

( 2) 2

2 sin = 2
0

2 sin

=

4

3
3 =

4

3
( 3 3 ) if 6= 3

4 ln( ) if = 3

(d) As 0+, the above integral has a limit, provided that 3 0 3.
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PROBLEMS PLUS
1. Let = 5

=1 , where

= {( ) | + + 2 + + 3 1 3 2 5}.

[[ + ]] =
5

=1

[[ + ]] =
5

=1

[[ + ]] , since

[[ + ]] = constant = + 2 for ( ) . Therefore

[[ + ]] = 5
=1 ( + 2) [ ( )]

= 3 ( 1) + 4 ( 2) + 5 ( 3) + 6 ( 4) + 7 ( 5)

= 3 1
2
+ 4 3

2
+ 5(2) + 6 3

2
+ 7 1

2
= 30

2. Let = {( ) | 0 , 1}. For ,max 2 2 = 2 if ,

andmax 2 2 = 2 if . Therefore we divide into two regions:

= 1 2, where 1 = {( ) | 0 1, 0 } and

2 = {( ) | 0 1, 0 }. Nowmax 2 2 = 2 for

( ) 1, andmax 2 2 = 2 for ( ) 2

1

0

1

0
max{ 2 2} = max{ 2 2} =

1

max{ 2 2} +
2

max{ 2 2}

=
1

0 0

2

+
1

0 0

2

=
1

0

2

+
1

0

2

=
2 1

0
= 1

3. ave =
1

( ) =
1

1 0

1

0

1

cos( 2)

=
1

0

1
cos( 2) =

1

0 0
cos( 2) [changing the order of integration]

=
1

0
cos( 2) = 1

2
sin 2 1

0
= 1

2
sin 1

4. Let = a · r, = b · r, = c · r, where a = h 1 2 3i, b = h 1 2 3i, c = h 1 2 3i. Under this change of variables,
corresponds to the rectangular box 0 , 0 , 0 . So, by Formula 15.10.13,

0 0 0

= (a · r)(b · r)(c · r) ( )

( )
. But

( )

( )
=

1 2 3

1 2 3

1 2 3

= |a · b× c|

(a · r)(b · r)(c · r) =
1

|a · b× c| 0 0 0

=
1

|a · b× c|
2

2

2

2

2

2
=

( )2

8 |a · b× c|
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616 ¤ CHAPTER 15 PROBLEMS PLUS

5. Since | | 1, except at (1 1), the formula for the sum of a geometric series gives 1

1
=

=0

( ) , so

1

0

1

0
1

1
=

1

0

1

0
=0

( ) =
=0

1

0

1

0
( ) =

=0

1

0

1

0

=
=0

1
+1
· 1

+1
=

=0

1
( +1)2

= 1
12
+ 1

22
+ 1

32
+ · · · = =1

1
2

6. Let =
2
and =

+

2
. We know the region of integration in the -plane, so to find its image in the -plane we get

and in terms of and , and then use the methods of Section 15.10. + =
2
+

+

2
= 2 , so =

+

2
, and

similarly =
2
. 1 is given by = 0, 0 1, so from the equations derived above, the image of 1 is 0

1: = 1

2
,

= 1

2
, 0 1, that is, = , 0 1

2
. Similarly, the image of 2 is 0

2: = 2, 1

2
2, the

image of 3 is 0
3: = 2 , 1

2
2, and the image of 4 is 0

4: , 0 1

2
.

The Jacobian of the transformation is ( )

( )
= =

1

2

1

2

1

2

1

2

= 1. From the diagram,

we see that we must evaluate two integrals: one over the region ( ) | 0 1

2
, and the other

over ( ) | 1

2
2, 2 + 2 . So

1

0

1

0 1
=

2 2

0 1 1

2
( + ) 1

2
( )

+
2

2 2

2

2+ 1 1

2
( + ) 1

2
( )

=
2 2

0

2

2 2 + 2
+

2

2 2

2

2+

2

2 2 + 2

= 2
2 2

0

1

2 2
arctan

2 2
+

2

2 2

1

2 2
arctan

2 2

2

2+

= 4
2 2

0

1

2 2
arctan

2 2
+

2

2 2

1

2 2
arctan

2

2 2

Now let = 2 sin , so = 2cos and the limits change to 0 and
6
(in the first integral) and

6
and

2
(in the

c° 2012 Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part.

NOT FOR SALE

°°cc 2012 Cengage Learning. All Rights Reserved. May not be scanned, copied, or2012 Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part.duplicated, or posted to a publicly accessible website, in whole or in part.

389



CHAPTER 15 PROBLEMS PLUS ¤ 617

second integral). Continuing:

1

0

1

0 1
= 4

6

0

1

2 2 sin2
arctan

2 sin

2 2 sin2
2 cos

+
2

6

1

2 2 sin2
arctan

2 2 sin

2 2 sin2
2 cos

= 4
6

0

2 cos

2 cos
arctan

2 sin

2 cos
+

2

6

2 cos

2 cos
arctan

2 (1 sin )

2 cos

= 4
6

0

arctan(tan ) +
2

6

arctan
1 sin

cos

But (following the hint)

1 sin

cos
=
1 cos 2

sin
2

=
1 1 2 sin2 1

2 2

2 sin 1
2 2

cos 1
2 2

[half-angle formulas]

=
2 sin2 1

2 2

2 sin 1
2 2

cos 1
2 2

= tan 1
2 2

Continuing:

1

0

1

0 1
= 4

6

0

arctan(tan ) +
2

6

arctan tan 1
2 2

= 4
6

0

+
2

6

1

2 2
= 4

2

2

6

0

+
4

2

4

2

6

= 4
3 2

72
=

2

6

7. (a) Since | | 1 except at (1 1 1), the formula for the sum of a geometric series gives 1

1
=

=0

( ) , so

1

0

1

0

1

0

1

1
=

1

0

1

0

1

0 =0

( ) =
=0

1

0

1

0

1

0

( )

=
=0

1

0

1

0

1

0
=

=0

1

+ 1
· 1

+ 1
· 1

+ 1

=
=0

1

( + 1)3
=
1

13
+
1

23
+
1

33
+ · · · =

=1

1
3

(b) Since | | 1, except at (1 1 1), the formula for the sum of a geometric series gives 1

1 +
=

=0

( ) , so

1

0

1

0

1

0

1

1 +
=

1

0

1

0

1

0 =0

( ) =
=0

1

0

1

0

1

0

( )

=
=0

( 1)
1

0

1

0

1

0
=

=0

( 1)
1

+ 1
· 1

+ 1
· 1

+ 1

=
=0

( 1)

( + 1)3
=
1

13
1

23
+
1

33
· · · =

=0

( 1) 1

3

To evaluate this sum, we first write out a few terms: = 1
1

23
+
1

33
1

43
+
1

53
1

63
0 8998. Notice that

7 =
1

73
0 003. By the Alternating Series Estimation Theorem from Section 11.5, we have | 6| 7 0 003.

This error of 0 003 will not affect the second decimal place, so we have 0 90.
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618 ¤ CHAPTER 15 PROBLEMS PLUS

8.
0

arctan arctan
=

0

arctan
=

=1

=
0 1

1

1 + 2 2
=

1 0

1

1 + 2 2

=
1

lim
arctan

=

=0

=
1 2

=
2
ln

1
=
2
ln

9. (a) = cos , = sin , = . Then = + + = cos + sin and

2

2
= cos

2

2
+

2

+
2

+ sin
2

2
+

2

+
2

=
2

2
cos2 +

2

2
sin2 + 2

2

cos sin

Similarly = sin + cos and

2

2 =
2

2
2 sin2 +

2

2
2 cos2 2

2
2 sin cos cos sin . So

2

2
+
1

+
1
2

2

2 +
2

2
=

2

2
cos2 +

2

2
sin2 + 2

2

cos sin +
cos

+
sin

+
2

2
sin2 +

2

2
cos2 2

2

sin cos

cos sin
+

2

2

=
2

2
+

2

2
+

2

2

(b) = sin cos , = sin sin , = cos . Then

= + + = sin cos + sin sin + cos , and

2

2
= sin cos

2

2
+

2

+
2

+ sin sin
2

2
+

2

+
2

+ cos
2

2
+

2

+
2

= 2
2

sin2 sin cos + 2
2

sin cos cos + 2
2

sin cos sin

+
2

2
sin2 cos2 +

2

2
sin2 sin2 +

2

2
cos2

Similarly = cos cos + cos sin sin , and
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CHAPTER 15 PROBLEMS PLUS ¤ 619

2

2 = 2
2

2 cos2 sin cos 2
2

2 sin cos cos

2
2

2 sin cos sin +
2

2
2 cos2 cos2 +

2

2
2 cos2 sin2

+
2

2
2 sin2 sin cos sin sin cos

And = sin sin + sin cos , while

2

2 = 2
2

2 sin2 cos sin +
2

2
2 sin2 sin2

+
2

2
2 sin2 cos2 sin cos sin sin

Therefore

2

2
+
2

+
cot

2
+
1
2

2

2 +
1

2 sin2

2

2

=
2

2
(sin2 cos2 ) + (cos2 cos2 ) + sin2

+
2

2
(sin2 sin2 ) + (cos2 sin2 ) + cos2 +

2

2
cos2 + sin2

+
2 sin2 cos + cos2 cos sin2 cos cos

sin

+
2 sin2 sin + cos2 sin sin2 sin sin

sin

But 2 sin2 cos + cos2 cos sin2 cos cos = (sin2 +cos2 1) cos = 0 and similarly the coefficient of

is 0. Also sin2 cos2 + cos2 cos2 + sin2 = cos2 (sin2 + cos2 ) + sin2 = 1, and similarly the

coefficient of 2 2 is 1. So Laplace’s Equation in spherical coordinates is as stated.

10. (a) Consider a polar division of the disk, similar to that in Figure 15.4.4, where 0 = 0 1 2 · · · = 2 ,

0 = 1 2 · · · = , and where the polar subrectangle , as well as , , and are the same as in that

figure. Thus = . The mass of is , and its distance from is ( )2 + 2. According to

Newton’s Law of Gravitation, the force of attraction experienced by due to this polar subrectangle is in the direction

from towards and has magnitude 2 . The symmetry of the lamina with respect to the - and -axes and the

position of are such that all horizontal components of the gravitational force cancel, so that the total force is simply in

the -direction. Thus, we need only be concerned with the components of this vertical force; that is,
2 sin ,

where is the angle between the origin, and the mass . Thus sin = and the previous result becomes
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620 ¤ CHAPTER 15 PROBLEMS PLUS

3
. The total attractive force is just the Riemann sum

=1 =1
3

=
=1 =1

( )

( )2 + 2
3 2

which becomes
0

2

0 ( 2 +
2
)3 2

as and . Therefore,

= 2
0 ( 2 + 2)3 2

= 2
1

2 + 2
0

= 2
1 1

2 + 2

(b) This is just the result of part (a) in the limit as . In this case 1
2 + 2

0, and we are left with

= 2
1

0 = 2 .

11.
0 0 0

( ) = ( ) , where

= {( ) | 0 , 0 , 0 }.
If we let be the projection of on the -plane then

= {( ) | 0 , }. And we see from the diagram

that = {( ) | , , 0 }. So

0 0 0
( ) =

0
( ) =

0
( ) ( )

=
0

1
2

2 ( )
=

=
=

0
1
2

2 1
2
2 + 2 ( )

=
0

1
2

2 + 1
2
2 ( ) =

0
1
2

2 2 + 2 ( )

= 1
2 0

( )2 ( )

12. 2

=1

2

=1

1
2 + +

=
=1

2

=1

1
1 2 + +

· 1
3
=

=1

2

=1

1

1 + + 2

· 1
3
can be considered a double

Riemann sum of the function ( ) =
1

1 + +
where the square region = {( ) | 0 1, 0 1} is

divided into subrectangles by dividing the interval [0 1] on the -axis into subintervals, each of width 1 , and [0 1] on the

-axis is divided into 2 subintervals, each of width 1
2 . Then the area of each subrectangle is = 1

3 , and if we take the

upper right corners of the subrectangles as sample points, we have ( ) = 2 . Finally, note that 2 as

, so

lim 2

=1

2

=1

1
2 + +

= lim
2 =1

2

=1

1

1 + + 2

· 1
3
= lim

2 =1

2

=1

( )
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CHAPTER 15 PROBLEMS PLUS ¤ 621

But by Definition 15.1.5 this is equal to ( ) , so

lim 2

=1

2

=1

1
2 + +

= ( ) =
1

0

1

0

1

1 + +

=
1

0
2(1 + + )1 2

=1

=0
= 2

1

0
2 + 1 +

= 2 2
3
(2 + )3 2 2

3
(1 + )3 2

1

0
= 4

3
(33 2 23 2 23 2 + 1)

= 4
3
(3 3 4 2 + 1) = 4 3 16

3
2 + 4

3

13. The volume is = where is the solid region given. From Exercise 15.10.21(a), the transformation = ,

= , = maps the unit ball 2 + 2 + 2 1 to the solid ellipsoid

2

2
+

2

2
+

2

2
1 with ( )

( )
= . The same transformation maps the

plane + + = 1 to + + = 1. Thus the region in -space

corresponds to the region in -space consisting of the smaller piece of the

unit ball cut off by the plane + + = 1, a “cap of a sphere” (see the figure).

We will need to compute the volume of , but first consider the general case

where a horizontal plane slices the upper portion of a sphere of radius to produce

a cap of height . We use spherical coordinates. From the figure, a line through the

origin at angle from the -axis intersects the plane when cos = ( )

= ( ) cos , and the line passes through the outer rim of the cap when

= cos = ( ) = cos 1 (( ) ). Thus the cap

is described by ( ) | ( ) cos 0 2 0 cos 1 (( ) ) and its volume is

=
2

0

cos 1(( ) )

0 ( ) cos
2 sin

=
2

0

cos 1(( ) )

0
1
3

3 sin
=

=( ) cos

=
1

3

2

0

cos 1(( ) )

0

3 sin
( )3

cos3
sin

= 1
3

2

0
3 cos 1

2
( )3 cos 2 =cos 1(( ) )

=0

=
1

3

2

0

3 1

2
( )3

2

+ 3 +
1

2
( )3

= 1
3

2

0
( 32

2 1
2

3) = 1
3 (

3
2

2 1
2

3)(2 ) = 2( 1
3 )
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622 ¤ CHAPTER 15 PROBLEMS PLUS

(This volume can also be computed by treating the cap as a solid of revolution and using the single variable disk method;

see Exercise 5.2.49 [ET 6.2.49].)

To determine the height of the cap cut from the unit ball by the plane

+ + = 1, note that the line = = passes through the origin with

direction vector h1 1 1i which is perpendicular to the plane. Therefore this line
coincides with a radius of the sphere that passes through the center of the cap and

is measured along this line. The line intersects the plane at 1
3

1
3

1
3
and the

sphere at 1

3

1

3

1

3
. (See the figure.)

The distance between these points is = 3 1

3

1
3

2

= 3 1

3

1
3
= 1 1

3
. Thus the volume of is

= =
( )

( )
= = ( )

= · 2( 1
3
) = · 1 1

3

2

1 1
3
1 1

3

= 4
3

2

3

2
3
+ 1

3 3
= 2

3
8

9 3
0 482
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16 VECTOR CALCULUS

16.1 Vector Fields

1. F( ) = 0 3 i 0 4 j

All vectors in this field are identical, with length 0 5 and

parallel to h3 4i.

2. F( ) = 1
2
i+ j

The length of the vector 12 i+ j is 1
4

2 + 2.

Vectors point roughly away from the origin and vectors

farther from the origin are longer.

3. F( ) = 1
2
i+ ( ) j

The length of the vector 1
2
i+ ( ) j is

1
4
+ ( )2. Vectors along the line = are

horizontal with length 1
2
.

4. F( ) = i+ ( + ) j

The length of the vector i+ ( + ) j is

2 + ( + )2. Vectors along the -axis are vertical,

and vectors along the line = are horizontal with

length | |.

5. F( ) =
i+ j
2 + 2

The length of the vector i+ j
2 + 2

is 1.
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624 ¤ CHAPTER 16 VECTOR CALCULUS

6. F( ) =
i j
2 + 2

All the vectors F( ) are unit vectors tangent to circles

centered at the origin with radius 2 + 2.

7. F( ) = k

All vectors in this field are parallel to the -axis and have

length 1.

8. F( ) = k

At each point ( ), F( ) is a vector of length | |.
For 0, all point in the direction of the negative -axis,

while for 0, all are in the direction of the positive

-axis. In each plane = , all the vectors are identical.

9. F( ) = k

At each point ( ), F( ) is a vector of length | |.
For 0, all point in the direction of the positive -axis,

while for 0, all are in the direction of the negative

-axis. In each plane = , all the vectors are identical.

10. F( ) = j i

All vectors in this field have length 2 and point in the

same direction, parallel to the -plane.

11. F( ) = h i corresponds to graph IV. In the first quadrant all the vectors have positive -components and negative

-components, in the second quadrant all vectors have negative - and -components, in the third quadrant all vectors have

negative -components and positive -components, and in the fourth quadrant all vectors have positive - and -components.

In addition, the vectors get shorter as we approach the origin.
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SECTION 16.1 VECTOR FIELDS ¤ 625

12. F( ) = h i corresponds to graph III. All vectors in quadrants I and II have positive -components while all vectors

in quadrants III and IV have negative -components. In addition, vectors along the line = are horizontal, and vectors get

shorter as we approach the origin.

13. F( ) = h + 2i corresponds to graph I. As in Exercise 12, all vectors in quadrants I and II have positive -components

while all vectors in quadrants III and IV have negative -components.Vectors along the line = 2 are horizontal, and the

vectors are independent of (vectors along horizontal lines are identical).

14. F( ) = hcos( + ) i corresponds to graph II. All vectors in quadrants I and IV have positive -components while all

vectors in quadrants II and III have negative -components. Also, the -components of vectors along any vertical line remain

constant while the -component oscillates.

15. F( ) = i+ 2 j+ 3k corresponds to graph IV, since all vectors have identical length and direction.

16. F( ) = i+ 2 j+ k corresponds to graph I, since the horizontal vector components remain constant, but the vectors

above the -plane point generally upward while the vectors below the -plane point generally downward.

17. F( ) = i+ j+ 3k corresponds to graph III; the projection of each vector onto the -plane is i+ j, which points

away from the origin, and the vectors point generally upward because their -components are all 3.

18. F( ) = i+ j+ k corresponds to graph II; each vector F( ) has the same length and direction as the position

vector of the point ( ), and therefore the vectors all point directly away from the origin.

19.
The vector field seems to have very short vectors near the line = 2 .

For F( ) = h0 0i we must have 2 2 = 0 and 3 6 2 = 0.

The first equation holds if = 0 or = 2 , and the second holds if

= 0 or = 2 . So both equations hold [and thus F( ) = 0] along

the line = 2 .

20. From the graph, it appears that all of the vectors in the field lie on lines
through the origin, and that the vectors have very small magnitudes near
the circle |x| = 2 and near the origin. Note that F(x) = 0
( 2) = 0 = 0 or 2, so as we suspected, F(x) = 0 for

|x| = 2 and for |x| = 0. Note that where 2 0, the vectors point

towards the origin, and where 2 0, they point away from the
origin.

21. ( ) =

( ) = ( ) i+ ( ) j = ( · + ) i+ ( · ) j = ( + 1) i+ 2 j
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626 ¤ CHAPTER 16 VECTOR CALCULUS

22. ( ) = tan(3 4 )

( ) = ( ) i+ ( ) j = sec2(3 4 ) · 3 i+ sec2(3 4 ) · ( 4) j

= 3 sec2(3 4 ) i 4 sec2(3 4 ) j

23. ( ) = ( ) i+ ( ) j+ ( )k =
2 + 2 + 2

i+
2 + 2 + 2

j+
2 + 2 + 2

k

24. ( ) = ( ) i+ ( ) j+ ( )k = ln( 2 ) i+ · 1

2
· 1 j+ · 1

2
( 2) k

= ln( 2 ) i+
2
j

2

2
k

25. ( ) = 2 ( ) = 2 i j.

The length of ( ) is 4 2 + 1. When 6= 0, the vectors point away
from the -axis in a slightly downward direction with length that increases

as the distance from the -axis increases.

26. ( ) = 2 + 2

( ) = 1
2
( 2 + 2) 1 2(2 ) i+ 1

2
( 2 + 2) 1 2(2 ) j

=
2 + 2

i+
2 + 2

j or 1
2 + 2

( i+ j) .

( ) is not defined at the origin, but elsewhere all vectors have length 1

and point away from the origin.

27. We graph ( ) =
2

1 + 2 + 2 2
i+

4

1 + 2 + 2 2
j along with

a contour map of .

The graph shows that the gradient vectors are perpendicular to the

level curves. Also, the gradient vectors point in the direction in

which is increasing and are longer where the level curves are closer

together.

28. We graph ( ) = sin i 2 cos j along with a contour map

of .

The graph shows that the gradient vectors are perpendicular to the

level curves. Also, the gradient vectors point in the direction in

which is increasing and are longer where the level curves are closer

together.

c° 2012 Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part.

NOT FOR SALE

°°cc 2012 Cengage Learning. All Rights Reserved. May not be scanned, copied, or2012 Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part.duplicated, or posted to a publicly accessible website, in whole or in part.

399



SECTION 16.1 VECTOR FIELDS ¤ 627

29. ( ) = 2 + 2 ( ) = 2 i+ 2 j. Thus, each vector ( ) has the same direction and twice the length of

the position vector of the point ( ), so the vectors all point directly away from the origin and their lengths increase as we

move away from the origin. Hence, is graph III.

30. ( ) = ( + ) = 2 + ( ) = (2 + ) i+ j. The -component of each vector is , so the vectors

point upward in quadrants I and IV and downward in quadrants II and III. Also, the -component of each vector is 0 along the

line = 2 so the vectors are vertical there. Thus, is graph IV.

31. ( ) = ( + )2 ( ) = 2( + ) i+ 2( + ) j. The - and -components of each vector are equal, so all

vectors are parallel to the line = . The vectors are 0 along the line = and their length increases as the distance from

this line increases. Thus, is graph II.

32. ( ) = sin 2 + 2

( ) = cos 2 + 2 · 1
2
( 2 + 2) 1 2(2 ) i+ cos 2 + 2 · 1

2
( 2 + 2) 1 2(2 ) j

=
cos 2 + 2

2 + 2
i+

cos 2 + 2

2 + 2
j or

cos 2 + 2

2 + 2
( i+ j)

Thus each vector is a scalar multiple of its position vector, so the vectors point toward or away from the origin with length that

changes in a periodic fashion as we move away from the origin. is graph I.

33. At = 3 the particle is at (2 1) so its velocity isV(2 1) = h4 3i. After 0.01 units of time, the particle’s change in
location should be approximately 0 01V(2 1) = 0 01 h4 3i = h0 04 0 03i, so the particle should be approximately at the
point (2 04 1 03).

34. At = 1 the particle is at (1 3) so its velocity is F(1 3) = h1 1i. After 0.05 units of time, the particle’s change in
location should be approximately 0 05F(1 3) = 0 05 h1 1i = h0 05 0 05i, so the particle should be approximately at
the point (1 05 2 95).

35. (a) We sketch the vector field F( ) = i j along with

several approximate flow lines. The flow lines appear to

be hyperbolas with shape similar to the graph of

= ±1 , so we might guess that the flow lines have

equations = .

(b) If = ( ) and = ( ) are parametric equations of a flow line, then the velocity vector of the flow line at the

point ( ) is 0( ) i+ 0 ( ) j. Since the velocity vectors coincide with the vectors in the vector field, we have
0( ) i+ 0( ) j = i j = , = . To solve these differential equations, we know

= = ln | | = + = ± + = for some constant , and
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628 ¤ CHAPTER 16 VECTOR CALCULUS

= = ln | | = + = ± + = for some constant . Therefore

= = = constant. If the flow line passes through (1 1) then (1) (1) = constant = 1 = 1

= 1 , 0.

36. (a) We sketch the vector field F( ) = i+ j along with

several approximate flow lines. The flow lines appear to

be parabolas.

(b) If = ( ) and = ( ) are parametric equations of a flow line, then the velocity vector of the flow line at the

point ( ) is 0( ) i+ 0( ) j. Since the velocity vectors coincide with the vectors in the vector field, we have

0( ) i+ 0( ) j = i+ j = 1, = . Thus = =
1
= .

(c) From part (b), = . Integrating, we have = 1
2

2 + . Since the particle starts at the origin, we know (0 0) is on

the curve, so 0 = 0 + = 0 and the path the particle follows is = 1
2

2.

16.2 Line Integrals

1. = 3 and = , 0 2, so by Formula 3

3 =
2

0

3
2

+
2

=
2

0

3 (3 2)2 + (1)2 =
2

0

3 9 4 + 1

= 1
36
· 2
3
9 4 + 1

3 2 2

0
= 1

54
(1453 2 1) or 1

54
145 145 1

2. =
1

0
( 2)(2 ) (2 )2 + (2)2 =

1

0
2 3 4 2 + 4 =

1

0
4 3 2 + 1

Substitute = 2 + 1
2 = 1, = 2

=
2

1
2( 1) = 2

2

1
( 3 2 1 2) = 2 2

5
5 2 2

3
3 2

2

1

= 2 8
5
2 4

3
2 2

5
+ 2

3
= 8

15
2 + 1

3. Parametric equations for are = 4cos , = 4 sin ,
2 2

. Then

4 =
2

2
(4 cos )(4 sin )4 ( 4 sin )2 + (4 cos )2 =

2

2
45 cos sin4 16(sin2 + cos2 )

= 45
2

2
(sin4 cos )(4) = (4)6 1

5
sin5

2

2
= 2 · 46

5
= 1638 4

4. Parametric equations for are = 4 , = 3 + 3 , 0 1. Then

sin =
1

0
(4 ) sin(3 + 3 ) 42 + 32 = 20

1

0
sin(3 + 3 )
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SECTION 16.2 LINE INTEGRALS ¤ 629

Integrating by parts with = = , = sin(3 + 3 ) = 1
3
cos(3 + 3 ) gives

sin = 20 1
3
cos(3 + 3 ) + 1

9
sin(3 + 3 )

1

0
= 20 1

3
cos 6 + 1

9
sin 6 + 0 1

9
sin 3

= 20
9 (sin 6 3 cos 6 sin 3)

5. If we choose as the parameter, parametric equations for are = , = for 1 4 and

2 3 =
4

1
2 · ( )3

1

2
= 1

2

4

1
3 1

= 1
2

1
4

4 4

1
= 1

2
64 4 1

4
+ 1 = 243

8

6. Choosing as the parameter, we have = 3, = , 1 1. Then

=
1

1

3 · 3 2 =
3 1

1
= 1 1 = 1 .

7. = 1 + 2

On 1: = , = 1
2

= 1
2

, 0 2.

On 2: = , = 3 = , 2 3.

Then

( + 2 ) + 2 =
1
( + 2 ) + 2 +

2
( + 2 ) + 2

=
2

0
+ 2 1

2
+ 2 1

2
+

3

2
+ 2(3 ) + 2( 1)

=
2

0
2 + 1

2
2 +

3

2
6 2

= 2 + 1
6

3 2

0
+ 6 1

2
2 1

3
3 3

2
= 16

3
0 + 9

2
22
3
= 5

2

8. = 1 + 2

On 1: = 2 cos = 2 sin , = 2 sin

= 2 cos , 0
2
.

On 2: = 4 = 4 , = 2+

= , 0 1.

Then
2 + 2 =

1

2 + 2 +
2

2 + 2

=
2

0
(2 cos )2( 2 sin ) + (2 sin )2(2 cos ) +

1

0
(4 )2(4 ) + (2 + )2

= 8
2

0
( cos2 sin + sin2 cos ) +

1

0
(65 2 + 4 + 4)

= 8 1
3
cos3 + 1

3
sin3

2

0
+ 65

3
3 + 2 2 + 4

1

0
= 8 1

3
1
3
+ 65

3
+ 2 + 4 = 83

3
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630 ¤ CHAPTER 16 VECTOR CALCULUS

9. = 2 sin , = , = 2 cos , 0 . Then by Formula 9,

=
0
(2 sin )( )( 2 cos )

2
+

2
+

2

=
0

4 sin cos (2 cos )2 + (1)2 + (2 sin )2 =
0

2 sin 2 4(cos2 + sin2 ) + 1

= 2 5
0
sin 2 = 2 5 1

2
cos 2 + 1

4
sin 2

0

integrate by parts with
= , = sin 2

= 2 5
2

0 = 5

10. Parametric equations for are = 1 + 2 , = 5 + , = 4 , 0 1. Then

2 =
1

0
( 1 + 2 )(5 + )(4 )2 22 + 12 + 42 = 21

1

0
(32 4 + 144 3 80 2)

= 21 32 ·
5

5
+ 144 ·

4

4
80 ·

3

3

1

0

= 21 32
5
+ 36 80

3
= 236

15
21

11. Parametric equations for are = , = 2 , = 3 , 0 1. Then

=
1

0
(2 )(3 ) 12 + 22 + 32 = 14

1

0
6 2

= 14 1
12

6 2 1

0
= 14

12
( 6 1).

12. ( )2 + ( )2 + ( )2 = 12 + ( 2 sin 2 )2 + (2 cos 2 )2 = 1 + 4(sin2 2 + cos2 2 ) = 5. Then

( 2 + 2 + 2) =
2

0
( 2 + cos2 2 + sin2 2 ) 5 = 5

2

0
( 2 + 1)

= 5 1
3
3 +

2

0
= 5 1

3
(8 3) + 2 ) = 5 8

3
3 + 2

13. =
1

0
( )( 2) ( 2)( 3) · 2 =

1

0
2 4 5

= 2
5

5 1

0
= 2

5 (
1 0) = 2

5 ( 1)

14. + + =
4

1
· 1
2

1 2 + 2 · + · 2 =
4

1
1
2
1 2 + 2 + 2 3 2

= 1
3
3 2 + 1

3
3 + 4

5
5 2

4

1
= 8

3
+ 64

3
+ 128

5
1
3

1
3

4
5
= 722

15

15. Parametric equations for are = 1 + 3 , = , = 2 , 0 1. Then

2 + 2 + 2 =
1

0
(2 )2 · 3 + (1 + 3 )2 + 2 · 2 =

1

0
23 2 + 6 + 1

= 23
3

3 + 3 2 +
1

0
= 23

3
+ 3 + 1 = 35

3

16. On 1: = = = 0

= 0 = = 0 1.

On 2: = 1 = =

= = 1 + = 0 1.
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SECTION 16.2 LINE INTEGRALS ¤ 631

Then

( + ) + ( + ) + ( + )

=
1
( + ) + ( + ) + ( + ) +

2
( + ) + ( + ) + ( + )

=
1

0
(0 + ) + ( + ) · 0 + ( + 0) +

1

0
( + 1 + )( ) + (1 + 1 + ) + (1 + )

=
1

0
2 +

1

0
( 2 + 2) = 2 1

0
+ 2 + 2

1

0
= 1 + 1 = 2

17. (a) Along the line = 3, the vectors of F have positive -components, so since the path goes upward, the integrand F ·T is
always positive. Therefore

1
F · r =

1
F ·T is positive.

(b) All of the (nonzero) field vectors along the circle with radius 3 are pointed in the clockwise direction, that is, opposite the

direction to the path. So F ·T is negative, and therefore
2
F · r =

2
F ·T is negative.

18. Vectors starting on 1 point in roughly the same direction as 1, so the tangential component F ·T is positive. Then

1
F · r =

1
F ·T is positive. On the other hand, no vectors starting on 2 point in the same direction as 2, while

some vectors point in roughly the opposite direction, so we would expect
2
F · r =

2
F ·T to be negative.

19. r( ) = 11 4 i+ 3 j, so F(r( )) = (11 4)( 3) i+ 3( 3)2 j = 11 7 i+ 3 6 j and r0( ) = 44 3 i+ 3 2 j. Then

F · r = 1

0
F(r( )) · r0( ) =

1

0
(11 7 · 44 3 + 3 6 · 3 2) =

1

0
(484 10 + 9 8) = 44 11 + 9 1

0
= 45.

20. F(r( )) = ( 2 + 3) i+ ( 3 2) j+ ( 2)2k = ( 2 + 3) i+ ( 3 2) j+ 4 k, r0( ) = 2 i+ 3 2 j+ 2 k. Then

F · r= 1

0
F(r( )) · r0( ) =

1

0
(2 3 + 2 4 + 3 5 3 4 + 2 5) =

1

0
(5 5 4 + 2 3)

= 5
6
6 1

5
5 + 1

2
4 1

0
= 5

6
1
5
+ 1

2
= 17

15

21. F · r = 1

0
sin 3 cos( 2) 4 · 3 2 2 1

=
1

0
(3 2 sin 3 2 cos 2 + 4) = cos 3 sin 2 + 1

5
5 1

0
= 6

5 cos 1 sin 1

22. F · r =
0
hcos sin cos sin i · h sin cos 1i =

0
sin cos = 1

2
sin2

0
= 0

23. F(r( )) = ( )
2

i+ sin
2

j =
2
i+ sin

2

j, r0( ) = i 2
2
j. Then

F · r=
2

1

F(r( )) · r0( ) =
2

1

2

+ sin
2 · 2

2

=
2

1

2 2

2
2

sin
2

1 9633

24. F(r( )) = (sin ) sin(sin 5 ) i+ (sin 5 ) sin(cos ) j+ (cos ) sin(sin )k, r0( ) = sin i+ cos j+ 5 cos 5 k.

Then
F · r=

0
F(r( )) · r0( )

=
0
[ sin2 sin(sin 5 ) + cos sin 5 sin(cos ) + 5 cos cos 5 sin(sin )] 0 1363
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632 ¤ CHAPTER 16 VECTOR CALCULUS

25. = 2, = 3, = 4 so by Formula 9,

sin( + ) =
5

0
( 2) sin( 3 + 4) (2 )2 + (3 2)2 + (4 3)2

=
5

0
2 sin( 3 + 4) 4 2 + 9 4 + 16 6 15 0074

26. =
1

0
( ) · 2 (1)2 + (2 )2 + ( )2 =

1

0

3
1 + 4 2 + 2 0 8208

27. We graph F( ) = ( ) i+ j and the curve . We see that most of the vectors starting on point in roughly the same

direction as , so for these portions of the tangential component F ·T is positive. Although some vectors in the third
quadrant which start on point in roughly the opposite direction, and hence give negative tangential components, it seems

reasonable that the effect of these portions of is outweighed by the positive tangential components. Thus, we would expect

F · r = F ·T to be positive.

To verify, we evaluate F · r. The curve can be represented by r( ) = 2 cos i+ 2 sin j, 0 3
2
,

so F(r( )) = (2 cos 2 sin ) i+ 4 cos sin j and r0( ) = 2 sin i+ 2cos j. Then

F · r= 3 2

0
F(r( )) · r0( )

=
3 2

0
[ 2 sin (2 cos 2 sin ) + 2 cos (4 cos sin )]

= 4
3 2

0
(sin2 sin cos + 2 sin cos2 )

= 3 + 2
3

[using a CAS]

28. We graph F( ) =
2 + 2

i+
2 + 2

j and the curve . In the

first quadrant, each vector starting on points in roughly the same direction

as , so the tangential component F ·T is positive. In the second quadrant,
each vector starting on points in roughly the direction opposite to , so

F ·T is negative. Here, it appears that the tangential components in the first
and second quadrants counteract each other, so it seems reasonable to guess

that F · r = F ·T is zero. To verify, we evaluate F · r. The curve can be represented by

r( ) = i+ (1 + 2) j, 1 1, so F(r( )) =
2 + (1 + 2)2

i+
1 + 2

2 + (1 + 2)2
j and r0( ) = i+ 2 j. Then

F · r= 1

1
F(r( )) · r0( ) =

1

1 2 + (1 + 2)2
+

2 (1 + 2)

2 + (1 + 2)2

=
1

1

(3 + 2 2)
4 + 3 2 + 1

= 0 [since the integrand is an odd function]
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29. (a) F · r = 1

0

2 1 5 · 2 3 2 =
1

0
2

2 1 + 3 7 =
2 1 + 3

8
8
1

0
= 11

8
1

(b) r(0) = 0, F(r(0)) = 1 0 ;

r 1

2
= 1

2
1

2 2
, F r 1

2
= 1 2 1

4 2
;

r(1) = h1 1i, F(r(1)) = h1 1i.
In order to generate the graph with Maple, we use the line command in

the plottools package to define each of the vectors. For example,

v1:=line([0,0],[exp(-1),0]):

generates the vector from the vector field at the point (0 0) (but without an arrowhead) and gives it the name v1. To show

everything on the same screen, we use the display command. In Mathematica, we use ListPlot (with the

PlotJoined - True option) to generate the vectors, and then Show to show everything on the same screen.

30. (a) F · r = 1

1
2 2 3 · h2 3 2 i =

1

1
(4 + 3 2 6 2) = 2 2 3 1

1
= 2

(b) Now F(r( )) = 2 2 3 , so F(r( 1)) = h 2 1 3i, F r 1
2

= 1 1
4

3
2
, F r 1

2
= 1 1

4
3
2
,

and F(r(1)) = h2 1 3i.

31. = cos 4 , = sin 4 , = , 0 2 .

Then = ( sin 4 )(4) cos 4 = (4 sin 4 + cos 4 ),

= (cos 4 )(4) sin 4 = ( 4 cos 4 + sin 4 ), and = , so

2

+
2

+
2

= ( )2[(4 sin 4 + cos 4 )2 + ( 4 cos 4 + sin 4 )2 + 1]

= 16(sin2 4 + cos2 4 ) + sin2 4 + cos2 4 + 1 = 3 2

Therefore 3 2 =
2

0
( cos 4 )3( sin 4 )2( ) (3 2 )

=
2

0
3 2 7 cos3 4 sin2 4 = 172,704

5,632,705 2 (1 14 )

32. (a) We parametrize the circle as r( ) = 2 cos i+ 2 sin j, 0 2 . So F(r( )) = 4 cos2 4 cos sin ,

r0( ) = h 2 sin 2 cos i, and = F · r = 2

0
( 8 cos2 sin + 8 cos2 sin ) = 0.
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634 ¤ CHAPTER 16 VECTOR CALCULUS

(b) From the graph, we see that all of the vectors in the field are

perpendicular to the path. This indicates that the field does no work

on the particle, since the field never pulls the particle in the direction

in which it is going. In other words, at any point along , F ·T = 0,
and so certainly F · r = 0 .

33. We use the parametrization = 2 cos , = 2 sin ,
2 2

. Then

=
2
+

2
= ( 2 sin )2 + (2 cos )2 = 2 , so = = 2

2

2
= 2 ( ),

= 1
2

= 1
2

2

2
(2 cos )2 = 1

2
4 sin

2

2
= 4 , = 1

2
= 1

2

2

2
(2 sin )2 = 0.

Hence ( ) = 4 0 .

34. We use the parametrization = cos , = sin , 0
2
. Then

=
2
+

2
= ( sin )2 + ( cos )2 = , so

= ( ) = =
2

0
( cos )( sin ) = 3 2

0
cos sin = 3 1

2
sin2

2

0
= 1

2
3,

=
1
3 2

( ) =
2
3

2

0

( cos )2( sin ) =
2
3
· 4

2

0

cos2 sin

= 2 1
3
cos3

2

0
= 2 0 + 1

3
= 2

3
, and

=
1
3 2

( ) =
2
3

2

0

( cos )( sin )2 =
2
3
· 4

2

0

sin2 cos

= 2 1
3
sin3

2

0
= 2 1

3
0 = 2

3
.

Therefore the mass is 1
2

3 and the center of mass is ( ) = 2
3

2
3
.

35. (a) =
1

( ) , =
1

( ) , =
1

( ) where = ( ) .

(b) = =
2

0
4 sin2 + 4cos2 + 9 = 13

2

0
= 2 13,

=
1

2 13

2

0

2 13 sin = 0, =
1

2 13

2

0

2 13 cos = 0,

=
1

2 13

2

0

13 (3 ) =
3

2
2 2 = 3 . Hence ( ) = (0 0 3 ).

36. = ( 2 + 2 + 2) =
2

0
( 2 + 1) (1)2 + ( sin )2 + (cos )2 =

2

0
( 2 + 1) 2 = 2 8

3
3 + 2 ,

=
1

2 8
3

3 + 2

2

0

2 ( 3 + ) =
4 4 + 2 2

8
3

3 + 2
=
3 2 2 + 1

4 2 + 3
,
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SECTION 16.2 LINE INTEGRALS ¤ 635

=
3

2 2 (4 2 + 3)

2

0

2 cos ( 2 + 1) = 0, and

=
3

2 2 (4 2 + 3)

2

0

2 sin ( 2 + 1) = 0. Hence ( ) =
3 (2 2 + 1)

4 2 + 3
0 0 .

37. From Example 3, ( ) = (1 ), = cos , = sin , and = , 0

= 2 ( ) =
0
sin2 [ (1 sin )] =

0
(sin2 sin3 )

= 1
2 0

(1 cos 2 )
0
(1 cos2 ) sin

Let = cos , = sin

in the second integral

=
2
+

1

1
(1 2) =

2
4
3

= 2 ( ) =
0
cos2 (1 sin ) =

2 0
(1 + cos 2 )

0
cos2 sin

= 2
2
3
, using the same substitution as above.

38. The wire is given as = 2 sin , = 2 cos , = 3 , 0 2 with ( ) = . Then

= (2 cos )2 + ( 2 sin )2 + 32 = 4(cos2 + sin2 ) + 9 = 13 and

= ( 2 + 2) ( ) =
2

0
(4 cos2 + 9 2)( ) 13 = 13 4 1

2
+ 1

4
sin 2 + 3 3 2

0

= 13 (4 + 24 3) = 4 13 (1 + 6 2)

= ( 2 + 2) ( ) =
2

0
4 sin2 + 9 2 ( ) 13 = 13 4 1

2
1
4 sin 2 + 3 3 2

0

= 13 (4 + 24 3) = 4 13 (1 + 6 2)

= ( 2 + 2) ( ) =
2

0
(4 sin2 + 4 cos2 )( ) 13 = 4 13

2

0
= 8 13

39. = F · r = 2

0
h sin 3 cos i · h1 cos sin i

=
2

0
( cos sin + sin cos + 3 sin sin cos )

=
2

0
( cos + 2 sin ) = 1

2
2 ( sin + cos ) 2 cos

2

0

integrate by parts
in the second term

= 2 2

40. Choosing as the parameter, the curve is parametrized by = 2 + 1, = , 0 1. Then

= F · r = 1

0
2 + 1

2 2+1 · h2 1i =
1

0
2 2 + 1

2
+

2+1

= 1
3

2 + 1
3
+ 1

2

2+1
1

0
= 8

3
+ 1

2
2 1

3
1
2
= 1

2
2 1

2
+ 7

3

41. r( ) = h2 1 i, 0 1.

= F · r = 1

0
2 2 (1 )2 1 (2 )2 · h2 1 1i

=
1

0
(4 2 2 + 1 + 2 2 1 + + 4 2) =

1

0
( 2 + 8 2) = 1

3
3 + 4 2 2

1

0
= 7

3

42. r( ) = 2 i+ j+ 5 k, 0 1. Therefore

= F · r =
1

0

h2 5 i
(4 + 26 2)3 2

· h0 1 5i =
1

0

26

(4 + 26 2)3 2
= (4 + 26 2) 1 2

1

0
= 1

2
1

30
.

c° 2012 Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part.

NOT FOR SALE

°°cc 2012 Cengage Learning. All Rights Reserved. May not be scanned, copied, or2012 Cengage Learning. All Rights Reserved. May not be scanned, copied, duplicated, or posted to a publicly accessible website, in whole or in part.licated, or posted to a publicly accessible website, in whole or in par

408



636 ¤ CHAPTER 16 VECTOR CALCULUS

43. (a) r( ) = 2 i+ 3 j v( ) = r0( ) = 2 i+ 3 2 j a( ) = v0( ) = 2 i+ 6 j, and force is mass times

acceleration: F( ) = a( ) = 2 i+ 6 j.

(b) = F · r = 1

0
(2 i+ 6 j) · (2 i+ 3 2 j) =

1

0
(4 2 + 18 2 3)

= 2 2 2 + 9
2

2 4 1

0
= 2 2 + 9

2
2

44. r( ) = sin i+ cos j+ k v( ) = r0( ) = cos i sin j+ k a( ) = v0( ) = sin i cos j

and F( ) = a( ) = sin i cos j. Thus

= F · r =
2

0
( sin i cos j) · ( cos i sin j+ k)

=
2

0
( 2 sin cos + 2 sin cos ) = ( 2 2) 1

2
sin2

2

0
= 1

2
( 2 2)

45. Let F = 185k. To parametrize the staircase, let = 20 cos , = 20 sin , = 90
6 = 15 , 0 6

= F · r = 6

0
h0 0 185i · 20 sin 20 cos 15 = (185) 15

6

0
= (185)(90) 1 67× 104 ft-lb

46. This time is a function of : = 185 9
6

= 185 3
2
. So let F = 185 3

2
k. To parametrize the staircase,

let = 20 cos , = 20 sin , = 90
6

= 15 , 0 6 . Therefore

= F · r = 6

0
0 0 185 3

2 · 20 sin 20 cos 15 = 15 6

0
185 3

2

= 15 185 3
4

2 6

0
= 90 185 9

2
1 62× 104 ft-lb

47. (a) r( ) = hcos sin i, 0 2 , and let F = h i. Then
= F · r =

2

0
h i · h sin cos i =

2

0
( sin + cos ) = cos + sin

2

0

= + 0 + 0 = 0

(b) Yes. F ( ) = x = h i and

= F · r =
2

0
h cos sin i · h sin cos i =

2

0
( sin cos + sin cos ) =

2

0
0 = 0.

48. Consider the base of the fence in the -plane, centered at the origin, with the

height given by = ( ). The fence can be graphed using the parametric

equations = 10 cos , = 10 sin ,

= 4 + 0 01((10 cos )2 (10 sin )2) = (4 + cos2 sin2 )

= (4 + cos 2 ), 0 2 , 0 1.

The area of the fence is ( ) where , the base of the fence, is given by = 10 cos , = 10 sin , 0 2 .

Then
( ) =

2

0
4 + 0 01((10 cos )2 (10 sin )2) ( 10 sin )2 + (10 cos )2

=
2

0
(4 + cos 2 ) 100 = 10 4 + 1

2 sin 2
2

0
= 10(8 ) = 80 m2

If we paint both sides of the fence, the total surface area to cover is 160 m2, and since 1 L of paint covers 100 m2, we require
160
100

= 1 6 5 03 L of paint.
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SECTION 16.3 THE FUNDAMENTAL THEOREM FOR LINE INTEGRALS ¤ 637

49. Let r( ) = h ( ) ( ) ( )i and v = h 1 2 3i. Then

v · r = h 1 2 3i · h 0( ) 0( ) 0( )i = [ 1
0( ) + 2

0( ) + 3
0( )]

= 1 ( ) + 2 ( ) + 3 ( ) = [ 1 ( ) + 2 ( ) + 3 ( )] [ 1 ( ) + 2 ( ) + 3 ( )]

= 1 [ ( ) ( )] + 2 [ ( ) ( )] + 3 [ ( ) ( )]

= h 1 2 3i · h ( ) ( ) ( ) ( ) ( ) ( )i
= h 1 2 3i · [h ( ) ( ) ( )i h ( ) ( ) ( )i] = v · [r( ) r( )]

50. If r( ) = h ( ) ( ) ( )i then

r · r = h ( ) ( ) ( )i · h 0( ) 0( ) 0( )i = [ ( ) 0( ) + ( ) 0( ) + ( ) 0( )]

= 1
2
[ ( )]2 + 1

2
[ ( )]2 + 1

2
[ ( )]2

= 1
2

[ ( )]2 + [ ( )]2 + [ ( )]2 [ ( )]2 + [ ( )]2 + [ ( )]2

= 1
2
|r( )|2 |r( )|2

51. The work done in moving the object is F · r = F ·T . We can approximate this integral by dividing into

7 segments of equal length = 2 and approximating F ·T, that is, the tangential component of force, at a point ( ) on

each segment. Since is composed of straight line segments, F ·T is the scalar projection of each force vector onto .

If we choose ( ) to be the point on the segment closest to the origin, then the work done is

F ·T
7

=1

[F( ) ·T( )] = [2 + 2 + 2 + 2 + 1 + 1 + 1](2) = 22. Thus, we estimate the work done to

be approximately 22 J.

52. Use the orientation pictured in the figure. Then sinceB is tangent to any circle that lies in the plane perpendicular to the wire,

B = |B|T where T is the unit tangent to the circle : = cos , = sin . ThusB = |B| h sin cos i. Then

B · r = 2

0
|B| h sin cos i · h sin cos i =

2

0
|B| = 2 |B|. (Note that |B| here is the magnitude

of the field at a distance from the wire’s center.) But by Ampere’s Law B · r = 0 . Hence |B| = 0 (2 ).

16.3 The Fundamental Theorem for Line Integrals

1. appears to be a smooth curve, and since is continuous, we know is differentiable. Then Theorem 2 says that the value

of · r is simply the difference of the values of at the terminal and initial points of . From the graph, this is

50 10 = 40.

2. is represented by the vector function r( ) = ( 2 + 1) i+ ( 3 + ) j, 0 1, so r0( ) = 2 i+ (3 2 + 1) j. Since

3 2 + 1 6= 0, we have r0( ) 6= 0, thus is a smooth curve. is continuous, and hence is differentiable, so by Theorem 2

we have · r = (r(1)) (r(0)) = (2 2) (1 0) = 9 3 = 6.
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638 ¤ CHAPTER 16 VECTOR CALCULUS

3. (2 3 ) = 3 = ( 3 + 4 8) and the domain of F is R2 which is open and simply-connected, so by

Theorem 6 F is conservative. Thus, there exists a function such that = F, that is, ( ) = 2 3 and

( ) = 3 + 4 8. But ( ) = 2 3 implies ( ) = 2 3 + ( ) and differentiating both sides of this

equation with respect to gives ( ) = 3 + 0( ). Thus 3 + 4 8 = 3 + 0( ) so 0( ) = 4 8 and

( ) = 2 2 8 + where is a constant. Hence ( ) = 2 3 + 2 2 8 + is a potential function for F.

4. ( sin ) = cos = ( cos ) and the domain of F is R2. Hence F is conservative so there exists a function

such that = F. Then ( ) = sin implies ( ) = sin + ( ) and ( ) = cos + 0( ). But

( ) = cos so 0( ) = 0 ( ) = . Then ( ) = sin + is a potential function for F.

5. ( cos ) = sin , ( sin ) = sin . Since these are not equal, F is not conservative.

6. (3 2 2 2) = 4 , (4 + 3) = 4 . Since these are not equal, F is not conservative.

7. ( + sin ) = + cos = ( + cos ) and the domain of F is R2. Hence F is conservative so there

exists a function such that = F. Then ( ) = + sin implies ( ) = + sin + ( ) and

( ) = + cos + 0( ). But ( ) = + cos so ( ) = and ( ) = + sin + is a potential

function for F.

8. (2 + 2) = 2 2 3 = ( 2 2 3) and the domain of F is {( ) | 0} which is open and
simply-connected. Hence F is conservative, so there exists a function such that = F. Then ( ) = 2 + 2

implies ( ) = 2 + 2 + ( ) and ( ) = 2 2 3 + 0( ). But ( ) = 2 2 3 so
0( ) = 0 ( ) = . Then ( ) = 2 + 2 + is a potential function for F.

9. (ln + 2 3) = 1 + 6 2 = (3 2 2 + ) and the domain of F is {( ) | 0} which is open and simply
connected. Hence F is conservative so there exists a function such that = F. Then ( ) = ln + 2 3 implies

( ) = ln + 2 3 + ( ) and ( ) = + 3 2 2 + 0( ). But ( ) = 3 2 2 + so 0( ) = 0

( ) = and ( ) = ln + 2 3 + is a potential function for F.

10. ( cosh + sinh )
= 2 sinh + cosh + cosh = 2 sinh + 2 cosh =

( 2 cosh )

and the domain of F is R2. Thus F is conservative, so there exists a function such that = F. Then

( ) = cosh + sinh implies ( ) = sinh + ( ) ( ) = 2 cosh + 0( ). But

( ) = 2 cosh so ( ) = and ( ) = sinh + is a potential function for F.

11. (a) F has continuous first-order partial derivatives and 2 = 2 = ( 2) on R2, which is open and simply-connected.

Thus, F is conservative by Theorem 6. Then we know that the line integral of F is independent of path; in particular, the

value of F · r depends only on the endpoints of . Since all three curves have the same initial and terminal points,

F · r will have the same value for each curve.
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SECTION 16.3 THE FUNDAMENTAL THEOREM FOR LINE INTEGRALS ¤ 639

(b) We first find a potential function , so that = F. We know ( ) = 2 and ( ) = 2. Integrating

( ) with respect to , we have ( ) = 2 + ( ). Differentiating both sides with respect to gives

( ) = 2 + 0( ), so we must have 2 + 0( ) = 2 0( ) = 0 ( ) = , a constant.

Thus ( ) = 2 + . All three curves start at (1 2) and end at (3 2), so by Theorem 2,

F · r = (3 2) (1 2) = 18 2 = 16 for each curve.

12. (a) ( ) = 2 implies ( ) = 1
3

3 + ( ) and ( ) = 0 + 0( ). But ( ) = 2 so

0( ) = 2 ( ) = 1
3

3 + . We can take = 0, so ( ) = 1
3

3 + 1
3

3.

(b) F · r = (2 8) ( 1 2) = 8
3
+ 512

3
1
3
+ 8

3
= 171.

13. (a) ( ) = 2 implies ( ) = 1
2

2 2 + ( ) and ( ) = 2 + 0( ). But ( ) = 2 so 0( ) = 0

( ) = , a constant. We can take = 0, so ( ) = 1
2

2 2.

(b) The initial point of is r(0) = (0 1) and the terminal point is r(1) = (2 1), so

F · r = (2 1) (0 1) = 2 0 = 2.

14. (a) ( ) = 2 implies ( ) = + ( ) ( ) = + + 0( ) = (1 + ) + 0( ). But

( ) = (1 + ) so 0( ) = 0 ( ) = . We can take = 0, so ( ) = .

(b) The initial point of is r(0) = (1 0) and the terminal point is r( 2) = (0 2), so

F · r = (0 2) (1 0) = 0 0 = 1.

15. (a) ( ) = implies ( ) = + ( ) and so ( ) = + ( ). But ( ) = so

( ) = 0 ( ) = ( ). Thus ( ) = + ( ) and ( ) = + 0( ). But

( ) = + 2 , so 0( ) = 2 ( ) = 2 + . Hence ( ) = + 2 (taking = 0).

(b) F · r = (4 6 3) (1 0 2) = 81 4 = 77.

16. (a) ( ) = 2 + 2 2 implies ( ) = 2 + 2 2 + ( ) and so ( ) = 2 + ( ). But

( ) = 2 so ( ) = 0 ( ) = ( ). Thus ( ) = 2 + 2 2 + ( ) and

( ) = 2 + 2 2 + 0( ). But ( ) = 2 + 2 2 , so 0( ) = 0 ( ) = . Hence

( ) = 2 + 2 2 (taking = 0).

(b) = 0 corresponds to the point (0 1 0) and = 1 corresponds to (1 2 1), so

F · r = (1 2 1) (0 1 0) = 5 0 = 5.

17. (a) ( ) = implies ( ) = + ( ) and so ( ) = + ( ). But ( ) = so

( ) = 0 ( ) = ( ). Thus ( ) = + ( ) and ( ) = + 0( ). But

( ) = , so 0( ) = 0 ( ) = . Hence ( ) = (taking = 0).

(b) r(0) = h1 1 0i, r(2) = h5 3 0i so F · r = (5 3 0) (1 1 0) = 3 0 + 0 = 4.
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18. (a) ( ) = sin implies ( ) = sin + ( ) and so ( ) = cos + ( ). But

( ) = cos + cos so ( ) = cos ( ) = cos + ( ). Thus

( ) = sin + cos + ( ) and ( ) = sin + 0( ). But ( ) = sin , so 0( ) = 0

( ) = . Hence ( ) = sin + cos (taking = 0).

(b) r(0) = h0 0 0i, r( 2) = h1 2 i so F · r = (1 2 ) (0 0 0) = 1
2

0 = 1
2
.

19. The functions 2 and 2 2 have continuous first-order derivatives on R2 and

2 = 2 = 2 2 , so F( ) = 2 i+ 2 2 j is a conservative vector field by

Theorem 6 and hence the line integral is independent of path. Thus a potential function exists, and ( ) = 2

implies ( ) = 2 + ( ) and ( ) = 2 + 0( ). But ( ) = 2 2 so
0( ) = 2 ( ) = 2 + . We can take = 0, so ( ) = 2 + 2. Then

2 + (2 2 ) = (2 1) (1 0) = 4 1 + 1 1 = 4 .

20. The functions sin and cos sin have continuous first-order derivatives on R2 and

(sin ) = cos = ( cos sin ), so F( ) = sin i+ ( cos sin ) j is a conservative vector field by

Theorem 6 and hence the line integral is independent of path. Thus a potential function exists, and ( ) = sin implies

( ) = sin + ( ) and ( ) = cos + 0( ). But ( ) = cos sin so
0( ) = sin ( ) = cos + . We can take = 0, so ( ) = sin + cos . Then

sin + ( cos sin ) = (1 ) (2 0) = 1 1 = 2.

21. If F is conservative, then F · r is independent of path. This means that the work done along all piecewise-smooth curves
that have the described initial and terminal points is the same. Your reply: It doesn’t matter which curve is chosen.

22. The curves 1 and 2 connect the same two points but
1
F · r 6=

2
F · r. Thus F is not independent of path, and

therefore is not conservative.

23. F( ) = 2 3 2 i+ 3 j, = F · r. Since (2 3 2) = 3 = (3 ) , there exists a function

such that = F. In fact, ( ) = 2 3 2 ( ) = 2 3 2 + ( ) ( ) = 3 1 2 + 0( ). But

( ) = 3 so 0( ) = 0 or ( ) = . We can take = 0 ( ) = 2 3 2. Thus

= F · r = (2 4) (1 1) = 2(2)(8) 2(1) = 30.

24. F( ) = i j, = F · r. Since = = , there exists a function such that

= F. In fact, = ( ) = + ( ) = + 0( ) 0( ) = 0, so we can take

( ) = as a potential function for F. Thus = F · r = (2 0) (0 1) = 2 0 = 2.
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SECTION 16.3 THE FUNDAMENTAL THEOREM FOR LINE INTEGRALS ¤ 641

25. We know that if the vector field (call it F) is conservative, then around any closed path , F · r = 0. But take to be a

circle centered at the origin, oriented counterclockwise. All of the field vectors that start on are roughly in the direction of

motion along , so the integral around will be positive. Therefore the field is not conservative.

26. If a vector field F is conservative, then around any closed path , F · r = 0. For any closed path we draw in the field, it
appears that some vectors on the curve point in approximately the same direction as the curve and a similar number point in

roughly the opposite direction. (Some appear perpendicular to the curve as well.) Therefore it is plausible that F · r = 0
for every closed curve which means F is conservative.

27. From the graph, it appears that F is conservative, since around all closed

paths, the number and size of the field vectors pointing in directions similar

to that of the path seem to be roughly the same as the number and size of the

vectors pointing in the opposite direction. To check, we calculate

(sin ) = cos = (1 + cos ). Thus F is conservative, by

Theorem 6.

28. ( ) = cos( 2 ) i 2 cos( 2 ) j

(a) We use Theorem 2:
1
F · r =

1
· r = (r( )) (r( )) where 1 starts at = and ends at = . So

because (0 0) = sin 0 = 0 and ( ) = sin( 2 ) = 0, one possible curve 1 is the straight line from (0 0) to

( ); that is, r( ) = i+ j, 0 1.

(b) From (a),
2
F · r = (r( )) (r( )). So because (0 0) = sin 0 = 0 and

2
0 = 1, one possible curve 2 is

r( ) = 2
i, 0 1, the straight line from (0 0) to

2
0 .

29. Since F is conservative, there exists a function such that F = , that is, = , = , and = . Since ,

, and have continuous first order partial derivatives, Clairaut’s Theorem says that = = = ,

= = = , and = = = .

30. Here F( ) = i+ j+ k. Then using the notation of Exercise 29 , = 0 while = . Since these

aren’t equal, F is not conservative. Thus by Theorem 4, the line integral of F is not independent of path.

31. = {( ) | 0 3} consists of those points between, but not
on, the horizontal lines = 0 and = 3.

(a) Since does not include any of its boundary points, it is open. More

formally, at any point in there is a disk centered at that point that

lies entirely in .

(b) Any two points chosen in can always be joined by a path that lies

entirely in , so is connected. ( consists of just one “piece.”)
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642 ¤ CHAPTER 16 VECTOR CALCULUS

(c) is connected and it has no holes, so it’s simply-connected. (Every simple closed curve in encloses only points that are
in .)

32. = {( ) | 1 | | 2} consists of those points between, but
not on, the vertical lines = 1 and = 2, together with the points

between the vertical lines = 1 and = 2.

(a) The region does not include any of its boundary points, so it is open.

(b) consists of two separate pieces, so it is not connected. [For

instance, both the points ( 1 5 0) and (1 5 0) lie in but they

cannot be joined by a path that lies entirely in .]

(c) Because is not connected, it’s not simply-connected.

33. = ( ) | 1 2 + 2 4 0 is the semiannular region

in the upper half-plane between circles centered at the origin of radii

1 and 2 (including all boundary points).

(a) includes boundary points, so it is not open. [Note that at any

boundary point, (1 0) for instance, any disk centered there cannot lie

entirely in .]

(b) The region consists of one piece, so it’s connected.

(c) is connected and has no holes, so it’s simply-connected.

34. = {( ) | ( ) 6= (2 3)} consists of all points in the -plane

except for (2 3).

(a) has only one boundary point, namely (2 3), which is not included,

so the region is open.

(b) is connected, as it consists of only one piece.

(c) is not simply-connected, as it has a hole at (2 3). Thus any simple

closed curve that encloses (2 3) lies in but includes a point that is

not in .

35. (a) =
2 + 2

, =
2 2

( 2 + 2)2
and =

2 + 2
, =

2 2

( 2 + 2)2
. Thus = .

(b) 1: = cos , = sin , 0 , 2: = cos , = sin , = 2 to = . Then

1

F · r =
0

( sin )( sin ) + (cos )(cos )

cos2 + sin2
=

0

= and
2

F · r =
2

=

Since these aren’t equal, the line integral of F isn’t independent of path. (Or notice that
3
F · r = 2

0
= 2 where

3 is the circle 2 + 2 = 1, and apply the contrapositive of Theorem 3.) This doesn’t contradict Theorem 6, since the

domain of F, which is R2 except the origin, isn’t simply-connected.
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SECTION 16.4 GREEN’S THEOREM ¤ 643

36. (a) Here F(r) = r |r|3 and r = i+ j+ k. Then (r) = |r| is a potential function for F, that is, = F.

(See the discussion of gradient fields in Section 16.1.) Hence F is conservative and its line integral is independent of path.

Let 1 = ( 1 1 1) and 2 = ( 2 2 2).

= F · r = ( 2) ( 1) =
( 2
2 +

2
2 +

2
2)
1 2

+
( 2
1 +

2
1 +

2
1)
1 2

=
1

1

1

2
.

(b) In this case, = ( )

=
1

1 52× 1011
1

1 47× 1011

= (5 97× 1024)(1 99× 1030)(6 67× 10 11)( 2 2377× 10 13) 1 77× 1032 J

(c) In this case, =

=
1

10 12

1

5× 10 13
= 8 985× 109 (1) 1 6× 10 19 1012 1400 J.

16.4 Green's Theorem

1. (a) Parametric equations for are = 2cos , = 2 sin , 0 2 . Then

( ) + ( + ) =
2

0
[(2 cos 2 sin )( 2 sin ) + (2 cos + 2 sin )(2 cos )]

=
2

0
(4 sin2 + 4cos2 ) =

2

0
4 = 4

2

0
= 8

(b) Note that as given in part (a) is a positively oriented, smooth, simple closed curve. Then by Green’s Theorem,

( ) + ( + ) = ( + ) ( ) = [1 ( 1)] = 2

= 2 ( ) = 2 (2)2 = 8

2. (a) 1: = = = 0 = 0 0 3.

2: = 3 = 0 = = 0 1.

3: = 3 = = 1 = 0 0 3.

4: = 0 = 0 = 1 = 0 1

Thus + 2 =
1 + 2 + 3 + 4

+ 2 =
3

0
0 +

1

0
9 +

3

0
(3 )( 1) +

1

0
0

= 9
1

0
+ 1

2
2 3

3

0
= 9 + 9

2 9 = 9
2

(b) + 2 = ( 2) ( ) =
3

0

1

0
(2 ) =

3

0

1

0
= 1

2
2 3

0
· 1 = 9

2

3. (a) 1: = = , = 0 = 0 , 0 1.

2: = 1 = 0 , = = , 0 2.

3: = 1 = , = 2 2 = 2 , 0 1.
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644 ¤ CHAPTER 16 VECTOR CALCULUS

Thus
+ 2 3 =

1 + 2 + 3

+ 2 3

=
1

0
0 +

2

0
3 +

1

0
(1 )(2 2 ) 2(1 )2(2 2 )3

= 0 + 1
4
4 2

0
+ 2

3
(1 )3 + 8

3
(1 )6

1

0
= 4 10

3
= 2

3

(b) + 2 3 = ( 2 3) ( ) =
1

0

2

0
(2 3 )

=
1

0
1
2

4 =2

=0
=

1

0
(8 5 2 2) = 4

3
2
3
= 2

3

4. (a) 1: = = , = 2 = 2 , 0 1

2: = 1 = , = 1 = 0 , 0 1

3: = 0 = 0 , = 1 = , 0 1

Thus
2 2 + =

1+ 2+ 3

2 2 +

=
1

0
2( 2)2 + ( 2)(2 ) +

1

0
(1 )2(1)2( ) + (1 )(1)(0 )

+
1

0
(0)2(1 )2(0 ) + (0)(1 )( )

=
1

0
6 + 2 4 +

1

0
1 + 2 2 +

1

0
0

= 1
7
7 + 2

5
5 1

0
+ + 2 1

3
3 1

0
+ 0 = 1

7
+ 2

5
+ 1 + 1 1

3
= 22

105

(b) 2 2 + = ( ) ( 2 2) =
1

0

1

2

( 2 2 )

=
1

0
1
2

2 2 2 =1

= 2 =
1

0
1
2

2 1
2

4 + 6

= 1
2

1
3

3 1
10

5 + 1
7

7 1

0
= 1

2
1
3

1
10
+ 1

7
= 22

105

5. The region enclosed by is given by {( ) | 0 2 2 }, so
2 + 2 2 = (2 2 ) ( 2)

=
2

0

2
(4 2 )

=
2

0
2 =2

=

=
2

0
3 3 = 3

4
4 2

0
= 12

6. The region enclosed by is [0 5]× [0 2], so

cos + 2 sin = ( 2 sin ) (cos ) =
5

0

2

0
[2 sin ( sin )]

=
5

0
(2 + 1)

2

0
sin = 2 +

5

0
cos

2

0
= 30(1 cos 2)

c° 2012 Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part.

NOT FOR SALE

°°cc 2012 Cengage Learning. All Rights Reserved. May not be scanned, copied, or2012 Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part.duplicated, or posted to a publicly accessible website, in whole or in part.

417



SECTION 16.4 GREEN’S THEOREM ¤ 645

7. + + (2 + cos 2) = (2 + cos 2) +

=
1

0 2 (2 1) =
1

0
( 1 2 2) = 1

3

8. 4 + 2 3 = (2 3) ( 4) = (2 3 4 3)

= 2 3 = 0

because ( ) = 3 is an odd function with respect to and is symmetric about the -axis.

9. 3 3 = ( 3) ( 3) = ( 3 2 3 2) =
2

0

2

0
( 3 2)

= 3
2

0

2

0
3 = 3(2 )(4) = 24

10. (1 3) + ( 3 +
2
) = ( 3 +

2
) (1 3) = (3 2 + 3 2)

=
2

0

3

2
(3 2) = 3

2

0

3

2
3

= 3
2

0
1
4

4 3

2
= 3(2 ) · 1

4
(81 16) = 195

2

11. F( ) = h cos sin + cos i and the region enclosed by is given by

{( ) | 0 2 0 4 2 }. is traversed clockwise, so gives the positive orientation.

F · r = ( cos sin ) + ( + cos ) = ( + cos ) ( cos sin )

= ( sin + cos cos + sin ) =
2

0

4 2

0

=
2

0
1
2

2 =4 2

=0
=

2

0
1
2
(4 2 )2 =

2

0
(8 8 + 2 2) = 8 4 2 + 2

3
3 2

0

= 16 16 + 16
3

0 = 16
3

12. F( ) = + 2 + 2 and the region enclosed by is given by {( ) | 2 2 0 cos }.
is traversed clockwise, so gives the positive orientation.

F · r = + 2 + + 2 = + 2 + 2

=
2

2

cos

0
(2 2 ) =

2

2
2 2 =cos

=0

=
2

2
(2 cos cos2 ) =

2

2
2 cos 1

2 (1 + cos 2 )

= 2 sin + 2 cos 1
2

+ 1
2
sin 2

2

2
[integrate by parts in the first term]

= 1
4

1
4

= 1
2

13. F( ) = h cos sin i and the region enclosed by is the disk with radius 2 centered at (3 4).

is traversed clockwise, so gives the positive orientation.

F · r = ( cos ) + ( sin ) = ( sin ) ( cos )

= (sin 1 sin ) = = area of = (2)2 = 4
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646 ¤ CHAPTER 16 VECTOR CALCULUS

14. F( ) = 2 + 1 tan 1 and the region enclosed by is given by {( ) | 0 1 1}.
is oriented positively, so

F · r = 2 + 1 + tan 1 = tan 1 ( 2 + 1)

=
1

0

1 1

1 + 2
0 =

1

0

1

1 + 2
[ ] =1= =

1

0

1

1 + 2
(1 )

=
1

0

1

1 + 2 1 + 2
= tan 1 1

2
ln(1 + 2)

1

0

=
4

1

2
ln 2

15. Here = 1 + 2 where

1 can be parametrized as = , = 1, 1 1, and

2 is given by = , = 2 2, 1 1.

Then the line integral is

1+ 2

2 + 2 =
1

1
[1 · + 2 · 0]
+

1

1
[(2 2)2 ( 1) + ( )2 2 2

( 2 )]

=
1

1
[ (2 2)2 2 3 2 2

] = 8 + 48 1

according to a CAS. The double integral is

=
1

1

2 2

1

(2 2 ) = 8 + 48 1, verifying Green’s Theorem in this case.

16. We can parametrize as = cos , = 2 sin , 0 2 . Then the line integral is

+ =
2

0
2 cos (cos )3(2 sin )5 ( sin ) +

2

0
(cos )3(2 sin )8 · 2 cos

=
2

0
[ 2 cos sin + 32 cos3 sin6 + 512 cos4 sin8 ] = 7 ,

according to a CAS. The double integral is =
1

1

4 4 2

4 4 2

(3 2 8 + 5 3 4) = 7 .

17. By Green’s Theorem, = F · r = ( + ) + 2 = ( 2 ) where is the path described in the

question and is the triangle bounded by . So

=
1

0

1

0
( 2 ) =

1

0
1
3

3 =1

=0
=

1

0
1
3
(1 )3 (1 )

= 1
12
(1 )4 1

2
2 + 1

3
3 1

0
= 1

2
+ 1

3
1
12

= 1
12

18. By Green’s Theorem, = F · r = + ( 3 + 3 2) = (3 2 + 3 2 0) , where is the semicircular

region bounded by . Converting to polar coordinates, we have = 3
2

0 0
2 · = 3 1

4
4 2

0
= 12 .

19. Let 1 be the arch of the cycloid from (0 0) to (2 0), which corresponds to 0 2 , and let 2 be the segment from

(2 0) to (0 0), so 2 is given by = 2 , = 0, 0 2 . Then = 1 2 is traversed clockwise, so is
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SECTION 16.4 GREEN’S THEOREM ¤ 647

oriented positively. Thus encloses the area under one arch of the cycloid and from (5) we have

= =
1

+
2

=
2

0
(1 cos )(1 cos ) +

2

0
0 ( )

=
2

0
(1 2 cos + cos2 ) + 0 = 2 sin + 1

2
+ 1

4
sin 2

2

0
= 3

20. = =
2

0
(5 cos cos 5 )(5 cos 5 cos 5 )

=
2

0
(25 cos2 30 cos cos 5 + 5 cos2 5 )

= 25 1
2
+ 1

4
sin 2 30 1

8
sin 4 + 1

12
sin 6 + 5 1

2
+ 1

20
sin 10

2

0

[Use Formula 80 in the Table of Integrals]

= 30

21. (a) Using Equation 16.2.8, we write parametric equations of the line segment as = (1 ) 1 + 2, = (1 ) 1 + 2,

0 1. Then = ( 2 1) and = ( 2 1) , so

=
1

0
[(1 ) 1 + 2]( 2 1) + [(1 ) 1 + 2]( 2 1)

=
1

0
( 1( 2 1) 1( 2 1) + [( 2 1)( 2 1) ( 2 1)( 2 1)])

=
1

0
( 1 2 2 1) = 1 2 2 1

(b) We apply Green’s Theorem to the path = 1 2 · · · , where is the line segment that joins ( ) to

( +1 +1) for = 1, 2, , 1, and is the line segment that joins ( ) to ( 1 1). From (5),
1
2

= , where is the polygon bounded by . Therefore

area of polygon= ( ) = = 1
2

= 1
2 1

+
2

+ · · ·+
1

+

To evaluate these integrals we use the formula from (a) to get

( ) = 1
2
[( 1 2 2 1) + ( 2 3 3 2) + · · ·+ ( 1 1) + ( 1 1 )].

(c) = 1
2
[(0 · 1 2 · 0) + (2 · 3 1 · 1) + (1 · 2 0 · 3) + (0 · 1 ( 1) · 2) + ( 1 · 0 0 · 1)]

= 1
2 (0 + 5 + 2 + 2) =

9
2

22. By Green’s Theorem, 1
2

2 = 1
2 2 = 1 = and

1
2

2 = 1
2

( 2 ) = 1 = .

23. We orient the quarter-circular region as shown in the figure.

= 1
4

2 so =
1
2 2

2 and =
1
2 2

2 .

Here = 1 + 2 + 3 where 1: = , = 0, 0 ;

2: = cos , = sin , 0
2
; and

3: = 0, = , 0 . Then
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648 ¤ CHAPTER 16 VECTOR CALCULUS

2 =
1

2 +
2

2 +
3

2 =
0
0 +

2

0
( cos )2( cos ) +

0
0

=
2

0
3 cos3 = 3 2

0
(1 sin2 ) cos = 3 sin 1

3
sin3

2

0
= 2

3
3

so =
1
2 2

2 =
4

3
.

2 =
1

2 +
2

2 +
3

2 =
0
0 +

2

0
( sin )2( sin ) +

0
0

=
2

0
( 3 sin3 ) = 3 2

0
(1 cos2 ) sin = 3 1

3
cos3 cos

2

0
= 2

3
3,

so =
1
2 2

2 =
4

3
. Thus ( ) =

4

3

4

3
.

24. Here = 1
2

and = 1 + 2 + 3, where 1: = , = 0, 0 ;

2: = , = , 0 ; and 3: = , = , = to = 0. Then

2 =
1

2 +
2

2 +
3

2 = 0+
0

2 +
0
( 2)

= 2 + 1
3

3 0
= 2 1

3
2 = 2

3
2

Similarly, 2 =
1

2 +
2

2 +
3

2 = 0 + 0 +
0 2

=
2

2 · 13 3
0

= 1
3

2. Thus

= 1
2

2 = 1 · 2
3

2 = 2
3
and = 1

2
2 = 1 1

3
2 = 1

3
, so ( ) = 2

3
1
3
.

25. By Green’s Theorem, 1
3

3 = 1
3

( 3 2) = 2 = and

1
3

3 = 1
3

(3 2) = 2 = .

26. By symmetry the moments of inertia about any two diameters are equal. Centering the disk at the origin, the moment of inertia

about a diameter equals

= 1
3

3 = 1
3

2

0
( 4 cos4 ) = 1

3
4 2

0
3
8
+ 1

2
cos 2 + 1

8
cos 4 = 1

3
4 · 3(2 )

8
= 1

4
4

27. As in Example 5, let 0 be a counterclockwise-oriented circle with center the origin and radius , where is chosen to

be small enough so that 0 lies inside , and the region bounded by and 0. Here

=
2

( 2 + 2)2
=
2 ( 2 + 2)2 2 · 2( 2 + 2) · 2

( 2 + 2)4
=
2 3 6 2

( 2 + 2)3
and

=
2 2

( 2 + 2)2
=

2 ( 2 + 2)2 ( 2 2) · 2( 2 + 2) · 2
( 2 + 2)4

=
2 3 6 2

( 2 + 2)3
. Thus, as in the example,

+ +
0

+ = = 0 = 0

and F · r = 0 F · r. We parametrize 0 as r( ) = cos i+ sin j, 0 2 . Then

F · r=
0
F · r =

2

0

2 ( cos ) ( sin ) i+ 2 sin2 2 cos2 j

2 cos2 + 2 sin2
2 · sin i+ cos j

=
1 2

0

cos sin2 cos3 =
1 2

0

cos sin2 cos 1 sin2

=
1 2

0

cos =
1
sin

2

0

= 0
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SECTION 16.4 GREEN’S THEOREM ¤ 649

28. and have continuous partial derivatives on R2, so by Green’s Theorem we have

F · r = = (3 1) = 2 = 2 · ( ) = 2 · 6 = 12

29. Since is a simple closed path which doesn’t pass through or enclose the origin, there exists an open region that doesn’t

contain the origin but does contain . Thus = ( 2 + 2) and = ( 2 + 2) have continuous partial derivatives on

this open region containing and we can apply Green’s Theorem. But by Exercise 16.3.35(a), = , so

F · r = 0 = 0.

30. We express as a type II region: = {( ) | 1( ) 2( ), } where 1 and 2 are continuous functions.

Then =
2( )

1( )

= [ ( 2( ) ) ( 1( ) )] by the Fundamental Theorem of

Calculus. But referring to the figure, =
1 + 2 + 3 + 4

.

Then
1

= ( 1( ) ) ,
2

=
4

= 0,

and
3

= ( 2( ) ) . Hence

= [ ( 2( ) ) ( 1( ) ) ] = ( ) .

31. Using the first part of (5), we have that = ( ) = . But = ( ), and = + ,

and we orient by taking the positive direction to be that which corresponds, under the mapping, to the positive direction

along , so

= ( ) + = ( ) + ( )

= ± ( ) ( ) [using Green’s Theorem in the -plane]

= ± + ( )
2

( )
2

[using the Chain Rule]

= ± [by the equality of mixed partials] = ± ( )
( )

The sign is chosen to be positive if the orientation that we gave to corresponds to the usual positive orientation, and it is

negative otherwise. In either case, since ( ) is positive, the sign chosen must be the same as the sign of ( )

( )
.

Therefore ( ) = =
( )

( )
.
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650 ¤ CHAPTER 16 VECTOR CALCULUS

16.5 Curl and Divergence

1. (a) curlF = ×F =
i j k

+ + +

= ( + ) ( + ) i ( + ) ( + ) j+ ( + ) ( + ) k

= ( ) i ( ) j+ ( )k = 0

(b) divF = · F = ( + ) + ( + ) + ( + ) = 1 + 1 + 1 = 3

2. (a) curlF = ×F =
i j k

2 3 3 2 2 3

= (3 2 2 2 3 ) i (2 3 3 2 2) j+ (3 2 2 2 3)k

= 2 (3 2 ) i+ 2 (3 2 ) j+ 2(3 2 )k

(b) divF = · F = ( 2 3) + ( 3 2) + ( 2 3 ) = 2 3 + 3 2 + 2 3

3. (a) curlF = ×F =
i j k

0

= ( 0) i ( ) j+ (0 )k

= i+ ( ) j k

(b) divF = · F = ( ) + (0) + ( ) = + 0 + = ( + )

4. (a) curlF = ×F =
i j k

sin sin sin

= ( cos cos ) i ( cos cos ) j+ ( cos cos )k

= (cos cos ) i+ (cos cos ) j+ (cos cos )k

(b) divF = · F = (sin ) + (sin ) + (sin ) = 0 + 0 + 0 = 0

5. (a) curlF= ×F =

i j k

2 + 2 + 2 2 + 2 + 2 2 + 2 + 2

=
1

( 2 + 2 + 2)3 2
[( + ) i ( + ) j+ ( + )k] = 0

(b) divF= · F =
2 + 2 + 2

+
2 + 2 + 2

+
2 + 2 + 2

=
2 + 2 + 2 2

( 2 + 2 + 2)3 2
+

2 + 2 + 2 2

( 2 + 2 + 2)3 2
+

2 + 2 + 2 2

( 2 + 2 + 2)3 2
=
2 2 + 2 2 + 2 2

( 2 + 2 + 2)3 2
=

2
2 + 2 + 2
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SECTION 16.5 CURL AND DIVERGENCE ¤ 651

6. (a) curlF= ×F =
i j k

0 sin tan 1( )

= tan 1( ) cos i · 1

1 + ( )2
· 1 0 j+ ( sin 0)k

= tan 1( ) cos i
2 + 2

j+ sin k

(b) divF= · F = (0) + ( sin ) + [ tan 1( )]

= 0 + sin + · 1

1 + ( )2 2
= sin

2 + 2

7. (a) curlF = ×F =
i j k

sin sin sin

= (0 cos ) i ( cos 0) j+ (0 cos )k

= h cos cos cos i

(b) divF = · F = ( sin ) + ( sin ) + ( sin ) = sin + sin + sin

8. (a) curlF = ×F =
i j k

1 1 1

= (0 + 2) i ( 2 0) j+ (0 + 2)k

= 2 2 2

(b) divF = · F = + + =
1
+
1
+
1

9. If the vector field is F = i+ j+ k, then we know = 0. In addition, the -component of each vector of F is 0, so

= 0, hence = = = = = = 0. decreases as increases, so 0, but doesn’t change

in the - or -directions, so = = 0.

(a) divF = + + = 0 + + 0 0

(b) curlF = i+ j+ k = (0 0) i+ (0 0) j+ (0 0)k = 0

10. If the vector field is F = i+ j+ k, then we know = 0. In addition, and don’t vary in the -direction, so

= = = = = 0. As increases, the -component of each vector of F increases while the -component

remains constant, so 0 and = 0. Similarly, as increases, the -component of each vector increases while the

-component remains constant, so 0 and = 0.

(a) divF = + + = + + 0 0
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652 ¤ CHAPTER 16 VECTOR CALCULUS

(b) curlF = i+ j+ k = (0 0) i+ (0 0) j+ (0 0)k = 0

11. If the vector field is F = i+ j+ k, then we know = 0. In addition, the -component of each vector of F is 0, so

= 0, hence = = = = = = 0. increases as increases, so 0, but doesn’t change in

the - or -directions, so = = 0.

(a) divF = + + = 0 + 0 + 0 = 0

(b) curlF = i+ j+ k = (0 0) i+ (0 0) j+ 0 k = k

Since 0, k is a vector pointing in the negative -direction.

12. (a) curl = × is meaningless because is a scalar field.

(b) grad is a vector field.

(c) divF is a scalar field.

(d) curl (grad ) is a vector field.

(e) gradF is meaningless because F is not a scalar field.

(f ) grad(divF) is a vector field.

(g) div(grad ) is a scalar field.

(h) grad(div ) is meaningless because is a scalar field.

(i) curl(curlF) is a vector field.

(j) div(divF) is meaningless because div F is a scalar field.

(k) (grad )× (divF) is meaningless because divF is a scalar field.

(l) div(curl(grad )) is a scalar field.

13. curlF = ×F =
i j k

2 3 2 3 3 2 2

= (6 2 6 2) i (3 2 2 3 2 2) j+ (2 3 2 3)k = 0

and F is defined on all of R3 with component functions which have continuous partial derivatives, so by Theorem 4,

F is conservative. Thus, there exists a function such that F = . Then ( ) = 2 3 implies

( ) = 2 3 + ( ) and ( ) = 2 3 + ( ). But ( ) = 2 3, so ( ) = ( ) and

( ) = 2 3 + ( ). Thus ( ) = 3 2 2 + 0( ) but ( ) = 3 2 2 so ( ) = , a constant.

Hence a potential function for F is ( ) = 2 3 + .
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SECTION 16.5 CURL AND DIVERGENCE ¤ 653

14. curlF = ×F =
i j k

2 2 2 2 2

= (2 2 2 2 ) i (2 2 2 ) j+ (2 2 2)k 6= 0,

so F is not conservative.

15. curlF = ×F =
i j k

3 2 2 2 2 3 3 2 2 2

= (6 2 2 6 2 2) i (6 2 2 6 2 ) j+ (4 3 6 2)k

= 6 2 (1 ) j+ 2 2(2 3)k 6= 0
so F is not conservative.

16. curlF = ×F =
i j k

1 sin cos

= (cos cos ) i (0 0) j+ (0 0)k = 0, F is defined on all of R3,

and the partial derivatives of the component functions are continuous, soF is conservative. Thus there exists a function

such that = F. Then ( ) = 1 implies ( ) = + ( ) and ( ) = ( ). But

( ) = sin , so ( ) = sin + ( ) and ( ) = + sin + ( ). Thus ( ) = cos + 0( ) but

( ) = cos so ( ) = and ( ) = + sin + .

17. curlF = ×F =
i j k

= [ + ( + )] i ( ) j+ ( )k = 0

F is defined on all of R3, and the partial derivatives of the component functions are continuous, so F is conservative. Thus

there exists a function such that = F. Then ( ) = implies ( ) = + ( )

( ) = + ( ). But ( ) = , so ( ) = ( ) and ( ) = + ( ).

Thus ( ) = + 0( ) but ( ) = so ( ) = and a potential function for F is

( ) = + .

18. curlF = ×F =
i j k

sin cos cos

= [ sin + cos ( sin + cos )] i ( cos cos ) j

+( cos cos )k = 0

F is defined on all of R3, and the partial derivatives of the component functions are continuous, so F is conservative. Thus

there exists a function such that = F. Then ( ) = sin implies ( ) = sin + ( )
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654 ¤ CHAPTER 16 VECTOR CALCULUS

( ) = cos + ( ). But ( ) = cos , so ( ) = ( ) and ( ) = sin + ( ).

Thus ( ) = cos + 0( ) but ( ) = cos so ( ) = and a potential function for F is

( ) = sin + .

19. No. Assume there is such aG. Then div(curlG) = ( sin ) + (cos ) + ( ) = sin sin + 1 6= 0,

which contradicts Theorem 11.

20. No. Assume there is such aG. Then div(curlG) = 2 + 2 = 6= 0 which contradicts Theorem 11.

21. curlF =

i j k

( ) ( ) ( )

= (0 0) i+ (0 0) j+ (0 0)k = 0. Hence F = ( ) i+ ( ) j+ ( )k

is irrotational.

22. divF = ( ( ))
+

( ( ))
+

( ( ))
= 0 so F is incompressible.

For Exercises 23–29, letF( ) = 1 i+ 1 j+ 1 k and G( ) = 2 i+ 2 j+ 2 k.

23. div(F+G) = divh 1 + 2 1 + 2 1 + 2i = ( 1 + 2)
+

( 1 + 2)
+

( 1 + 2)

=
1
+

2
+

1
+

2
+

1
+

2
=

1
+

1
+

1
+

2
+

2
+

2

= divh 1 1 1i+ divh 2 2 2i = divF+ divG

24. curlF+ curlG =
1 1

i+
1 1

j+
1 1

k

+
2 2

i+
2 2

j+
2 2

k

=
( 1 + 2) ( 1 + 2)

i+
( 1 + 2) ( 1 + 2)

j

+
( 1 + 2) ( 1 + 2)

k = curl(F+G)

25. div( F) = div( h 1 1 1i) = divh 1 1 1i = ( 1)
+

( 1)
+

( 1)

=
1
+ 1 +

1
+ 1 +

1
+ 1

=
1
+

1
+

1
+ h 1 1 1i · = divF+F ·
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SECTION 16.5 CURL AND DIVERGENCE ¤ 655

26. curl( F) = ( 1) ( 1)
i+

( 1) ( 1)
j+

( 1) ( 1)
k

=
1
+ 1

1
1 i+

1
+ 1

1
1 j

+
1
+ 1

1
1 k

=
1 1

i+
1 1

j+
1 1

k

+ 1 1 i+ 1 1 j+ 1 1 k

= curlF+ ( )×F

27. div(F×G) = · (F×G) = 1 1 1

2 2 2

=
1 1

2 2

1 1

2 2

+
1 1

2 2

= 1
2
+ 2

1
2

1
1

2
1

2
+ 2

1
2

1
1

2

+ 1
2
+ 2

1
2

1
1

2

= 2
1 1

+ 2
1 1

+ 2
1 1

1
2 2

+ 1
2 2

+ 1
2 2

=G · curlF F · curlG

28. div( × ) = · curl ( ) · curl ( ) [by Exercise 27] = 0 [by Theorem 3]

29. curl(curlF) = × ( ×F) =
i j k

1 1 1 1 1 1

=
2

1
2

1

2

2
1

2
+

2
1

i+
2

1
2

1

2

2
1

2
+

2
1

j

+
2

1
2

1

2

2
1

2
+

2
1

k

Now let’s consider grad(divF) 2F and compare with the above.
(Note that 2F is defined on page 1119 [ET 1095].)

[continued]
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656 ¤ CHAPTER 16 VECTOR CALCULUS

grad(divF) 2F =
2

1

2
+

2
1
+

2
1

i+
2

1
+

2
1

2
+

2
1

j+
2

1
+

2
1
+

2
1

2
k

2
1

2
+

2
1

2
+

2
1

2
i+

2
1

2
+

2
1

2
+

2
1

2
j

+
2

1

2
+

2
1

2
+

2
1

2
k

=
2

1
+

2
1

2
1

2

2
1

2
i+

2
1
+

2
1

2
1

2

2
1

2
j

+
2

1
+

2
1

2
1

2

2
2

2
k

Then applying Clairaut’s Theorem to reverse the order of differentiation in the second partial derivatives as needed and
comparing, we have curl curlF = graddivF 2F as desired.

30. (a) · r = i+ j+ k · ( i+ j+ k) = 1 + 1 + 1 = 3

(b) · ( r) = · 2 + 2 + 2 ( i+ j+ k)

=
2

2 + 2 + 2
+ 2 + 2 + 2 +

2

2 + 2 + 2
+ 2 + 2 + 2

+
2

2 + 2 + 2
+ 2 + 2 + 2

=
1

2 + 2 + 2
(4 2 + 4 2 + 4 2) = 4 2 + 2 + 2 = 4

Another method:
By Exercise 25, · ( r) = div( r) = div r+ r · = 3 + r · r [see Exercise 31(a) below] = 4 .

(c) 2 3 = 2 2 + 2 + 2 3 2

= 3
2 (

2 + 2 + 2)1 2(2 ) + 3
2 (

2 + 2 + 2)1 2(2 ) + 3
2 (

2 + 2 + 2)1 2(2 )

= 3 1
2
( 2 + 2 + 2) 1 2(2 )( ) + ( 2 + 2 + 2)1 2

+ 3 1
2 (

2 + 2 + 2) 1 2(2 )( ) + ( 2 + 2 + 2)1 2

+ 3 1
2
( 2 + 2 + 2) 1 2(2 )( ) + ( 2 + 2 + 2)1 2

= 3( 2 + 2 + 2) 1 2(4 2 + 4 2 + 4 2) = 12( 2 + 2 + 2)1 2 = 12

Another method: ( 2 + 2 + 2)3 2 = 3 2 + 2 + 2 3 = 3 ( i+ j+ k) = 3 r,

so 2 3 = · 3 = · (3 r) = 3(4 ) = 12 by part (b).

31. (a) = 2 + 2 + 2 =
2 + 2 + 2

i+
2 + 2 + 2

j+
2 + 2 + 2

k =
i+ j+ k
2 + 2 + 2

=
r
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SECTION 16.5 CURL AND DIVERGENCE ¤ 657

(b) × r =

i j k

= ( ) ( ) i+ ( ) ( ) j+ ( ) ( ) k = 0

(c) 1
=

1
2 + 2 + 2

=

1

2 2 + 2 + 2
(2 )

2 + 2 + 2
i

1

2 2 + 2 + 2
(2 )

2 + 2 + 2
j

1

2 2 + 2 + 2
(2 )

2 + 2 + 2
k

=
i+ j+ k

( 2 + 2 + 2)3 2
=

r
3

(d) ln = ln( 2 + 2 + 2)1 2 = 1
2

ln( 2 + 2 + 2)

=
2 + 2 + 2

i+
2 + 2 + 2

j+
2 + 2 + 2

k =
i+ j+ k
2 + 2 + 2

=
r
2

32. r = i+ j+ k = |r| = 2 + 2 + 2, so

F =
r
=
( 2 + 2 + 2) 2

i+
( 2 + 2 + 2) 2

j+
( 2 + 2 + 2) 2

k

Then
( 2 + 2 + 2) 2

=
( 2 + 2 + 2) 2

( 2 + 2 + 2)1+ 2
=

2 2

+2
. Similarly,

( 2 + 2 + 2) 2
=

2 2

+2
and

( 2 + 2 + 2) 2
=

2 2

+2
. Thus

divF= · F =
2 2

+ 2
+

2 2

+2
+

2 2

+ 2
=
3 2 2 2 2

+ 2

=
3 2 ( 2 + 2 + 2)

+2
=
3 2 2

+2
=
3

Consequently, if = 3 we have divF = 0.

33. By (13), ( ) · n = div( ) = [ div( ) + · ] by Exercise 25. But div( ) = 2 .

Hence 2 = ( ) · n · .

34. By Exercise 33, 2 = ( ) · n · and

2 = ( ) · n · . Hence

2 2 = [ ( ) · n ( ) · n] + ( · · ) = [ ] · n .

35. Let ( ) = 1. Then = 0 and Green’s first identity (see Exercise 33) says

2 = ( ) · n 0 · 2 = · n . But is harmonic on , so

2 = 0 · n = 0 and n = ( · n) = 0.
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658 ¤ CHAPTER 16 VECTOR CALCULUS

36. Let = . Then Green’s first identity (see Exercise 33) says 2 = ( )( ) · n · .

But is harmonic, so 2 = 0, and · = | |2, so we have 0 = ( ) ( ) · n | |2

| |2 = ( ) ( ) · n = 0 since ( ) = 0 on .

37. (a) We know that = , and from the diagram sin = = = (sin ) = |w× r|. But v is perpendicular
to bothw and r, so that v = w× r.

(b) From (a), v = w× r =
i j k

0 0 = (0 · ) i+ ( 0 · ) j+ (0 · · 0)k = i+ j

(c) curlv = × v =
i j k

0

= (0) ( ) i+ ( ) (0) j+ ( ) ( ) k

= [ ( )]k = 2 k = 2w

38. LetH = h 1 2 3i and E = h 1 2 3i.

(a) × ( ×E) = × (curlE) = × 1 H
=

1

i j k

1 2 3

=
1 2

3
2

2
i+

2
1

2
3

j+
2

2
2

1
k

=
1 3 2

i+
1 3

j+
2 1

k
[assuming that the partial derivatives
are continuous so that the order of
differentiation does not matter]

=
1

curlH =
1 1 E

=
1
2

2E
2

(b) × ( ×H) = × (curlH) = × 1 E
=
1

i j k

1 2 3

=
1 2

3
2

2
i+

2
1

2
3

j+
2

2
2

1
k

=
1 3 2

i+
1 3

j+
2 1

k
[assuming that the partial derivatives
are continuous so that the order of
differentiation does not matter]

=
1

curlE =
1 1 H

=
1
2

2H
2
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(c) Using Exercise 29, we have that curl curlE = graddivE 2E

2E = graddivE curl curlE = grad 0 +
1
2

2E
2

[from part (a)] = 1
2

2E
2
.

(d) As in part (c), 2H = graddivH curl curlH = grad 0 +
1
2

2H
2
[using part (b)] = 1

2

2H
2
.

39. For any continuous function on R3, define a vector fieldG( ) = h ( ) 0 0i where ( ) =
0

( ) .

Then divG = ( ( )) + (0) + (0) =
0
( ) = ( ) by the Fundamental Theorem of

Calculus. Thus every continuous function on R3 is the divergence of some vector field.

16.6 Parametric Surfaces and Their Areas

1. (7 10 4) lies on the parametric surface r( ) = h2 + 3 1 + 5 2 + + i if and only if there are values for

and where 2 + 3 = 7, 1 + 5 = 10, and 2 + + = 4. But solving the first two equations simultaneously gives

= 2, = 1 and these values do not satisfy the third equation, so does not lie on the surface.

(5 22 5) lies on the surface if 2 + 3 = 5, 1 + 5 = 22, and 2 + + = 5 for some values of and . Solving the

first two equations simultaneously gives = 4, = 1 and these values satisfy the third equation, so lies on the surface.

2. (3 1 5) lies on the parametric surface r( ) = + 2 + 2 if and only if there are values for and

where + = 3, 2 = 1, and + 2 = 5. From the first equation we have = 3 and substituting into the

second equation gives 2 3 + = 1 2 + 2 = 0 ( + 2)( 1) = 0, so = 2

= 5 or = 1 = 2. The third equation is satisified by = 1, = 2 so does lie on the surface.

( 1 3 4) lies on r( ) if and only if + = 1, 2 = 3, and + 2 = 4, but substituting the first equation into the

second gives = 2, = 1 or = 1, = 2, and neither of these pairs satisfies the third equation. Thus, does not lie

on the surface.

3. r( ) = ( + ) i+ (3 ) j+ (1 + 4 + 5 )k = h0 3 1i+ h1 0 4i+ h1 1 5i. From Example 3, we recognize

this as a vector equation of a plane through the point (0 3 1) and containing vectors a = h1 0 4i and b = h1 1 5i. If we

wish to find a more conventional equation for the plane, a normal vector to the plane is a× b =
i j k

1 0 4

1 1 5

= 4 i j k

and an equation of the plane is 4( 0) ( 3) ( 1) = 0 or 4 = 4.
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660 ¤ CHAPTER 16 VECTOR CALCULUS

4. r( ) = 2 sin i+ 3cos j+ k, so the corresponding parametric equations for the surface are = 2 sin , = 3cos ,

= . For any point ( ) on the surface, we have ( 2)2 + ( 3)2 = sin2 + cos2 = 1, so cross-sections parallel to

the -plane are all ellipses. Since = with 0 2, the surface is the portion of the elliptical cylinder 2 4 + 2 9 = 1

for 0 2.

5. r( ) = 2 2 , so the corresponding parametric equations for the surface are = , = , = 2 2. For any

point ( ) on the surface, we have = 2 2. With no restrictions on the parameters, the surface is = 2 2, which

we recognize as a hyperbolic paraboloid.

6. r( ) = sin 2 i+ 2 j+ cos 2 k, so the corresponding parametric equations for the surface are = sin 2 , = 2,

= cos 2 . For any point ( ) on the surface, we have 2 + 2 = 2 sin2 2 + 2 cos2 2 = 2 = . Since no

restrictions are placed on the parameters, the surface is = 2 + 2, which we recognize as a circular paraboloid whose axis

is the -axis.

7. r( ) = 2 2 + , 1 1, 1 1.

The surface has parametric equations = 2, = 2, = + , 1 1, 1 1.

In Maple, the surface can be graphed by entering

plot3d([uˆ2,vˆ2,u+v],u=-1..1,v=-1..1);.

In Mathematica we use the ParametricPlot3D command.

If we keep constant at 0, = 2
0, a constant, so the

corresponding grid curves must be the curves parallel to the

-plane. If is constant, we have = 2
0 , a constant, so these

grid curves are the curves parallel to the -plane.

8. r( ) = 3 , 2 2, 2 2.

The surface has parametric equations = , = 3, = ,

2 2, 2 2. If = 0 is constant,

= 0 = constant, so the corresponding grid curves are the curves

parallel to the -plane. If = 0 is constant, = 3
0 = constant,

so the corresponding grid curves are the curves parallel to the

-plane.

c° 2012 Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part.

NOT FOR SALE

°°cc 2012 Cengage Learning. All Rights Reserved. May not be scanned, copied, or2012 Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part.duplicated, or posted to a publicly accessible website, in whole or in part.

433



SECTION 16.6 PARAMETRIC SURFACES AND THEIR AREAS ¤ 661

9. r( ) = cos sin 5 .

The surface has parametric equations = cos , = sin ,

= 5, 1 1, 0 2 . Note that if = 0 is constant

then = 5
0 is constant and = 0 cos , = 0 sin describe a

circle in , of radius | 0|, so the corresponding grid curves are
circles parallel to the -plane. If = 0, a constant, the parametric

equations become = cos 0, = sin 0, = 5. Then

= (tan 0) , so these are the grid curves we see that lie in vertical

planes = through the -axis.

10. r( ) = h sin( + ) sin i, , .

The surface has parametric equations = , = sin( + ),

= sin , , . If = 0 is constant,

= 0 = constant, so the corresponding grid curves are the

curves parallel to the -plane. If = 0 is constant,

= sin 0 = constant, so the corresponding grid curves are the

curves parallel to the -plane.

11. = sin , = cos sin 4 , = sin 2 sin 4 , 0 2 ,
2 2

.

Note that if = 0 is constant, then = sin 0 is constant, so the

corresponding grid curves must be parallel to the -plane. These

are the vertically oriented grid curves we see, each shaped like a

“figure-eight.” When = 0 is held constant, the parametric

equations become = sin , = cos 0 sin 4 ,

= sin 2 0 sin 4 . Since is a constant multiple of , the

corresponding grid curves are the curves contained in planes

= that pass through the -axis.
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662 ¤ CHAPTER 16 VECTOR CALCULUS

12. = sin , = cos sin , = sin , 0 2 , 0 2 .

If = 0 is constant, then = sin 0 = constant, so the

corresponding grid curves are the curves parallel to the -plane. If

= 0 is constant, then = sin 0 = constant, so the

corresponding grid curves are the curves parallel to the -plane.

13. r( ) = cos i+ sin j+ k. The parametric equations for the surface are = cos , = sin , = . We look at

the grid curves first; if we fix , then and parametrize a straight line in the plane = which intersects the -axis. If is

held constant, the projection onto the -plane is circular; with = , each grid curve is a helix. The surface is a spiraling

ramp, graph IV.

14. r( ) = cos i+ sin j+ sin k. The corresponding parametric equations for the surface are = cos , = sin ,

= sin , . If = 0 is held constant, then = 0 cos , = 0 sin so each grid curve is a circle of radius

| 0| in the horizontal plane = sin 0. If = 0 is constant, then = cos 0, = sin 0 = (tan 0) , so the

grid curves lie in vertical planes = through the -axis. In fact, since and are constant multiples of and = sin ,

each of these traces is a sine wave. The surface is graph I.

15. r( ) = sin i+ cos sin 2 j+ sin sin 2 k. Parametric equations for the surface are = sin , = cos sin 2 ,

= sin sin 2 . If = 0 is fixed, then = sin 0 is constant, and = (sin 2 0) cos and = (sin 2 0) sin describe a

circle of radius |sin 2 0|, so each corresponding grid curve is a circle contained in the vertical plane = sin 0 parallel to the

-plane. The only possible surface is graph II. The grid curves we see running lengthwise along the surface correspond to

holding constant, in which case = (cos 0) sin 2 , = (sin 0) sin 2 = (tan 0) , so each grid curve lies in a

plane = that includes the -axis.

16. = (1 )(3 + cos ) cos 4 , = (1 )(3 + cos ) sin 4 , = 3 + (1 ) sin . These equations correspond to

graph V: when = 0, then = 3 + cos , = 0, and = sin , which are equations of a circle with radius 1 in the -plane

centered at (3 0 0). When = 1
2 , then = 3

2 +
1
2 cos , = 0, and = 3

2 +
1
2 sin , which are equations of a circle with

radius 12 in the -plane centered at 3
2 0

3
2
. When = 1, then = = 0 and = 3, giving the topmost point shown in the

graph. This suggests that the grid curves with constant are the vertically oriented circles visible on the surface. The spiralling

grid curves correspond to keeping constant.
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SECTION 16.6 PARAMETRIC SURFACES AND THEIR AREAS ¤ 663

17. = cos3 cos3 , = sin3 cos3 , = sin3 . If = 0 is held constant then = sin3 0 is constant, so the

corresponding grid curve lies in a horizontal plane. Several of the graphs exhibit horizontal grid curves, but the curves for this

surface are neither circles nor straight lines, so graph III is the only possibility. (In fact, the horizontal grid curves here are

members of the family = cos3 , = sin3 and are called astroids.) The vertical grid curves we see on the surface

correspond to = 0 held constant, as then we have = cos3 0 cos
3 , = sin3 0 cos

3 so the corresponding grid curve

lies in the vertical plane = (tan3 0) through the -axis.

18. = (1 | |) cos , = (1 | |) sin , = . Then 2 + 2 = (1 | |)2 cos2 + (1 | |)2 sin2 = (1 | |)2, so if

is held constant, each grid curve is a circle of radius (1 | |) in the horizontal plane = . The graph then must be graph VI.

If is held constant, so = 0, we have = (1 | |) cos 0 and = (1 | |) sin 0. Then = (tan 0) , so the grid

curves we see running vertically along the surface in the planes = correspond to keeping constant.

19. From Example 3, parametric equations for the plane through the point (0 0 0) that contains the vectors a = h1 1 0i and

b = h0 1 1i are = 0 + (1) + (0) = , = 0 + ( 1) + (1) = , = 0 + (0) + ( 1) = .

20. From Example 3, parametric equations for the plane through the point (0 1 5) that contains the vectors a = h2 1 4i and

b = h 3 2 5i are = 0 + (2) + ( 3) = 2 3 , = 1 + (1) + (2) = 1 + + 2 ,

= 5 + (4) + (5) = 5 + 4 + 5 .

21. Solving the equation for gives 2 = 1 + 2 + 1
4

2 = 1 + 2 + 1
4

2. (We choose the positive root since we want

the part of the hyperboloid that corresponds to 0.) If we let and be the parameters, parametric equations are = ,

= , = 1 + 2 + 1
4

2.

22. Solving the equation for gives 2 = 1
2
(1 2 3 2) = 1

2
(1 2 3 2) (since we want the part of the

ellipsoid that corresponds to 0). If we let and be the parameters, parametric equations are = , = ,

= 1
2
(1 2 3 2).

Alternate solution: The equation can be rewritten as 2 +
2

1 2
2 +

2

(1 3)2
= 1, and if we let = cos and

=
1

3
sin , then = 1

2
(1 2 3 2) = 1

2
(1 2 cos2 2 sin2 ) = 1

2
(1 2), where 0 1

and 0 2 .

Second alternate solution: We can adapt the formulas for converting from spherical to rectangular coordinates as follows.

We let = sin cos , =
1

2
sin sin , =

1

3
cos ; the surface is generated for 0 , 2 .
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664 ¤ CHAPTER 16 VECTOR CALCULUS

23. Since the cone intersects the sphere in the circle 2 + 2 = 2, = 2 and we want the portion of the sphere above this, we

can parametrize the surface as = , = , = 4 2 2 where 2 + 2 2.

Alternate solution: Using spherical coordinates, = 2 sin cos , = 2 sin sin , = 2 cos where 0 4
and

0 2 .

24. In spherical coordinates, parametric equations are = 4 sin cos , = 4 sin sin , = 4 cos . The intersection of the

sphere with the plane = 2 corresponds to = 4 cos = 2 cos = 1
2

=
3
. By symmetry, the intersection of

the sphere with the plane = 2 corresponds to =
3
= 2

3
. Thus the surface is described by 0 2 ,

3
2
3
.

25. Parametric equations are = , = 4cos , = 4 sin , 0 5, 0 2 .

26. Using and as the parameters, = , = , = + 3 where 0 2 + 2 1. Also, since the plane intersects the

cylinder in an ellipse, the surface is a planar ellipse in the plane = + 3. Thus, parametrizing with respect to and , we

have = cos , = sin , = 3 + cos where 0 1 and 0 2 .

27. The surface appears to be a portion of a circular cylinder of radius 3 with axis the -axis. An equation of the cylinder is
2 + 2 = 9, and we can impose the restrictions 0 5, 0 to obtain the portion shown. To graph the surface on a

CAS, we can use parametric equations = , = 3cos , = 3 sin with the parameter domain 0 5,
2

3
2
.

Alternatively, we can regard and as parameters. Then parametric equations are = , = , = 9 2, where

0 5 and 3 3.

28. The surface appears to be a portion of a sphere of radius 1 centered at the origin. In spherical coordinates, the sphere has

equation = 1, and imposing the restrictions
2 2 , 4 will give only the portion of the sphere shown. Thus,

to graph the surface on a CAS we can either use spherical coordinates with the stated restrictions, or we can use parametric

equations: = sin cos , = sin sin , = cos ,
2

2 ,
4

.

29. Using Equations 3, we have the parametrization = , = cos ,

= sin , 0 3, 0 2 .

30. Letting be the angle of rotation about the -axis, we have the

parametrization = (4 2 4) cos , = , = (4 2 4) sin ,

2 2, 0 2 .
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SECTION 16.6 PARAMETRIC SURFACES AND THEIR AREAS ¤ 665

31. (a) Replacing cos by sin and sin by cos gives parametric equations

= (2 + sin ) sin , = (2 + sin ) cos , = + cos . From the graph, it

appears that the direction of the spiral is reversed. We can verify this observation by

noting that the projection of the spiral grid curves onto the -plane, given by

= (2 + sin ) sin , = (2 + sin ) cos , = 0, draws a circle in the clockwise

direction for each value of . The original equations, on the other hand, give circular

projections drawn in the counterclockwise direction. The equation for is identical in

both surfaces, so as increases, these grid curves spiral up in opposite directions for

the two surfaces.

(b) Replacing cos by cos 2 and sin by sin 2 gives parametric equations

= (2 + sin ) cos 2 , = (2 + sin ) sin 2 , = + cos . From the graph, it

appears that the number of coils in the surface doubles within the same parametric

domain. We can verify this observation by noting that the projection of the spiral grid

curves onto the -plane, given by = (2 + sin ) cos 2 , = (2 + sin ) sin 2 ,

= 0 (where is constant), complete circular revolutions for 0 while the

original surface requires 0 2 for a complete revolution. Thus, the new

surface winds around twice as fast as the original surface, and since the equation for

is identical in both surfaces, we observe twice as many circular coils in the same

-interval.

32. First we graph the surface as viewed from the front, then from two additional viewpoints.

The surface appears as a twisted sheet, and is unusual because it has only one side. (The Möbius strip is discussed in more

detail in Section 16.7.)

33. r( ) = ( + ) i+ 3 2 j+ ( )k.

r = i+ 6 j+ k and r = i k, so r × r = 6 i+ 2 j 6 k. Since the point (2 3 0) corresponds to = 1, = 1, a

normal vector to the surface at (2 3 0) is 6 i+ 2 j 6k, and an equation of the tangent plane is 6 + 2 6 = 6 or

3 + 3 = 3.

34. r( ) = ( 2 + 1) i+ ( 3 + 1) j+ ( + )k.

r = 2 i+ k and r = 3 2 j+ k, so r × r = 3 2 i 2 j+ 6 2 k. Since the point (5 2 3) corresponds to = 2,

= 1, a normal vector to the surface at (5 2 3) is 3 i 4 j+ 12k, and an equation of the tangent plane is

3( 5) 4( 2) + 12( 3) = 0 or 3 + 4 12 = 13.
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666 ¤ CHAPTER 16 VECTOR CALCULUS

35. r( ) = cos i+ sin j+ k r 1
3
= 1

2
3
2 3

.

r = cos i+ sin j and r = sin i+ cos j+ k, so a normal vector to the surface at the point 1
2

3
2 3

is

r 1
3
× r 1

3
= 1

2
i+ 3

2
j × 3

2
i+ 1

2
j+ k = 3

2
i 1

2
j+ k. Thus an equation of the tangent plane at

1
2

3
2 3

is 3
2

1
2

1
2

3
2

+ 1
3
= 0 or 3

2
1
2
+ =

3
.

36. r( ) = sin i+ cos sin j+ sin k r 6 6
= 1

2
3
4

1
2
.

r = cos i sin sin j and r = cos cos j+ cos k, so a normal vector to the surface at the point 1
2

3
4

1
2
is

r
6 6

× r
6 6

= 3
2
i 1

4
j × 3

4
j+ 3

2
k = 3

8
i 3

4
j+ 3 3

8
k.

Thus an equation of the tangent plane at 1
2

3
4

1
2
is 3

8
1
2

3
4

3
4

+ 3 3
8

1
2
= 0 or

3 + 6 3 3 = 3
2
or 2 + 4 3 6 = 1.

37. r( ) = 2 i+ 2 sin j+ cos k r(1 0) = (1 0 1).

r = 2 i+ 2 sin j+ cos k and r = 2 cos j sin k,

so a normal vector to the surface at the point (1 0 1) is

r (1 0)× r (1 0) = (2 i+ k)× (2 j) = 2 i+ 4k.

Thus an equation of the tangent plane at (1 0 1) is

2( 1) + 0( 0) + 4( 1) = 0 or + 2 = 1.

38. r( ) = (1 2 2) i j k.

r = 2 i k and r = 2 i j. Since the point ( 1 1 1)

corresponds to = 1, = 1, a normal vector to the surface at

( 1 1 1) is

r (1 1)× r (1 1) = ( 2 i k)× ( 2 i j) = i+ 2 j+ 2k.

Thus an equation of the tangent plane is 1( + 1) + 2( + 1) + 2( + 1) = 0 or + 2 + 2 = 3.

39. The surface is given by = ( ) = 6 3 2 which intersects the -plane in the line 3 + 2 = 6, so is the

triangular region given by ( ) 0 2 0 3 3
2 . By Formula 9, the surface area of is

( ) = 1 +
2

+
2

= 1 + ( 3)2 + ( 2)2 = 14 = 14 ( ) = 14 1
2 · 2 · 3 = 3 14
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SECTION 16.6 PARAMETRIC SURFACES AND THEIR AREAS ¤ 667

40. r = h1 3 1i, r = h1 0 1i, and r × r = h3 2 3i. Then by Definition 6,

( ) = | r × r | =
2

0

1

1
| h3 2 3i | = 22

2

0

1

1
= 22 (2)(2) = 4 22

41. Here we can write = ( ) = 1
3

1
3

2
3
and is the disk 2 + 2 3, so by Formula 9 the area of the surface is

( ) = 1 +
2

+
2

= 1 + 1
3

2
+ 2

3

2
= 14

3

= 14
3

( ) = 14
3
· 3

2
= 14

42. = ( ) = 2 + 2 =
1

2
2 + 2 1 2 · 2 =

2 + 2
, =

2 + 2
, and

1 +
2

+
2

= 1 +
2

2 + 2
+

2

2 + 2
= 1 +

2 + 2

2 + 2
= 2

Here is given by ( ) 0 1 2 , so by Formula 9, the surface area of is

( ) = 2 =
1

0 2 2 = 2
1

0
2 = 2 1

2
2 1

3
3 1

0
= 2 1

2
1
3
= 2

6

43. = ( ) = 2
3
( 3 2 + 3 2) and = {( ) | 0 1 0 1}. Then = 1 2, = 1 2 and

( ) = 1 + ( )
2
+

2
=

1

0

1

0
1 + +

=
1

0
2
3
( + + 1)3 2

=1

=0
= 2

3

1

0
( + 2)3 2 ( + 1)3 2

= 2
3

2
5
( + 2)5 2 2

5
( + 1)5 2

1

0
= 4

15
(35 2 25 2 25 2 + 1) = 4

15
(35 2 27 2 + 1)

44. = ( ) = 1 + 3 + 2 2 with 0 2 , 0 1. Thus, by Formula 9,

( ) = 1 + 32 + (4 )2 =
1

0

2

0
10 + 16 2 =

1

0
2 10 + 16 2

= 1
16
· 2
3
(10 + 16 2)3 2

1

0
= 1

24
(263 2 103 2)

45. = ( ) = with 2 + 2 1, so = , =

( ) = 1 + 2 + 2 =
2

0

1

0
2 + 1 =

2

0
1
3
( 2 + 1)3 2

=1

=0

=
2

0
1
3
2 2 1 = 2

3
2 2 1

46. A parametric representation of the surface is = 2 + 2, = , = with 0 2 + 2 9.

Hence r × r = (2 i+ j)× (2 i+ k) = i 2 j 2 k.

Note: In general, if = ( ) then r × r = i j k, and ( ) = 1 +
2

+
2

. Then

( ) =
0 2 + 2 9

1 + 4 2 + 4 2 =
2

0

3

0
1 + 4 2

=
2

0

3

0
1 + 4 2 = 2 1

12
(1 + 4 2)3 2

3

0
=

6
37 37 1
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47. A parametric representation of the surface is = , = 4 + 2, = with 0 1, 0 1.

Hence r × r = (i+ 4 j)× (2 j+ k) = 4 i j+ 2 k.

Note: In general, if = ( ) then r × r = i j+ k and ( ) = 1 +
2

+
2

. Then

( ) =
1

0

1

0
17 + 4 2 =

1

0
17 + 4 2

= 1
2

17 + 4 2 + 17
2
ln 2 + 4 2 + 17

1

0
= 21

2
+ 17

4
ln 2 + 21 ln 17

48. r = hcos sin 0i, r = h sin cos 1i, and r × r = hsin cos i. Then

( ) =
0

1

0
1 + 2 =

0

1

0
1 + 2

=
2

2 + 1 + 1
2
ln + 2 + 1

1

0
=

2
2 + ln 1 + 2

49. r = h2 0i, r = h0 i, and r × r = 2 2 2 2 . Then

( ) = |r × r | =
1

0

2

0
4 + 4 2 2 + 4 4 =

1

0

2

0
( 2 + 2 2)2

=
1

0

2

0
( 2 + 2 2) =

1

0
1
3

3 + 2 2 =2

=0
=

1

0
8
3
+ 4 2 = 8

3
+ 4

3
3 1

0
= 4

50. The cylinder encloses separate portions of the sphere in the upper and lower halves. The top half of the sphere is

= ( ) = 2 2 2 and is given by ( ) 2 + 2 2 . By Formula 9, the surface area of the upper

enclosed portion is

= 1 +
2 2 2

2

+
2 2 2

2

= 1 +
2 + 2

2 2 2

=
2

2 2 2
=

2

0 0
2 2

=
2

0 0
2 2

=
2

0
2 2

0
= 2 2 2 + 2 0 = 2 2 2

The lower portion of the sphere enclosed by the cylinder has identical shape, so the total area is 2 = 4 2 2 .

51. From Equation 9 we have ( ) = 1 + ( )2 + ( )2 . But if | | 1 and | | 1 then 0 ( )2 1,

0 ( )2 1 1 1 + ( )2 + ( )2 3 1 1 + ( )2 + ( )2 3. By Property 15.3.11,

1 1 + ( )2 + ( )2 3 ( ) ( ) 3 ( )

2 ( ) 3 2.

52. = ( ) = cos( 2 + 2) with 2 + 2 1.

( ) = 1 + ( 2 sin( 2 + 2))2 + ( 2 sin( 2 + 2))2

= 1 + 4 2 sin2( 2 + 2) + 4 2 sin2( 2 + 2) = 1 + 4( 2 + 2) sin2( 2 + 2)

=
2

0

1

0
1 + 4 2 sin2( 2) =

2

0

1

0
1 + 4 2 sin2( 2)

= 2
1

0
1 + 4 2 sin2( 2) 4 1073
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53. = ( ) =
2 2

with 2 + 2 4.

( ) = 1 + 2 2 2 2
+ 2 2 2 2

= 1 + 4( 2 + 2) 2( 2+ 2)

=
2

0

2

0
1 + 4 2 2 2 =

2

0

2

0
1 + 4 2 2 2 = 2

2

0
1 + 4 2 2 2 13 9783

54. Let ( ) =
1 + 2

1 + 2
. Then =

2

1 + 2
,

= (1 + 2)
2

(1 + 2)2
=

2 (1 + 2)

(1 + 2)2
.

We use a CAS to estimate
1

1

1 | |
(1 | |) 1 + 2 + 2 2 6959.

In order to graph only the part of the surface above the square, we

use (1 | |) 1 | | as the -range in our plot command.

55. (a) ( ) = 1 +
2

+
2

=
6

0

4

0

1 +
4 2 + 4 2

(1 + 2 + 2)4
.

Using the Midpoint Rule with ( ) = 1 +
4 2 + 4 2

(1 + 2 + 2)4
, = 3, = 2 we have

( )
3

=1

2

= 1

= 4 [ (1 1) + (1 3) + (3 1) + (3 3) + (5 1) + (5 3)] 24 2055

(b) Using a CAS we have ( ) =
6

0

4

0

1 +
4 2 + 4 2

(1 + 2 + 2)4
24 2476. This agrees with the estimate in part (a)

to the first decimal place.

56. r( ) = cos3 cos3 sin3 cos3 sin3 , so r = 3 cos2 sin cos3 3 sin2 cos cos3 0 ,

r = 3 cos3 cos2 sin 3 sin3 cos2 sin 3 sin2 cos , and

r × r = 9cos sin2 cos4 sin2 9 cos2 sin cos4 sin2 9 cos2 sin2 cos5 sin . Then

|r × r |= 9 cos2 sin4 cos8 sin4 + cos4 sin2 cos8 sin4 + cos4 sin4 cos10 sin2

= 9 cos2 sin2 cos8 sin2 (sin2 + cos2 sin2 cos2 )

= 9 cos4 |cos sin sin | sin2 + cos2 sin2 cos2

Using a CAS, we have ( ) =
0

2

0
9 cos4 |cos sin sin | sin2 + cos2 sin2 cos2 4 4506.

57. = 1 + 2 + 3 + 4 2, so

( ) = 1 +
2

+
2

=
4

1

1

0

1 + 4 + (3 + 8 )2 =
4

1

1

0

14 + 48 + 64 2 .

Using a CAS, we have
4

1

1

0
14 + 48 + 64 2 = 45

8
14 + 15

16
ln 11 5 + 3 14 5 15

16
ln 3 5 + 14 5

or 458 14 + 15
16 ln

11 5+ 3 70

3 5+ 70
.
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670 ¤ CHAPTER 16 VECTOR CALCULUS

58. (a) r = cos i + sin j + 2 k, r = sin i + cos j + 0k, and

r × r = 2 2 cos i 2 2 sin j + k.

( ) =
2

0

2

0
|r × r | =

2

0

2

0
4 2 4 cos2 + 4 2 4 sin2 + 2 2 2

(b) 2 = 2 2 cos2 , 2 = 2 2 sin2 , = 2 2 2 + 2 2 = 2 = which is an elliptic paraboloid. To find ,

notice that 0 2 0 4 0 2 2 + 2 2 4. Therefore, using Formula 9, we have

( ) =
2

2

4 ( 2 2)

4 ( 2 2)

1 + (2 2)2 + (2 2)2 .

(c) (d) We substitute = 2, = 3 in the integral in part (a) to get

( ) =
2

0

2

0
2 9 2 cos2 + 4 2 sin2 + 9 . We use a CAS

to estimate the integral accurate to four decimal places. To speed up the

calculation, we can set Digits:=7; (in Maple) or use the approximation

command N (in Mathematica). We find that ( ) 115 6596.

59. (a) = sin cos , = sin sin , = cos

2

2
+

2

2
+

2

2
= (sin cos )2 + (sin sin )2 + (cos )2

= sin2 + cos2 = 1

and since the ranges of and are sufficient to generate the entire graph,

the parametric equations represent an ellipsoid.

(b)

(c) From the parametric equations (with = 1, = 2, and = 3),

we calculate r = cos cos i+ 2cos sin j 3 sin k and

r = sin sin i+ 2 sin cos j. So r × r = 6 sin2 cos i+ 3 sin2 sin j+ 2 sin cos k, and the surface

area is given by ( ) =
2

0 0
|r × r | =

2

0 0
36 sin4 cos2 + 9 sin4 sin2 + 4cos2 sin2

60. (a) = cosh cos , = cosh sin , = sinh

2

2
+

2

2

2

2
= cosh2 cos2 + cosh2 sin2 sinh2

= cosh2 sinh2 = 1

and the parametric equations represent a hyperboloid of

one sheet.

(b)

(c) r = sinh cos i+ 2 sinh sin j+ 3cosh k and

r = cosh sin i+ 2cosh cos j, so r × r = 6 cosh2 cos i 3 cosh2 sin j+ 2cosh sinh k.

We integrate between = sinh 1( 1) = ln 1 + 2 and = sinh 1 1 = ln 1 + 2 , since then varies between
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SECTION 16.6 PARAMETRIC SURFACES AND THEIR AREAS ¤ 671

3 and 3, as desired. So the surface area is

( ) =
2

0

ln(1+ 2)

ln(1+ 2)
|r × r |

=
2

0

ln(1+ 2)

ln(1+ 2)
36 cosh4 cos2 + 9cosh4 sin2 + 4 cosh2 sinh2

61. To find the region : = 2 + 2 implies + 2 = 4 or 2 3 = 0. Thus = 0 or = 3 are the planes where the

surfaces intersect. But 2 + 2 + 2 = 4 implies 2 + 2 + ( 2)2 = 4, so = 3 intersects the upper hemisphere.

Thus ( 2)2 = 4 2 2 or = 2+ 4 2 2. Therefore is the region inside the circle 2 + 2 + (3 2)2 = 4,

that is, = ( ) | 2 + 2 3 .

( ) = 1 + [( )(4 2 2) 1 2]2 + [( )(4 2 2) 1 2]2

=
2

0

3

0

1 +
2

4 2
=

2

0

3

0

2

4 2
=

2

0

2(4 2)1 2
= 3

=0

=
2

0
( 2 + 4) = 2

2

0
= 4

62. We first find the area of the face of the surface that intersects the positive -axis. A parametric representation of the surface is

= , = 1 2, = with 2 + 2 1. Then r( ) = 1 2 r = h1 0 0i,

r = 0 1 2 1 and r × r = 0 1 1 2 | r × r | = 1 +
2

1 2
=

1

1 2
.

( ) =

2+ 2 1

| r × r | =
1

1

1 2

1 2

1

1 2
= 4

1

0

1 2

0

1

1 2

by the symmetry
of the surface

This integral is improper [when = 1], so

( ) = lim
1
4

0

1 2

0

1

1 2
= lim

1
4

0

1 2

1 2
= lim

1
4

0

= lim
1
4 = 4

Since the complete surface consists of four congruent faces, the total surface area is 4(4) = 16.

Alternate solution: The face of the surface that intersects the positive -axis can also be parametrized as

r( ) = h cos sin i for
2 2

and 2 + 2 1 2 + sin2 1

1 sin2 1 sin2 cos cos . Then r = h1 0 0i, r = h0 sin cos i and

r × r = h0 cos sin i | r × r | = 1, so

( ) =
2

2

cos

cos
1 =

2

2
2 cos = 2 sin

2

2
= 4. Again, the area of the complete surface

is 4(4) = 16.
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672 ¤ CHAPTER 16 VECTOR CALCULUS

63. Let ( 1) be the surface area of that portion of the surface which lies above the plane = 0. Then ( ) = 2 ( 1).

Following Example 10, a parametric representation of 1 is = sin cos , = sin sin ,

= cos and |r × r | = 2 sin . For , 0 2 and for each fixed , 1
2

2
+ 2 1

2

2 or

sin cos 1
2

2
+ 2 sin2 sin2 ( 2)2 implies 2 sin2 2 sin cos 0 or

sin (sin cos ) 0. But 0
2
, so cos sin or sin

2
+ sin or

2 2
.

Hence = ( ) | 0
2
,

2 2
. Then

( 1) =
2

0

( 2)

( 2)
2 sin = 2 2

0
( 2 ) sin

= 2 [( cos ) 2( cos + sin )] 2
0 = 2( 2)

Thus ( ) = 2 2( 2).

Alternate solution: Working on 1 we could parametrize the portion of the sphere by = , = , = 2 2 2.

Then |r × r | = 1 +
2

2 2 2
+

2

2 2 2
=

2 2 2
and

( 1) =

0 ( ( 2))2 + 2 ( 2)2
2 2 2

=
2

2

cos

0
2 2

=
2

2
( 2 2)1 2

= cos

= 0
=

2

2
2[1 (1 cos2 )1 2]

=
2

2
2(1 |sin |) = 2 2 2

0
(1 sin ) = 2 2

2
1

Thus ( ) = 4 2
2

1 = 2 2( 2).

Notes:

(1) Perhaps working in spherical coordinates is the most obvious approach here. However, you must be careful

in setting up .

(2) In the alternate solution, you can avoid having to use |sin | by working in the first octant and then
multiplying by 4. However, if you set up 1 as above and arrived at ( 1) =

2 , you now see your error.

64. (a) Here = sin , = | |, and = | |. But

| | = | |+ | | = + cos and sin =
| |
| | so that

= | | sin = ( + cos ) sin . Similarly cos =
| |
| | so

= ( + cos ) cos . Hence a parametric representation for the

torus is = cos + cos cos , = sin + cos sin ,

= sin , where 0 2 , 0 2 .
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SECTION 16.7 SURFACE INTEGRALS ¤ 673

(b)

= 1, = 8 = 3, = 8

= 3, = 4

(c) = cos + cos cos , = sin + cos sin , = sin , so r = h sin cos sin sin cos i,
r = h ( + cos ) sin ( + cos ) cos 0i and

r × r = cos cos 2 cos cos2 i+ sin cos 2 sin cos2 j

+ cos2 sin 2 cos2 sin cos sin2 sin 2 sin2 sin cos k

= ( + cos ) [(cos cos ) i+ (sin cos ) j+ (sin )k]

Then |r × r | = ( + cos ) cos2 cos2 + sin2 cos2 + sin2 = ( + cos ).

Note: , 1 cos 1 so | + cos | = + cos . Hence

( ) =
2

0

2

0
( + cos ) = 2 + 2 sin

2

0
= 4 2 .

16.7 Surface Integrals

1. The faces of the box in the planes = 0 and = 2 have surface area 24 and centers (0 2 3), (2 2 3). The faces in = 0 and

= 4 have surface area 12 and centers (1 0 3), (1 4 3), and the faces in = 0 and = 6 have area 8 and centers (1 2 0),

(1 2 6). For each face we take the point to be the center of the face and ( ) = 0 1( + + ), so by Definition 1,

( ) [ (0 2 3)](24) + [ (2 2 3)](24) + [ (1 0 3)](12)

+ [ (1 4 3)](12) + [ (1 2 0)](8) + [ (1 2 6)](8)

= 24( 0 5 + 0 7) + 12( 0 4 + 0 8) + 8( 0 3 + 0 9) 49 09
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674 ¤ CHAPTER 16 VECTOR CALCULUS

2. Each quarter-cylinder has surface area 1
4
[2 (1)(2)] = and the top and bottom disks have surface area (1)2 = . We can

take (0 0 1) as a sample point in the top disk, (0 0 1) in the bottom disk, and (±1 0 0), (0 ±1 0) in the four
quarter-cylinders. Then ( ) can be approximated by the Riemann sum

(1 0 0)( ) + ( 1 0 0)( ) + (0 1 0) ( ) + (0 1 0)( ) + (0 0 1)( ) + (0 0 1)( )

= (2 + 2 + 3 + 3 + 4 + 4) = 18 56 5.

3. We can use the - and -planes to divide into four patches of equal size, each with surface area equal to 1
8
the surface

area of a sphere with radius 50, so = 1
8
(4) 50

2
= 25 . Then (±3 ±4 5) are sample points in the four patches,

and using a Riemann sum as in Definition 1, we have

( ) (3 4 5) + (3 4 5) + ( 3 4 5) + ( 3 4 5)

= (7 + 8 + 9 + 12)(25 ) = 900 2827

4. On the surface, ( ) = 2 + 2 + 2 = (2) = 5. So since the area of a sphere is 4 2,

( ) = (2) = 5 = 5[4 (2)2] = 80 .

5. r( ) = ( + ) i + ( ) j + (1 + 2 + )k, 0 2, 0 1 and

r × r = (i+ j+ 2k)× (i j+ k) = 3 i+ j 2k |r × r | = 32 + 12 + ( 2)2 = 14. Then by Formula 2,

( + + ) = ( + + + 1 + 2 + ) |r × r | =
1

0

2

0
(4 + + 1) · 14

= 14
1

0
2 2 + +

=2

=0
= 14

1

0
(2 + 10) = 14 2 + 10

1

0
= 11 14

6. r( ) = cos i + sin j + k, 0 1, 0 2 and

r × r = (cos i+ sin j+ k)× ( sin i+ cos j) = cos i sin j+ k

|r × r | = 2 cos2 + 2 sin2 + 2 = 2 2 = 2 [since 0]. Then by Formula 2,

= ( cos )( sin )( ) |r × r | =
1

0

2

0
( 3 sin cos ) · 2

= 2
1

0
4 2

0
sin cos = 2 1

5
5 1

0
1
2
sin2

2

0
= 2 · 1

5
· 1
2
= 1

10
2

7. r( ) = h cos sin i, 0 1, 0 and

r × r = hcos sin 0i × h sin cos 1i = hsin cos i

|r × r | = sin2 + cos2 + 2 = 2 + 1. Then

= ( sin ) |r × r | =
1

0 0
( sin ) · 2 + 1 =

1

0
2 + 1

0
sin

= 1
3
( 2 + 1)3 2

1

0
[ cos ]0 =

1
3
(23 2 1) · 2 = 2

3
(2 2 1)

8. r( ) = 2 2 2 2 + 2 , 2 + 2 1 and

r × r = h2 2 2 i × h2 2 2 i = 8 4 2 4 2 4 2 4 2 , so

|r × r |= (8 )2 + (4 2 4 2)2 + ( 4 2 4 2)2 = 64 2 2 + 32 4 + 32 4

= 32( 2 + 2)2 = 4 2( 2 + 2)
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SECTION 16.7 SURFACE INTEGRALS ¤ 675

Then

( 2 + 2) = (2 )2 + ( 2 2)2 |r × r | = (4 2 2 + 4 2 2 2 + 4) · 4 2( 2 + 2)

= 4 2 ( 4 + 2 2 2 + 4) ( 2 + 2) = 4 2 ( 2 + 2)3 = 4 2
2

0

1

0
( 2)3

= 4 2
2

0

1

0
7 = 4 2 [ ]20

1
8

8 1

0
= 4 2 · 2 · 18 = 2

9. = 1 + 2 + 3 so = 2 and = 3. Then by Formula 4,

2 = 2
2

+
2

+ 1 =
3

0

2

0
2 (1 + 2 + 3 ) 4 + 9 + 1

= 14
3

0

2

0
( 2 + 2 3 + 3 2 2) = 14

3

0
1
2

2 2 + 3 2 + 2 3 =2

=0

= 14
3

0
(10 2 + 4 3) = 14 10

3
3 + 4 3

0
= 171 14

10. is the part of the plane = 4 2 2 over the region = {( ) | 0 2 0 2 }. Thus

= (4 2 2 ) ( 2)2 + ( 2)2 + 1 = 3
2

0

2

0
4 2 2 2

= 3
2

0
4 2 2 2 =2

=0
= 3

2

0
4 (2 ) 2 2(2 ) (2 )2

= 3
2

0
3 4 2 + 4 = 3 1

4
4 4

3
3 + 2 2 2

0
= 3 4 32

3
+ 8 = 4

11. An equation of the plane through the points (1 0 0), (0 2 0), and (0 0 4) is 4 2 + = 4, so is the region in the

plane = 4 4 + 2 over = {( ) | 0 1 2 2 0}. Thus by Formula 4,

= ( 4)2 + (2)2 + 1 = 21
1

0

0

2 2
= 21

1

0
[ ] =0=2 2

= 21
1

0
( 2 2 + 2 ) = 21 2

3
3 + 2 1

0
= 21 2

3
+ 1 = 21

3

12. = 2
3 (

3 2 + 3 2) and

= ( )
2
+

2
+ 1 =

1

0

1

0
+ + 1

=
1

0
2
3 ( + + 1)3 2

=1

=0
=

1

0
2
3 ( + 2)3 2 ( + 1)3 2

Substituting = + 2 in the first term and = + 1 in the second, we have

= 2
3

3

2
( 2) 3 2 2

3

2

1
( 1) 3 2 = 2

3
2
7

7 2 4
5

5 2
3

2

2
3

2
7
7 2 2

5
5 2

2

1

= 2
3

2
7
(37 2 27 2) 4

5
(35 2 25 2) 2

7
(27 2 1) + 2

5
(25 2 1)

= 2
3

18
35

3 + 8
35

2 4
35

= 4
105

9 3 + 4 2 2

13. is the portion of the cone 2 = 2 + 2 for 1 3, or equivalently, is the part of the surface = 2 + 2 over the

region = ( ) | 1 2 + 2 9 . Thus
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676 ¤ CHAPTER 16 VECTOR CALCULUS

2 2 = 2( 2 + 2)
2 + 2

2

+
2 + 2

2

+ 1

= 2( 2 + 2)
2 + 2

2 + 2
+ 1 = 2 2( 2 + 2) = 2

2

0

3

1

( cos )2( 2)

= 2
2

0
cos2

3

1
5 = 2 1

2
+ 1

4
sin 2

2

0
1
6

6 3

1
= 2 ( ) · 1

6
(36 1) =

364 2

3

14. Using and as parameters, we have r( ) = ( + 2 2) i+ j+ k, 0 1, 0 1.

Then r × r = (i+ j)× (4 i+ k) = i j 4 k and |r × r | = 2 + 16 2. Thus

=
1

0

1

0
2 + 16 2 =

1

0
2 + 16 2 = 1

32
· 2
3
(2 + 16 2)3 2

1

0
= 1

48
(183 2 23 2) = 13

12
2.

15. Using and as parameters, we have r( ) = i+ ( 2 + 2) j+ k, 2 + 2 4. Then

r × r = (i+ 2 j)× (2 j+ k) = 2 i j+ 2 k and |r × r | = 4 2 + 1 + 4 2 = 1 + 4( 2 + 2). Thus

=
2+ 2 4

( 2 + 2) 1 + 4( 2 + 2) =
2

0

2

0
2 1 + 4 2 =

2

0

2

0
2 1 + 4 2

= 2
2

0
2 1 + 4 2 let = 1 + 4 2 2 = 1

4
( 1) and 1

8
=

= 2
17

1
1
4
( 1) · 1

8
= 1

16

17

1
( 3 2 1 2)

= 1
16

2
5

5 2 2
3

3 2
17

1
= 1

16
2
5
(17)5 2 2

3
(17)3 2 2

5
+ 2

3
=
60

391 17 + 1

16. The sphere intersects the cylinder in the circle 2 + 2 = 1, = 3, so is the portion of the sphere where 3.

Using spherical coordinates to parametrize the sphere we have r( ) = 2 sin cos i+ 2 sin sin j+ 2cos k, and

|r × r | = 4 sin (see Example 16.6.10). The portion where 3 corresponds to 0
6
, 0 2 so

2 =
2

0

6

0
(2 sin sin )2(4 sin ) = 16

2

0
sin2

6

0
sin3

= 16 1
2

1
4
sin 2

2

0
1
3
cos3 cos

6

0
= 16( ) 3

8
3
2

1
3
+ 1 = 32

3
6 3

17. Using spherical coordinates and Example 16.6.10 we have r( ) = 2 sin cos i+ 2 sin sin j+ 2cos k and

|r × r | = 4 sin . Then ( 2 + 2 ) =
2

0

2

0
(4 sin2 )(2 cos )(4 sin ) = 16 sin4

2

0
= 16 .

18. Here consists of three surfaces: 1, the lateral surface of the cylinder; 2, the front formed by the plane + = 5;

and the back, 3, in the plane = 0.

On 1: the surface is given by r( ) = i+ 3 cos j+ 3 sin k, 0 2 , and 0 5

0 5 3 cos . Then r × r = 3cos j 3 sin k and |r × r | = 9cos2 + 9 sin2 = 3, so

1
=

2

0

5 3 cos

0
(3 sin )(3) = 9

2

0
1
2

2 =5 3 cos

=0
sin

= 9
2

2

0
(5 3 cos )2 sin = 9

2
1
9
(5 3 cos )3

2

0
= 0
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SECTION 16.7 SURFACE INTEGRALS ¤ 677

On 2: r( ) = (5 ) i+ j+ k and |r × r | = |i+ j| = 2, where 2 + 2 9 and

2
=

2 + 2 9

(5 ) 2 = 2
2

0

3

0
(5 cos )( sin )

= 2
2

0

3

0
(5 2 3 cos )(sin ) = 2

2

0
5
3

3 1
4

4 cos
=3

=0
sin

= 2
2

0
45 81

4
cos sin = 2 4

81
· 1
2
45 81

4
cos

2 2

0
= 0

On 3: = 0 so
3

= 0. Hence = 0 + 0 + 0 = 0.

19. is given by r( ) = i + cos j + sin k, 0 3, 0 2. Then

r × r = i× ( sin j+ cos k) = cos j sin k and |r × r | = cos2 + sin2 = 1, so

( + 2 ) =
2

0

3

0
(sin + 2 cos )(1) =

2

0
(3 sin + 9 cos )

= [ 3 cos + 9 sin ] 2
0 = 0 + 9 + 3 0 = 12

20. Let 1 be the lateral surface, 2 the top disk, and 3 the bottom disk.

On 1: r( ) = 3 cos i+ 3 sin j+ k, 0 2 , 0 2, |r × r | = 3,

1
( 2 + 2 + 2) =

2

0

2

0
(9 + 2) 3 = 2 (54 + 8) = 124 .

On 2: r( ) = cos i+ sin j+ 2k, 0 3, 0 2 , |r × r | = ,

2
( 2 + 2 + 2) =

2

0

3

0
( 2 + 4) = 2 81

4
+ 18 = 153

2
.

On 3: r( ) = cos i+ sin j, 0 3, 0 2 , |r × r | = ,

3
( 2 + 2 + 2) =

2

0

3

0
( 2 + 0) = 2 81

4
= 81

2
.

Hence 2 + 2 + 2 = 124 + 153
2

+ 81
2

= 241 .

21. From Exercise 5, r( ) = ( + ) i+ ( ) j+ (1 + 2 + )k, 0 2, 0 1, and r × r = 3 i+ j 2k.

Then

F(r( )) = (1 + 2 + ) ( + )( ) i 3(1 + 2 + ) ( + )( ) j+ ( + )( )k

= (1 + 2 + )
2 2

i 3(1 + 2 + )
2 2

j+ ( 2 2)k

Because the -component of r × r is negative we use (r × r ) in Formula 9 for the upward orientation:

F · S = F · ( (r × r )) =
1

0

2

0
3(1 + 2 + )

2 2
+ 3(1 + 2 + )

2 2
+ 2( 2 2)

=
1

0

2

0
2( 2 2) = 2

1

0
1
3

3 2 =2

=0
= 2

1

0
8
3 2 2

= 2 8
3

2
3

3 1

0
= 2 8

3
2
3
= 4

22. r( ) = h cos sin i, 0 1, 0 and

r × r = hcos sin 0i × h sin cos 1i = hsin cos i. Here F(r( )) = i+ sin j+ cos k and,
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678 ¤ CHAPTER 16 VECTOR CALCULUS

by Formula 9,

F · S= F · (r × r ) =
1

0 0
( sin sin cos + 2 cos )

=
1

0
sin cos 1

2
sin2 + 2 sin

=

=0
=

1

0
= ]10 =

23. F( ) = i+ j+ k, = ( ) = 4 2 2, and is the square [0 1]× [0 1], so by Equation 10

F · S= [ ( 2 ) ( 2 ) + ] =
1

0

1

0
[2 2 + 2 2(4 2 2) + (4 2 2)]

=
1

0
1
3

2 + 11
3

3 + 34
15

= 713
180

24. F( ) = i j+ 3 k, = ( ) = 2 + 2, and is the annular region ( ) | 1 2 + 2 9 . Since

has downward orientation, we have

F · S= ( )
2 + 2

( )
2 + 2

+ 3

=
2 + 2

2 + 2
+ 2 + 2

3

=
2

0

3

1

2

+ 3

=
2

0

3

1
( 2 + 4) = [ ]20

1
3

3 + 1
5

5 3

1

= 2 9 + 243
5

1
3

1
5
= 1712

15

25. F( ) = i j + k, = ( ) = 4 2 2 and is the quarter disk

( ) 0 2 0 4 2 . has downward orientation, so by Formula 10,

F · S = · 1
2
(4 2 2) 1 2( 2 ) ( ) · 1

2
(4 2 2) 1 2( 2 ) +

=
2

4 2 2
4 2 2 ·

4 2 2
+

= 2(4 ( 2 + 2)) 1 2 =
2

0

2

0
( cos )2(4 2) 1 2

=
2

0
cos2

2

0
3(4 2) 1 2 let = 4 2 2 = 4 and 1

2
=

=
2

0
1
2 +

1
2 cos 2

0

4
1
2 (4 )( ) 1 2

= 1
2
+ 1

4
sin 2

2

0
1
2
8 2

3
3 2

0

4
=

4
1
2

16 + 16
3
= 4

3

26. F( ) = i+ j+ k

Using spherical coordinates, is given by = 5 sin cos , = 5 sin sin , = 5 cos , 0 ,

0 . F(r( )) = (5 sin cos )(5 cos ) i + (5 sin cos ) j+ (5 sin sin )k and

r × r = 25 sin2 cos i+ 25 sin2 sin j+ 25 cos sin k, so

F(r( )) · (r × r ) = 625 sin3 cos cos2 + 125 sin3 cos sin + 125 sin2 cos sin
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Then
F · S = [F(r( )) · (r × r )]

=
0 0

(625 sin3 cos cos2 + 125 sin3 cos sin + 125 sin2 cos sin )

= 125
0
5 sin3 cos 1

2
+ 1

4
sin 2 + sin3 1

2
sin2 + sin2 cos ( cos )

=

=0

= 125
0

5
2
sin3 cos + 2 sin2 cos = 125 5

2
· 1
4
sin4 + 2 · 1

3
sin3

0
= 0

27. Let 1 be the paraboloid = 2 + 2, 0 1 and 2 the disk 2 + 2 1, = 1. Since is a closed

surface, we use the outward orientation.

On 1: F(r( )) = ( 2 + 2) j k and r × r = 2 i j+ 2 k (since the j-component must be negative on 1). Then

1
F · S=

2 + 2 1

[ ( 2 + 2) 2 2] =
2

0

1

0
( 2 + 2 2 sin2 )

=
2

0

1

0
3(1 + 2 sin2 ) =

2

0
(1 + 1 cos 2 )

1

0
3

= 2 1
2
sin 2

2

0
1
4

4 1

0
= 4 · 1

4
=

On 2: F(r( )) = j k and r × r = j. Then
2
F · S =

2 + 2 1

(1) = .

Hence F · S = + = 0.

28. F( ) = i+ 4 2 j+ k, = ( ) = , and is the square [0 1]× [0 1], so by Equation 10

F · S= [ ( ) 4 2( ) + ] =
1

0

1

0
( 4 3 + )

=
1

0
4 3 =1

=0
= ( 1)

1

0
( 4 3) = 1

29. Here consists of the six faces of the cube as labeled in the figure. On 1:

F = i+ 2 j+ 3 k, r × r = i and
1
F · S = 1

1

1

1
= 4;

2: F = i+ 2 j+ 3 k, r × r = j and
2
F · S = 1

1

1

1
2 = 8;

3: F = i+ 2 j+ 3k, r × r = k and
3
F · S = 1

1

1

1
3 = 12;

4: F = i+ 2 j+ 3 k, r × r = i and
4
F · S = 4;

5: F = i 2 j+ 3 k, r × r = j and
5
F · S = 8;

6: F = i + 2 j 3k, r × r = k and
6
F · S = 1

1

1

1
3 = 12.

Hence F · S =
6

=1

F · S = 48.

30. Here consists of three surfaces: 1, the lateral surface of the cylinder; 2, the front formed by the plane + = 2; and the

back, 3, in the plane = 0.

On 1: F(r( )) = sin i+ j+ 5k and r × r = sin i+ cos k

1
F · S= 2

0

2 sin

0
(sin2 + 5cos )

=
2

0
(2 sin2 + 10 cos sin3 5 sin cos ) = 2
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680 ¤ CHAPTER 16 VECTOR CALCULUS

On 2: F(r( )) = i+ (2 ) j+ 5k and r × r = i+ j.

2
F · S =

2 + 2 1

[ + (2 )] = 2

On 3: F(r( )) = i+ 5k and r × r = j so
3
F · S = 0. Hence F · S = 4 .

31. Here consists of four surfaces: 1, the top surface (a portion of the circular cylinder 2 + 2 = 1); 2, the bottom surface

(a portion of the -plane); 3, the front half-disk in the plane = 2, and 4, the back half-disk in the plane = 0.

On 1: The surface is = 1 2 for 0 2, 1 1 with upward orientation, so

1

F · S=
2

0

1

1

2 (0) 2

1 2
+ 2 =

2

0

1

1

3

1 2
+ 1 2

=
2

0
1 2 + 1

3
(1 2)3 2 + 1

3
3

=1

= 1
=

2

0
4
3

= 8
3

On 2: The surface is = 0 with downward orientation, so

2
F · S = 2

0

1

1
2 =

2

0

1

1
(0) = 0

On 3: The surface is = 2 for 1 1, 0 1 2, oriented in the positive -direction. Regarding and as

parameters, we have r × r = i and

3
F · S = 1

1

1 2

0
2 =

1

1

1 2

0
4 = 4 ( 3) = 2

On 4: The surface is = 0 for 1 1, 0 1 2, oriented in the negative -direction. Regarding and as

parameters, we use (r × r ) = i and

4
F · S = 1

1

1 2

0
2 =

1

1

1 2

0
(0) = 0

Thus F · S = 8
3
+ 0 + 2 + 0 = 2 + 8

3
.

32. Here consists of four surfaces: 1, the triangular face with vertices (1 0 0), (0 1 0), and (0 0 1); 2, the face of the

tetrahedron in the -plane; 3, the face in the -plane; and 4, the face in the -plane.

On 1: The face is the portion of the plane = 1 for 0 1, 0 1 with upward orientation, so

1
F · S= 1

0

1

0
[ ( 1) ( ) ( 1) + ] =

1

0

1

0
( + ) =

1

0

1

0
(1 )

=
1

0
1
2

2 =1

=0
= 1

2

1

0
1 2 = 1

2
1
3

3 1

0
= 1

3

On 2: The surface is = 0 with downward orientation, so

2
F · S = 1

0

1

0
( ) =

1

0
(1 ) = 1

2
2 1

3
3 1

0
= 1

6

On 3: The surface is = 0 for 0 1, 0 1 , oriented in the negative -direction. Regarding and as

parameters, we have r × r = j and

3
F · S= 1

0

1

0
( ) =

1

0

1

0
=

1

0
1
2

2 =1

=0

= 1
2

1

0
(1 )2 = 1

6
(1 )3

1

0
= 1

6
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SECTION 16.7 SURFACE INTEGRALS ¤ 681

On 4: The surface is = 0 for 0 1, 0 1 , oriented in the negative -direction. Regarding and as

parameters, we have r × r = i so we use (r × r ) = i and

4
F · S = 1

0

1

0
( ) =

1

0
(1 ) = 1

2
2 1

3
3 1

0
= 1

6

Thus F · S = 1
3

1
6

1
6

1
6
= 1

6
.

33. = = , = , so by Formula 4, a CAS gives

( 2 + 2 + 2) =
1

0

1

0
( 2 + 2 + 2 2 ) 2 + 2 2 + 1 4 5822.

34. = = , = , so by Formula 4, a CAS gives

2 =
1

0

1

0
2 ( ) 2 + 2 + 1

= 1
60

3 1
12
ln 1 + 3 1

192
ln 2 + 1 + 317

2880
2 + 1

24
ln 2

35. We use Formula 4 with = 3 2 2 2 = 4 , = 2 . The boundaries of the region

3 2 2 2 0 are 3
2

3
2
and 3 2 2 3 2 2, so we use a CAS (with precision reduced to

seven or fewer digits; otherwise the calculation may take a long time) to calculate

2 2 2 =
3 2

3 2

3 2 2

3 2 2

2 2(3 2 2 2)2 16 2 + 4 2 + 1 3 4895

36. The flux of F across is given by F · S = F · n . Now on , = ( ) = 2 1 2, so = 0 and

= 2 (1 2) 1 2. Therefore, by (10),

F · S = 2

2

1

1
2 2 (1 2) 1 2 + 2 1 2

2
5 = 1

3
(16 + 80 2 5 80 2 5)

2

1

0
10_1 2 0 _2

y
x

z

37. If is given by = ( ), then is also the level surface ( ) = ( ) = 0.

n =
( )

| ( )| =
i+ j k
2 + 1 + 2

, and n is the unit normal that points to the left. Now we proceed as in the

derivation of (10), using Formula 4 to evaluate

F · S = F · n = ( i+ j+ k)
i j+ k

2

+ 1 +
2

2

+ 1 +
2

where is the projection of onto the -plane. Therefore F · S = + .
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682 ¤ CHAPTER 16 VECTOR CALCULUS

38. If is given by = ( ), then is also the level surface ( ) = ( ) = 0.

n =
( )

| ( )| =
i j k

1 + 2 + 2
, and since the -component is positive this is the unit normal that points forward.

Now we proceed as in the derivation of (10), using Formula 4 for

F · S = F · n = ( i+ j+ k)

i j k

1 +
2

+
2

1 +
2

+
2

where is the projection of onto the -plane. Therefore F · S = .

39. = = · 4 1
2

2 = 2 2 ; by symmetry = = 0, and

= =
2

0

2

0
( cos )( 2 sin ) = 2 3 1

4
cos 2

2

0
= 3.

Hence ( ) = 0 0 1
2
.

40. is given by r( ) = i+ j+ 2 + 2 k, |r × r | = 1 +
2 + 2

2 + 2
= 2 so

= 10 2 + 2 =
1 2 + 2 16

10 2 + 2 2

=
2

0

4

1
2 (10 ) = 2 2 5 2 1

3
3 4

1
= 108 2

41. (a) = ( 2 + 2) ( )

(b) = ( 2 + 2) 10 2 + 2 =
1 2 + 2 16

( 2 + 2) 10 2 + 2 2

=
2

0

4

1
2 (10 3 4) = 2 2 4329

10
= 4329

5
2

42. Using spherical coordinates to parametrize the sphere we have r( ) = 5 sin cos i+ 5 sin sin j+ 5cos k, and

|r × r | = 25 sin (see Example 16.6.10). is the portion of the sphere where 4, so 0 tan 1(3 4) and

0 2 .

(a) = ( ) =
2

0

tan 1(3 4)

0
(25 sin ) = 25

2

0

tan 1(3 4)

0
sin

= 25 (2 ) cos tan 1 3
4
+ 1 = 50 4

5 + 1 = 10 .

Because has constant density, = = 0 by symmetry, and

= 1 ( ) = 1
10

2

0

tan 1(3 4)

0
(5 cos )(25 sin )

= 1
10

(125 )
2

0

tan 1(3 4)

0
sin cos = 1

10
(125 ) (2 ) 1

2
sin2

tan 1(3 4)

0
= 25 · 1

2
3
5

2
= 9

2
,

so the center of mass is ( ) = 0 0 9
2

(b) = ( 2 + 2) ( ) =
2

0

tan 1(3 4)

0
(25 sin2 )(25 sin )

= 625
2

0

tan 1(3 4)

0
sin3 = 625 (2 ) 1

3
cos3 cos

tan 1(3 4)

0

= 1250 1
3

4
5

3 4
5

1
3
+ 1 = 1250 14

375
= 140

3
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43. The rate of flow through the cylinder is the flux v · n = v · S. We use the parametric representation

r( ) = 2 cos i+ 2 sin j+ k for , where 0 2 , 0 1, so r = 2 sin i+ 2cos j, r = k, and the

outward orientation is given by r × r = 2cos i+ 2 sin j. Then

v · S=
2

0

1

0
i+ 4 sin2 j+ 4 cos2 k · (2 cos i+ 2 sin j)

=
2

0

1

0
2 cos + 8 sin3 =

2

0
cos + 8 sin3

= sin + 8 1
3
(2 + sin2 ) cos

2

0
= 0 kg s

44. A parametric representation for the hemisphere is r( ) = 3 sin cos i+ 3 sin sin j+ 3cos k, 0 2,

0 2 . Then r = 3 cos cos i+ 3cos sin j 3 sin k, r = 3 sin sin i+ 3 sin cos j, and the outward

orientation is given by r × r = 9 sin2 cos i+ 9 sin2 sin j+ 9 sin cos k. The rate of flow through is

v · S=
2

0

2

0
(3 sin sin i+ 3 sin cos j) · 9 sin2 cos i+ 9 sin2 sin j+ 9 sin cos k

= 27
2

0

2

0
sin3 sin cos + sin3 sin cos = 54

2

0
sin3

2

0
sin cos

= 54 1
3
(2 + sin2 ) cos

2

0
1
2
sin2

2

0
= 0 kg s

45. consists of the hemisphere 1 given by = 2 2 2 and the disk 2 given by 0 2 + 2 2, = 0.

On 1: E = sin cos i + sin sin j + 2 cos k,

T ×T = 2 sin2 cos i+ 2 sin2 sin j+ 2 sin cos k. Thus

1
E · S= 2

0

2

0
( 3 sin3 + 2 3 sin cos2 )

=
2

0

2

0
( 3 sin + 3 sin cos2 ) = (2 ) 3 1 + 1

3
= 8

3
3

On 2: E = i+ j, and r × r = k so
2
E · S = 0. Hence the total charge is = 0 E · S = 8

3
3
0.

46. Referring to the figure, on

1: E = i+ j+ k, r × r = i and
1
E · S = 1

1

1

1
= 4;

2: E = i+ j+ k, r × r = j and
2
E · S = 1

1

1

1
= 4;

3: E = i+ j+ k, r × r = k and
3
E · S = 1

1

1

1
= 4;

4: E = i+ j+ k, r × r = i and
4
E · S = 4.

Similarly
5
E · S =

6
E · S = 4. Hence = 0 E · S = 0

6

= 1

E · S = 24 0.

47. = 6 5(4 j+ 4 k). is given by r( ) = i+ 6 cos j+ 6 sin k and since we want the inward heat flow, we

use r × r = 6 cos j 6 sin k. Then the rate of heat flow inward is given by

( ) · S = 2

0

4

0
(6 5)( 24) = (2 )(156)(4) = 1248 .
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48. ( ) = 2 + 2 + 2,

F= =
( 2 + 2 + 2)3 2

i
( 2 + 2 + 2)3 2

j
( 2 + 2 + 2)3 2

k

=
( 2 + 2 + 2)3 2

( i+ j+ k)

and the outward unit normal is n = 1
( i+ j+ k).

Thus F · n =
( 2 + 2 + 2)3 2

( 2 + 2 + 2), but on , 2 + 2 + 2 = 2 so F · n =
2
. Hence the rate of heat flow

across is F · S =
2

=
2
(4 2) = 4 .

49. Let be a sphere of radius centered at the origin. Then |r| = and F(r) = r |r|3 = 3 ( i+ j+ k). A

parametric representation for is r( ) = sin cos i+ sin sin j+ cos k, 0 , 0 2 . Then

r = cos cos i+ cos sin j sin k, r = sin sin i+ sin cos j, and the outward orientation is given

by r × r = 2 sin2 cos i+ 2 sin2 sin j+ 2 sin cos k. The flux of F across is

F · S=
0

2

0 3
( sin cos i+ sin sin j+ cos k)

· 2 sin2 cos i+ 2 sin2 sin j+ 2 sin cos k

=
3 0

2

0
3 sin3 + sin cos2 =

0

2

0
sin = 4

Thus the flux does not depend on the radius .

16.8 Stokes' Theorem

1. Both and are oriented piecewise-smooth surfaces that are bounded by the simple, closed, smooth curve 2 + 2 = 4,

= 0 (which we can take to be oriented positively for both surfaces). Then and satisfy the hypotheses of Stokes’

Theorem, so by (3) we know curlF · S = F · r = curlF · S (where is the boundary curve).

2. The boundary curve is the circle 2 + 2 = 9, = 0 oriented in the counterclockwise direction when viewed from above.

A vector equation of is r( ) = 3 cos i+ 3 sin j, 0 2 , so r0( ) = 3 sin i+ 3 cos j and

F(r( )) = 2(3 sin )(cos 0) i+ 3 cos (sin 0) j+ (3 cos ) 3 sin k = 6 sin i+ (3 cos ) 3 sin k. Then, by Stokes’ Theorem,

curlF · S = F · r = 2

0
F(r( )) · r0( ) =

2

0
( 18 sin2 + 0 + 0) = 18 1

2
1
4
sin 2

2

0
= 18 .

3. The paraboloid = 2 + 2 intersects the cylinder 2 + 2 = 4 in the circle 2 + 2 = 4, = 4. This boundary curve

should be oriented in the counterclockwise direction when viewed from above, so a vector equation of is

r( ) = 2 cos i+ 2 sin j+ 4k, 0 2 . Then r0( ) = 2 sin i+ 2 cos j,

F(r( )) = (4 cos2 )(16) i+ (4 sin2 )(16) j+ (2 cos )(2 sin )(4)k = 64 cos2 i+ 64 sin2 j+ 16 sin cos k
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and by Stokes’ Theorem,

curlF · S= F · r = 2

0
F(r( )) · r0( ) =

2

0
( 128 cos2 sin + 128 sin2 cos + 0)

= 128 1
3
cos3 + 1

3
sin3

2

0
= 0

4. The boundary curve is the circle 2 + 2 = 4, = 2 which should be oriented in the counterclockwise direction when

viewed from the front, so a vector equation of is r( ) = 2 i+ 2 cos j+ 2 sin k, 0 2 . Then

F(r( )) = tan 1(32 cos sin2 ) i + 8cos j+ 16 sin2 k, r0( ) = 2 sin j+ 2 cos k, and

F(r( )) · r0( ) = 16 sin cos + 32 sin2 cos . Thus

curlF · S = F · r = 2

0
F(r( )) · r0( ) =

2

0
( 16 sin cos + 32 sin2 cos )

= 8 sin2 + 32
3
sin3

2

0
= 0

5. is the square in the plane = 1. Rather than evaluating a line integral around we can use Equation 3:

1
curlF · S = F · r =

2
curlF · S where 1 is the original cube without the bottom and 2 is the bottom face

of the cube. curlF = 2 i+ ( 2 ) j+ ( )k. For 2, we choose n = k so that has the same orientation for

both surfaces. Then curlF · n = = + on 2, where = 1. Thus
2
curlF · S = 1

1

1

1
( + ) = 0

so
1
curlF · S = 0.

6. The boundary curve is the circle 2 + 2 = 1, = 0 which should be oriented in the counterclockwise direction when

viewed from the right, so a vector equation of is r( ) = cos( ) i+ sin( )k = cos i sin k, 0 2 . Then

F(r( )) = i+ cos sin j cos2 sin k, r0( ) = sin i cos k, and F(r( )) · r0( ) = sin + cos3 sin . Thus

curlF · S = F · r = 2

0
F(r( )) · r0( ) =

2

0
( sin + cos3 sin )

= cos 1
4
cos4

2

0
= 0

7. curl F = 2 i 2 j 2 k and we take the surface to be the planar region enclosed by , so is the portion of the plane

+ + = 1 over = {( ) | 0 1, 0 1 }. Since is oriented counterclockwise, we orient upward.

Using Equation 16.7.10, we have = ( ) = 1 , = 2 , = 2 , = 2 , and

F · r= curlF · S = [ ( 2 )( 1) ( 2 )( 1) + ( 2 )]

=
1

0

1

0
( 2) = 2

1

0
(1 ) = 1

8. curlF = ( ) i j + k and is the portion of the plane 3 + 2 + = 1 over

= ( ) | 0 1
3
0 1

2
(1 3 ) . We orient upward and use Equation 16.7.10 with

= ( ) = 1 3 2 :

F · r= curlF · S = [ ( )( 3) ( )( 2) + 1] =
1 3

0

(1 3 ) 2

0
(1 + 3 5 )

=
1 3

0
(1 + 3 ) 5

2
2 =(1 3 ) 2

=0
=

1 3

0
1
2
(1 + 3 )(1 3 ) 5

2
· 1
4
(1 3 )2

=
1 3

0
81
8

2 + 15
4

1
8

= 27
8

3 + 15
8

2 1
8

1 3

0
= 1

8
+ 5

24
1
24
= 1

24
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9. curlF = ( 2 ) i ( ) j+ (2 )k and we take to be the disk 2 + 2 16, = 5. Since is oriented

counterclockwise (from above), we orient upward. Then n = k and curlF · n = 2 on , where = 5. Thus

F · r = curlF · n = (2 ) = (10 5) = 5(area of ) = 5( · 42) = 80

10. The curve of intersection is an ellipse in the plane = 5 . curlF = i k and we take the surface to be the planar

region enclosed by with upward orientation, so

F · r= curlF · S =
2+ 2 9

[ 1 ( 1) 0 + ( )] =
2

0

3

0
(1 cos )

=
2

0

3

0
2 cos =

2

0
9
2

9 cos = 9
2

9 sin
2

0
= 9

11. (a) The curve of intersection is an ellipse in the plane + + = 1 with unit normal n = 1

3
(i+ j+ k),

curlF = 2 j+ 2 k, and curlF · n = 1

3
( 2 + 2). Then

F · r = 1

3

2 + 2 = 2 + 2 9
2 + 2 =

2

0

3

0
3 = 2 81

4
= 81

2

(b) (c) One possible parametrization is = 3 cos , = 3 sin ,

= 1 3 cos 3 sin , 0 2 .

12. (a) is the part of the surface = 2 2 that lies above the unit disk . curlF = i j+ ( 2 2)k = i j.

Using Equation 16.7.10 with ( ) = 2 2, = , = , we have

F · r= curlF · S = [ ( 2 ) ( )(2 )] = 2 ( 2 + 2)

= 2
2

0

1

0
2 = 2(2 ) 1

4
4 1

0
=

(b) (c) One possible set of parametric equations is = cos ,

= sin , = sin2 cos2 , 0 2 .

13. The boundary curve is the circle 2 + 2 = 16, = 4 oriented in the clockwise direction as viewed from above (since is

oriented downward). We can parametrize by r( ) = 4 cos i 4 sin j+ 4k, 0 2 , and then

r0( ) = 4 sin i 4 cos j. Thus F(r( )) = 4 sin i+ 4cos j 2k, F(r( )) · r0( ) = 16 sin2 16 cos2 = 16, and

F · r = 2

0
F(r( )) · r0( ) =

2

0
( 16) = 16 (2 ) = 32
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SECTION 16.8 STOKES’ THEOREM ¤ 687

Now curl F = 2k, and the projection of on the -plane is the disk 2 + 2 16, so by Equation 16.7.10 with

= ( ) = 2 + 2 [and multiplying by 1 for the downward orientation] we have

curlF · S= ( 0 0 + 2) = 2 · ( ) = 2 · (42 ) = 32

14. The paraboloid intersects the plane = 1 when 1 = 5 2 2 2 + 2 = 4, so the boundary curve is the circle
2 + 2 = 4, = 1 oriented in the counterclockwise direction as viewed from above. We can parametrize by

r( ) = 2 cos i + 2 sin j + k, 0 2 , and then r0( ) = 2 sin i + 2cos j. Thus

F(r( )) = 4 sin i+ 2 sin j+ 6cos k, F(r( )) · r0( ) = 8 sin2 + 4 sin cos , and

F · r= 2

0
(8 sin2 + 4 sin cos ) = 8 1

2
1
4
sin 2 + 2 sin2

2

0
= 8

Now curl F = ( 3 2 ) j+2 k, and the projection of on the -plane is the disk 2 + 2 4, so by Equation 16.7.10

with = ( ) = 5 2 2 we have

curlF · S= [ 0 ( 3 2 )( 2 ) + 2 ] = [ 6 4 2 + 2(5 2 2)]

=
2

0

2

0
6 sin 4 2 sin2 + 2(5 2) =

2

0
2 3 sin 4 sin2 + 5 2 1

2
4 =2

=0

=
2

0
16 sin 16 sin2 + 20 8 = 16 cos 16 1

2
1
4
sin 2 + 12

2

0
= 8

15. The boundary curve is the circle 2 + 2 = 1, = 0 oriented in the counterclockwise direction as viewed from the positive

-axis. Then can be described by r( ) = cos i sin k, 0 2 , and r0( ) = sin i cos k. Thus

F(r( )) = sin j+ cos k, F(r( )) · r0 ( ) = cos2 , and F · r = 2

0
( cos2 ) = 1

2
1
4
sin 2

2

0
= .

Now curlF = i j k, and can be parametrized (see Example 16.6.10) by

r( ) = sin cos i + sin sin j + cos k, 0 , 0 . Then

r × r = sin2 cos i+ sin2 sin j+ sin cos k and

curlF · S=
2+ 2 1

curlF · (r × r ) =
0 0

( sin2 cos sin2 sin sin cos )

=
0
( 2 sin2 sin cos ) = 1

2
sin 2

2
sin2

0
=

16. Let be the surface in the plane + + = 1 with upward orientation enclosed by . Then an upward unit normal vector

for is n = 1

3
(i+ j+ k). Orient in the counterclockwise direction, as viewed from above. 2 + 3 is

equivalent to F · r for F( ) = i 2 j+ 3 k, and the components of F are polynomials, which have continuous

partial derivatives throughout R3. We have curl F = 3 i+ j 2k, so by Stokes’ Theorem,

2 + 3 = F · r = curlF · n = (3 i+ j 2k) · 1

3
(i+ j+ k)

= 2

3
= 2

3
(surface area of )

Thus the value of 2 + 3 is always 2

3
times the area of the region enclosed by , regardless of its shape or

location. [Notice that because n is normal to a plane, it is constant. But curl F is also constant, so the dot product curlF · n is
constant and we could have simply argued that curlF · n is a constant multple of , the surface area of .]

c° 2012 Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part.

NOT FOR SALE

°°cc 2012 Cengage Learning. All Rights Reserved. May not be scanned, copied, or2012 Cengage Learning. All Rights Reserved. May not be scanned, copied, duplicated, or posted to a publicly accessible website, in whole or in part.licated, or posted to a publicly accessible website, in whole or in par

460



688 ¤ CHAPTER 16 VECTOR CALCULUS

17. It is easier to use Stokes’ Theorem than to compute the work directly. Let be the planar region enclosed by the path of the

particle, so is the portion of the plane = 1
2
for 0 1, 0 2, with upward orientation.

curl F = 8 i+ 2 j+ 2 k and

F · r= curlF · S = 8 (0) 2 1
2
+ 2 =

1

0

2

0
2 1

2

=
1

0

2

0
3
2

=
1

0
3
4

2 =2

=0
=

1

0
3 = 3

18. ( + sin ) + ( 2 + cos ) + 3 = F · r, where F( ) = ( + sin ) i+ ( 2 + cos ) j+ 3 k

curlF = 2 i 3 2 j k. Since sin 2 = 2 sin cos , lies on the surface = 2 . Let be the part of this surface that

is bounded by . Then the projection of onto the -plane is the unit disk [ 2 + 2 1]. is traversed clockwise

(when viewed from above) so is oriented downward. Using Equation 16.7.10 with ( ) = 2 ,

= 2 = 2(2 ) = 4 , = 3 2, = 1 and multiplying by 1 for the downward orientation, we have

F · r= curlF · S = ( 4 )(2 ) ( 3 2)(2 ) 1

= (8 2 + 6 3 1) =
2

0

1

0
(8 3 cos sin2 + 6 3 cos3 1)

=
2

0
8
5
cos sin2 + 6

5
cos3 1

2
= 8

15
sin3 + 6

5
sin 1

3
sin3 1

2

2

0
=

19. Assume is centered at the origin with radius and let 1 and 2 be the upper and lower hemispheres, respectively, of .

Then curlF · S =
1
curlF · S+

2
curlF · S =

1
F · r+

2
F · r by Stokes’ Theorem. But 1 is the

circle 2 + 2 = 2 oriented in the counterclockwise direction while 2 is the same circle oriented in the clockwise direction.

Hence
2
F · r =

1
F · r so curlF · S = 0 as desired.

20. (a) By Exercise 16.5.26, curl( ) = curl( ) + × = × since curl( ) = 0. Hence by Stokes’

Theorem ( ) · r = ( × ) · S.

(b) As in (a), curl( ) = × = 0, so by Stokes’ Theorem, ( ) · r = [curl( )] · S = 0.

(c) As in part (a),

curl( + ) = curl( ) + curl( ) [by Exercise 16.5.24]

= ( × ) + ( × ) = 0 [since u× v = (v× u)]

Hence by Stokes’ Theorem, ( + ) · r = curl( + ) · S = 0.
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SECTION 16.9 THE DIVERGENCE THEOREM ¤ 689

16.9 The Divergence Theorem

1. divF = 3 + + 2 = 3 + 3 , so

divF =
1

0

1

0

1

0
(3 + 3) = 9

2
(notice the triple integral is

three times the volume of the cube plus three times ).

To compute F · S, on

1: n = i, F = 3 i+ j+ 2 k, and
1
F · S =

1
3 = 3;

2: F = 3 i+ j+ 2 k, n = j and
2
F · S =

2
= 1

2
;

3: F = 3 i+ j+ 2 k, n = k and
3
F · S =

3
2 = 1;

4: F = 0,
4
F · S = 0; 5: F = 3 i+ 2 k, n = j and

5
F · S =

5
0 = 0;

6: F = 3 i+ j, n = k and
6
F · S =

6
0 = 0. Thus F · S = 9

2
.

2. divF = 2 + + 1 = 3 + 1 so

divF = (3 + 1) =
2

0

2

0

4 2

0
(3 cos + 1)

=
2

0

2

0
(3 cos + 1)(4 2)

=
2

0
(4 2) 3 sin +

=2

=0

= 2
2

0
(4 3) = 2 2 2 1

4
4 2

0

= 2 (8 4) = 8

On 1: The surface is = 4 2 2 2 + 2 4, with upward orientation, and F = 2 i+ j+ (4 2 2)k. Then

1
F · S= [ ( 2)( 2 ) ( )( 2 ) + (4 2 2)]

= 2 ( 2 + 2) + 4 ( 2 + 2) =
2

0

2

0
(2 cos · 2 + 4 2)

=
2

0
2
5

5 cos + 2 2 1
4

4 =2

=0
=

2

0
64
5
cos + 4 = 64

5
sin + 4

2

0
= 8

On 2: The surface is = 0 with downward orientation, so F = 2 i+ j, n = k and
2
F · n =

2
0 = 0.

Thus F · S =
1
F · S+

2
F · S = 8 .

3. divF = 0 + 1 + 0 = 1, so divF = 1 = ( ) = 4
3 · 43 = 256

3 . is a sphere of radius 4 centered at

the origin which can be parametrized by r( ) = h4 sin cos 4 sin sin 4 cos i, 0 , 0 2 (similar to

Example 16.6.10). Then

r × r = h4 cos cos 4 cos sin 4 sin i × h 4 sin sin 4 sin cos 0i
= 16 sin2 cos 16 sin2 sin 16 cos sin

and F(r( )) = h4 cos 4 sin sin 4 sin cos i. Thus
F · (r × r ) = 64 cos sin2 cos + 64 sin3 sin2 + 64 cos sin2 cos = 128 cos sin2 cos + 64 sin3 sin2

and
F · S = F · (r × r ) =

2

0 0
(128 cos sin2 cos + 64 sin3 sin2 )

=
2

0
128
3
sin3 cos + 64 1

3
(2 + sin2 ) cos sin2

=

=0

=
2

0
256
3
sin2 = 256

3
1
2

1
4
sin 2

2

0
= 256

3
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690 ¤ CHAPTER 16 VECTOR CALCULUS

4. divF = 2 1 + 1 = 2 , so

divF =

2+ 2 9

2

0

2 =

2+ 2 9

4 = 4(area of circle) = 4( · 32) = 36

Let 1 be the front of the cylinder (in the plane = 2), 2 the back (in the -plane), and 3 the lateral surface of the cylinder.

1 is the disk = 2, 2 + 2 9. A unit normal vector is n = h1 0 0i and F = h4 i on 1, so

1
F · S =

1
F · n =

1
4 = 4(surface area of 1) = 4( · 32) = 36 . 2 is the disk = 0, 2 + 2 9.

Here n = h 1 0 0i and F = h0 i, so
2
F · S =

2
F · n =

2
0 = 0.

3 can be parametrized by r( ) = h 3 cos 3 sin i, 0 2, 0 2 . Then

r × r = h1 0 0i × h0 3 sin 3 cos i = h0 3 cos 3 sin i. For the outward (positive) orientation we use

(r × r ) and F(r( )) = 2 3 cos 3 sin , so

3
F · S = F · ( (r × r )) =

2

0

2

0
(0 9 cos2 + 9 sin2 )

= 9
2

0

2

0
cos 2 = 9 (2) 1

2
sin 2

2

0
= 0

Thus F · S = 36 + 0 + 0 = 36 .

5. divF = ( ) + ( 2 3) + ( ) = + 2 3 = 2 3, so by the Divergence Theorem,

F · S= divF =
3

0

2

0

1

0
2 3 = 2

3

0

2

0

1

0
3

= 2 1
2

2 3

0
1
2

2 2

0
1
4

4 1

0
= 2 9

2
(2) 1

4
= 9

2

6. divF = ( 2 ) + ( 2 ) + ( 2) = 2 + 2 + 2 = 6 , so by the Divergence Theorem,

F · S= divF =
0 0 0

6 = 6
0 0 0

= 6 1
2

2
0

1
2

2
0

1
2

2
0
= 6 1

2
2 1

2
2 1

2
2 = 3

4
2 2 2

7. divF = 3 2 + 0 + 3 2, so using cylindrical coordinates with = cos , = sin , = we have

F · S= (3 2 + 3 2) =
2

0

1

0

2

1
(3 2 cos2 + 3 2 sin2 )

= 3
2

0

1

0
3 2

1
= 3(2 ) 1

4
(3) = 9

2

8. divF = 3 2 + 3 2 + 3 2, so by the Divergence Theorem,

F · S= 3( 2 + 2 + 2) =
0

2

0

2

0
3 2 · 2 sin = 3

0
sin

2

0

2

0
4

= 3 [ cos ]0 [ ]
2
0

1
5

5 2

0
= 3 (2) (2 ) 32

5
= 384

5

9. divF = 2 sin sin sin = 0, so by the Divergence Theorem, F · S = 0 = 0.
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SECTION 16.9 THE DIVERGENCE THEOREM ¤ 691

10. The tetrahedron has vertices (0 0 0), ( 0 0), (0 0), (0 0 ) and is described by

= ( ) | 0 , 0 1 , 0 1 . Here we have divF = 0 + 1 + = + 1, so

F · S = ( + 1) =
0

(1 )
0

(1 )
0 ( + 1)

=
0

(1 )
0 ( + 1) 1 =

0
( + 1) 1 1

2
2 = (1 )

=0

=
0
( + 1) 1 · 1 1

2
· 2 1

2
= 1

2 0
( + 1) 1

2

= 1
2 0

1
2

3 + 1
2

2 2 2 + 2 + 1

= 1
2

1
4 2

4 + 1
3 2

3 2
3

3 + 1
2

2 1 2 +
0

= 1
2

1
4

2 + 1
3

2
3

2 + 1
2

2 + = 1
2

1
12

2 + 1
3

= 1
24

( + 4)

11. div F = 2 + 0 + 2 = 2 + 2 so

F · S = ( 2 + 2) =
2

0

2

0

4
2

2 · =
2

0

2

0
3(4 2)

=
2

0

2

0
(4 3 5) = 2 4 1

6
6 2

0
= 32

3

12. div F = 4 3 + 4 2 so

F · S = 4 ( 2 + 2) =
2

0

1

0

cos +2

0
(4 3 cos )

=
2

0

1

0
(4 5 cos2 + 8 4 cos ) =

2

0
2
3
cos2 + 8

5
cos = 2

3

13. F( ) = 2 + 2 + 2 i+ 2 + 2 + 2 j+ 2 + 2 + 2 k, so

divF= · 1
2
( 2 + 2 + 2) 1 2(2 ) + ( 2 + 2 + 2)1 2 + · 1

2
( 2 + 2 + 2) 1 2(2 ) + ( 2 + 2 + 2)1 2

+ · 1
2
( 2 + 2 + 2) 1 2(2 ) + ( 2 + 2 + 2)1 2

= ( 2 + 2 + 2) 1 2 2 + ( 2 + 2 + 2) + 2 + ( 2 + 2 + 2) + 2 + ( 2 + 2 + 2)

=
4( 2 + 2 + 2)

2 + 2 + 2
= 4 2 + 2 + 2.

Then
F · S = 4 2 + 2 + 2 =

2

0

2

0

1

0

4 2 · 2 sin

=
2

0
sin

2

0

1

0
4 3 = [ cos ] 2

0 [ ]20
4 1

0
= (1) (2 ) (1) = 2

14. F( ) = ( 2 + 2 + 2) i+ ( 2 + 2 + 2) j+ ( 2 + 2 + 2)k, so

divF = · 2 + ( 2 + 2 + 2) + · 2 + ( 2 + 2 + 2) + · 2 + ( 2 + 2 + 2) = 5( 2 + 2 + 2). Then

F · S = 5( 2 + 2 + 2) =
0

2

0 0

5 2 · 2 sin

= 5
0
sin

2

0 0
4 = 5 [ cos ]0 [ ]

2
0

1
5

5
0
= 5 (2) (2 ) 1

5
5 = 4 5

15. F · S = 3 2 =
1

1

1

1

2 4 4

0
3 2 = 341

60
2 + 81

20
sin 1 3

3
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692 ¤ CHAPTER 16 VECTOR CALCULUS

16.

By the Divergence Theorem, the flux of F across the surface of the cube is

F · S = 2

0

2

0

2

0
cos cos2 + 3 sin2 cos cos4 + 5 sin4 cos cos6 = 19

64
2.

17. For 1 we have n = k, so F · n = F · ( k) = 2 2 = 2 (since = 0 on 1). So if is the unit disk, we get

1
F · S =

1
F · n = ( 2) =

2

0

1

0
2 (sin2 ) = 1

4
. Now since 2 is closed, we can use

the Divergence Theorem. Since divF = ( 2 ) + 1
3

3 + tan + ( 2 + 2) = 2 + 2 + 2, we use spherical

coordinates to get
2
F · S = divF =

2

0

2

0

1

0
2 · 2 sin = 2

5
. Finally

F · S =
2
F · S

1
F · S = 2

5
1
4

= 13
20

.

18. As in the hint to Exercise 17, we create a closed surface 2 = 1, where is the part of the paraboloid 2 + 2 + = 2

that lies above the plane = 1, and 1 is the disk 2 + 2 = 1 on the plane = 1 oriented downward, and we then apply the

Divergence Theorem. Since the disk 1 is oriented downward, its unit normal vector is n = k and F · ( k) = = 1 on

1. So
1
F · S =

1
F · n =

1
( 1) = ( 1) = . Let be the region bounded by 2. Then

2
F · S = divF = 1 =

1

0

2

0

2 2

1
=

1

0

2

0
( 3) = (2 ) 1

4
=

2
. Thus the

flux of F across is F · S =
2
F · S

1
F · S = 2 ( ) = 3

2 .

19. The vectors that end near 1 are longer than the vectors that start near 1, so the net flow is inward near 1 and divF( 1) is

negative. The vectors that end near 2 are shorter than the vectors that start near 2, so the net flow is outward near 2 and

divF( 2) is positive.

20. (a) The vectors that end near 1 are shorter than the vectors that start near 1, so the net flow is outward and 1 is a source.

The vectors that end near 2 are longer than the vectors that start near 2, so the net flow is inward and 2 is a sink.

(b) F( ) = 2 divF = · F = 1 + 2 . The -value at 1 is positive, so divF = 1 + 2 is positive, thus 1

is a source. At 2, 1, so divF = 1 + 2 is negative, and 2 is a sink.
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SECTION 16.9 THE DIVERGENCE THEOREM ¤ 693

21. From the graph it appears that for points above the -axis, vectors starting near a

particular point are longer than vectors ending there, so divergence is positive.

The opposite is true at points below the -axis, where divergence is negative.

F ( ) = + 2 divF = ( ) + + 2 = + 2 = 3 .

Thus divF 0 for 0, and divF 0 for 0.

22. From the graph it appears that for points above the line = , vectors starting

near a particular point are longer than vectors ending there, so divergence is

positive. The opposite is true at points below the line = , where divergence

is negative.

F ( ) = 2 2 divF = ( 2) + ( 2) = 2 + 2 . Then

div F 0 for 2 + 2 0 , and divF 0 for .

23. Since x

|x|3 =
i+ j+ k

( 2 + 2 + 2)3 2
and

( 2 + 2 + 2)3 2
=
( 2 + 2 + 2) 3 2

( 2 + 2 + 2)5 2
with similar expressions

for
( 2 + 2 + 2)3 2

and
( 2 + 2 + 2)3 2

, we have

div
x

|x|3 =
3( 2 + 2 + 2) 3( 2 + 2 + 2)

( 2 + 2 + 2)5 2
= 0, except at (0 0 0) where it is undefined.

24. We first need to find F so that F · n = (2 + 2 + 2) , so F · n = 2 + 2 + 2. But for ,

n =
i+ j+ k
2 + 2 + 2

= i+ j+ k. Thus F = 2 i+ 2 j+ k and divF = 1.

If = ( ) | 2 + 2 + 2 1 , then (2 + 2 + 2) = = ( ) = 4
3
(1)3 = 4

3
.

25. a · n = div a = 0 since div a = 0.

26. 1
3

F · S = 1
3

divF = 1
3

3 = ( )

27. curlF · S = div(curlF) = 0 by Theorem 16.5.11.

28. n = ( · n) = div( ) = 2

29. ( ) · n = div( ) = ( 2 + · ) by Exercise 16.5.25.

30. ( ) · n = ( 2 + · ) ( 2 + · ) [by Exercise 29].

But · = · , so that ( ) · n = ( 2 2 ) .
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694 ¤ CHAPTER 16 VECTOR CALCULUS

31. If c = 1 i+ 2 j+ 3 k is an arbitrary constant vector, we define F = c = 1 i+ 2 j+ 3 k. Then

divF = div c = 1 + 2 + 3 = · c and the Divergence Theorem says F · S = divF

F · n = · c . In particular, if c = i then i · n = · i

1 = (where n = 1 i+ 2 j+ 3 k). Similarly, if c = j we have 2 = ,

and c = k gives 3 = . Then

n = 1 i+ 2 j+ 3 k

= i+ j+ k = i+ j+ k

= as desired.

32. By Exercise 31, n = , so

F = n = = ( ) = ( k) = k = ( )k.

But the weight of the displaced liquid is volume× density× = ( ), thus F = k as desired.

16 Review

1. See Definitions 1 and 2 in Section 16.1. A vector field can represent, for example, the wind velocity at any location in space,

the speed and direction of the ocean current at any location, or the force vectors of Earth’s gravitational field at a location in
space.

2. (a) A conservative vector field F is a vector field which is the gradient of some scalar function .

(b) The function in part (a) is called a potential function for F that is, F = .

3. (a) See Definition 16.2.2.

(b) We normally evaluate the line integral using Formula 16.2.3.

(c) The mass is = ( ) , and the center of mass is ( ) where = 1 ( ) , = 1 ( ) .

(d) See (5) and (6) in Section 16.2 for plane curves; we have similar definitions when is a space curve

[see the equation preceding (10) in Section 16.2].

(e) For plane curves, see Equations 16.2.7. We have similar results for space curves

[see the equation preceding (10) in Section 16.2].

4. (a) See Definition 16.2.13.

(b) If F is a force field, F · r represents the work done by F in moving a particle along the curve .

(c) F · r = + +
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5. See Theorem 16.3.2.

6. (a) F · r is independent of path if the line integral has the same value for any two curves that have the same initial and
terminal points.

(b) See Theorem 16.3.4.

7. See the statement of Green’s Theorem on page 1108 [ET 1084].

8. See Equations 16.4.5.

9. (a) curlF = i+ j+ k = ×F

(b) divF = + + = · F

(c) For curlF, see the discussion accompanying Figure 1 on page 1118 [ET 1094] as well as Figure 6 and the accompanying

discussion on page 1150 [ET 1126]. For divF, see the discussion following Example 5 on page 1119 [ET 1095] as well as

the discussion preceding (8) on page 1157 [ET 1133].

10. See Theorem 16.3.6; see Theorem 16.5.4.

11. (a) See (1) and (2) and the accompanying discussion in Section 16.6; See Figure 4 and the accompanying discussion on

page 1124 [ET 1100].

(b) See Definition 16.6.6.

(c) See Equation 16.6.9.

12. (a) See (1) in Section 16.7.

(b) We normally evaluate the surface integral using Formula 16.7.2.

(c) See Formula 16.7.4.

(d) The mass is = ( ) and the center of mass is ( ) where = 1 ( ) ,

= 1 ( ) , = 1 ( ) .

13. (a) See Figures 6 and 7 and the accompanying discussion in Section 16.7. A Möbius strip is a nonorientable surface; see

Figures 4 and 5 and the accompanying discussion on page 1139 [ET 1115].

(b) See Definition 16.7.8.

(c) See Formula 16.7.9.

(d) See Formula 16.7.10.

14. See the statement of Stokes’ Theorem on page 1146 [ET 1122].

15. See the statement of the Divergence Theorem on page 1153 [ET 1129].

16. In each theorem, we have an integral of a “derivative” over a region on the left side, while the right side involves the values of

the original function only on the boundary of the region.
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1. False; divF is a scalar field.

2. True. (See Definition 16.5.1.)

3. True, by Theorem 16.5.3 and the fact that div 0 = 0.

4. True, by Theorem 16.3.2.

5. False. See Exercise 16.3.35. (But the assertion is true if is simply-connected; see Theorem 16.3.6.)

6. False. See the discussion accompanying Figure 8 on page 1092 [ET 1068].

7. False. For example, div( i) = 0 = div( j) but i 6= j.

8. True. Line integrals of conservative vector fields are independent of path, and by Theorem 16.3.3, work= F · r = 0 for
any closed path .

9. True. See Exercise 16.5.24.

10. False. F ·G is a scalar field, so curl(F ·G) has no meaning.

11. True. Apply the Divergence Theorem and use the fact that divF = 0.

12. False by Theorem 16.5.11, because if it were true, then div curlF = 3 6= 0.

1. (a) Vectors starting on point in roughly the direction opposite to , so the tangential component F ·T is negative.
Thus F · r = F ·T is negative.

(b) The vectors that end near are shorter than the vectors that start near , so the net flow is outward near and

divF( ) is positive.

2. We can parametrize by = , = 2, 0 1 so

=
1

0
1 + (2 )2 = 1

12
(1 + 4 2)3 2

1

0
= 1

12
5 5 1 .

3. cos =
0
(3 cos ) (3 sin ) cos (1)2 + ( 3 sin )2 + (3 cos )2 =

0
(9 cos2 sin ) 10

= 9 10 1
3
cos3

0
= 3 10 ( 2) = 6 10

4. = 3cos = 3 sin , = 2 sin = 2 cos , 0 2 , so

+ + 2 =
2

0
(2 sin )( 3 sin ) + (3 cos + 4 sin2 )(2 cos )

=
2

0
( 6 sin2 + 6cos2 + 8 sin2 cos ) =

2

0
6(cos2 sin2 ) + 8 sin2 cos

=
2

0
(6 cos 2 + 8 sin2 cos ) = 3 sin 2 + 8

3
sin3

2

0
= 0

Or: Notice that ( ) = 1 = + 2 , so F ( ) = + 2 is a conservative vector field. Since is a closed

curve, F · r = + ( + 2) = 0.
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5. 3 + 2 =
1

1
3( 2 ) + (1 2)2 =

1

1
( 4 2 2 + 1)

= 1
5

5 2
3

3 +
1

1
= 1

5
2
3 + 1

1
5

2
3 + 1 =

4
15

6. + + =
1

0
4 · 2 · 4 3 +

2 · 2 + 4 · 3 · 3 2 =
1

0
(4 6 + 2

2
+ 3 9)

= 4
7
7 +

2

+ 3
10

10
1

0
= 9

70

7. : = 1 + 2 = 2 , = 4 = 4 , = 1 + 3 = 3 , 0 1.

+ 2 + =
1

0
[(1 + 2 )(4 )(2) + (4 )2(4) + (4 )( 1 + 3 )(3)]

=
1

0
(116 2 4 ) = 116

3
3 2 2 1

0
= 116

3 2 = 110
3

8. F(r( )) = (sin )(1 + ) i+ (sin2 ) j, r0( ) = cos i+ j and

F · r =
0
((1 + ) sin cos + sin2 ) =

0
1
2
(1 + ) sin 2 + sin2

= 1
2
(1 + ) 1

2
cos 2 + 1

4
sin 2 + 1

2
1
4
sin 2

0
=

4

9. F(r( )) = i+ 2( ) j+ ( 2 + 3)k, r0( ) = 2 i+ 3 2 j k and

F · r = 1

0
(2 3 5 ( 2 + 3)) = 2 2 1

2
6 1

3
3 1

4
4 1

0
= 11

12
4 .

10. (a) : = 3 3 , =
2
, = 3 , 0 1. Then

= F · r = 1

0
3 i+ (3 3 ) j+

2
k · 3 i+

2
j+ 3k =

1

0
9 + 3

2
= 1

2
(3 9).

(b) = F · r = 2

0
(3 sin i+ 3cos j+ k) · ( 3 sin i+ j+ 3cos k)

=
2

0
( 9 sin2 + 3cos + 3 cos ) = 9

2
( sin cos ) + 3 sin + 3( sin + cos )

2

0

= 9
4
+ 3 + 3

2
3 = 3

4

11. [(1 + ) ] = 2 + 2 = + 2 and the domain of F is R2, so F is conservative. Thus there

exists a function such that F = . Then ( ) = + 2 implies ( ) = + + ( ) and then

( ) = + + 0( ) = (1 + ) + 0( ). But ( ) = (1 + ) , so 0( ) = 0 ( ) = .

Thus ( ) = + + is a potential function for F.

12. F is defined on all of R3, its components have continuous partial derivatives, and

curl F = (0 0) i (0 0) j+ (cos cos )k = 0, so F is conservative by Theorem 16.5.4. Thus there exists a function

such that = F. Then ( ) = sin implies ( ) = sin + ( ) and then

( ) = cos + ( ). But ( ) = cos , so ( ) = 0 ( ) = ( ). Then

( ) = sin + ( ) implies ( ) = 0( ). But ( ) = sin , so ( ) = cos + . Thus a potential

function for F is ( ) = sin + cos + .

c° 2012 Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part.

NOT FOR SALE

°°cc 2012 Cengage Learning. All Rights Reserved. May not be scanned, copied, or2012 Cengage Learning. All Rights Reserved. May not be scanned, copied, duplicated, or posted to a publicly accessible website, in whole or in part.licated, or posted to a publicly accessible website, in whole or in par

470
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13. Since (4 3 2 2 3) = 8 3 6 2 = (2 4 3 2 2 + 4 3) and the domain of F is R2, F is conservative.

Furthermore ( ) = 4 2 2 3 + 4 is a potential function for F. = 0 corresponds to the point (0 1) and = 1

corresponds to (1 1), so F · r = (1 1) (0 1) = 1 1 = 0.

14. Here curl F = 0, the domain of F is R3, and the components of F have continuous partial derivatives, so F is conservative.

Furthermore ( ) = + is a potential function for F. Then F · r = (4 0 3) (0 2 0) = 4 2 = 2.

15. 1: r( ) = i+ 2 j, 1 1;

2: r( ) = i+ j, 1 1.

Then
2 2 =

1

1
( 5 2 5) +

1

1

= 1
6
6 1

1
+ 1

2
2 1

1
= 0

Using Green’s Theorem, we have

2 2 = ( 2 ) ( 2) = ( 2 2 ) =
1

1

1

2

4

=
1

1
2 2 =1

= 2 =
1

1
(2 5 2 ) = 1

3
6 2 1

1
= 0

16. 1 + 3 + 2 = (2 ) 1 + 3 =
1

0

3

0
(2 0) =

1

0
9 2 = 3 3 1

0
= 3

17. 2 2 =
2 + 2 4

( 2) ( 2 ) =
2 + 2 4

( 2 2) =
2

0

2

0
3 = 8

18. curlF = (0 cos ) i ( cos 0) j+ (0 cos )k = cos i cos j cos k,

divF = sin sin sin

19. If we assume there is such a vector fieldG, then div(curlG) = 2 + 3 2 . But div(curlF) = 0 for all vector fields F.

Thus such aG cannot exist.

20. Let F = 1 i+ 1 j+ 1 k andG = 2 i+ 2 j+ 2 k be vector fields whose first partials exist and are continuous. Then

FdivG GdivF= 1
2
+

2
+

2
i+ 1

2
+

2
+

2
j+ 1

2
+

2
+

2
k

2
1
+

1
+

1
i+ 2

1
+

1
+

1
j

+ 2
1
+ +

1
k
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and

(G · )F (F · )G= 2
1
+ 2

1
+ 2

1
i+ 2

1
+ 2

1
+ 2

1
j

+ 2
1
+ 2

1
+ 2

1
k

1
2
+ 1

2
+ 1

2
i+ 1

2
+ 1

2
+ 1

2
j

+ 1
2
+ 1

2
+ 1

2
k

Hence

FdivG GdivF+ (G · )F (F · )G

= 1
2
+ 2

1
2

1
+ 1

2

2
1
+ 1

2
+ 1

2
+ 2

1
i

+ 1
2
+ 2

1
2

1
+ 1

2

1
2
+ 2

1
+ 2

1
+ 1

2
j

+ 2
1
+ 1

2
1

2
+ 2

1

1
2
+ 2

1
+ 2

1
+ 1

2
k

= ( 1 2 2 1) ( 2 1 1 2) i

+ ( 1 2 2 1) ( 1 2 2 1) j

+ ( 2 1 1 2) ( 1 2 2 1) k

= curl (F×G)

21. For any piecewise-smooth simple closed plane curve bounding a region , we can apply Green’s Theorem to

F( ) = ( ) i+ ( ) j to get ( ) + ( ) = ( ) ( ) = 0 = 0.
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22. 2( ) =
2( )

2
+

2( )
2

+
2( )

2

= + + + + + [Product Rule]

=
2

2
+ 2 +

2

2
+

2

2
+ 2

+
2

2
+

2

2
+ 2 +

2

2
[Product Rule]

=
2

2
+

2

2
+

2

2
+

2

2
+

2

2
+

2

2
+ 2 ·

= 2 + 2 + 2 ·

Another method: Using the rules in Exercises 14.6.37(b) and 16.5.25, we have

2( ) = · ( ) = · ( + ) = · + · + · + ·
= 2 + 2 + 2 ·

23. 2 = 0 means that
2

2
+

2

2
= 0. Now if F = i j and is any closed path in , then applying Green’s

Theorem, we get

F · r= = ( ) ( )

= ( + ) = 0 = 0

Therefore the line integral is independent of path, by Theorem 16.3.3.

24. (a) 2 + 2 = cos2 + sin2 = 1, so lies on the circular cylinder 2 + 2 = 1.

But also = , so lies on the plane = . Thus is the intersection of the

plane = and the cylinder 2 + 2 = 1.

(b) Apply Stokes’ Theorem, F · r = curlF · S:

curlF =

i j k

2 2 2 2 2 + 2 cot 2 csc2

= 2 csc2 ( 2 csc2 ) 0 4 2 4 2 = 0

Therefore F · r = 0 · S = 0.

25. = ( ) = 2 + 2 with 0 1, 0 2 . Thus

( ) = 1 + 4 2 + 4 =
1

0

2

0
5 + 4 2 =

1

0
2 5 + 4 2 = 1

6
(5 + 4 2)3 2

1

0
= 1

6
27 5 5 .
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26. (a) r = j+ 2 k, r = 2 i j and

r × r = 2 2 i+ 4 j+ 2 2 k. Since the point (4 2 1)

corresponds to = 1, = 2 (or = 1, = 2 but r × r
is the same for both), a normal vector to the surface at (4 2 1)

is 2 i+ 8 j+ 8k and an equation of the tangent plane is

2 + 8 + 8 = 0 or + 4 + 4 = 0.

(b)

(c) By Definition 16.6.6, the area of is given by

( ) =
3

0

3

3
(2 2)2 + (4 )2 + (2 2)2 = 2

3

0

3

3
4 + 4 2 2 + 4 .

(d) By Equation 16.7.9, the surface integral is

F · S =
3

0

3

3

( 2)2

1 + ( 2)2
( 2)2

1 + ( )2
( )2

1 + ( 2)2
· 2 2 4 2 2

=
3

0

3

3

2 6

1 + 4
+

4 5

1 + 2 2
+
2 2 4

1 + 4
1524 0190

27. = ( ) = 2 + 2 with 0 2 + 2 4 so r × r = 2 i 2 j+ k (using upward orientation). Then

=
2 + 2 4

( 2 + 2) 4 2 + 4 2 + 1

=
2

0

2

0
3 1 + 4 2 = 1

60
391 17 + 1

(Substitute = 1 + 4 2 and use tables.)

28. = ( ) = 4 + + with 0 2 + 2 4 so r × r = i j+ k. Then

( 2 + 2 ) =
2 + 2 4

( 2 + 2)(4 + + ) 3

=
2

0

2

0
3 3(4 + cos + sin ) =

2

0
8 3 3 = 32 3

29. Since the sphere bounds a simple solid region, the Divergence Theorem applies and

F · S= divF = ( 2) = 2

= 0
odd function in
and is symmetric 2 · ( ) = 2 · 4

3
(2)3 = 64

3

Alternate solution: F(r( )) = 4 sin cos cos i 4 sin sin j + 6 sin cos k,

r × r = 4 sin2 cos i + 4 sin2 sin j + 4 sin cos k, and

F · (r × r ) = 16 sin3 cos2 cos 16 sin3 sin2 + 24 sin2 cos cos . Then

F · S= 2

0 0
(16 sin3 cos cos2 16 sin3 sin2 + 24 sin2 cos cos )

=
2

0
4
3 ( 16 sin2 ) = 64

3
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30. = ( ) = 2 + 2, r × r = 2 i 2 j + k (because of upward orientation) and

F(r( )) · (r × r ) = 2 3 2 2 + 2 + 2. Then

F · S=
2 + 2 1

( 2 3 2 2 + 2 + 2)

=
1

0

2

0
( 2 3 cos3 2 3 cos sin2 + 2) =

1

0
3(2 ) =

2

31. Since curlF = 0, (curlF) · S = 0. We parametrize : r( ) = cos i+ sin j, 0 2 and

F · r = 2

0
( cos2 sin + sin2 cos ) = 1

3
cos3 + 1

3
sin3

2

0
= 0.

32. curlF · S = F · r where : r( ) = 2 cos i+ 2 sin j+ k, 0 2 , so r0( ) = 2 sin i+ 2 cos j,

F(r( )) = 8 cos2 sin i+ 2 sin j+ 4 cos sin k, and F(r( )) · r0( ) = 16 cos2 sin2 + 4 sin cos . Thus

F · r = 2

0
( 16 cos2 sin2 + 4 sin cos ) = 16 1

4
sin cos3 + 1

16
sin 2 + 1

8
+ 2 sin2

2

0
= 4 .

33. The surface is given by + + = 1 or = 1 , 0 1, 0 1 and r × r = i+ j+ k. Then

F · r = curlF · S = ( i j k) · (i+ j+ k) = ( 1) = (area of ) = 1
2
.

34. F · S = 3( 2 + 2 + 2) =
2

0

1

0

2

0
(3 2 + 3 2) = 2

1

0
(6 3 + 8 ) = 11

35. divF =
2 + 2 + 2 1

3 = 3(volume of sphere) = 4 . Then

F(r( )) · (r × r ) = sin3 cos2 + sin3 sin2 + sin cos2 = sin and

F · S = 2

0 0
sin = (2 )(2) = 4 .

36. Here we must use Equation 16.9.7 since F is not defined at the origin. Let 1 be the sphere of radius 1 with center at the origin

and outer unit normal n1. Let 2 be the surface of the ellipsoid with outer unit normal n2 and let be the solid region

between 1 and 2. Then the outward flux of F through the ellipsoid is given by

2
F · n2 =

1
F · ( n1) + divF . But F = r |r|3, so

divF = · |r| 3 r = |r| 3( · r) + r · |r| 3 = |r| 3 (3) + r · 3 |r| 4 r |r| 1 = 0. [Here we have

used Exercises 16.5.30(a) and 16.5.31(a).] And F · n1 = r

|r|3 ·
r

|r| = |r|
2 = 1 on 1.

Thus
2
F · n2 =

1
+ 0 = (surface area of the unit sphere) = 4 (1)2 = 4 .

37. Because curlF = 0, F is conservative, so there exists a function such that = F. Then ( ) = 3 2 3

implies ( ) = 3 3 + ( ) ( ) = 3 3 + ( ). But ( ) = 3 3 , so

( ) = ( ) and ( ) = 3 3 + ( ). Then ( ) = 3 + 0( ) but ( ) = 3 + 2 ,

so ( ) = 2 + and a potential function for F is ( ) = 3 3 + 2. Hence

F · r = · r = (0 3 0) (0 0 2) = 0 4 = 4.
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38. Let 0 be the circle with center at the origin and radius as in the figure.

Let be the region bounded by and 0. Then ’s positively oriented

boundary is ( 0). Hence by Green’s Theorem

F · r+
0
F · r = = 0, so

F · r= 0 F · r = 0 F · =
2

0
F(r( )) · r0( )

=
2

0

2 3 cos3 + 2 3 cos sin2 2 sin
2

( sin ) +
2 3 sin3 + 2 3 cos2 sin + 2 cos

2
( cos )

=
2

0

2 2

2
= 4

39. By the Divergence Theorem, F · n = divF = 3(volume of ) = 3(8 1) = 21.

40. The stated conditions allow us to use the Divergence Theorem. Hence curlF · S = div(curlF) = 0

since div(curlF) = 0.

41. Let F = a× r = h 1 2 3i × h i = h 2 3 3 1 1 2 i. Then curl F = h2 1 2 2 2 3i = 2a,
and 2a · S = curlF · S = F · r = (a× r) · r by Stokes’ Theorem.
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PROBLEMS PLUS
1. Let 1 be the portion of ( ) between ( ) and , and let 1 be its boundary. Also let be the lateral surface of 1 [that

is, the surface of 1 except and ( )]. Applying the Divergence Theorem we have
1

r · n
3

=
1

· r
3

.

But
· r

3
= ·

( 2 + 2 + 2)3 2 ( 2 + 2 + 2)3 2 ( 2 + 2 + 2)3 2

=
( 2 + 2 + 2 3 2) + ( 2 + 2 + 2 3 2) + ( 2 + 2 + 2 3 2)

( 2 + 2 + 2)5 2
= 0

1

r · n
3

=
1

0 = 0. On the other hand, notice that for the surfaces of 1 other than ( ) and ,

r · n = 0

0 =
1

r · n
3

=
r · n
3

+
( )

r · n
3

+
r · n
3

=
r · n
3

+
( )

r · n
3

r · n
3

=
( )

r · n
3

. Notice that on ( ), = n =
r
=

r and r · r = 2 = 2, so

that
( )

r · n
3

=
( )

r · r
4

=
( )

2

4
=
1
2

( )

=
area of ( )

2
= | ( )|.

Therefore | ( )| = r · n
3

.

2. By Green’s Theorem

( 3 ) 2 3 =
( 2 3) ( 3 )

= (1 6 2 3 2)

Notice that for 6 2 + 3 2 1, the integrand is negative. The integral has maximum value if it is evaluated only in the region

where the integrand is positive, which is within the ellipse 6 2 + 3 2 = 1. So the simple closed curve that gives a maximum

value for the line integral is the ellipse 6 2 + 3 2 = 1.

3. The given line integral 1
2

( ) + ( ) + ( ) can be expressed as F · r if we define the vector

field F by F( ) = i+ j+ k = 1
2
( ) i+ 1

2
( ) j+ 1

2
( )k. Then define to be the planar

interior of , so is an oriented, smooth surface. Stokes’ Theorem says F · r = curlF · S = curlF · n .

Now

curlF= i+ j+ k

= 1
2
+ 1

2
i+ 1

2
+ 1

2
j+ 1

2
+ 1

2
k = i+ j+ k = n

so curlF · n = n · n = |n|2 = 1, hence curlF · n = which is simply the surface area of Thus,

F · r = 1
2

( ) + ( ) + ( ) is the plane area enclosed by .
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706 ¤ CHAPTER 16 PROBLEMS PLUS

4. The surface given by = sin , = sin , = sin ( + ) is difficult to visualize, so we first graph the surface from three

different points of view.

The trace in the horizontal plane = 0 is given by = sin( + ) = 0 + = [ an integer]. Then

we can write = , and the trace is given by the parametric equations = sin ,

= sin = sin( ) = sin cos cos sin = ± sin , and since sin = , the trace consists of the two lines

= ± .

If = 1, = sin( + ) = 1 + =
2
+ 2 . So =

2
+ 2 and the trace in = 1 is given by the

parametric equations = sin , = sin = sin
2
+ 2 = sin

2
+ 2 cos cos

2
+ 2 sin = cos .

This curve is equivalent to 2 + 2 = 1, = 1, a circle of radius 1. Similarly, in = 1 we have = sin( + ) = 1

+ = 3
2
+ 2 = 3

2
+ 2 , so the trace is given by the parametric equations = sin ,

= sin = sin 3
2
+ 2 = sin 3

2
+ 2 cos cos 3

2
+ 2 sin = cos , which again is a circle,

2 + 2 = 1, = 1.

If = 1
2
, = sin( + ) = 1

2
+ = + 2 where =

6
or 5

6
. Then = ( + 2 ) and the trace in

= 1
2
is given by the parametric equations = sin ,

= sin = sin[( + 2 ) ] = sin( + 2 ) cos cos( + 2 ) sin = 1
2
cos ± 3

2
sin . In rectangular

coordinates, = sin so = 1
2
cos ± 3

2
± 3

2
= 1

2
cos 2 ± 3 = cos But then

2 + 2 ± 3
2
= sin2 + cos2 = 1 2 + 4 2 ± 4 3 + 3 2 = 1 4 2 ± 4 3 + 4 2 = 1, which

may be recognized as a conic section. In particular, each equation is an ellipse rotated±45 from the standard orientation (see

the following graph). The trace in = 1
2 is similar: = sin( + ) = 1

2 + = + 2 where = 7
6 or

11
6 .

Then = ( + 2 ) and the trace is given by the parametric equations = sin ,

= sin = sin[( + 2 ) ] = sin( + 2 ) cos cos( + 2 ) sin = 1
2 cos ± 3

2 sin . If we convert to

rectangular coordinates, we arrive at the same pair of equations, 4 2 ± 4 3 + 4 2 = 1, so the trace is identical to the trace

in = 1
2
.

Graphing each of these, we have the following 5 traces.
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= 1 = 1
2

= 0

= 1
2 = 1

Visualizing these traces on the surface reveals that horizontal cross sections are pairs of intersecting ellipses whose major axes

are perpendicular to each other. At the bottom of the surface, = 1, the ellipses coincide as circles of radius 1. As we move

up the surface, the ellipses become narrower until at = 0 they collapse into line segments, after which the process is

reversed, and the ellipses widen to again coincide as circles at = 1.

5. (F · )G= 1 + 1 + 1 ( 2 i+ 2 j+ 2 k)

= 1
2
+ 1

2
+ 1

2
i+ 1

2
+ 1

2
+ 1

2
j

+ 1
2
+ 1

2
+ 1

2
k

= (F · 2) i +(F · 2) j+ (F · 2)k.

Similarly, (G · )F = (G · 1) i +(G · 1) j +(G · 1)k. Then

F× curlG =

i

1

2 2

j

1

2 2

k

1

2 2

= 1
2

1
2

1
2
+ 1

2
i+ 1

2
1

2
1

2
+ 1

2
j

+ 1
2

1
2

1
2
+ 1

2
k

[continued]
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708 ¤ CHAPTER 16 PROBLEMS PLUS

and

G× curlF = 2
1

2
1

2
1
+ 2

1
i+ 2

1
2

1
2

1
+ 2

1
j

+ 2
1

2
1

2
1
+ 2

1
k.

Then

(F · )G+F× curlG= 1
2
+ 1

2
+ 1

2
i + 1

2
+ 1

2
+ 1

2
j

+ 1
2
+ 1

2
+ 1

2
k

and

(G · )F+G× curlF= 2
1
+ 2

1
+ 2

1
i + 2

1
+ 2

1
+ 2

1
j

+ 2
1
+ 2

1
+ 2

1
k.

Hence

(F · )G+F× curlG +(G · )F+G× curlF

= 1
2
+ 2

1
+ 1

2
+ 2

1
+ 1

2
+ 2

1
i

+ 1
2
+ 2

1
+ 1

2
+ 2

1
+ 1

2
+ 2

1
j

+ 1
2
+ 2

1
+ 1

2
+ 2

1
+ 1

2
+ 2

1
k

= ( 1 2 + 1 2 + 1 2) = (F ·G).

6. (a) First we place the piston on coordinate axes so the top of the cylinder is at the origin and ( ) 0 is the distance from the

top of the cylinder to the piston at time . Let 1 be the curve traced out by the piston during one four-stroke cycle, so 1

is given by r( ) = ( ) i, . (Thus, the curve lies on the positive -axis and reverses direction several times.) The

force on the piston is ( ) i, where is the area of the top of the piston and ( ) is the pressure in the cylinder at time .

As in Section 16.2, the work done on the piston is
1
F · r = ( ) i · 0( ) i = ( ) 0( ) . Here, the

volume of the cylinder at time is ( ) = ( ) 0( ) = 0( ) ( ) 0( ) = ( ) 0( ) .

Since the curve in the -plane corresponds to the values of and at time , , we have

= ( ) 0( ) = ( ) 0( ) =

Another method: If we divide the time interval [ ] into subintervals of equal length , the amount of work done on

the piston in the th time interval is approximately ( )[ ( ) ( 1)]. Thus we estimate the total work done during
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CHAPTER 16 PROBLEMS PLUS ¤ 709

one cycle to be
=1

( )[ ( ) ( 1)]. If we allow , we have

= lim
=1

( )[ ( ) ( 1)] = lim
=1

( )[ ( ) ( 1)] = lim
=1

( )[ ( ) ( 1)]

=

(b) Let be the lower loop of the curve and the upper loop. Then = . is positively oriented, so from

Formula 16.4.5 we know the area of the lower loop in the -plane is given by . is negatively oriented, so

the area of the upper loop is given by = . From part (a),

= = = + = ,

the difference of the areas enclosed by the two loops of .
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17 SECOND-ORDER DIFFERENTIAL EQUATIONS

17.1 Second-Order Linear Equations

1. The auxiliary equation is 2 6 = 0 ( 3)( + 2) = 0 = 3, = 2. Then by (8) the general solution

is = 1
3 + 2

2 .

2. The auxiliary equation is 2 + 4 + 4 = 0 ( + 2)2 = 0 = 2. Then by (10), the general solution is

= 1
2 + 2

2 .

3. The auxiliary equation is 2 + 16 = 0 = ±4 . Then by (11) the general solution is
= 0 ( 1 cos 4 + 2 sin 4 ) = 1 cos 4 + 2 sin 4 .

4. The auxiliary equation is 2 8 + 12 = ( 6)( 2) = 0 = 6, = 2. Then the general solution is

= 1
6 + 2

2 .

5. The auxiliary equation is 9 2 12 + 4 = 0 (3 2)2 = 0 = 2
3
. Then by (10), the general solution is

= 1
2 3 + 2

2 3.

6. The auxiliary equation is 25 2 + 9 = 0 2 = 9
25

= ± 3
5
, so the general solution is

= 0
1 cos

3
5

+ 2 sin
3
5

= 1 cos
3
5

+ 2 sin
3
5

.

7. The auxiliary equation is 2 2 = (2 1) = 0 = 0, = 1
2
, so = 1

0 + 2
2 = 1 + 2

2.

8. The auxiliary equation is 2 4 + 1 = 0 =
4± 12

2
= 2± 3, so = 1

(2+ 3) + 2
(2 3) .

9. The auxiliary equation is 2 4 + 13 = 0 =
4± 36

2
= 2± 3 , so = 2 ( 1 cos 3 + 2 sin 3 ).

10. The auxiliary equation is 2 + 3 = ( + 3) = 0 = 0, = 3, so = 1 + 2
3 .

11. The auxiliary equation is 2 2 + 2 1 = 0 =
2± 12

4
=

1

2
± 3

2
, so

= 1
( 1 2+ 3 2) + 2

( 1 2 3 2) .

12. The auxiliary equation is 8 2 + 12 + 5 = 0 =
12± 16

16
= 3

4
± 1

4
, so

= 3 4
1 cos

1
4

+ 2 sin
1
4

.

13. The auxiliary equation is 100 2 + 200 + 101 = 0 =
200± 400

200
= 1± 1

10 , so

= 1 cos
1
10

+ 2 sin
1
10

.
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712 ¤ CHAPTER 17 SECOND-ORDER DIFFERENTIAL EQUATIONS

14. The auxiliary equation is 2 + 4 + 20 = 0 =
4± 64

2
= 2± 4 ,

so the general solution is = 2 ( 1 cos 4 + 2 sin 4 ). We graph the basic

solutions ( ) = 2 cos 4 , ( ) = 2 sin 4 as well as

= 2 (cos 4 sin 4 ) and = 2 ( 2 cos 4 + 2 sin 4 ). All the

solutions oscillate with amplitudes that become arbitrarily large as and

the solutions are asymptotic to the -axis as .

15. The auxiliary equation is 5 2 2 3 = (5 + 3)( 1) = 0 = 3
5
,

= 1, so the general solution is = 1
3 5 + 2 . We graph the basic

solutions ( ) = 3 5, ( ) = as well as = 3 5 + 2 ,

= 3 5 , and = 2 3 5 . Each solution consists of a single

continuous curve that approaches either 0 or ± as ± .

16. The auxiliary equation is 9 2 + 6 + 1 = (3 + 1)2 = 0 = 1
3 , so the

general solution is = 1
3 + 2

3. We graph the basic solutions

( ) = 3, ( ) = 3 as well as = 3 3 + 2 3,

= 3 2 3, and = 4 3 + 3 3. The graphs are all

asymptotic to the -axis as , and as the solutions approach ± .

17. 2 6 + 8 = ( 4)( 2) = 0, so = 4, = 2 and the general solution is = 1
4 + 2

2 . Then
0 = 4 1

4 + 2 2
2 , so (0) = 2 1 + 2 = 2 and 0(0) = 2 4 1 + 2 2 = 2, giving 1 = 1 and 2 = 3.

Thus the solution to the initial-value problem is = 3 2 4 .

18. 2 + 4 = 0 = ±2 and the general solution is = 0 ( 1 cos 2 + 2 sin 2 ) = 1 cos 2 + 2 sin 2 . Then

( ) = 5 1 = 5 and, since 0 = 2 1 sin 2 + 2 2 cos 2 , 0( ) = 4 2 = 2, so the solution to the

initial-value problem is = 5 cos 2 2 sin2 .

19. 9 2 + 12 + 4 = (3 + 2)2 = 0 = 2
3
and the general solution is = 1

2 3 + 2
2 3. Then (0) = 1

1 = 1 and, since 0 = 2
3 1

2 3 + 2 1 2
3

2 3, 0(0) = 0 2
3 1 + 2 = 0, so 2 =

2
3
and the solution to

the initial-value problem is = 2 3 + 2
3

2 3.

20. 2 2 + 1 = (2 1)( + 1) = 0 = 1
2 , = 1 and the general solution is = 1

2 + 2 . Then

3 = (0) = 1 + 2 and 3 = 0(0) = 1
2 1 2 so 1 = 4, 2 = 1 and the solution to the initial-value problem is

= 4 2 .

21. 2 6 + 10 = 0 = 3± and the general solution is = 3 ( 1 cos + 2 sin ). Then 2 = (0) = 1 and

3 = 0(0) = 2 + 3 1 2 = 3 and the solution to the initial-value problem is = 3 (2 cos 3 sin ).
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SECTION 17.1 SECOND-ORDER LINEAR EQUATIONS ¤ 713

22. 4 2 20 + 25 = (2 5)2 = 0 = 5
2
and the general solution is = 1

5 2 + 2
5 2. Then 2 = (0) = 1 and

3 = 0(0) = 5
2 1 + 2 2 = 8. The solution to the initial-value problem is = 2 5 2 8 5 2.

23. 2 12 = ( 4)( + 3) = 0 = 4, = 3 and the general solution is = 1
4 + 2

3 . Then

0 = (1) = 1
4 + 2

3 and 1 = 0(1) = 4 1
4 3 2

3 so 1 =
1
7

4, 2 =
1
7

3 and the solution to the initial-value

problem is = 1
7

4 4 1
7

3 3 = 1
7

4 4 1
7

3 3 .

24. 4 2 + 4 + 3 = 0 = 1
2
± 2

2
and the general solution is = 2

1 cos
2
2

+ 2 sin
2
2

. Then

0 = (0) = 1 and 1 = 0(0) = 2
2 2

1
2 1 2 = 2 and the solution to the initial-value problem is

= 2 0 + 2 sin 2
2

= 2 2 sin 2
2
.

25. 2 +4 = 0 = ±2 and the general solution is = 1 cos 2 + 2 sin 2 . Then 5 = (0) = 1 and 3 = ( 4) = 2,

so the solution of the boundary-value problem is = 5cos 2 + 3 sin 2 .

26. 2 4 = ( + 2)( 2) = 0 = ±2 and the general solution is = 1
2 + 2

2 . Then 1 = (0) = 1 + 2

and 0 = (1) = 1
2 + 2

2 so 1 =
1

1 4
, 2 =

4

1 4
. The solution of the boundary-value problem is

=
1

1 4
· 2

4

1 4
· 2 =

2

1 4

4 2

1 4
.

27. 2 + 4 + 4 = ( + 2)2 = 0 = 2 and the general solution is = 1
2 + 2

2 . Then 2 = (0) = 1 and

0 = (1) = 1
2 + 2

2 so 2 = 2, and the solution of the boundary-value problem is = 2 2 2 2 .

28. 2 8 + 17 = 0 = 4± and the general solution is = 4 ( 1 cos + 2 sin ). But 3 = (0) = 1 and

2 = ( ) = 1
4

1 = 2 4 , so there is no solution.

29. 2 = ( 1) = 0 = 0, = 1 and the general solution is = 1 + 2 . Then 1 = (0) = 1 + 2

and 2 = (1) = 1 + 2 so 1 =
2

1
, 2 =

1

1
. The solution of the boundary-value problem is =

2

1
+

1
.

30. 4 2 4 + 1 = (2 1)2 = 0 = 1
2
and the general solution is = 1

2 + 2
2. Then 4 = (0) = 1 and

0 = (2) = 1 + 2 2 2 = 2. The solution of the boundary-value problem is = 4 2 2 2.

31. 2 + 4 + 20 = 0 = 2± 4 and the general solution is = 2 ( 1 cos 4 + 2 sin 4 ). But 1 = (0) = 1 and

2 = ( ) = 1
2

1 = 2
2 , so there is no solution.

32. 2 + 4 + 20 = 0 = 2± 4 and the general solution is = 2 ( 1 cos 4 + 2 sin 4 ). But 1 = (0) = 1 and

2 = ( ) = 1
2

1 = 1, so 2 can vary and the solution of the boundary-value problem is

= 2 (cos 4 + sin 4 ), where is any constant.
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714 ¤ CHAPTER 17 SECOND-ORDER DIFFERENTIAL EQUATIONS

33. (a) Case 1 ( = 0): 00 + = 0 00 = 0 which has an auxiliary equation 2 = 0 = 0 = 1 + 2

where (0) = 0 and ( ) = 0. Thus, 0 = (0) = 1 and 0 = ( ) = 2 1 = 2 = 0. Thus = 0.

Case 2 ( 0): 00 + = 0 has auxiliary equation 2 = = ± [distinct and real since 0]

= 1 + 2 where (0) = 0 and ( ) = 0. Thus 0 = (0) = 1 + 2 ( ) and

0 = ( ) = 1 + 2 (†).
Multiplying ( ) by and subtracting (†) gives 2 = 0 2 = 0 and thus 1 = 0 from ( ).

Thus = 0 for the cases = 0 and 0.

(b) 00 + = 0 has an auxiliary equation 2 + = 0 = ± = 1 cos + 2 sin where

(0) = 0 and ( ) = 0. Thus, 0 = (0) = 1 and 0 = ( ) = 2 sin since 1 = 0. Since we cannot have a trivial

solution, 2 6= 0 and thus sin = 0 = where is an integer = 2 2 2 and

= 2 sin( ) where is an integer.

34. The auxiliary equation is 2 + + = 0. If 2 4 0, then any solution is of the form ( ) = 1
1 + 2

2 where

1 =
+ 2 4

2
and 2 =

2 4

2
. But , , and are all positive so both 1 and 2 are negative and

lim ( ) = 0. If 2 4 = 0, then any solution is of the form ( ) = 1 + 2 where = (2 ) 0

since , are positive. Hence lim ( ) = 0. Finally if 2 4 0, then any solution is of the form

( ) = ( 1 cos + 2 sin ) where = (2 ) 0 since and are positive. Thus lim ( ) = 0.

35. (a) 2 2 + 2 = 0 = 1± and the general solution is = ( 1 cos + 2 sin ). If ( ) = and ( ) = then

( 1 cos + 2 sin ) = 1 cos + 2 sin = and ( 1 cos + 2 sin ) =

1 cos + 2 sin = . This gives a linear system in 1 and 2 which has a unique solution if the lines are not parallel.

If the lines are not vertical or horizontal, we have parallel lines if cos = cos and sin = sin for some nonzero

constant or cos
cos

= =
sin

sin

sin

cos
=
sin

cos
tan = tan = , any integer. (Note that

none of cos , cos , sin , sin are zero.) If the lines are both horizontal then cos = cos = 0 = , and

similarly vertical lines means sin = sin = 0 = . Thus the system has a unique solution if 6= .

(b) The linear system has no solution if the lines are parallel but not identical. From part (a) the lines are parallel if

= . If the lines are not horizontal, they are identical if = = =
cos

cos

=
cos

cos
. (If = 0 then = 0 also.) If they are horizontal then cos = 0, but =

sin

sin
also (and sin 6= 0) so

we require =
sin

sin
. Thus the system has no solution if = and 6= cos

cos
unless cos = 0, in

which case 6= sin

sin
.

c° 2012 Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part.

NOT FOR SALE

°°cc 2012 Cengage Learning. All Rights Reserved. May not be scanned, copied, or2012 Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part.duplicated, or posted to a publicly accessible website, in whole or in part.

487



SECTION 17.2 NONHOMOGENEOUS LINEAR EQUATIONS ¤ 715

(c) The linear system has infinitely many solution if the lines are identical (and necessarily parallel). From part (b) this occurs

when = and =
cos

cos
unless cos = 0, in which case =

sin

sin
.

17.2 Nonhomogeneous Linear Equations

1. The auxiliary equation is 2 2 3 = ( 3)( + 1) = 0 = 3, = 1, so the complementary solution is

( ) = 1
3 + 2 . We try the particular solution ( ) = cos 2 + sin 2 , so

0 = 2 sin 2 + 2 cos 2 and 00 = 4 cos 2 4 sin 2 . Substitution into the differential equation gives

( 4 cos 2 4 sin 2 ) 2( 2 sin 2 + 2 cos 2 ) 3( cos 2 + sin 2 ) = cos 2

( 7 4 ) cos 2 + (4 7 ) sin 2 = cos 2 . Then 7 4 = 1 and 4 7 = 0 = 7
65
and

= 4
65
. Thus the general solution is ( ) = ( ) + ( ) = 1

3 + 2
7
65
cos 2 4

65
sin 2 .

2. The auxiliary equation is 2 1 = 0 with roots = ±1, so the complementary solution is ( ) = 1 + 2 . We try the

particular solution ( ) = 3 + 2 + + , so 0 = 3 2 + 2 + and 00 = 6 + 2 . Substituting into

the differential equation, we have (6 + 2 ) ( 3 + 2 + + ) = 3 or

3 2 + (6 ) + (2 ) = 3 . Comparing coefficients gives = 1 = 1,

= 0 = 0, 6 = 1 = 5, and 2 = 0 = 0, so the general solution is

( ) = ( ) + ( ) = 1 + 2
3 5 .

3. The auxiliary equation is 2 + 9 = 0 with roots = ±3 , so the complementary solution is ( ) = 1 cos 3 + 2 sin 3 .

Try the particular solution ( ) = 2 , so 0 = 2 2 and 00 = 4 2 . Substitution into the differential equation

gives 4 2 + 9( 2 ) = 2 or 13 2 = 2 . Thus 13 = 1 = 1
13
and the general solution is

( ) = ( ) + ( ) = 1 cos 3 + 2 sin 3 + 1
13

2 .

4. The auxiliary equation is 2 + 2 + 5 = 0 with roots = 1± 2 , so the complementary solution is
( ) = ( 1 cos 2 + 2 sin 2 ). Try the particular solution ( ) = + , so 0 = and 00 = .

Substitution into the differential equation gives + 2( ) + 5( + ) = 1 + 5 + 8 = 1 + .

Comparing coefficients, we have 5 = 1 = 1
5
and 8 = 1 = 1

8
, so the general solution is

( ) = ( ) + ( ) = ( 1 cos 2 + 2 sin 2 ) +
1
5
+ 1

8
.

5. The auxiliary equation is 2 4 + 5 = 0 with roots = 2± , so the complementary solution is

( ) = 2 ( 1 cos + 2 sin ). Try ( ) = , so 0 = and 00 = . Substitution gives

4( ) + 5( ) = 10 = = 1
10
. Thus the general solution is

( ) = 2 ( 1 cos + 2 sin ) + 1
10

.
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716 ¤ CHAPTER 17 SECOND-ORDER DIFFERENTIAL EQUATIONS

6. The auxiliary equation is 2 4 + 4 = ( 2)2 = 0 = 2, so the complementary solution is

( ) = 1
2 + 2

2 . For 00 4 0 + 4 = try 1( ) = + . Then 0
1
= and 00

1
= 0, and substitution into

the differential equation gives 0 4 + 4( + ) = or 4 + (4 4 ) = , so 4 = 1 = 1
4
and

4 4 = 0 = 1
4
. Thus 1( ) =

1
4
+ 1

4
. For 00 4 0 + 4 = sin try 2( ) = cos + sin .

Then 0
2
= sin + cos and 00

2
= cos sin . Substituting, we have

( cos sin ) 4( sin + cos ) + 4( cos + sin ) = sin

(3 4 ) cos + (4 + 3 ) sin = sin . Thus 3 4 = 0 and 4 + 3 = 1,

giving = 4
25
and = 3

25
, so 2( ) =

4
25
cos 3

25
sin . The general solution is

( ) = ( ) + 1( ) + 2( ) = 1
2 + 2

2 + 1
4
+ 1

4
4
25
cos 3

25
sin .

7. The auxiliary equation is 2 + 1 = 0 with roots = ± , so the complementary solution is ( ) = 1 cos + 2 sin .

For 00 + = try 1( ) = . Then 0
1
= 00

1
= and substitution gives + = = 1

2 ,

so 1( ) =
1
2
. For 00 + = 3 try 2( ) =

3 + 2 + + . Then 0
2
= 3 2 + 2 + and

00
2
= 6 + 2 . Substituting, we have 6 + 2 + 3 + 2 + + = 3, so = 1, = 0,

6 + = 0 = 6, and 2 + = 0 = 0. Thus 2( ) =
3 6 and the general solution is

( ) = ( ) + 1( ) + 2( ) = 1 cos + 2 sin + 1
2

+ 3 6 . But 2 = (0) = 1 +
1
2

1 =
3
2
and 0 = 0(0) = 2 +

1
2

6 2 =
11
2
. Thus the solution to the initial-value problem is

( ) = 3
2
cos + 11

2
sin + 1

2
+ 3 6 .

8. The auxiliary equation is 2 4 = 0 with roots = ±2, so the complementary solution is ( ) = 1
2 + 2

2 .

Try ( ) = ( cos + sin ), so 0 = ( cos + sin + cos sin ) and

00 = (2 cos 2 sin ). Substitution gives (2 cos 2 sin ) 4 ( cos + sin ) = cos

(2 4 ) cos + ( 2 4 ) sin = cos = 1
5
, = 1

10
. Thus the general solution is

( ) = 1
2 + 2

2 + 1
5
cos + 1

10
sin . But 1 = (0) = 1 + 2

1
5
and 2 = 0(0) = 2 1 2 2

1
10
. Then

1 =
9
8
, 2 =

3
40
, and the solution to the initial-value problem is ( ) = 9

8
2 + 3

40
2 + 1

5
cos + 1

10
sin .

9. The auxiliary equation is 2 = 0 with roots = 0, = 1 so the complementary solution is ( ) = 1 + 2 .

Try ( ) = ( + ) so that no term in is a solution of the complementary equation. Then

0 = ( 2 + (2 + ) + ) and 00 = ( 2 + (4 + ) + (2 + 2 )) . Substitution into the differential equation

gives ( 2 + (4 + ) + (2 + 2 )) ( 2 + (2 + ) + ) = (2 + (2 + )) =

= 1
2 , = 1. Thus ( ) = 1

2
2 and the general solution is ( ) = 1 + 2 + 1

2
2 . But

2 = (0) = 1 + 2 and 1 = 0(0) = 2 1, so 2 = 2 and 1 = 0. The solution to the initial-value problem is

( ) = 2 + 1
2

2 = 1
2

2 + 2 .
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SECTION 17.2 NONHOMOGENEOUS LINEAR EQUATIONS ¤ 717

10. ( ) = 1 + 2
2 . For 00 + 0 2 = try 1( ) = + . Then 0

1
= , 00

1
= 0, and substitution gives

0 + 2( + ) = = 1
2
, = 1

4
, so 1( ) =

1
2

1
4
. For 00 + 0 2 = sin 2 try

2( ) = cos 2 + sin 2 . Then 0
2
= 2 sin 2 + 2 cos 2 00

2
= 4 cos 2 4 sin 2 , and substitution

gives ( 4 cos 2 4 sin 2 ) + ( 2 sin 2 + 2 cos 2 ) 2( cos 2 + sin 2 ) = sin 2 = 1
20 ,

= 3
20
. Thus 2( ) =

1
20
cos 2 + 3

20
sin 2 and the general solution is

( ) = 1 + 2
2 1

2
1
4

1
20
cos 2 3

20
sin 2 . But 1 = (0) = 1 + 2

1
4

1
20
and

0 = 0(0) = 1 2 2
1
2

3
10 1 =

17
15
and 2 =

1
6
. Thus the solution to the initial-value problem is

( ) = 17
15

+ 1
6

2 1
2

1
4

1
20
cos 2 3

20
sin 2 .

11. The auxiliary equation is 2 + 3 + 2 = ( + 1)( + 2) = 0, so = 1, = 2 and ( ) = 1 + 2
2 .

Try = cos + sin 0 = sin + cos , 00 = cos sin . Substituting into the differential

equation gives ( cos sin ) + 3( sin + cos ) + 2( cos + sin ) = cos or

( + 3 ) cos + ( 3 + ) sin = cos . Then solving the equations

+ 3 = 1, 3 + = 0 gives = 1
10
, = 3

10
and the general

solution is ( ) = 1 + 2
2 + 1

10
cos + 3

10
sin . The graph

shows and several other solutions. Notice that all solutions are

asymptotic to as . Except for , all solutions approach either

or as .

12. The auxiliary equation is 2 + 4 = 0 = ±2 , so ( ) = 1 cos 2 + 2 sin 2 . Try =

0 = , 00 = . Substituting into the differential equation gives + 4 =

5 = 1 = 1
5
, so = 1

5
and the general solution is

( ) = 1 cos 2 + 2 sin 2 + 1
5

. We graph along with several

other solutions. All of the solutions except oscillate around = 1
5

,

and all solutions approach as .

13. Here ( ) = 1
2 + 2 , and a trial solution is ( ) = ( + ) cos + ( + ) sin .

14. Here ( ) = 1 cos 2 + 2 sin 2 . For 00 + 4 = cos 4 try 1( ) = cos 4 + sin 4 and for 00 + 4 = cos 2 try

2( ) = ( cos 2 + sin 2 ) (so that no term of 2 is a solution of the complementary equation). Thus a trial solution

is ( ) = 1( ) + 2( ) = cos 4 + sin 4 + cos 2 + sin 2 .

15. Here ( ) = 1
2 + 2 . For 00 3 0 + 2 = try 1( ) = (since = is a solution of the complementary

equation) and for 00 3 0 + 2 = sin try 2( ) = cos + sin . Thus a trial solution is

( ) = 1( ) + 2( ) = + cos + sin .
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718 ¤ CHAPTER 17 SECOND-ORDER DIFFERENTIAL EQUATIONS

16. Since ( ) = 1 + 2
4 try ( ) = ( 3 + 2 + + ) so that no term of ( ) satisfies the complementary

equation.

17. Since ( ) = ( 1 cos 3 + 2 sin 3 ) we try ( ) = ( 2 + + ) cos 3 + ( 2 + + ) sin 3

(so that no term of is a solution of the complementary equation).

18. Here ( ) = 1 cos 2 + 2 sin 2 . For 00 + 4 = 3 try 1( ) =
3 and for 00 + 4 = sin 2 try

2( ) = ( + ) cos 2 + ( + ) sin 2 (so that no term of 2 is a solution of the complementary equation).

Note: Solving Equations (7) and (9) in The Method of Variation of Parameters gives

0
1 =

2

( 1
0
2 2

0
1)

and 0
2 =

1

( 1
0
2 2

0
1)

We will use these equations rather than resolving the system in each of the remaining exercises in this section.

19. (a) Here 4 2 + 1 = 0 = ± 1
2
and ( ) = 1 cos

1
2

+ 2 sin
1
2

. We try a particular solution of the form

( ) = cos + sin 0 = sin + cos and 00 = cos sin . Then the equation

4 00 + = cos becomes 4( cos sin ) + ( cos + sin ) = cos or

3 cos 3 sin = cos = 1
3
, = 0. Thus, ( ) = 1

3
cos and the general solution is

( ) = ( ) + ( ) = 1 cos
1
2

+ 2 sin
1
2

1
3
cos .

(b) From (a) we know that ( ) = 1 cos 2 + 2 sin 2
. Setting 1 = cos 2 , 2 = sin 2

, we have

1
0
2 2

0
1 =

1
2
cos2

2
+ 1

2
sin2

2
= 1

2
. Thus 0

1 =
cos sin

2

4 · 1
2

= 1
2
cos 2 ·

2
sin

2
= 1

2
2 cos2

2
1 sin

2

and 0
2 =

cos cos
2

4 · 1
2

= 1
2
cos 2 ·

2
cos

2
= 1

2
1 2 sin2

2
cos

2
. Then

1( ) =
1
2
sin

2
cos2

2
sin

2
= cos

2
+ 2

3
cos3

2
and

2( ) =
1
2
cos

2
sin2

2
cos

2
= sin

2
2
3
sin3

2
. Thus

( ) = cos
2
+ 2

3
cos3

2
cos

2
+ sin

2
2
3
sin3

2
sin

2
= cos2

2
sin2

2
+ 2

3
cos4

2
sin4

2

= cos 2 ·
2
+ 2

3
cos2

2 + sin
2
2

cos2
2 sin2 2

= cos + 2
3 cos = 1

3 cos

and the general solution is ( ) = ( ) + ( ) = 1 cos 2 + 2 sin 2
1
3
cos .

20. (a) Here 2 2 3 = ( 3) ( + 1) = 0 = 3, = 1 and the complementary solution is

( ) = 1
3 + 2 . A particular solution is of the form ( ) = + 0 = , 00 = 0, and

substituting into the differential equation gives 0 2 3 ( + ) = + 2 or 3 + ( 2 3 ) = + 2,

so = 1
3
and 2 3 = 2 = 4

9
. Thus ( ) = 1

3
4
9
and the general solution is

( ) = ( ) + ( ) = 1
3 + 2

1
3

4
9 .

(b) In (a), ( ) = 1
3 + 2 , so set 1 =

3 , 2 = . Then 1
0
2 2

0
1 =

3 3 3 = 4 2 so

0
1 =

( + 2)

4 2
= 1

4
( + 2) 3

1( ) =
1
4
( + 2) 3 = 1

4
1
3
( + 2) 3 1

9
3 [by parts]
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SECTION 17.2 NONHOMOGENEOUS LINEAR EQUATIONS ¤ 719

and 0
2 =

( + 2) 3

4 2
= 1

4
( + 2) 2( ) =

1
4
( + 2) = 1

4
[( + 2) ] [by parts].

Hence ( ) = 1
4

1
3

7
9

3 3 1
4
[( + 1) ] = 1

3
4
9
and

( ) = ( ) + ( ) = 1
3 + 2

1
3

4
9
.

21. (a) 2 2 + 1 = ( 1)2 = 0 = 1, so the complementary solution is ( ) = 1 + 2 . A particular solution

is of the form ( ) = 2 . Thus 4 2 4 2 + 2 = 2 2 = 2 = 1 ( ) = 2 .

So a general solution is ( ) = ( ) + ( ) = 1 + 2 + 2 .

(b) From (a), ( ) = 1 + 2 , so set 1 = , 2 = . Then, 1
0
2 2

0
1 =

2 (1 + ) 2 = 2 and so

0
1 = 1 ( ) = = ( 1) [by parts] and 0

2 = 2( ) = = . Hence

( ) = (1 ) 2 + 2 = 2 and the general solution is ( ) = ( ) + ( ) = 1 + 2 + 2 .

22. (a) Here 2 = ( 1) = 0 = 0, 1 and ( ) = 1 + 2 and so we try a particular solution of the form

( ) = . Thus, after calculating the necessary derivatives, we get 00 0 =

(2 + ) (1 + ) = = 1. Thus ( ) = and the general solution is ( ) = 1 + 2 + .

(b) From (a) we know that ( ) = 1 + 2 , so setting 1 = 1, 2 = , then 1
0
2 2

0
1 = 0 = . Thus

0
1 =

2 = and 0
2 = = 1. Then 1( ) = = and 2( ) = . Thus

( ) = + and the general solution is ( ) = 1 + 2 + = 1 + 3 + .

23. As in Example 5, ( ) = 1 sin + 2 cos , so set 1 = sin , 2 = cos . Then 1
0
2 2

0
1 = sin2 cos2 = 1,

so 0
1 =

sec2 cos

1
= sec 1( ) = sec = ln (sec + tan ) for 0

2
,

and 0
2 =

sec2 sin

1
= sec tan 2( ) = sec . Hence

( ) = ln(sec + tan ) · sin sec · cos = sin ln(sec + tan ) 1 and the general solution is

( ) = 1 sin + 2 cos + sin ln(sec + tan ) 1.

24. As in Exercise 23, ( ) = 1 sin + 2 cos , 1 = sin , 2 = cos , and 1
0
2 2

0
1 = 1. Then

0
1 =

sec3 cos

1
= sec2 1( ) = tan and 0

2 =
sec3 sin

1
= sec2 tan

2( ) = tan sec2 = 1
2 tan

2 . Hence

( ) = tan sin 1
2
tan2 cos = tan sin 1

2
tan sin = 1

2
tan sin and the general solution

is ( ) = 1 sin + 2 cos + 1
2
tan sin .

25. 1 = , 2 =
2 and 1

0
2 2

0
1 =

3 . So 0
1 =

2

(1 + ) 3
=

1 +
and

1( ) =
1 +

= ln(1 + ). 0
2 = (1 + ) 3

=
3 + 2

so
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720 ¤ CHAPTER 17 SECOND-ORDER DIFFERENTIAL EQUATIONS

2( ) = 3 + 2
= ln

+ 1
= ln(1 + ) . Hence

( ) = ln(1 + ) + 2 [ln(1 + ) ] and the general solution is

( ) = [ 1 + ln(1 + )] + [ 2 + ln(1 + )] 2 .

26. 1 = , 2 =
2 and 1

0
2 2

0
1 =

3 . So 0
1 =

(sin ) 2

3
= sin

and 0
2 =

(sin )
3

= 2 sin . Hence 1 ( ) = sin = cos and

2( ) =
2 sin = cos sin . Then ( ) = cos 2 [sin cos ]

and the general solution is ( ) = ( 1 cos ) + [ 2 sin + cos ] 2 .

27. 2 2 + 1 = ( 1)2 = 0 = 1 so ( ) = 1 + 2 . Thus 1 = , 2 = and

1
0
2 2

0
1 = ( + 1) = 2 . So 0

1 =
· (1 + 2)

2
=

1 + 2

1 =
1 + 2

=
1

2
ln 1 + 2 , 0

2 =
· (1 + 2)

2
=

1

1 + 2 2 =
1

1 + 2
= tan 1 and

( ) = 1
2 ln(1 + 2) + tan 1 . Hence the general solution is ( ) = 1 + 2

1
2 ln(1 +

2) + tan 1 .

28. 1 =
2 , 2 =

2 and 1
0
2 2

0
1 =

4 . Then 0
1 =

2 2

3 4
=

1
2
so 1( ) =

1 and

0
2 =

2 2

3 4
=
1
3
so 2( ) =

1

2 2
. Thus ( ) =

2 2

2 2
=

2

2
and the general solution is

( ) = 2 [ 1 + 2 + 1 (2 )].

17.3 Applications of Second-Order Differential Equations

1. By Hooke’s Law (0 25) = 25 so = 100 is the spring constant and the differential equation is 5 00 + 100 = 0.

The auxiliary equation is 5 2 + 100 = 0 with roots = ±2 5 , so the general solution to the differential equation is

( ) = 1 cos 2 5 + 2 sin 2 5 . We are given that (0) = 0 35 1 = 0 35 and 0(0) = 0

2 5 2 = 0 2 = 0, so the position of the mass after seconds is ( ) = 0 35 cos 2 5 .

2. By Hooke’s Law (0 4) = 32 so = 32
0 4
= 80 is the spring constant and the differential equation is 8 00 + 80 = 0.

The general solution is ( ) = 1 cos 10 + 2 sin 10 . But 0 = (0) = 1 and 1 = 0(0) = 10 2

2 =
1

10
, so the position of the mass after seconds is ( ) = 1

10
sin 10 .

3. (0 5) = 6 or = 12 is the spring constant, so the initial-value problem is 2 00 + 14 0 + 12 = 0, (0) = 1, 0(0) = 0.

The general solution is ( ) = 1
6 + 2 . But 1 = (0) = 1 + 2 and 0 = 0(0) = 6 1 2. Thus the position is

given by ( ) = 1
5

6 + 6
5

.
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4. (a) (0 25) = 13 = 52, so the differential equation is

2 00 + 8 0 + 52 = 0 with general solution

( ) = 2
1 cos 22 + 2 sin 22 . Then 0 = (0) = 1

and 0 5 = 0(0) = 22 2 2 =
1

2 22
, so the position is

given by ( ) = 1

2 22

2 sin 22 .

(b)

5. For critical damping we need 2 4 = 0 or = 2 (4 ) = 142 (4 · 12) = 49
12 kg.

6. For critical damping we need 2 = 4 or = 2 = 2 2 · 52 = 4 26.

7. We are given = 1, = 100, (0) = 0 1 and 0(0) = 0. From (3), the differential equation is
2

2
+ + 100 = 0

with auxiliary equation 2 + + 100 = 0.

If = 10, we have two complex roots = 5± 5 3 , so the motion is underdamped and the solution is

= 5
1 cos 5 3 + 2 sin 5 3 . Then 0 1 = (0) = 1 and 0 = 0(0) = 5 3 2 5 1 2 =

1

10 3
,

so = 5 0 1 cos 5 3 1

10 3
sin 5 3 .

If = 15, we again have underdamping since the auxiliary equation has roots = 15
2
± 5 7

2
. The general solution is

= 15 2
1 cos

5 7
2

+ 2 sin
5 7
2

, so 0 1 = (0) = 1 and 0 = 0(0) = 5 7
2 2

15
2 1 2 =

3

10 7
.

Thus = 15 2 0 1 cos 5 7
2

3

10 7
sin 5 7

2
.

For = 20, we have equal roots 1 = 2 = 10, so the oscillation is critically damped and the solution is

= ( 1 + 2 )
10 . Then 0 1 = (0) = 1 and 0 = 0(0) = 10 1 + 2 2 = 1, so = ( 0 1 ) 10 .

If = 25 the auxiliary equation has roots 1 = 5, 2 = 20, so we have overdamping and the solution is

= 1
5 + 2

20 . Then 0 1 = (0) = 1 + 2 and 0 = 0(0) = 5 1 20 2 1 =
2
15
and 2 =

1
30
,

so = 2
15

5 + 1
30

20 .

If = 30 we have roots = 15± 5 5, so the motion is

overdamped and the solution is = 1
( 15+ 5 5 ) + 2

( 15 5 5 ) .

Then 0 1 = (0) = 1 + 2 and

0 = 0(0) = 15 + 5 5 1 + 15 5 5 2

1 =
5 3 5
100

and 2 =
5+ 3 5
100

, so

= 5 3 5
100

( 15+5 5) + 5+3 5
100

( 15 5 5) .

8. We are given = 1, = 10, (0) = 0 and 0(0) = 1. The differential equation is
2

2
+ 10 + = 0 with auxiliary

equation 2 + 10 + = 0. = 10: the auxiliary equation has roots = 5± 15 so we have overdamping and the
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722 ¤ CHAPTER 17 SECOND-ORDER DIFFERENTIAL EQUATIONS

solution is = 1
( 5+ 15 ) + 2

( 5 15 ) . Entering the initial conditions gives 1 =
1

2 15
and 2 =

1

2 15
, so

= 1

2 15
( 5+ 15 ) 1

2 15
( 5 15 ) .

= 20: = 5± 5 and the solution is = 1
( 5+ 5 ) + 2

( 5 5 ) so again the motion is overdamped.

The initial conditions give 1 =
1

2 5
and 2 =

1

2 5
, so = 1

2 5
( 5+ 5 ) 1

2 5
( 5 5 ) .

= 25: we have equal roots 1 = 2 = 5, so the motion is critically damped and the solution is = ( 1 + 2 )
5 .

The initial conditions give 1 = 0 and 2 = 1, so = 5 .

= 30: = 5± 5 so the motion is underdamped and the solution is = 5
1 cos 5 + 2 sin 5 .

The initial conditions give 1 = 0 and 2 =
1

5
, so = 1

5

5 sin 5 .

= 40: = 5± 15 so we again have underdamping.

The solution is = 5
1 cos 15 + 2 sin 15 ,

and the initial conditions give 1 = 0 and 2 =
1

15
.

Thus = 1

15

5 sin 15 .

9. The differential equation is 00 + = 0 cos 0 and 0 6= = . Here the auxiliary equation is 2 + = 0

with roots ± = ± so ( ) = 1 cos + 2 sin . Since 0 6= , try ( ) = cos 0 + sin 0 .

Then we need ( ) 2
0 ( cos 0 + sin 0 ) + ( cos 0 + sin 0 ) = 0 cos 0 or 2

0 = 0 and

2
0 = 0. Hence = 0 and =

0

2
0

=
0

( 2 2
0)
since 2 = . Thus the motion of the mass is given

by ( ) = 1 cos + 2 sin +
0

( 2 2
0)
cos 0 .

10. As in Exercise 9, ( ) = 1 cos + 2 sin . But the natural frequency of the system equals the frequency of the

external force, so try ( ) = ( cos + sin ). Then we need

(2 2 ) cos (2 + 2 ) sin + cos + sin = 0 cos or 2 = 0 and

2 = 0 [noting 2 + = 0 and 2 + = 0 since 2 = ]. Hence the general solution is

( ) = 1 cos + 2 sin + [ 0 (2 )] sin .

11. From Equation 6, ( ) = ( ) + ( ) where ( ) = 1 cos + 2 sin and ( ) =
0

( 2 2
0)
cos 0 . Then

is periodic, with period 2 , and if 6= 0, is periodic with period 2

0
. If

0
is a rational number, then we can say

0
= =

0
where and are non-zero integers. Then

+ · 2 = + · 2 + + · 2 = ( ) + +
0
· 2 = ( ) + + · 2

0
= ( ) + ( ) = ( )

so ( ) is periodic.
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12. (a) The graph of = 1 + 2 has a -intercept when 1 + 2 = 0 ( 1 + 2 ) = 0 1 = 2 .

Since 0, has a -intercept if and only if 1 and 2 have opposite signs.

(b) For 0, the graph of crosses the -axis when 1
1 + 2

2 = 0 2
2 = 1

1

2 = 1

1

2
= 1

( 1 2) . But 1 2 1 2 0 and since 0, ( 1 2) 1. Thus

| 2| = | 1| ( 1 2) | 1|, and the graph of can cross the -axis only if | 2| | 1|.

13. Here the initial-value problem for the charge is 00 + 20 0 + 500 = 12, (0) = 0(0) = 0. Then

( ) = 10 ( 1 cos 20 + 2 sin 20 ) and try ( ) = 500 = 12 or = 3
125
.

The general solution is ( ) = 10 ( 1 cos 20 + 2 sin 20 ) +
3
125 . But 0 = (0) = 1 +

3
125 and

0( ) = ( ) = 10 [( 10 1 + 20 2) cos 20 + ( 10 2 20 1) sin 20 ] but 0 = 0(0) = 10 1 + 20 2. Thus the charge

is ( ) = 1
250

10 (6 cos 20 + 3 sin 20 ) + 3
125

and the current is ( ) = 10 3
5
sin 20 .

14. (a) Here the initial-value problem for the charge is 2 00 + 24 0 + 200 = 12 with (0) = 0 001 and 0(0) = 0.

Then ( ) = 6 ( 1 cos 8 + 2 sin 8 ) and try ( ) = = 3
50 and the general solution is

( ) = 6 ( 1 cos 8 + 2 sin 8 ) +
3
50
. But 0 001 = (0) = + 3

50
so 1 = 0 059. Also

0( ) = ( ) = 6 [( 6 1 + 8 2) cos 8 + ( 6 2 8 1) sin 8 ] and 0 = 0(0) = 6 1 + 8 2 so

2 = 0 04425. Hence the charge is ( ) = 6 (0 059 cos 8 + 0 04425 sin 8 ) + 3
50 and the current is

( ) = 6 (0 7375) sin 8 .

(b)

15. As in Exercise 13, ( ) = 10 ( 1 cos 20 + 2 sin 20 ) but ( ) = 12 sin 10 so try

( ) = cos 10 + sin 10 . Substituting into the differential equation gives

( 100 + 200 + 500 ) cos 10 + ( 100 200 + 500 ) sin 10 = 12 sin 10

400 + 200 = 0 and 400 200 = 12. Thus = 3
250 , = 3

125 and the general solution is

( ) = 10 ( 1 cos 20 + 2 sin 20 )
3
250

cos 10 + 3
125

sin 10 . But 0 = (0) = 1
3
250

so 1 =
3
250
.

Also 0( ) = 3
25
sin 10 + 6

25
cos 10 + 10 [( 10 1 + 20 2) cos 20 + ( 10 2 20 1) sin 20 ] and

0 = 0(0) = 6
25 10 1 + 20 2 so 2 =

3
500 . Hence the charge is given by

( ) = 10 3
250

cos 20 3
500

sin 20 3
250

cos 10 + 3
125

sin 10 .
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724 ¤ CHAPTER 17 SECOND-ORDER DIFFERENTIAL EQUATIONS

16. (a) As in Exercise 14, ( ) = 6 ( 1 cos 8 + 2 sin 8 ) but try ( ) = cos 10 + sin 10 . Substituting into the

differential equation gives ( 200 + 240 + 200 ) cos 10 + ( 200 240 + 200 ) sin 10 = 12 sin 10 ,

so = 0 and = 1
20
. Hence, the general solution is ( ) = 6 ( 1 cos 8 + 2 sin 8 )

1
20
cos 10 . But

0 001 = (0) = 1
1
20
, 0( ) = 6 [( 6 1 + 8 2) cos 8 + ( 6 2 8 1) sin 8 ]

1
2
sin 10 and

0 = 0(0) = 6 1 + 8 2, so 1 = 0 051 and 2 = 0 03825. Thus the charge is given by

( ) = 6 (0 051 cos 8 + 0 03825 sin 8 ) 1
20
cos 10 .

(b)

17. ( ) = cos( + ) ( ) = [cos cos sin sin ] ( ) =
1
cos +

2
sin where

cos = 1 and sin = 2 ( ) = 1 cos + 2 sin . [Note that cos2 + sin2 = 1 2
1 +

2
2 =

2.]

18. (a) We approximate sin by and, with = 1 and = 9 8, the differential equation becomes
2

2
+9 8 = 0. The auxiliary

equation is 2 + 9 8 = 0 = ± 9 8 , so the general solution is ( ) = 1 cos 9 8 + 2 sin 9 8 .

Then 0 2 = (0) = 1 and 1 = 0(0) = 9 8 2 2 =
1

9 8
, so the equation is

( ) = 0 2 cos 9 8 + 1

9 8
sin 9 8 .

(b) 0( ) = 0 2 9 8 sin 9 8 + cos 9 8 = 0 or tan 9 8 = 5

9 8
, so the critical numbers are

= 1

9 8
tan 1 5

9 8
+

9 8
( any integer). The maximum angle from the vertical is

1

9 8
tan 1 5

9 8
0 377 radians (or about 21 7 ).

(c) From part (b), the critical numbers of ( ) are spaced
9 8
apart, and the time between successive maximum values

is 2
9 8

. Thus the period of the pendulum is 2

9 8
2 007 seconds.

(d) ( ) = 0 0 2 cos 9 8 + 1

9 8
sin 9 8 = 0 tan 9 8 = 0 2 9 8

= 1

9 8
tan 1 0 2 9 8 + 0 825 seconds.

(e) 0(0 825) 1 180 rad s.
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17.4 Series Solutions

1. Let ( ) =
=0

. Then 0( ) =
=1

1 and the given equation, 0 = 0, becomes

=1

1

=0

= 0. Replacing by + 1 in the first sum gives
=0

( + 1) +1
=0

= 0, so

=0

[( + 1) +1 ] = 0. Equating coefficients gives ( + 1) +1 = 0, so the recursion relation is

+1 =
+ 1

, = 0 1 2 . Then 1 = 0, 2 =
1

2
1 =

0

2
, 3 =

1

3
2 =

1

3
· 1
2

0 =
0

3!
, 4 =

1

4
3 =

0

4!
, and

in general, =
0

!
. Thus, the solution is ( ) =

=0

=
=0

0

!
= 0

=0 !
= 0 .

2. Let ( ) =
=0

. Then 0 = 0 = 0
=1

1

=0

= 0 or

=1

1

= 0

+1 = 0. Replacing with + 1 in the first sum and with 1 in the second

gives
=0

( + 1) +1
=1

1 = 0 or 1 +
=1

( + 1) +1
=1

1 = 0. Thus,

1 +
=1

[( + 1) +1 1] = 0. Equating coefficients gives 1 = 0 and ( + 1) +1 1 = 0. Thus, the

recursion relation is +1 =
1

+ 1
, = 1 2, . But 1 = 0, so 3 = 0 and 5 = 0 and in general 2 +1 = 0. Also,

2 =
0

2
, 4 =

2

4
=

0

4 · 2 =
0

22 · 2! , 6 =
4

6
=

0

6 · 4 · 2 =
0

23 · 3! and in general 2 =
0

2 · !
. Thus, the solution

is ( ) =
=0

=
=0

2
2 =

=0

0

2 · !
2 = 0

= 0

2 2

!
= 0

2 2.

3. Assuming ( ) =
=0

, we have 0( ) =
=1

1 =
=0

( + 1) +1 and

2 =
=0

+2 =
=2

2 . Hence, the equation 0 = 2 becomes
=0

( + 1) +1
=2

2 = 0

or 1 + 2 2 +
=2

[( + 1) +1 2] = 0. Equating coefficients gives 1 = 2 = 0 and +1 =
2

+ 1

for = 2 3, . But 1 = 0, so 4 = 0 and 7 = 0 and in general 3 +1 = 0. Similarly 2 = 0 so 3 +2 = 0. Finally

3 =
0

3
, 6 =

3

6
=

0

6 · 3 =
0

32 · 2! , 9 =
6

9
=

0

9 · 6 · 3 =
0

33 · 3! , , and 3 =
0

3 · ! . Thus, the solution

is ( ) =
=0

=
=0

3
3 =

=0

0

3 · !
3 = 0

= 0

3

3 !
= 0

= 0

3 3

! = 0
3 3.

4. Let ( ) =
=0

0 ( ) =
=1

1 =
=0

( + 1) +1 . Then the differential equation becomes

( 3)
=0

( + 1) +1 + 2
=0

= 0
=0

( + 1) +1
+1 3

=0

( + 1) +1 + 2
=0

= 0
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726 ¤ CHAPTER 17 SECOND-ORDER DIFFERENTIAL EQUATIONS

=1 =0

3( + 1) +1 +
=0

2 = 0
=0

[( + 2) 3( + 1) +1] = 0

since
=1

=
=0

. Equating coefficients gives ( + 2) 3( + 1) +1 = 0, thus the recursion relation is

+1 =
( + 2)

3( + 1)
, = 0 1 2 . Then 1 =

2 0

3
, 2 =

3 1

3(2)
=
3 0

32
, 3 =

4 2

3(3)
=
4 0

33
, 4 =

5 3

3(4)
=
5 0

34
, and

in general, =
( + 1) 0

3
. Thus the solution is ( ) =

=0

= 0
=0

+ 1

3
.

Note that 0
=0

+ 1

3
=

9 0

(3 )2
for | | 3.

5. Let ( ) =
=0

0 ( ) =
=1

1 and 00 ( ) =
=0

( + 2)( + 1) +2 . The differential equation

becomes
=0

( + 2)( + 1) +2 +
=1

1 +
=0

= 0 or
=0

[( + 2)( + 1) +2 + + ] = 0

since
=1

=
=0

. Equating coefficients gives ( + 2)( + 1) +2 + ( + 1) = 0, thus the

recursion relation is +2 =
( + 1)

( + 2)( + 1)
=

+ 2
, = 0 1 2 . Then the even

coefficients are given by 2 =
0

2
, 4 =

2

4
=

0

2 · 4 , 6 =
4

6
=

0

2 · 4 · 6 , and in general,

2 = ( 1)
0

2 · 4 · · · · · 2 =
( 1) 0

2 !
. The odd coefficients are 3 =

1

3
, 5 =

3

5
=

1

3 · 5 , 7 =
5

7
=

1

3 · 5 · 7 ,

and in general, 2 +1 = ( 1)
1

3 · 5 · 7 · · · · · (2 + 1)
=
( 2) ! 1

(2 + 1)!
. The solution is

( ) = 0
=0

( 1)

2 !
2 + 1

=0

( 2) !

(2 + 1)!
2 +1.

6. Let ( ) =
=0

. Then 00( ) =
=2

( 1) 2 =
=0

( + 2)( + 1) +2 . Hence, the equation 00 =

becomes
=0

( + 2)( + 1) +2
=0

= 0 or
=0

[( + 2)( + 1) +2 ] = 0. So the recursion relation

is +2 =
( + 2)( + 1)

, = 0 1 . Given 0 and 1, 2 =
0

2 · 1 , 4 =
2

4 · 3 =
0

4!
, 6 =

4

6 · 5 =
0

6!
, ,

2 =
0

(2 )!
and 3 =

1

3 · 2 , 5 =
3

5 · 4 =
1

5 · 4 · 3 · 2 =
1

5!
, 7 =

5

7 · 6 =
1

7!
, , 2 +1 =

1

(2 + 1)!
. Thus, the solution

is ( ) =
=0

=
=0

2
2 +

=0
2 +1

2 +1 = 0
=0

2

(2 )!
+ 1

=0

2 +1

(2 + 1)!
. The solution can be written

as ( ) = 0 cosh + 1 sinh or ( ) = 0
+

2
+ 1

2
=

0 + 1

2
+

0 1

2
.
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SECTION 17.4 SERIES SOLUTIONS ¤ 727

7. Let ( ) =
=0

0 ( ) =
=1

1 =
=0

( + 1) +1 and 00 ( ) =
=0

( + 2)( + 1) +2 . Then

( 1) 00( ) =
=0

( +2)( +1) +2
+1

=0

( +2)( +1) +2 =
=1

( +1) +1
=0

( +2)( +1) +2 .

Since
=1

( + 1) +1 =
=0

( + 1) +1 , the differential equation becomes

=0

( + 1) +1
=0

( + 2)( + 1) +2 +
=0

( + 1) +1 = 0

=0

[ ( + 1) +1 ( + 2)( + 1) +2 + ( + 1) +1] = 0 or
=0

[( + 1)2 +1 ( + 2)( + 1) +2] = 0.

Equating coefficients gives ( + 1)2 +1 ( + 2)( + 1) +2 = 0 for = 0 1 2, . Then the recursion relation is

+2 =
( + 1)2

( + 2)( + 1)
+1 =

+ 1

+ 2
+1, so given 0 and 1, we have 2 =

1
2 1, 3 =

2
3 2 =

1
3 1, 4 =

3
4 3 =

1
4 1, and

in general =
1 , = 1 2 3, . Thus the solution is ( ) = 0 + 1

=1

. Note that the solution can be expressed as

0 1 ln(1 ) for | | 1.

8. Assuming ( ) =
=0

, 00( ) =
=2

( 1) 2 =
=0

( + 2)( + 1) +2 and

( ) =
=0

+1 =
=1

1 . The equation 00 = becomes

=0

( + 2)( + 1) +2
=1

1 = 0 or 2 2 +
=1

[( + 2)( + 1) +2 1] = 0. Equating coefficients

gives 2 = 0 and +2 =
1

( + 2)( + 1)
for = 1 2, . Since 2 = 0, 3 +2 = 0 for = 0 1 2 . Given 0,

3 =
0

3 · 2 , 6 =
3

6 · 5 =
0

6 · 5 · 3 · 2 , , 3 =
0

3 (3 1)(3 3)(3 4) · · · · · 6 · 5 · 3 · 2 . Given 1, 4 =
1

4 · 3 ,

7 =
4

7 · 6 =
1

7 · 6 · 4 · 3 , , 3 +1 =
1

(3 + 1)3 (3 2)(3 3) 7 · 6 · 4 · 3 . The solution can be written

as ( ) = 0
= 0

(3 2)(3 5) · · · · · 7 · 4 · 1
(3 )!

3 + 1
=0

(3 1)(3 4) · · · · · 8 · 5 · 2
(3 + 1)!

3 +1.

9. Let ( ) =
=0

. Then 0( ) =
=1

1 =
=1

=
=0

,

00( ) =
=0

( + 2)( + 1) +2 , and the equation 00 0 = 0 becomes

=0

[( + 2)( + 1) +2 ] = 0. Thus, the recursion relation is

+2 =
+

( + 2)( + 1)
=

( + 1)

( + 2)( + 1)
=

+ 2
for = 0 1 2, . One of the given conditions is (0) = 1. But

(0) =
=0

(0) = 0 + 0 + 0 + · · · = 0, so 0 = 1. Hence, 2 =
0

2
=
1

2
, 4 =

2

4
=

1

2 · 4 , 6 =
4

6
=

1

2 · 4 · 6 , ,
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728 ¤ CHAPTER 17 SECOND-ORDER DIFFERENTIAL EQUATIONS

2 =
1

2 !
. The other given condition is 0(0) = 0. But 0(0) =

=1

(0) 1 = 1 + 0 + 0 + · · · = 1, so 1 = 0.

By the recursion relation, 3 =
1

3
= 0, 5 = 0, , 2 +1 = 0 for = 0, 1, 2, . Thus, the solution to the initial-value

problem is ( ) =
=0

=
=0

2
2 =

=0

2

2 !
=

=0

( 2 2)

!
=

2 2.

10. Assuming that ( ) =
=0

, we have 2 =
=0

+2 and

00( ) =
=2

( 1) 2 =
= 2

( + 4)( + 3) +4
+2 = 2 2 + 6 3 +

=0

( + 4)( + 3) +4
+2.

Thus, the equation 00 + 2 = 0 becomes 2 2 + 6 3 +
=0

[( + 4)( + 3) +4 + ] +2 = 0. So 2 = 3 = 0 and

the recursion relation is +4 =
( + 4)( + 3)

, = 0 1 2, . But 1 =
0(0) = 0 = 2 = 3 and by the recursion

relation, 4 +1 = 4 +2 = 4 +3 = 0 for = 0 1 2, . Also, 0 = (0) = 1, so 4 =
0

4 · 3 =
1

4 · 3 ,

8 =
4

8 · 7 =
( 1)2

8 · 7 · 4 · 3 , , 4 =
( 1)

4 (4 1)(4 4)(4 5) · · · · · 4 · 3 . Thus, the solution to the initial-value

problem is ( ) =
=0

= 0 +
=0

4
4 = 1 +

=1

( 1)
4

4 (4 1)(4 4)(4 5) · · · · · 4 · 3 .

11. Assuming that ( ) =
=0

, we have =
=0

=
=0

+1, 2 0 = 2

= 1

1 =
=0

+1,

00( ) =
=2

( 1) 2 =
= 1

( + 3)( + 2) +3
+1 [replace with + 3]

= 2 2 +
=0

( + 3)( + 2) +3
+1,

and the equation 00 + 2 0 + = 0 becomes 2 2 +
=0

[( + 3)( + 2) +3 + + ] +1 = 0. So 2 = 0 and the

recursion relation is +3 =
( + 3)( + 2)

=
( + 1)

( + 3)( + 2)
, = 0 1 2, . But 0 = (0) = 0 = 2 and by the

recursion relation, 3 = 3 +2 = 0 for = 0, 1, 2, . Also, 1 =
0(0) = 1, so 4 =

2 1

4 · 3 =
2

4 · 3 ,

7 =
5 4

7 · 6 = ( 1)2
2 · 5

7 · 6 · 4 · 3 = ( 1)2
2252

7!
, , 3 +1 = ( 1)

2252 · · · · · (3 1)2

(3 + 1)!
. Thus, the solution is

( ) =
=0

= +
=1

( 1)
2252 · · · · · (3 1)2 3 +1

(3 + 1)!
.

12. (a) Let ( ) =
=0

. Then 2 00( ) =
=2

( 1) =
=0

( + 2)( + 1) +2
+2,

0( ) =
=1

=
= 1

( + 2) +2
+2 = 1 +

=0

( + 2) +2
+2, and the equation
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2 00 + 0 + 2 = 0 becomes 1 +
=0

{[( + 2)( + 1) + ( + 2)] +2 + } +2 = 0. So 1 = 0 and the

recursion relation is +2 =
( + 2)2

, = 0 1 2, . But 1 =
0(0) = 0 so 2 +1 = 0 for = 0 1 2 .

Also, 0 = (0) = 1, so 2 =
1

22
, 4 =

2

42
= ( 1)2

1

4222
= ( 1)2

1

24 (2!)2
, 6 =

4

62
= ( 1)3

1

26 (3!)2
, ,

2 = ( 1)
1

22 ( !)2
. The solution is ( ) =

=0

=
=0

( 1)
2

22 ( !)2
.

(b) The Taylor polynomials 0 to 12 are shown in the graph.

Because 10 and 12 are close together throughout the

interval [ 5 5], it is reasonable to assume that 12 is a good

approximation to the Bessel function on that interval.

17 Review

1. (a) 00 + 0 + = 0 where , , and are constants.

(b) 2 + + = 0

(c) If the auxiliary equation has two distinct real roots 1 and 2, the solution is = 1
1 + 2

2 . If the roots are real and

equal, the solution is = 1 + 2 where is the common root. If the roots are complex, we can write 1 = +

and 2 = , and the solution is = ( 1 cos + 2 sin ).

2. (a) An initial-value problem consists of finding a solution of a second-order differential equation that also satisfies given

conditions ( 0) = 0 and 0( 0) = 1, where 0 and 1 are constants.

(b) A boundary-value problem consists of finding a solution of a second-order differential equation that also satisfies given

boundary conditions ( 0) = 0 and ( 1) = 1.

3. (a) 00 + 0 + = ( ) where , , and are constants and is a continuous function.

(b) The complementary equation is the related homogeneous equation 00 + 0 + = 0. If we find the general solution

of the complementary equation and is any particular solution of the original differential equation, then the general

solution of the original differential equation is ( ) = ( ) + ( ).

(c) See Examples 1–5 and the associated discussion in Section 17.2.

(d) See the discussion on pages 1177–1179 [ ET 1153–1155].

4. Second-order linear differential equations can be used to describe the motion of a vibrating spring or to analyze an electric

circuit; see the discussion in Section 17.3.

5. See Example 1 and the preceding discussion in Section 17.4.
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730 ¤ CHAPTER 17 SECOND-ORDER DIFFERENTIAL EQUATIONS

1. True. See Theorem 17.1.3.

2. False. The differential equation is not homogeneous.

3. True. cosh and sinh are linearly independent solutions of this linear homogeneous equation.

4. False. = is a solution of the complementary equation, so we have to take ( ) = .

1. The auxiliary equation is 4 2 1 = 0 (2 + 1)(2 1) = 0 = ±1
2
. Then the general solution

is = 1
2 + 2

2.

2. The auxiliary equation is 2 2 + 10 = 0 = 1± 3 , so = ( 1 cos 3 + 2 sin 3 ).

3. The auxiliary equation is 2 + 3 = 0 = ± 3 . Then the general solution is = 1 cos 3 + 2 sin 3 .

4. The auxiliary equation is 4 2 + 4 + 1 = 0 (2 + 1)2 = 0 = 1
2
, so the general solution is

= 1
2 + 2

2.

5. 2 4 + 5 = 0 = 2± , so ( ) = 2 ( 1 cos + 2 sin ). Try ( ) = 2 0 = 2 2

and 00 = 4 2 . Substitution into the differential equation gives 4 2 8 2 + 5 2 = 2 = 1 and

the general solution is ( ) = 2 ( 1 cos + 2 sin ) + 2 .

6. 2 + 2 = 0 = 1, = 2 and ( ) = 1 + 2
2 . Try ( ) = 2 + + 0 = 2 +

and 00 = 2 . Substitution gives 2 + 2 + 2 2 2 2 = 2 = = 1
2
, = 3

4
so the

general solution is ( ) = 1 + 2
2 1

2
2 1

2
3
4
.

7. 2 2 + 1 = 0 = 1 and ( ) = 1 + 2 . Try ( ) = ( + ) cos + ( + ) sin

0 = ( ) sin + ( + + ) cos and 00 = (2 ) cos + ( 2 ) sin . Substitution

gives ( 2 + 2 2 2 ) cos + (2 2 + 2 2 ) sin = cos = 0, = = = 1
2 .

The general solution is ( ) = 1 + 2
1
2
cos 1

2
( + 1) sin .

8. 2 + 4 = 0 = ±2 and ( ) = 1 cos 2 + 2 sin 2 . Try ( ) = cos 2 + sin 2 so that no term

of is a solution of the complementary equation. Then 0 = ( + 2 ) cos 2 + ( 2 ) sin 2 and

00 = (4 4 ) cos 2 + ( 4 4 ) sin 2 . Substitution gives 4 cos 2 4 sin 2 = sin 2

= 1
4
and = 0. The general solution is ( ) = 1 cos 2 + 2 sin 2

1
4
cos 2 .
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9. 2 6 = 0 = 2, = 3 and ( ) = 1
2 + 2

3 . For 00 0 6 = 1, try 1( ) = . Then

0
1
( ) = 00

1
( ) = 0 and substitution into the differential equation gives = 1

6
. For 00 0 6 = 2 try

2( ) =
2 [since = 2 satisfies the complementary equation]. Then 0

2
= ( 2 ) 2 and

00
2
= (4 4 ) 2 , and substitution gives 5 2 = 2 = 1

5
. The general solution then is

( ) = 1
2 + 2

3 + 1( ) + 2( ) = 1
2 + 2

3 1
6

1
5

2 .

10. Using variation of parameters, ( ) = 1 cos + 2 sin , 0
1( ) = csc sin = 1 1( ) = , and

0
2( ) =

csc cos
= cot 2( ) = ln |sin | = cos + sin ln |sin |. The solution is

( ) = ( 1 ) cos + ( 2 + ln |sin |) sin .

11. The auxiliary equation is 2 + 6 = 0 and the general solution is ( ) = 1 + 2
6 = 1 + 2

6( 1). But

3 = (1) = 1 + 2 and 12 = 0(1) = 6 2. Thus 2 = 2, 1 = 5 and the solution is ( ) = 5 2 6( 1).

12. The auxiliary equation is 2 6 + 25 = 0 and the general solution is ( ) = 3 ( 1 cos 4 + 2 sin 4 ). But

2 = (0) = 1 and 1 = 0(0) = 3 1 + 4 2. Thus the solution is ( ) = 3 2 cos 4 5
4
sin 4 .

13. The auxiliary equation is 2 5 + 4 = 0 and the general solution is ( ) = 1 + 2
4 . But 0 = (0) = 1 + 2

and 1 = 0(0) = 1 + 4 2, so the solution is ( ) = 1
3
( 4 ).

14. ( ) = 1 cos( 3) + 2 sin( 3). For 9 00 + = 3 , try 1( ) = + . Then 1( ) = 3 . For 9 00 + = ,

try 2( ) = . Then 9 + = or 2( ) =
1
10

. Thus the general solution is

( ) = 1 cos( 3) + 2 sin( 3) + 3 + 1
10 . But 1 = (0) = 1 +

1
10 and 2 =

0(0) = 1
3 2 + 3

1
10 , so

1 =
9
10
and 2 =

27
10
. Hence the solution is ( ) = 1

10
[9 cos( 3) 27 sin( 3)] + 3 + 1

10
.

15. 2 + 4 + 29 = 0 = 2± 5 and the general solution is = 2 ( 1 cos 5 + 2 sin 5 ). But 1 = (0) = 1 and

1 = ( ) = 1
2

1 =
2 , so there is no solution.

16. 2 + 4 + 29 = 0 = 2± 5 and the general solution is = 2 ( 1 cos 5 + 2 sin 5 ). But 1 = (0) = 1 and

2 = ( ) = 1
2

1 = 1, so 2 can vary and the solution of the boundary-value problem is

= 2 (cos 5 + sin 5 ), where is any constant.

17. Let ( ) =
=0

. Then 00 ( ) =
=0

( 1) 2 =
=0

( + 2)( + 1) +2 and the differential equation

becomes
=0

[( + 2)( + 1) +2 + ( + 1) ] = 0. Thus the recursion relation is +2 = ( + 2)

for = 0 1 2, . But 0 = (0) = 0, so 2 = 0 for = 0 1 2, . Also 1 =
0(0) = 1, so 3 =

1

3
, 5 =

( 1)2

3 · 5 ,
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732 ¤ CHAPTER 17 SECOND-ORDER DIFFERENTIAL EQUATIONS

7 =
( 1)3

3 · 5 · 7 =
( 1)3233!

7!
, , 2 +1 =

( 1) 2 !

(2 + 1)!
for = 0 1 2 . Thus the solution to the initial-value problem

is ( ) =
=0

=
=0

( 1) 2 !

(2 + 1)!
2 +1.

18. Let ( ) =
=0

. Then 00 ( ) =
=0

( 1) 2 =
=0

( + 2)( + 1) +2 and the differential equation

becomes
=0

[( + 2)( + 1) +2 ( + 2) ] = 0. Thus the recursion relation is +2 =
+ 1

for

= 0, 1, 2, . Given 0 and 1, we have 2 =
0

1
, 4 =

2

3
=

0

1 · 3 , 6 =
4

5
=

0

1 · 3 · 5 , ,

2 =
0

1 · 3 · 5 · · · · · (2 1)
= 0

2 1( 1)!

(2 1)!
. Similarly 3 =

1

2
, 5 =

3

4
=

1

2 · 4 ,

7 =
5

6
=

1

2 · 4 · 6 , , 2 +1 =
1

2 · 4 · 6 · · · · · 2 =
1

2 !
. Thus the general solution is

( ) =
=0

= 0 + 0
=1

2 1( 1)! 2

(2 1)!
+

=0

2 +1

2 !
. But

=0

2 +1

2 !
=

=0

1
2

2

!
=

2 2,

so ( ) = 1
2 2 + 0 + 0

=1

2 1( 1)! 2

(2 1)!
.

19. Here the initial-value problem is 2 00 + 40 0 + 400 = 12, (0) = 0 01, 0(0) = 0. Then

( ) = 10 ( 1 cos 10 + 2 sin 10 ) and we try ( ) = . Thus the general solution is

( ) = 10 ( 1 cos 10 + 2 sin 10 ) +
3
100
. But 0 01 = 0(0) = 1 + 0 03 and 0 = 00(0) = 10 1 + 10 2,

so 1 = 0 02 = 2. Hence the charge is given by ( ) = 0 02 10 (cos 10 + sin 10 ) + 0 03.

20. By Hooke’s Law the spring constant is = 64 and the initial-value problem is 2 00 + 16 0 + 64 = 0, (0) = 0,

0(0) = 2 4. Thus the general solution is ( ) = 4 ( 1 cos 4 + 2 sin 4 ). But 0 = (0) = 1 and

2 4 = 0(0) = 4 1 + 4 2 1 = 0, 2 = 0 6. Thus the position of the mass is given by ( ) = 0 6 4 sin 4 .

21. (a) Since we are assuming that the earth is a solid sphere of uniform density, we can calculate the density as follows:

=
mass of earth
volume of earth = 4

3
3
. If is the volume of the portion of the earth which lies within a distance of the

center, then = 4
3

3 and = =
3

3
. Thus =

2
=

3
.

(b) The particle is acted upon by a varying gravitational force during its motion. By Newton’s Second Law of Motion,

2

2
= =

3
, so 00( ) = 2 ( ) where 2 =

3
. At the surface, = =

2
, so

=
2
. Therefore 2 = .
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CHAPTER 17 REVIEW ¤ 733

(c) The differential equation 00 + 2 = 0 has auxiliary equation 2 + 2 = 0. (This is the of Section 17.1,

not the measuring distance from the earth’s center.) The roots of the auxiliary equation are± , so by (11) in

Section 17.1, the general solution of our differential equation for is ( ) = 1 cos + 2 sin . It follows that

0( ) = 1 sin + 2 cos . Now (0) = and 0(0) = 0, so 1 = and 2 = 0. Thus ( ) = cos and

0( ) = sin . This is simple harmonic motion (see Section 17.3) with amplitude , frequency , and phase angle 0.

The period is = 2 . 3960 mi = 3960 · 5280 ft and = 32 ft s2, so = 1 24× 10 3 s 1 and

= 2 5079 s 85 min.

(d) ( ) = 0 cos = 0 = 2
+ for some integer 0( ) = sin

2
+ = ± . Thus the

particle passes through the center of the earth with speed 4 899 mi s 17,600 mi h.
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APPENDIX

Appendix H Complex Numbers

1. (5 6 ) + (3 + 2 ) = (5 + 3) + ( 6 + 2) = 8 + ( 4) = 8 4

2. 4 1
2

9 + 5
2

= (4 9) + 1
2

5
2

= 5 + ( 3) = 5 3

3. (2 + 5 )(4 ) = 2(4) + 2( ) + (5 )(4) + (5 )( ) = 8 2 + 20 5 2 = 8 + 18 5( 1)

= 8 + 18 + 5 = 13 + 18

4. (1 2 )(8 3 ) = 8 3 16 + 6( 1) = 2 19

5. 12 + 7 = 12 7

6. 2 1
2

= 2( 1) = 2 + 2 1
2

= 2 + = 2

7. 1 + 4
3 + 2

=
1 + 4

3 + 2
· 3 2

3 2
=
3 2 + 12 8( 1)

32 + 22
=
11 + 10

13
=
11

13
+
10

13

8. 3 + 2
1 4

=
3 + 2

1 4
· 1 + 4
1 + 4

=
3 + 12 + 2 + 8( 1)

12 + 42
=

5 + 14

17
=

5

17
+
14

17

9. 1

1 +
=

1

1 +
· 1
1

=
1

1 ( 1)
=
1

2
=
1

2

1

2

10. 3

4 3
=

3

4 3
· 4 + 3
4 + 3

=
12 + 9

16 9( 1)
=
12

25
+
9

25

11. 3 = 2 · = ( 1) =

12. 100 = ( 2)50 = ( 1)50 = 1

13. 25 = 25 = 5

14. 3 12 = 3 12 = 3 · 12 2 = 36 ( 1) = 6

15. 12 5 = 12 + 15 and |12 15 | = 122 + ( 5)2 = 144 + 25 = 169 = 13

16. 1 + 2 2 = 1 2 2 and 1 + 2 2 = ( 1)2 + 2 2
2
= 1 + 8 = 9 = 3

17. 4 = 0 4 = 0 + 4 = 4 and | 4 | = 02 + ( 4)2 = 16 = 4

18. Let = + and = + .

(a) + = ( + ) + ( + ) = ( + ) + ( + ) = ( + ) ( + ) = ( ) + ( ) = +

(b) = ( + )( + ) = ( ) + ( + ) = ( ) ( + ) .

On the other hand, = ( )( ) = ( ) ( + ) = .
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736 ¤ APPENDIX H COMPLEX NUMBERS

(c) Use mathematical induction and part (b): Let be the statement that = . 1 is true because 1 = = 1.

Assume is true, that is = . Then +1 = 1+ = = [part (b) with = ] = 1 = 1+ = +1,

which shows that +1 is true. Therefore, by mathematical induction, = for every positive integer .

Another proof: Use part (b) with = , and mathematical induction.

19. 4 2 + 9 = 0 4 2 = 9 2 = 9
4

= ± 9
4
= ± 9

4
= ± 3

2
.

20. 4 = 1 4 1 = 0 ( 2 1)( 2 + 1) = 0 2 1 = 0 or 2 + 1 = 0 = ±1 or = ± .

21. By the quadratic formula, 2 + 2 + 5 = 0 =
2± 22 4(1)(5)

2(1)
=

2± 16

2
=

2± 4
2

= 1± 2 .

22. 2 2 2 + 1 = 0 =
( 2)± ( 2)2 4(2)(1)

2(2)
=
2± 4

4
=
2± 2
4

=
1

2
± 1

2

23. By the quadratic formula, 2 + + 2 = 0 =
1± 12 4(1)(2)

2(1)
=

1± 7

2
=

1

2
± 7

2
.

24. 2 + 1
2
+ 1

4
= 0 4 2 + 2 + 1 = 0

=
2± 22 4(4)(1)

2(4)
=

2± 12

8
=

2± 2 3

8
=

1

4
± 3

4

25. For = 3 + 3 , = ( 3)2 + 32 = 3 2 and tan = 3
3
= 1 = 3

4
(since lies in the second quadrant).

Therefore, 3 + 3 = 3 2 cos 3
4
+ sin 3

4
.

26. For = 1 3 , = 12 + 3
2
= 2 and tan = 3

1 = 3 = 5
3 (since lies in the fourth quadrant).

Therefore, 1 3 = 2 cos 5
3
+ sin 5

3
.

27. For = 3 + 4 , = 32 + 42 = 5 and tan = 4
3

= tan 1 4
3

(since lies in the first quadrant). Therefore,

3 + 4 = 5 cos tan 1 4
3
+ sin tan 1 4

3
.

28. For = 8 , = 02 + 82 = 8 and tan = 8
0
is undefined, so =

2
(since lies on the positive imaginary axis). Therefore,

8 = 8 cos
2
+ sin

2
.

29. For = 3 + , = 3
2
+ 12 = 2 and tan = 1

3
=

6
= 2 cos

6
+ sin

6
.

For = 1 + 3 , = 2 and tan = 3 = 3 = 2 cos 3 + sin 3
.

Therefore, = 2 · 2 cos
6 + 3

+ sin
6 + 3

= 4 cos
2 + sin 2

,

= 2
2
cos

6 3
+ sin

6 3
= cos

6
+ sin

6
, and 1 = 1 + 0 = 1(cos 0 + sin 0)

1 = 1
2
cos 0

6
+ sin 0

6
= 1

2
cos

6
+ sin

6
. For 1 , we could also use the formula that precedes

Example 5 to obtain 1 = 1
2
cos

6
sin

6
.
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APPENDIX H COMPLEX NUMBERS ¤ 737

30. For = 4 3 4 , = 4 3
2
+ ( 4)2 = 64 = 8 and tan = 4

4 3
= 1

3
= 11

6

= 8 cos 11
6
+ sin 11

6
. For = 8 , = 02 + 82 = 8 and tan = 8

0
is undefined, so =

2

= 8 cos
2
+ sin

2
. Therefore, = 8 · 8 cos 11

6
+

2
+ sin 11

6
+

2
= 64 cos

3
+ sin

3
,

= 8
8
cos 11

6 2
+ sin 11

6 2
= cos 4

3
+ sin 4

3
, and

1 = 1 + 0 = 1(cos 0 + sin 0) 1 = 1
8
cos 0 11

6
+ sin 0 11

6
= 1

8
cos

6
+ sin

6
.

For 1 , we could also use the formula that precedes Example 5 to obtain 1 = 1
8
cos 11

6
sin 11

6
.

31. For = 2 3 2 , = 2 3
2
+ ( 2)2 = 4 and tan = 2

2 3
= 1

3
=

6

= 4 cos
6
+ sin

6
. For = 1 + , = 2, tan = 1

1
= 1 = 3

4

= 2 cos 3
4
+ sin 3

4
. Therefore, = 4 2 cos

6
+ 3

4
+ sin

6
+ 3

4
= 4 2 cos 7

12
+ sin 7

12
,

= 4

2
cos

6
3
4
+ sin

6
3
4

= 4

2
cos 11

12
+ sin 11

12
= 2 2 cos 13

12
+ sin 13

12
, and

1 = 1
4
cos

6
sin

6
= 1

4
cos

6
+ sin

6
.

32. For = 4 3 + = 4 3 + 4 , = 4 3
2
+ 42 = 64 = 8 and tan = 4

4 3
= 1

3
=

6

= 8 cos
6
+ sin

6
. For = 3 3 , = ( 3)2 + ( 3)2 = 18 = 3 2 and tan = 3

3
= 1 = 5

4

= 3 2 cos 5
4
+ sin 5

4
. Therefore, = 8 · 3 2 cos

6
+ 5

4
+ sin

6
+ 5

4
= 24 2 cos 17

12
+ sin 17

12
,

= 8

3 2
cos

6
5
4
+ sin

6
5
4

= 4 2
3
cos 13

12
+ sin 13

12
, and 1 = 1

8
cos

6
sin

6
.

33. For = 1 + , = 2 and tan = 1
1
= 1 =

4
= 2 cos

4
+ sin

4
. So by De Moivre’s Theorem,

(1 + )20 = 2 cos
4
+ sin

4

20
= (21 2)20 cos 20 ·

4
+ sin 20 ·

4
= 210(cos 5 + sin 5 )

= 210[ 1 + (0)] = 210 = 1024

34. For = 1 3 , = 12 + 3
2
= 2 and tan = 3

1 = 3 = 5
3 = 2 cos 53 + sin 5

3
.

So by De Moivre’s Theorem,

1 3
5
= 2 cos 5

3
+ sin 5

3

5
= 25 cos 5 · 5

3
+ sin 5 · 5

3
= 25 cos

3
+ sin

3

= 32 1
2
+ 3

2
= 16 + 16 3

35. For = 2 3 + 2 , = 2 3
2
+ 22 = 16 = 4 and tan = 2

2 3
= 1

3
=

6
= 4 cos

6
+ sin

6
.

So by De Moivre’s Theorem,

2 3 + 2
5
= 4 cos

6
+ sin

6

5
= 45 cos 5

6
+ sin 5

6
= 1024 3

2
+ 1

2
= 512 3 + 512 .

36. For = 1 , = 2 and tan = 1
1
= 1 = 7

4
= 2 cos 7

4
+ sin 7

4

(1 )8 = 2 cos 74 + sin 7
4

8
= 24 cos 8·74 + sin 8·7

4
= 16(cos 14 + sin 14 ) = 16(1 + 0 ) = 16.
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738 ¤ APPENDIX H COMPLEX NUMBERS

37. 1 = 1 + 0 = 1 (cos 0 + sin 0). Using Equation 3 with = 1, = 8, and = 0, we have

= 11 8 cos
0 + 2

8
+ sin

0 + 2

8
= cos

4
+ sin

4
, where = 0 1 2 7.

0 = 1(cos 0 + sin 0) = 1, 1 = 1 cos 4 + sin
4
= 1

2
+ 1

2
,

2 = 1 cos 2 + sin
2
= , 3 = 1 cos

3
4
+ sin 3

4
= 1

2
+ 1

2
,

4 = 1(cos + sin ) = 1, 5 = 1 cos
5
4
+ sin 5

4
= 1

2

1

2
,

6 = 1 cos
3
2
+ sin 3

2
= , 7 = 1 cos

7
4
+ sin 7

4
= 1

2

1

2

38. 32 = 32 + 0 = 32(cos 0 + sin 0). Using Equation 3 with = 32, = 5, and = 0, we have

= 321 5 cos
0 + 2

5
+ sin

0 + 2

5
= 2 cos 2

5
+ sin 2

5
, where = 0 1 2 3 4.

0 = 2(cos 0 + sin 0) = 2

1 = 2 cos
2
5
+ sin 2

5

2 = 2 cos
4
5
+ sin 4

5

3 = 2 cos
6
5
+ sin 6

5

4 = 2 cos
8
5
+ sin 8

5

39. = 0 + = 1 cos
2
+ sin

2
. Using Equation 3 with = 1, = 3, and =

2
, we have

= 11 3 cos 2
+ 2

3
+ sin 2

+ 2

3
, where = 0 1 2.

0 = cos
6
+ sin

6
= 3

2
+ 1

2

1 = cos 5
6
+ sin 5

6
= 3

2
+ 1

2

2 = cos 9
6
+ sin 9

6
=

40. 1 + = 2 cos 4 + sin 4
. Using Equation 3 with = 2, = 3, and = 4 , we have

= 2
1 3

cos 4
+ 2

3
+ sin 4

+ 2

3
, where = 0 1 2.

0 = 2
1 6 cos

12
+ sin

12

1 = 2
1 6 cos 3

4
+ sin 3

4
= 21 6 1

2
+ 1

2
= 2 1 3 + 2 1 3

2 = 2
1 6 cos 17

12
+ sin 17

12

41. Using Euler’s formula (6) with =
2
, we have 2 = cos

2
+ sin

2
= 0 + 1 = .

42. Using Euler’s formula (6) with = 2 , we have 2 = cos 2 + sin 2 = 1.

43. Using Euler’s formula (6) with =
3
, we have 3 = cos

3
+ sin

3
=
1

2
+

3

2
.

44. Using Euler’s formula (6) with = , we have = cos( ) + sin( ) = 1.
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APPENDIX H COMPLEX NUMBERS ¤ 739

45. Using Equation 7 with = 2 and = , we have 2+ = 2 = 2(cos + sin ) = 2( 1 + 0) = 2.

46. Using Equation 7 with = and = 1, we have + = · 1 = (cos 1 + sin 1) = cos 1 + ( sin 1) .

47. Take = 1 and = 3 in De Moivre’s Theorem to get

[1(cos + sin )]3 = 13(cos 3 + sin 3 )

(cos + sin )3 = cos 3 + sin 3

cos3 + 3(cos2 )( sin ) + 3(cos )( sin )2 + ( sin )3 = cos 3 + sin 3

cos3 + (3 cos2 sin ) 3 cos sin2 (sin3 ) = cos 3 + sin 3

(cos3 3 sin2 cos ) + (3 sin cos2 sin3 ) = cos 3 + sin 3

Equating real and imaginary parts gives cos 3 = cos3 3 sin2 cos and sin 3 = 3 sin cos2 sin3 .

48. Using Formula 6,

+ = (cos + sin ) + [cos( ) + sin( )] = cos + sin + cos sin = 2 cos

Thus, cos =
+

2
. Similarly,

= (cos + sin ) [cos( ) + sin( )] = cos + sin cos ( sin ) = 2 sin

Therefore, sin =
2

.

49. ( ) = = ( + ) = + = (cos + sin ) = cos + ( sin )

0( ) = ( cos )0 + ( sin )0

= ( cos sin ) + ( sin + cos )

= [ (cos + sin )] + [ ( sin + cos )]

= + [ ( 2 sin + cos )]

= + [ (cos + sin )] = + = ( + ) =

50. (a) From Exercise 49, ( ) = (1+ ) 0( ) = (1 + ) (1+ ) . So

(1+ ) =
1

1 +
0( ) =

1

1 +
( ) + =

1

2
( ) + =

1

2
(1+ ) +

(b) (1+ ) = = (cos + sin ) = cos + sin (1).

Also,
1

2
(1+ ) = 1

2
(1+ ) 1

2
(1+ ) = 1

2
+ 1

2
+

= 1
2

(cos + sin ) 1
2

(cos + sin )

= 1
2 cos + 1

2 sin + 1
2 sin 1

2 cos

= 1
2 (cos + sin ) + 1

2 (sin cos ) (2)

Equating the real and imaginary parts in (1) and (2), we see that cos = 1
2 (cos + sin ) + and

sin = 1
2

(sin cos ) + .
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2.1.3 Questions with Solutions on Chapter 12.4



814 CHAPTER 12 VECTORS AND THE GEOMETRY OF SPACE

where is the angle between the position and force vectors. Observe that the only com-
ponent of that can cause a rotation is the one perpendicular to , that is, . The
magnitude of the torque is equal to the area of the parallelogram determined by and .

A bolt is tightened by applying a 40-N force to a 0.25-m wrench as shown in
Figure 5. Find the magnitude of the torque about the center of the bolt.

SOLUTION The magnitude of the torque vector is

If the bolt is right-threaded, then the torque vector itself is

where is a unit vector directed down into the page.

�
F r � F � sin �

r F

EXAMPLE 6

� � � � � r � F � � � r � � F � sin 75� � �0.25��40� sin 75�

� 10 sin 75� � 9.66 N�m

� � � � � n � 9.66 n

nFIGURE 5

75°

40 N
0.25 m

1–7 Find the cross product and verify that it is orthogonal to
both a and b.

1. ,

2. ,

3. ,

4. ,

5. ,

6. ,

7. ,

8. If a � i � 2k and b � j � k, find a � b. Sketch a, b, and 
a � b as vectors starting at the origin.

9–12 Find the vector, not with determinants, but by using proper-
ties of cross products.

9. 10.

11. 12.

13. State whether each expression is meaningful. If not, explain
why. If so, state whether it is a vector or a scalar.
(a) (b)
(c) (d)
(e) (f )

a � b

a � �6, 0, �2 � b � �0, 8, 0 �

a � �1, 1, �1 � b � �2, 4, 6 �

a � i � 3 j � 2k b � �i � 5k

a � j � 7k b � 2 i � j � 4k

a � i � j � k b � 1
2 i � j �

1
2 k

a � t i � cos t j � sin tk b � i � sin t j � cos tk

a � � t, 1, 1�t� b � � t 2, t 2, 1 �

�i � j� � k k � �i � 2 j�

� j � k� � �k � i� �i � j� � �i � j�

a � �b � c� a � �b � c�
a � �b � c� a � �b � c�
�a � b� � �c � d� �a � b� � �c � d�

14–15 Find and determine whether u � v is directed into
the page or out of the page.

14. 15.

16. The figure shows a vector in the -plane and a vector in
the direction of . Their lengths are and 
(a) Find .
(b) Use the right-hand rule to decide whether the com ponents

of are positive, negative, or 0.

17. If and , find and .

18. If , , and , show that
.

19. Find two unit vectors orthogonal to both and
.

� u � v �

45°

|u |=4

|v |=5 |v |=16

120°
|u |=12

a xy b
k � a � � 3 � b � � 2.

� a � b �
a � b

x

z

y

b

a

a � �2, �1, 3 � b � �4, 2, 1� a � b b � a

a � �1, 0, 1� b � �2, 1, �1 � c � �0, 1, 3 �
a � �b � c� � �a � b� � c

�3, 2, 1 �
��1, 1, 0 �

12.4 Exercises

1. Homework Hints available at stewartcalculus.com
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SECTION 12.4 THE CROSS PRODUCT 815

20. Find two unit vectors orthogonal to both and .
21. Show that for any vector in .
22. Show that for all vectors and in .
23. Prove Property 1 of Theorem 11.
24. Prove Property 2 of Theorem 11.
25. Prove Property 3 of Theorem 11.
26. Prove Property 4 of Theorem 11.
27. Find the area of the parallelogram with vertices ,

, , and .
28. Find the area of the parallelogram with vertices ,

, , and .

29–32 (a) Find a nonzero vector orthogonal to the plane through
the points , , and , and (b) find the area of triangle .
29. ,  ,  
30. ,  ,  
31. ,  ,  
32. ,  ,  

33–34 Find the volume of the parallelepiped determined by the 
vectors , , and .
33. , ,
34. ,  ,  

35–36 Find the volume of the parallelepiped with adjacent edges 
, , and .

35. ,  ,  ,  
36. ,  ,  ,  

37. Use the scalar triple product to verify that the vectors
, , and 

are coplanar.

38. Use the scalar triple product to determine whether the points
, , , and lie in the

same plane.
39. A bicycle pedal is pushed by a foot with a 60-N force as

shown. The shaft of the pedal is 18 cm long. Find the
magnitude of the torque about .

�a � b� � b � 0 a b V3

j � k i � j
V3a0 � a � 0 � a � 0

A��2, 1�
D�2, �1�C�4, 2�B�0, 4�

K�1, 2, 3�
N�3, 7, 3�M�3, 8, 6�L�1, 3, 6�

PQRRQP

R�5, 3, 1�Q�4, 1, �2�P�0, �2, 0�

R�4, 3, �1�Q�0, 5, 2�P��1, 3, 1�

P�1, 0, 1� Q��2, 1, 3� R�4, 2, 5�

P�0, 0, �3� Q�4, 2, 0� R�3, 3, 1�

cba
c � �2, 1, 4 �b � ��1, 1, 2 �a � �1, 2, 3 �

c � i � j � kb � j � ka � i � j

PSPRPQ

S�3, 6, 1�R�1, 4, �1�Q�2, 3, 2�P��2, 1, 0�

S�0, 4, 2�R�5, 1, �1�Q��1, 2, 5�P�3, 0, 1�

w � 5 i � 9 j � 4 kv � 3 i � ju � i � 5 j � 2 k

D�3, 6, �4�C�5, 2, 0�B�3, �1, 6�A�1, 3, 2�

P

10°

70°
60 N

P

40. Find the magnitude of the torque about if a 36-lb force is
applied as shown.

41. A wrench 30 cm long lies along the positive -axis and grips a
bolt at the origin. A force is applied in the direction
at the end of the wrench. Find the magnitude of the force
needed to supply of torque to the bolt.

42. Let v � 5 j and let u be a vector with length 3 that starts at 
the origin and rotates in the -plane. Find the maximum and
minimum values of the length of the vector u � v. In what
direction does u � v point?

43. If and , find the angle between
and .

44. (a) Find all vectors such that

(b) Explain why there is no vector such that

45. (a) Let be a point not on the line that passes through the
points and . Show that the distance from the point 
to the line is

where QR
l and QP

l.
(b) Use the formula in part (a) to find the distance from 

the point to the line through and
.

46. (a) Let be a point not on the plane that passes through the
points , , and . Show that the distance from to the
plane is

where QR
l, QS

l, and QP
l.

(b) Use the formula in part (a) to find the distance from the
point to the plane through the points ,

, and .

47. Show that .

48. If , show that

P

30°
36 lb

4 ft

4 ft
P

y
�0, 3, �4 �

100 N�m

xy

a � b � s3 a � b � �1, 2, 2 � a
b

v
�1, 2, 1 � � v � �3, 1, �5 �

v
�1, 2, 1 � � v � �3, 1, 5 �

P L
Q R d P

L

d � � a � b �
� a �

a � b �

P�1, 1, 1� Q�0, 6, 8�
R��1, 4, 7�

P
Q R S d P

d � � a � �b � c� �
� a � b �

a � b � c �

P�2, 1, 4� Q�1, 0, 0�
R�0, 2, 0� S�0, 0, 3�

� a � b �2 � � a �2 � b �2 � �a � b�2

a � b � b � c � c � a
a � b � c � 0
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SECTION 12.4 THE CROSS PRODUCT ¤ 265

25. a× (b+ c) = a× h 1 + 1 2 + 2 3 + 3i
= h 2( 3 + 3) 3( 2 + 2) , 3( 1 + 1) 1( 3 + 3) , 1( 2 + 2) 2( 1 + 1)i
= h 2 3 + 2 3 3 2 3 2, 3 1 + 3 1 1 3 1 3, 1 2 + 1 2 2 1 2 1i
= h( 2 3 3 2) + ( 2 3 3 2) , ( 3 1 1 3) + ( 3 1 1 3) , ( 1 2 2 1) + ( 1 2 2 1)i
= h 2 3 3 2 3 1 1 3 1 2 2 1i+ h 2 3 3 2 3 1 1 3 1 2 2 1i
= (a× b) + (a× c)

26. (a+ b)× c = c× (a+ b) by Property 1 of Theorem 11

= (c× a+ c× b) by Property 3 of Theorem 11

= ( a× c+ ( b× c)) by Property 1 of Theorem 11

= a× c+ b× c by Property 2 of Theorem 11

27. By plotting the vertices, we can see that the parallelogram is determined by the

vectors = h2 3i and = h4 2i. We know that the area of the parallelogram
determined by two vectors is equal to the length of the cross product of these vectors.

In order to compute the cross product, we consider the vector as the three-

dimensional vector h2 3 0i (and similarly for ), and then the area of

parallelogram is

× =

i j k

2 3 0

4 2 0

= |(0) i (0) j+ ( 4 12)k| = | 16k| = 16

28. The parallelogram is determined by the vectors = h0 1 3i and = h2 5 0i, so the area of parallelogram is

× =

i j k

0 1 3

2 5 0

= |( 15) i ( 6) j+ ( 2)k| = | 15 i+ 6 j 2k| = 265 16 28

29. (a) Because the plane through , , and contains the vectors and , a vector orthogonal to both of these vectors

(such as their cross product) is also orthogonal to the plane. Here = h 3 1 2i and = h3 2 4i, so

× = h(1)(4) (2)(2) (2)(3) ( 3)(4) ( 3)(2) (1)(3)i = h0 18 9i

Therefore, h0 18 9i (or any nonzero scalar multiple thereof, such as h0 2 1i) is orthogonal to the plane through , ,

and .

(b) Note that the area of the triangle determined by , , and is equal to half of the area of the

parallelogram determined by the three points. From part (a), the area of the parallelogram is

× = |h0 18 9i| = 0 + 324 + 81 = 405 = 9 5, so the area of the triangle is 1
2
· 9 5 = 9

2
5.
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266 ¤ CHAPTER 12 VECTORS AND THE GEOMETRY OF SPACE

30. (a) = h4 2 3i and = h3 3 4i, so a vector orthogonal to the plane through , , and is

× = h(2)(4) (3)(3) (3)(3) (4)(4) (4)(3) (2)(3)i = h 1 7 6i (or any nonzero scalar mutiple
thereof).

(b) The area of the parallelogram determined by and is × = |h 1 7 6i| = 1 + 49 + 36 = 86,

so the area of triangle is 1
2
86.

31. (a) = h4 3 2i and = h5 5 1i, so a vector orthogonal to the plane through , , and is

× = h(3)(1) ( 2)(5) ( 2)(5) (4)(1) (4)(5) (3)(5)i = h13 14 5i [or any scalar mutiple thereof ].

(b) The area of the parallelogram determined by and is

× = |h13 14 5i| = 132 + ( 14)2 + 52 = 390, so the area of triangle is 1
2
390.

32. (a) = h1 2 1i and = h5 0 2i, so a vector orthogonal to the plane through , , and is

× = h(2)( 2) (1)(0) (1)(5) (1)( 2) (1) (0) (2)(5)i = h 4 7 10i [or any scalar multiple thereof ].

(b) The area of the parallelogram determined by and is × = |h 4 7 10i| = 16 + 49 + 100 = 165,

so the area of triangle is 1
2

165.

33. By Equation 14, the volume of the parallelepiped determined by a, b, and c is the magnitude of their scalar triple product,

which is a · (b× c) =
1 2 3

1 1 2

2 1 4

= 1
1 2

1 4
2

1 2

2 4
+ 3

1 1

2 1
= 1(4 2) 2( 4 4) + 3( 1 2) = 9.

Thus the volume of the parallelepiped is 9 cubic units.

34. a · (b× c) =
1 1 0

0 1 1

1 1 1

= 1
1 1

1 1
1
0 1

1 1
+ 0

0 1

1 1
= 0 + 1 + 0 = 1.

So the volume of the parallelepiped determined by a, b, and c is 1 cubic unit.

35. a = = h4 2 2i, b = = h3 3 1i, and c = = h5 5 1i.

a · (b× c) =
4 2 2

3 3 1

5 5 1

= 4
3 1

5 1
2
3 1

5 1
+ 2

3 3

5 5
= 32 16 + 0 = 16,

so the volume of the parallelepiped is 16 cubic units.
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SECTION 12.4 THE CROSS PRODUCT ¤ 267

36. a = = h 4 2 4i, b = = h2 1 2i and c = = h 3 4 1i.

a · (b× c) =
4 2 4

2 1 2

3 4 1

= 4
1 2

4 1
2

2 2

3 1
+ 4

2 1

3 4
= 36 + 8 + 44 = 16, so the volume of the

parallelepiped is 16 cubic units.

37. u · (v×w) =
1 5 2

3 1 0

5 9 4

= 1
1 0

9 4
5
3 0

5 4
+ ( 2)

3 1

5 9
= 4 + 60 64 = 0, which says that the volume

of the parallelepiped determined by u, v andw is 0, and thus these three vectors are coplanar.

38. u = = h2 4 4i, v = = h4 1 2i and w = = h2 3 6i.

u · (v×w) =
2 4 4

4 1 2

2 3 6

= 2
1 2

3 6
( 4)

4 2

2 6
+ 4

4 1

2 3
= 24 80 + 56 = 0, so the volume of the

parallelepiped determined by u, v andw is 0, which says these vectors lie in the same plane. Therefore, their initial and

terminal points , , and also lie in the same plane.

39. The magnitude of the torque is | | = |r×F| = |r| |F| sin = (0 18 m)(60 N) sin(70 + 10) = 10 8 sin 80 10 6 N·m.

40. |r| = 42 + 42 = 4 2 ft. A line drawn from the point to the point of application of the force makes an angle of

180 (45 + 30) = 105 with the force vector. Therefore,

| | = |r×F| = |r| |F| sin = 4 2 (36) sin 105 197 ft-lb.

41. Using the notation of the text, r = h0 0 3 0i and F has direction h0 3 4i. The angle between them can be determined by

cos =
h0 0 3 0i · h0 3 4i
|h0 0 3 0i| |h0 3 4i| cos =

0 9

(0 3)(5)
cos = 0 6 53 1 . Then | | = |r| |F| sin

100 = 0 3 |F| sin 53 1 |F| 417 N.

42. Since |u× v| = |u| |v| sin , 0 , |u× v| achieves its maximum value for sin = 1 =
2
, in which case

|u× v| = |u| |v| = 15 The minimum value is zero, which occurs when sin = 0 = 0 or , so when u, v are

parallel. Thus, when u points in the same direction as v, so u = 3 j, |u× v| = 0. As u rotates counterclockwise, u× v is
directed in the negative -direction (by the right-hand rule) and the length increases until = 2 , in which case u = 3 i and

|u× v| = 15. As u rotates to the negative -axis, u× v remains pointed in the negative -direction and the length of u× v
decreases to 0 after which the direction of u× v reverses to point in the positive -direction and |u× v| increases. When
u = 3 i (so = 2 ), |u× v| again reaches its maximum of 15, after which |u× v| decreases to 0 as u rotates to the positive
-axis.
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824 CHAPTER 12 VECTORS AND THE GEOMETRY OF SPACE

1. Determine whether each statement is true or false.
(a) Two lines parallel to a third line are parallel.
(b) Two lines perpendicular to a third line are parallel.
(c) Two planes parallel to a third plane are parallel.
(d) Two planes perpendicular to a third plane are parallel.
(e) Two lines parallel to a plane are parallel.
(f ) Two lines perpendicular to a plane are parallel.
(g) Two planes parallel to a line are parallel.
(h) Two planes perpendicular to a line are parallel.
( i) Two planes either intersect or are parallel.
( j) Two lines either intersect or are parallel.
(k) A plane and a line either intersect or are parallel.

2–5 Find a vector equation and parametric equations for the line.

2. The line through the point and parallel to the 
vector

3. The line through the point and parallel to the 
vector

4. The line through the point and parallel to the line
, , 

5. The line through the point (1, 0, 6) and perpendicular to the
plane

6–12 Find parametric equations and symmetric equations for the
line.

6. The line through the origin and the point 

7. The line through the points and 

8. The line through the points and

9. The line through the points and 

10. The line through and perpendicular to both 
and

11. The line through and parallel to the line

12. The line of intersection of the planes 
and

13. Is the line through and parallel to the
line through and ?

14. Is the line through and perpendicular to the
line through and ?

15. (a) Find symmetric equations for the line that passes 
through the point and is parallel to the vector

.
(b) Find the points in which the required line in part (a) inter-

sects the coordinate planes.

�6, �5, 2�
�1, 3, �2

3 �
�2, 2.4, 3.5�

3 i � 2 j � k

�0, 14, �10�
z � 3 � 9ty � 6 � 3tx � �1 � 2t

x � 3y � z � 5

�4, 3, �1�

�2, 1, �3�(0, 1
2, 1)

�1.0, 2.4, 4.6� �2.6, 1.2, 0.3�

��8, 1, 4� �3, �2, 4�

i � j�2, 1, 0�
j � k

�1, �1, 1�
x � 2 � 1

2 y � z � 3

x � 2y � 3z � 1
x � y � z � 1

��2, 0, �3���4, �6, 1�
�5, 3, 14��10, 18, 4�

�1, 1, 1���2, 4, 0�
�3, �1, �8��2, 3, 4�

�1, �5, 6�
��1, 2, �3 �

16. (a) Find parametric equations for the line through that
is perpendicular to the plane .

(b) In what points does this line intersect the coordinate
planes?

17. Find a vector equation for the line segment from 
to .

18. Find parametric equations for the line segment from
to .

19–22 Determine whether the lines and are parallel, skew, or
intersecting. If they intersect, find the point of intersection.

19. : ,  ,  

: ,  ,  

20. : ,  ,  

: ,  ,  

21. :

:

22. :

:

23–40 Find an equation of the plane.

23. The plane through the origin and perpendicular to the 
vector

24. The plane through the point and with normal 
vector

25. The plane through the point and with normal 
vector

26. The plane through the point and perpendicular to the
line , , 

27. The plane through the point and parallel to the
plane

28. The plane through the point and parallel to the plane

29. The plane through the point and parallel to the plane

30. The plane that contains the line , ,
and is parallel to the plane 

31. The plane through the points , , and 

32. The plane through the origin and the points 
and

�2, �1, 4�
�4, 6, 1�

�10, 3, 1�
�5, 6, �3�

�2, 4, 6�
x � y � 3z � 7

L1 L2

L1 x � 3 � 2t y � 4 � t z � 1 � 3t

L2 x � 1 � 4s y � 3 � 2s z � 4 � 5s

L1 x � 5 � 12t y � 3 � 9t

L2 x � 3 � 8s y � �6s z � 7 � 2s

L1
x � 2

1
�

y � 3

�2
�

z � 1

�3

L2
x � 3

1
�

y � 4

3
�

z � 2

�7

L1
x

1
�

y � 1

�1
�

z � 2

3

L2
x � 2

2
�

y � 3

�2
�

z

7

�1, �2, 5 �

�5, 3, 5�
2 i � j � k

(�1, 1
2, 3)

i � 4 j � k

�2, 0, 1�
x � 3t y � 2 � t z � 3 � 4t

�1, �1, �1�
5x � y � z � 6

�2, 4, 6�
z � x � y

(1, 1
2, 1

3)
x � y � z � 0

x � 1 � t y � 2 � t
z � 4 � 3t 5x � 2y � z � 1

�0, 1, 1� �1, 0, 1� �1, 1, 0�

�2, �4, 6�
�5, 1, 3�

z � 1 � 3t

12.5 Exercises

1. Homework Hints available at stewartcalculus.com
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SECTION 12.5 EQUATIONS OF L INES AND PLANES 825

33. The plane through the points , , and

34. The plane that passes through the point and contains
the line , , 

35. The plane that passes through the point and contains
the line , , 

36. The plane that passes through the point and 
contains the line with symmetric equations 

37. The plane that passes through the point and contains
the line of intersection of the planes and

38. The plane that passes through the points and
and is perpendicular to the plane 

39. The plane that passes through the point and is perpen-
dicular to the planes and

40. The plane that passes through the line of intersection of the
planes and and is perpendicular to the
plane

41–44 Use intercepts to help sketch the plane.
41. 42.

43. 44.

45–47 Find the point at which the line intersects the given plane.
45. , , ;

46. , , ;  

47. ;

48. Where does the line through and intersect
the plane ?

49. Find direction numbers for the line of intersection of the planes
and .

50. Find the cosine of the angle between the planes
and .

51–56 Determine whether the planes are parallel, perpendicular, or
neither. If neither, find the angle between them.
51. ,

52. ,

53. ,

54. ,

55. ,

56. ,

�3, �1, 2� �8, 2, 4�
��1, �2, �3�

�1, 2, 3�
x � 3t y � 1 � t z � 2 � t

�6, 0, �2�
z � 7 � 4 ty � 3 � 5tx � 4 � 2t

�1, �1, 1�
x � 2y � 3z

��1, 2, 1�
x � y � z � 2

2x � y � 3z � 1

�0, �2, 5�
2z � 5x � 4y��1, 3, 1�

�1, 5, 1�
x � 3z � 42x � y � 2z � 2

y � 2z � 3x � z � 1
x � y � 2z � 1

3x � y � 2z � 62x � 5y � z � 10

6x � 5y � 3z � 156x � 3y � 4z � 6

x � y � 2z � 9z � 5ty � 2 � tx � 3 � t

x � 2y � z � 1 � 0z � 2 � 3ty � 4tx � 1 � 2t

4x � y � 3z � 8x � y � 1 � 2z

�4, �2, 2��1, 0, 1�
x � y � z � 6

x � z � 0x � y � z � 1

x � y � z � 0
x � 2y � 3z � 1

�3x � 6y � 7z � 0x � 4y � 3z � 1

3x � 12y � 6z � 12z � 4y � x

x � y � z � 1x � y � z � 1

x � 6y � 4z � 32x � 3y � 4z � 5

8y � 1 � 2x � 4zx � 4y � 2z

2x � y � 2z � 1x � 2y � 2z � 1

57–58 (a) Find parametric equations for the line of intersection of
the planes and (b) find the angle between the planes.
57. ,

58. ,

59–60 Find symmetric equations for the line of intersection of the
planes.
59. ,

60. ,

61. Find an equation for the plane consisting of all points that are
equidistant from the points and .

62. Find an equation for the plane consisting of all points that are
equidistant from the points and .

63. Find an equation of the plane with -intercept , -intercept ,
and -intercept .

64. (a) Find the point at which the given lines intersect:

(b) Find an equation of the plane that contains these lines.

65. Find parametric equations for the line through the point
that is parallel to the plane and

perpendicular to the line , , .

66. Find parametric equations for the line through the point
that is perpendicular to the line , 

, and intersects this line.

67. Which of the following four planes are parallel? Are any of
them identical?

68. Which of the following four lines are parallel? Are any of them
identical?

,  ,  
,  ,  

69–70 Use the formula in Exercise 45 in Section 12.4 to find the 
distance from the point to the given line.
69. ;  , , 

70. ;  , , 

3x � 2y � z � 1 2x � y � 3z � 3

5x � 2y � 2z � 1 4x � y � z � 6

z � 2x � y � 5 z � 4x � 3y � 5

�1, 0, �2� �3, 4, 0�

�2, 5, 5� ��6, 3, 1�

x a y b
z c

r � �1, 1, 0 � � t �1, �1, 2 �

r � �2, 0, 2 � � s ��1, 1, 0 �

�0, 1, 2� x � y � z � 2
x � 1 � t y � 1 � t z � 2t

�0, 1, 2� x � 1 � t
y � 1 � t z � 2t

P1:  3x � 6y � 3z � 6 P2: 4x � 12y � 8z � 5
P3: 9y � 1 � 3x � 6z P4: z � x � 2y � 2

L1: x � 1 � 6t y � 1 � 3t z � 12t � 5
L2: x � 1 � 2t y � t z � 1 � 4t
L3: 2x � 2 � 4 � 4y � z � 1
L4: r � �3, 1, 5 � � t �4, 2, 8 �

�4, 1, �2� x � 1 � t y � 3 � 2t z � 4 � 3t

�0, 1, 3� x � 2t y � 6 � 2t z � 3 � t

x � 2y � 2z � 1x � y � z � 1
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826 CHAPTER 12 VECTORS AND THE GEOMETRY OF SPACE

71–72 Find the distance from the point to the given plane.
71. ,

72. ,

73–74 Find the distance between the given parallel planes.
73. ,

74. ,

75. Show that the distance between the parallel planes
and is

76. Find equations of the planes that are parallel to the plane
and two units away from it.

77. Show that the lines with symmetric equations and
are skew, and find the distance between

these lines.

2x � 3y � z � 4 4x � 6y � 2z � 3

6z � 4y � 2x 9z � 1 � 3x � 6y

ax � by � cz � d1 � 0 ax � by � cz � d2 � 0

D � � d1 � d2 �
sa 2 � b 2 � c 2

x � 2y � 2z � 1
x � y � z

x � 1 � y�2 � z�3

3x � 2y � 6z � 5�1, �2, 4�

x � 2y � 4z � 8��6, 3, 5�

78. Find the distance between the skew lines with parametric 
equations , , , and ,

, .
79. Let be the line through the origin and the point .

Let be the line through the points and .
Find the distance between and .

80. Let be the line through the points and . 
Let be the line of intersection of the planes and , 
where is the plane and is the plane
through the points , , and . Calculate
the distance between and .

81. If , , and are not all 0, show that the equation
represents a plane and is 

a normal vector to the plane.
Hint: Suppose and rewrite the equation in the form

82. Give a geometric description of each family of planes.
(a) (b)
(c)

L1 �2, 0, �1�
L2 �1, �1, 1� �4, 1, 3�

L1 L2

L1 �1, 2, 6� �2, 4, 8�
L2 �1 �2

�1 x � y � 2z � 1 � 0 �2

�3, 2, �1� �0, 0, 1� �1, 2, 1�
L1 L2

a b c
ax � by � cz � d � 0 �a, b, c �

a � 0

a�x �
d
a	 � b�y � 0� � c�z � 0� � 0

x � y � z � c x � y � cz � 1
y cos � � z sin � � 1

x � 1 � 2sz � 2ty � 1 � 6tx � 1 � t
z � �2 � 6sy � 5 � 15s

L A B O R AT O R Y  P R O J E C T PUTTING 3D IN PERSPECTIVE

Computer graphics programmers face the same challenge as the great painters of the past: how 
to represent a three-dimensional scene as a flat image on a two-dimensional plane (a screen or a
canvas). To create the illusion of perspective, in which closer objects appear larger than those
farther away, three-dimensional objects in the computer’s memory are projected onto a rect-
angular screen window from a viewpoint where the eye, or camera, is located. The viewing
volume––the portion of space that will be visible––is the region contained by the four planes that
pass through the viewpoint and an edge of the screen window. If objects in the scene extend
beyond these four planes, they must be truncated before pixel data are sent to the screen. These
planes are therefore called clipping planes.

1. Suppose the screen is represented by a rectangle in the -plane with vertices
and , and the camera is placed at . A line in the scene passes
through the points and . At what points should be clipped
by the clipping planes?

2. If the clipped line segment is projected on the screen window, identify the resulting line
segment.

3. Use parametric equations to plot the edges of the screen window, the clipped line segment,
and its projection on the screen window. Then add sight lines connecting the viewpoint to
each end of the clipped segments to verify that the projection is correct.

4. A rectangle with vertices , , , and
is added to the scene. The line intersects this rectangle. To make the rect-

angle appear opaque, a programmer can use hidden line rendering, which removes portions
of objects that are behind other objects. Identify the portion of that should be removed.

yz �0, �400, 0�
�0, �400, 600� �1000, 0, 0� L

�230, �285, 102� �860, 105, 264� L

�621, �147, 206� �563, 31, 242� �657, �111, 86�
�599, 67, 122� L

L
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SECTION 12.5 EQUATIONS OF LINES AND PLANES ¤ 273

12.5 Equations of Lines and Planes

1. (a) True; each of the rst two lines has a direction vector parallel to the direction vector of the third line, so these vectors are

each scalar multiples of the third direction vector. Then the rst two direction vectors are also scalar multiples of each

other, so these vectors, and hence the two lines, are parallel.

(b) False; for example, the - and -axes are both perpendicular to the -axis, yet the - and -axes are not parallel.

(c) True; each of the rst two planes has a normal vector parallel to the normal vector of the third plane, so these two normal

vectors are parallel to each other and the planes are parallel.

(d) False; for example, the - and -planes are not parallel, yet they are both perpendicular to the -plane.

(e) False; the - and -axes are not parallel, yet they are both parallel to the plane = 1.

(f ) True; if each line is perpendicular to a plane, then the lines’ direction vectors are both parallel to a normal vector for the

plane. Thus, the direction vectors are parallel to each other and the lines are parallel.

(g) False; the planes = 1 and = 1 are not parallel, yet they are both parallel to the -axis.

(h) True; if each plane is perpendicular to a line, then any normal vector for each plane is parallel to a direction vector for the

line. Thus, the normal vectors are parallel to each other and the planes are parallel.

(i) True; see Figure 9 and the accompanying discussion.

( j) False; they can be skew, as in Example 3.

(k) True. Consider any normal vector for the plane and any direction vector for the line. If the normal vector is perpendicular

to the direction vector, the line and plane are parallel. Otherwise, the vectors meet at an angle , 0 90 , and the

line will intersect the plane at an angle 90 .

2. For this line, we have r0 = 6 i 5 j+ 2k and v = i + 3 j 2
3
k, so a vector equation is

r = r0 + v = (6 i 5 j+ 2k) + i+ 3 j 2
3
k = (6 + ) i+ ( 5 + 3 ) j+ 2 2

3
k and parametric equations are

= 6 + , = 5 + 3 , = 2 2
3 .

3. For this line, we have r0 = 2 i+ 2 4 j + 3 5k and v = 3 i+ 2 j k, so a vector equation is

r = r0 + v = (2 i+2 4 j+3 5k) + (3 i+2 j k) = (2+ 3 ) i+ (2 4+ 2 ) j+ (3 5 )k and parametric equations are

= 2 + 3 , = 2 4 + 2 , = 3 5 .

4. This line has the same direction as the given line, v = 2 i 3 j+ 9k. Here r0 = 14 j 10k, so a vector equation is

r = (14 j 10k) + (2 i 3 j+ 9k) = 2 i+ (14 3 ) j+ ( 10 + 9 )k and parametric equations are = 2 ,

= 14 3 , = 10 + 9 .

5. A line perpendicular to the given plane has the same direction as a normal vector to the plane, such as

n = h1 3 1i. So r0 = i + 6k, and we can take v = i + 3 j + k. Then a vector equation is
r = (i+ 6k) + (i+ 3 j+ k) = (1 + ) i+ 3 j+ (6 + )k, and parametric equations are = 1 + , = 3 , = 6 + .
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274 ¤ CHAPTER 12 VECTORS AND THE GEOMETRY OF SPACE

6. The vector v = h4 0 3 0 1 0i = h4 3 1i is parallel to the line. Letting 0 = (0 0 0), parametric equations are

= 0 + 4 · = 4 , = 0 + 3 · = 3 , = 0 + ( 1) · = , while symmetric equations are
4
=
3
=

1
or

4
=
3
= .

7. The vector v = 2 0 1 1
2

3 1 = 2 1
2

4 is parallel to the line. Letting 0 = (2 1 3), parametric equations

are = 2 + 2 , = 1 + 1
2
, = 3 4 , while symmetric equations are 2

2
=

1

1 2
=

+ 3

4
or

2

2
= 2 2 =

+ 3

4
.

8. v = h2 6 1 0 1 2 2 4 0 3 4 6i = h1 6 1 2 4 3i, and letting 0 = (1 0 2 4 4 6), parametric equations are

= 1 0 + 1 6 , = 2 4 1 2 , = 4 6 4 3 , while symmetric equations are 1 0

1 6
=

2 4

1 2
=

4 6

4 3
.

9. v = h3 ( 8) 2 1 4 4i = h11 3 0i, and letting 0 = ( 8 1 4), parametric equations are = 8 + 11 ,

= 1 3 , = 4 + 0 = 4, while symmetric equations are + 8

11
=

1

3
, = 4. Notice here that the direction number

= 0, so rather than writing 4

0
in the symmetric equation we must write the equation = 4 separately.

10. v = (i+ j)× ( j+ k) =
i j k

1 1 0

0 1 1

= i j+ k is the direction of the line perpendicular to both i+ j and j+ k.

With 0 = (2 1 0), parametric equations are = 2 + , = 1 , = and symmetric equations are 2 =
1

1
=

or 2 = 1 = .

11. The line has direction v = h1 2 1i. Letting 0 = (1 1 1), parametric equations are = 1 + , = 1 + 2 , = 1 +

and symmetric equations are 1 =
+ 1

2
= 1.

12. Setting = 0 we see that (1 0 0) satis es the equations of both planes, so they do in fact have a line of intersection.

The line is perpendicular to the normal vectors of both planes, so a direction vector for the line is

v = n1 × n2 = h1 2 3i × h1 1 1i = h5 2 3i. Taking the point (1 0 0) as 0, parametric equations are = 1 + 5 ,

= 2 , = 3 , and symmetric equations are 1

5
=
2
=

3
.

13. Direction vectors of the lines are v1 = h 2 ( 4) 0 ( 6) 3 1i = h2 6 4i and

v2 = h5 10 3 18 14 4i = h 5 15 10i, and since v2 = 5
2
v1, the direction vectors and thus the lines are parallel.

14. Direction vectors of the lines are v1 = h3 3 1i and v2 = h1 4 12i. Since v1 · v2 = 3 + 12 12 6= 0, the vectors and
thus the lines are not perpendicular.
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SECTION 12.5 EQUATIONS OF LINES AND PLANES ¤ 275

15. (a) The line passes through the point (1 5 6) and a direction vector for the line is h 1 2 3i, so symmetric equations for

the line are 1

1
=

+ 5

2
=

6

3
.

(b) The line intersects the -plane when = 0, so we need 1

1
=

+ 5

2
=
0 6

3
or 1

1
= 2 = 1,

+ 5

2
= 2 = 1. Thus the point of intersection with the -plane is ( 1 1 0). Similarly for the -plane,

we need = 0 1 =
+ 5

2
=

6

3
= 3, = 3. Thus the line intersects the -plane at (0 3 3). For

the -plane, we need = 0
1

1
=
5

2
=

6

3
= 3

2
, = 3

2
. So the line intersects the -plane

at 3
2 0

3
2
.

16. (a) A vector normal to the plane + 3 = 7 is n = h1 1 3i, and since the line is to be perpendicular to the plane, n is
also a direction vector for the line. Thus parametric equations of the line are = 2 + , = 4 , = 6 + 3 .

(b) On the -plane, = 0. So = 6 + 3 = 0 = 2 in the parametric equations of the line, and therefore = 0

and = 6, giving the point of intersection (0 6 0). For the -plane, = 0 so we get the same point of interesection:

(0 6 0). For the -plane, = 0 which implies = 4, so = 6 and = 18 and the point of intersection is (6 0 18).

17. From Equation 4, the line segment from r0 = 2 i j + 4k to r1 = 4 i + 6 j + k is

r( ) = (1 ) r0 + r1 = (1 )(2 i j+ 4k) + (4 i+ 6 j+ k) = (2 i j+ 4k) + (2 i+ 7 j 3k), 0 1.

18. From Equation 4, the line segment from r0 = 10 i+ 3 j+ k to r1 = 5 i+ 6 j 3k is

r( ) = (1 ) r0 + r1 = (1 )(10 i+ 3 j+ k) + (5 i+ 6 j 3k)

= (10 i+ 3 j+ k) + ( 5 i+ 3 j 4k), 0 1.

The corresponding parametric equations are = 10 5 , = 3 + 3 , = 1 4 , 0 1.

19. Since the direction vectors h2 1 3i and h4 2 5i are not scalar multiples of each other, the lines aren’t parallel. For the
lines to intersect, we must be able to nd one value of and one value of that produce the same point from the respective

parametric equations. Thus we need to satisfy the following three equations: 3 + 2 = 1 + 4 , 4 = 3 2 ,

1 + 3 = 4 + 5 . Solving the last two equations we get = 1, = 0 and checking, we see that these values don’t satisfy the

rst equation. Thus the lines aren’t parallel and don’t intersect, so they must be skew lines.

20. Since the direction vectors are v1 = h 12 9 3i and v2 = h8 6 2i, we have v1 = 3
2
v2 so the lines are parallel.

21. Since the direction vectors h1 2 3i and h1 3 7i aren’t scalar multiples of each other, the lines aren’t parallel. Parametric
equations of the lines are 1: = 2+ , = 3 2 , = 1 3 and 2: = 3+ , = 4+ 3 , = 2 7 . Thus, for the

lines to intersect, the three equations 2+ = 3+ , 3 2 = 4+ 3 , and 1 3 = 2 7 must be satis ed simultaneously.

Solving the rst two equations gives = 2, = 1 and checking, we see that these values do satisfy the third equation, so the

lines intersect when = 2 and = 1, that is, at the point (4 1 5).
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276 ¤ CHAPTER 12 VECTORS AND THE GEOMETRY OF SPACE

22. The direction vectors h1 1 3i and h2 2 7i are not parallel, so neither are the lines. Parametric equations for the lines are
1: = , = 1 , = 2 + 3 and 2: = 2 + 2 , = 3 2 , = 7 . Thus, for the lines to interesect, the three

equations = 2+ 2 , 1 = 3 2 , and 2 + 3 = 7 must be satis ed simultaneously. Solving the last two equations gives

= 10, = 4 and checking, we see that these values don’t satisfy the rst equation. Thus the lines aren’t parallel and

don’t intersect, so they must be skew.

23. Since the plane is perpendicular to the vector h1 2 5i, we can take h1 2 5i as a normal vector to the plane.
(0 0 0) is a point on the plane, so setting = 1, = 2, = 5 and 0 = 0, 0 = 0, 0 = 0 in Equation 7 gives

1( 0) + ( 2)( 0) + 5( 0) = 0 or 2 + 5 = 0 as an equation of the plane.

24. 2 i+ j k = h2 1 1i is a normal vector to the plane and (5 3 5) is a point on the plane, so setting = 2, = 1, = 1

0 = 5, 0 = 3, 0 = 5 in Equation 7 gives 2( 5) + 1( 3) + ( 1)( 5) = 0 or 2 + = 8 as an equation of the

plane.

25. i+ 4 j+ k = h1 4 1i is a normal vector to the plane and 1 1
2
3 is a point on the plane, so setting = 1, = 4, = 1

0 = 1, 0 =
1
2
, 0 = 3 in Equation 7 gives 1[ ( 1)] + 4 1

2
+ 1( 3) = 0 or + 4 + = 4 as an equation of

the plane.

26. Since the line is perpendicular to the plane, its direction vector h3 1 4i is a normal vector to the plane. The point (2 0 1) is
on the plane, so an equation of the plane is 3( 2) + ( 1)( 0) + 4( 1) = 0 or 3 + 4 = 10.

27. Since the two planes are parallel, they will have the same normal vectors. So we can take n = h5 1 1i, and an equation of
the plane is 5( 1) 1[ ( 1)] 1[ ( 1)] = 0 or 5 = 7.

28. Since the two planes are parallel, they will have the same normal vectors. A normal vector for the plane = + or

+ = 0 is n = h1 1 1i, and an equation of the desired plane is 1( 2) + 1( 4) 1( 6) = 0 or

+ = 0 (the same plane!).

29. Since the two planes are parallel, they will have the same normal vectors. So we can take n = h1 1 1i, and an equation of the

plane is 1( 1) + 1 1
2
+ 1 1

3
= 0 or + + = 11

6 or 6 + 6 + 6 = 11.

30. First, a normal vector for the plane 5 + 2 + = 1 is n = h5 2 1i. A direction vector for the line is v = h1 1 3i, and
since n · v = 0 we know the line is perpendicular to n and hence parallel to the plane. Thus, there is a parallel plane which
contains the line. By putting = 0, we know that the point (1 2 4) is on the line and hence the new plane. We can use the

same normal vector n = h5 2 1i, so an equation of the plane is 5( 1) + 2( 2) + 1( 4) = 0 or 5 + 2 + = 13.

31. Here the vectors a = h1 0 0 1 1 1i = h1 1 0i and b = h1 0 1 1 0 1i = h1 0 1i lie in the plane, so
a× b is a normal vector to the plane. Thus, we can take n = a× b = h1 0 0 + 1 0 + 1i = h1 1 1i. If 0 is the point

(0 1 1), an equation of the plane is 1( 0) + 1( 1) + 1( 1) = 0 or + + = 2.
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SECTION 12.5 EQUATIONS OF LINES AND PLANES ¤ 277

32. Here the vectors a = h2 4 6i and b = h5 1 3i lie in the plane, so
n = a× b = h 12 6 30 6 2 + 20i = h 18 24 22i is a normal vector to the plane and an equation of the plane is
18( 0) + 24( 0) + 22( 0) = 0 or 18 + 24 + 22 = 0.

33. Here the vectors a = h8 3 2 ( 1) 4 2i = h5 3 2i and b = h 1 3 2 ( 1) 3 2i = h 4 1 5i lie in
the plane, so a normal vector to the plane is n = a× b = h 15 + 2 8 + 25 5 + 12i = h 13 17 7i and an equation of
the plane is 13( 3) + 17[ ( 1)] + 7( 2) = 0 or 13 + 17 + 7 = 42.

34. If we rst nd two nonparallel vectors in the plane, their cross product will be a normal vector to the plane. Since the given

line lies in the plane, its direction vector a = h3 1 1i is one vector in the plane. We can verify that the given point (1 2 3)
does not lie on this line, so to nd another nonparallel vector b which lies in the plane, we can pick any point on the line and

nd a vector connecting the points. If we put = 0, we see that (0 1 2) is on the line, so

b = h1 0 2 1 3 2i = h1 1 1i and n = a× b = h1 + 1 1 3 3 1i = h2 4 2i. Thus, an equation of the plane
is 2( 1) 4( 2) + 2( 3) = 0 or 2 4 + 2 = 0. (Equivalently, we can write 2 + = 0.)

35. If we rst nd two nonparallel vectors in the plane, their cross product will be a normal vector to the plane. Since the given

line lies in the plane, its direction vector a = h 2 5 4i is one vector in the plane. We can verify that the given point (6 0 2)

does not lie on this line, so to nd another nonparallel vector b which lies in the plane, we can pick any point on the line and

nd a vector connecting the points. If we put = 0, we see that (4 3 7) is on the line, so

b = h6 4 0 3 2 7i = h2 3 9i and n = a× b = h 45 + 12 8 18 6 10i = h 33 10 4i. Thus, an
equation of the plane is 33( 6) 10( 0) 4[ ( 2)] = 0 or 33 + 10 + 4 = 190.

36. Since the line = 2 = 3 , or =
1 2

=
1 3

, lies in the plane, its direction vector a = 1 1
2

1
3
is parallel to the plane.

The point (0 0 0) is on the line (put = 0), and we can verify that the given point (1 1 1) in the plane is not on the line.

The vector connecting these two points, b = h1 1 1i, is therefore parallel to the plane, but not parallel to h1 2 3i. Then

a× b = 1
2
+ 1

3
1
3

1 1 1
2
= 5

6
2
3

3
2
is a normal vector to the plane, and an equation of the plane is

5
6
( 0) 2

3
( 0) 3

2
( 0) = 0 or 5 4 9 = 0.

37. A direction vector for the line of intersection is a = n1 × n2 = h1 1 1i × h2 1 3i = h2 5 3i, and a is parallel to the
desired plane. Another vector parallel to the plane is the vector connecting any point on the line of intersection to the given

point ( 1 2 1) in the plane. Setting = 0, the equations of the planes reduce to = 2 and + 3 = 1 with

simultaneous solution = 7
2
and = 3

2
. So a point on the line is 0 7

2
3
2
and another vector parallel to the plane is

1 3
2

1
2
. Then a normal vector to the plane is n = h2 5 3i × 1 3

2
1
2
= h 2 4 8i and an equation of

the plane is 2( + 1) + 4( 2) 8( 1) = 0 or 2 + 4 = 1.
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278 ¤ CHAPTER 12 VECTORS AND THE GEOMETRY OF SPACE

38. The points (0 2 5) and ( 1 3 1) lie in the desired plane, so the vector v1 = h 1 5 4i connecting them is parallel to
the plane. The desired plane is perpendicular to the plane 2 = 5 + 4 or 5 + 4 2 = 0 and for perpendicular planes,

a normal vector for one plane is parallel to the other plane, so v2 = h5 4 2i is also parallel to the desired plane.
A normal vector to the desired plane is n = v1 × v2 = h 10 + 16 20 2 4 25i = h6 22 29i.
Taking ( 0 0 0) = (0 2 5), the equation we are looking for is 6( 0) 22( + 2) 29( 5) = 0 or

6 22 29 = 101.

39. If a plane is perpendicular to two other planes, its normal vector is perpendicular to the normal vectors of the other two planes.

Thus h2 1 2i × h1 0 3i = h3 0 2 6 0 1i = h3 8 1i is a normal vector to the desired plane. The point
(1 5 1) lies on the plane, so an equation is 3( 1) 8( 5) ( 1) = 0 or 3 8 = 38.

40. n1 = h1 0 1i and n2 = h0 1 2i. Setting = 0, it is easy to see that (1 3 0) is a point on the line of intersection of

= 1 and + 2 = 3. The direction of this line is v1 = n1 × n2 = h1 2 1i. A second vector parallel to the desired
plane is v2 = h1 1 2i, since it is perpendicular to + 2 = 1. Therefore, a normal of the plane in question is

n = v1 × v2 = h4 1 1 + 2 1 + 2i = h3 3 3i, or we can use h1 1 1i. Taking ( 0 0 0) = (1 3 0), the equation we are

looking for is ( 1) + ( 3) + = 0 + + = 4.

41. To nd the -intercept we set = = 0 in the equation 2 + 5 + = 10

and obtain 2 = 10 = 5 so the -intercept is (5 0 0). When

= = 0 we get 5 = 10 = 2, so the -intercept is (0 2 0).

Setting = = 0 gives = 10, so the -intercept is (0 0 10) and we

graph the portion of the plane that lies in the rst octant.

42. To nd the -intercept we set = = 0 in the equation 3 + + 2 = 6

and obtain 3 = 6 = 2 so the -intercept is (2 0 0). When

= = 0 we get = 6 so the -intercept is (0 6 0). Setting = = 0

gives 2 = 6 = 3, so the -intercept is (0 0 3). The gure shows

the portion of the plane that lies in the rst octant.

43. Setting = = 0 in the equation 6 3 + 4 = 6 gives 6 = 6

= 1, when = = 0 we have 3 = 6 = 2, and = = 0

implies 4 = 6 = 3
2 , so the intercepts are (1 0 0), (0 2 0), and

(0 0 3
2
). The gure shows the portion of the plane cut off by the coordinate

planes.
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SECTION 12.5 EQUATIONS OF LINES AND PLANES ¤ 279

44. Setting = = 0 in the equation 6 + 5 3 = 15 gives 6 = 15

= 5
2
, when = = 0 we have 5 = 15 = 3, and = = 0

implies 3 = 15 = 5, so the intercepts are (5
2
0 0), (0 3 0),

and (0 0 5). The gure shows the portion of the plane cut off by the

coordinate planes.

45. Substitute the parametric equations of the line into the equation of the plane: (3 ) (2 + ) + 2(5 ) = 9

8 = 8 = 1. Therefore, the point of intersection of the line and the plane is given by = 3 1 = 2, = 2 + 1 = 3,

and = 5(1) = 5 that is, the point (2 3 5).

46. Substitute the parametric equations of the line into the equation of the plane: (1 + 2 ) + 2(4 ) (2 3 ) + 1 = 0

13 = 0 = 0. Therefore, the point of intersection of the line and the plane is given by = 1 + 2(0) = 1,

= 4(0) = 0, and = 2 3(0) = 2 that is, the point (1 0 2).

47. Parametric equations for the line are = , = 1 + , = 1
2
and substituting into the equation of the plane gives

4( ) (1 + ) + 3 1
2

= 8 9
2
= 9 = 2. Thus = 2, = 1 + 2 = 3, = 1

2
(2) = 1 and the point of

intersection is (2 3 1).

48. A direction vector for the line through (1 0 1) and (4 2 2) is v = h3 2 1i and, taking 0 = (1 0 1), parametric

equations for the line are = 1 + 3 , = 2 , = 1 + . Substitution of the parametric equations into the equation of the

plane gives 1+ 3 2 +1+ = 6 = 2. Then = 1+3(2) = 7, = 2(2) = 4, and = 1+2 = 3 so the point

of intersection is (7 4 3).

49. Setting = 0, we see that (0 1 0) satis es the equations of both planes, so that they do in fact have a line of intersection.

v = n1 × n2 = h1 1 1i × h1 0 1i = h1 0 1i is the direction of this line. Therefore, direction numbers of the intersecting
line are 1, 0, 1.

50. The angle between the two planes is the same as the angle between their normal vectors. The normal vectors of the

two planes are h1 1 1i and h1 2 3i. The cosine of the angle between these two planes is

cos =
h1 1 1i · h1 2 3i
|h1 1 1i| |h1 2 3i| =

1+ 2 + 3

1 + 1 + 1 1 + 4 + 9
=

6

42
=

6

7
.

51. Normal vectors for the planes are n1 = h1 4 3i and n2 = h 3 6 7i, so the normals (and thus the planes) aren’t parallel.
But n1 · n2 = 3 + 24 21 = 0, so the normals (and thus the planes) are perpendicular.

52. Normal vectors for the planes are n1 = h 1 4 2i and n2 = h3 12 6i. Since n2 = 3n1, the normals (and thus the

planes) are parallel.

53. Normal vectors for the planes are n1 = h1 1 1i and n2 = h1 1 1i. The normals are not parallel, so neither are the planes.
Furthermore, n1 · n2 = 1 1 + 1 = 1 6= 0, so the planes aren’t perpendicular. The angle between them is given by

cos =
n1 · n2
|n1| |n2| =

1

3 3
=
1

3
= cos 1 1

3
70 5 .
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280 ¤ CHAPTER 12 VECTORS AND THE GEOMETRY OF SPACE

54. The normals are n1 = h2 3 4i and n2 = h1 6 4i so the planes aren’t parallel. Since n1 · n2 = 2 18 + 16 = 0, the

normals (and thus the planes) are perpendicular.

55. The normals are n1 = h1 4 2i and n2 = h2 8 4i. Since n2 = 2n1, the normals (and thus the planes) are parallel.

56. The normal vectors are n1 = h1 2 2i and n2 = h2 1 2i. The normals are not parallel, so neither are the planes.
Furthermore, n1 · n2 = 2 2 + 4 = 4 6= 0, so the planes aren’t perpendicular. The angle between them is given by

cos =
n1 · n2
|n1| |n2| =

4

9 9
=
4

9
= cos 1 4

9
63 6 .

57. (a) To nd a point on the line of intersection, set one of the variables equal to a constant, say = 0. (This will fail if the line of

intersection does not cross the -plane; in that case, try setting or equal to 0.) The equations of the two planes reduce

to + = 1 and + 2 = 1. Solving these two equations gives = 1, = 0. Thus a point on the line is (1 0 0).

A vector v in the direction of this intersecting line is perpendicular to the normal vectors of both planes, so we can take

v = n1 × n2 = h1 1 1i × h1 2 2i = h2 2 1 2 2 1i = h0 1 1i. By Equations 2, parametric equations for the
line are = 1, = , = .

(b) The angle between the planes satis es cos =
n1 · n2
|n1| |n2| =

1 + 2 + 2

3 9
=

5

3 3
. Therefore = cos 1 5

3 3
15 8 .

58. (a) If we set = 0 then the equations of the planes reduce to 3 2 = 1 and 2 + = 3 and solving these two equations

gives = 1, = 1. Thus a point on the line of intersection is (1 1 0). A vector v in the direction of this intersecting line

is perpendicular to the normal vectors of both planes, so let v = n1 × n2 = h3 2 1i × h2 1 3i = h5 11 7i. By
Equations 2, parametric equations for the line are = 1 + 5 , = 1 + 11 , = 7 .

(b) cos =
n1 · n2
|n1| |n2| =

6 2 3

14 14
=
1

14
= cos 1 1

14
85 9 .

59. Setting = 0, the equations of the two planes become 5 2 = 1 and 4 + = 6. Solving these two equations gives

= 1, = 2 so a point on the line of intersection is (1 2 0). A vector v in the direction of this intersecting line is

perpendicular to the normal vectors of both planes. So we can use v = n1 × n2 = h5 2 2i × h4 1 1i = h0 13 13i or

equivalently we can take v = h0 1 1i, and symmetric equations for the line are = 1, 2

1
=
1
or = 1, 2 = .

60. If we set = 0 then the equations of the planes reduce to 2 5 = 0 and 4 + 3 5 = 0 and solving these two

equations gives = 2, = 1. Thus a point on the line of intersection is (2 1 0). A vector v in the

direction of this intersecting line is perpendicular to the normal vectors of both planes, so take

v = n1 ×n2 = h2 1 1i × h4 3 1i = h4 2 10i or equivalently we can take v = h2 1 5i. Symmetric equations for

the line are 2

2
=

+ 1

1
=
5
.

61. The distance from a point ( ) to (1 0 2) is 1 = ( 1)2 + 2 + ( + 2)2 and the distance from ( ) to

(3 4 0) is 2 = ( 3)2 + ( 4)2 + 2. The plane consists of all points ( ) where 1 = 2
2
1 =

2
2
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SECTION 12.5 EQUATIONS OF LINES AND PLANES ¤ 281

( 1)2 + 2 + ( + 2)2 = ( 3)2 + ( 4)2 + 2

2 2 + 2 + 2 + 4 + 5 = 2 6 + 2 8 + 2 + 25 4 + 8 + 4 = 20 so an equation for the plane is

4 + 8 + 4 = 20 or equivalently + 2 + = 5.

Alternatively, you can argue that the segment joining points (1 0 2) and (3 4 0) is perpendicular to the plane and the plane

includes the midpoint of the segment.

62. The distance from a point ( ) to (2 5 5) is 1 = ( 2)2 + ( 5)2 + ( 5)2 and the distance from ( )

to ( 6 3 1) is 2 = ( + 6)2 + ( 3)2 + ( 1)2. The plane consists of all points ( ) where 1 = 2

2
1 =

2
2 ( 2)2 + ( 5)2 + ( 5)2 = ( + 6)2 + ( 3)2 + ( 1)2

2 4 + 2 10 + 2 10 + 54 = 2 + 12 + 2 6 + 2 2 + 46 16 + 4 + 8 = 8 so an equation

for the plane is 16 + 4 + 8 = 8 or equivalently 4 + + 2 = 2.

63. The plane contains the points ( 0 0), (0 0) and (0 0 ). Thus the vectors a = h 0i and b = h 0 i lie in the

plane, and n = a× b = h 0 0 + 0 + i = h i is a normal vector to the plane. The equation of the plane is
therefore + + = + 0 + 0 or + + = . Notice that if 6= 0, 6= 0 and 6= 0 then we can

rewrite the equation as + + = 1. This is a good equation to remember!

64. (a) For the lines to intersect, we must be able to nd one value of and one value of satisfying the three equations

1+ = 2 , 1 = and 2 = 2. From the third we get = 1, and putting this in the second gives = 0. These values

of and do satisfy the rst equation, so the lines intersect at the point 0 = (1 + 1 1 1 2(1)) = (2 0 2).

(b) The direction vectors of the lines are h1 1 2i and h 1 1 0i, so a normal vector for the plane is

h 1 1 0i × h1 1 2i = h2 2 0i and it contains the point (2 0 2). Then an equation of the plane is

2( 2) + 2( 0) + 0( 2) = 0 + = 2.

65. Two vectors which are perpendicular to the required line are the normal of the given plane, h1 1 1i, and a direction vector for

the given line, h1 1 2i. So a direction vector for the required line is h1 1 1i × h1 1 2i = h3 1 2i. Thus is given

by h i = h0 1 2i+ h3 1 2i, or in parametric form, = 3 , = 1 , = 2 2 .

66. Let be the given line. Then (1 1 0) is the point on corresponding to = 0. is in the direction of a = h1 1 2i

and b = h 1 0 2i is the vector joining (1 1 0) and (0 1 2). Then

b proja b = h 1 0 2i h1 1 2i · h 1 0 2i
12 + ( 1)2 + 22

h1 1 2i = h 1 0 2i 1
2
h1 1 2i = 3

2
1
2
1 is a direction vector

for the required line. Thus 2 3
2

1
2
1 = h 3 1 2i is also a direction vector, and the line has parametric equations = 3 ,

= 1 + , = 2 + 2 . (Notice that this is the same line as in Exercise 65.)
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282 ¤ CHAPTER 12 VECTORS AND THE GEOMETRY OF SPACE

67. Let have normal vector n . Then n1 = h3 6 3i, n2 = h4 12 8i, n3 = h3 9 6i, n4 = h1 2 1i. Now n1 = 3n4,

so n1 and n4 are parallel, and hence 1 and 4 are parallel; similarly 2 and 3 are parallel because n2 = 4
3
n3. However, n1

and n2 are not parallel (so not all four planes are parallel). Notice that the point (2 0 0) lies on both 1 and 4, so these two

planes are identical. The point 5
4
0 0 lies on 2 but not on 3, so these are different planes.

68. Let have direction vector v . Rewrite the symmetric equations for 3 as
1

1 2
=

1

1 4
=

+ 1

1
; then v1 = h6 3 12i,

v2 = h2 1 4i, v3 = 1
2

1
4
1 , and v4 = h4 2 8i. v1 = 12v3, so 1 and 3 are parallel. v4 = 2v2, so 2 and 4 are

parallel. (Note that 1 and 2 are not parallel.) 1 contains the point (1 1 5), but this point does not lie on 3, so they’re not

identical. (3 1 5) lies on 4 and also on 2 (for = 1), so 2 and 4 are the same line.

69. Let = (1 3 4) and = (2 1 1), points on the line corresponding to = 0 and = 1. Let

= (4 1 2). Then a = = h1 2 3i, b = = h3 2 6i. The distance is

=
|a× b|
|a| =

|h1 2 3i × h3 2 6i|
|h1 2 3i| =

|h6 3 4i|
|h1 2 3i| =

62 + ( 3)2 + 42

12 + ( 2)2 + ( 3)2
=

61

14
=

61

14
.

70. Let = (0 6 3) and = (2 4 4), points on the line corresponding to = 0 and = 1. Let

= (0 1 3). Then a = = h2 2 1i and b = = h0 5 0i. The distance is

=
|a× b|
|a| =

|h2 2 1i × h0 5 0i|
|h2 2 1i| =

|h5 0 10i|
|h2 2 1i| =

52 + 02 + ( 10)2

22 + ( 2)2 + 12
=

125

9
=
5 5

3
.

71. By Equation 9, the distance is =
| 1 + 1 + 1 + |

2 + 2 + 2
=
|3(1) + 2( 2) + 6(4) 5|

32 + 22 + 62
=
|18|
49
=
18

7
.

72. By Equation 9, the distance is =
|1( 6) 2(3) 4(5) 8|

12 + ( 2)2 + ( 4)2
=
| 40|
21

=
40

21
.

73. Put = = 0 in the equation of the rst plane to get the point (2 0 0) on the plane. Because the planes are parallel, the

distance between them is the distance from (2 0 0) to the second plane. By Equation 9,

=
|4(2) 6(0) + 2(0) 3|

42 + ( 6)2 + (2)2
=

5

56
=

5

2 14
or 5 14

28
.

74. Put = = 0 in the equation of the rst plane to get the point (0 0 0) on the plane. Because the planes are parallel the

distance between them is the distance from (0 0 0) to the second plane 3 6 + 9 1 = 0. By Equation 9,

=
|3(0) 6(0) + 9(0) 1|

32 + ( 6)2 + 92
=

1

126
=

1

3 14
.

75. The distance between two parallel planes is the same as the distance between a point on one of the planes and the other plane.

Let 0 = ( 0 0 0) be a point on the plane given by + + + 1 = 0. Then 0 + 0 + 0 + 1 = 0 and the
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SECTION 12.5 EQUATIONS OF LINES AND PLANES ¤ 283

distance between 0 and the plane given by + + + 2 = 0 is, from Equation 9,

=
| 0 + 0 + 0 + 2|

2 + 2 + 2
=

| 1 + 2|
2 + 2 + 2

=
| 1 2|
2 + 2 + 2

.

76. The planes must have parallel normal vectors, so if + + + = 0 is such a plane, then for some 6= 0,
h i = h1 2 2i = h 2 2 i. So this plane is given by the equation + 2 2 + = 0, where = . By

Exercise 75, the distance between the planes is 2 = |1 |
12 + 22 + ( 2)2

6 = |1 | = 7 or 5. So the

desired planes have equations + 2 2 = 7 and + 2 2 = 5.

77. 1: = = = (1). 2: + 1 = 2 = 3 + 1 = 2 (2). The solution of (1) and (2) is

= = 2. However, when = 2, = = 2, but + 1 = 3 = 3, a contradiction. Hence the

lines do not intersect. For 1, v1 = h1 1 1i, and for 2, v2 = h1 2 3i, so the lines are not parallel. Thus the lines are skew
lines. If two lines are skew, they can be viewed as lying in two parallel planes and so the distance between the skew lines

would be the same as the distance between these parallel planes. The common normal vector to the planes must be

perpendicular to both h1 1 1i and h1 2 3i, the direction vectors of the two lines. So set
n = h1 1 1i × h1 2 3i = h3 2 3 + 1 2 1i = h1 2 1i. From above, we know that ( 2 2 2) and ( 2 2 3)

are points of 1 and 2 respectively. So in the notation of Equation 8, 1( 2) 2( 2) + 1( 2) + 1 = 0 1 = 0 and

1( 2) 2( 2) + 1( 3) + 2 = 0 2 = 1.

By Exercise 75, the distance between these two skew lines is =
|0 1|
1 + 4 + 1

=
1

6
.

Alternate solution (without reference to planes): A vector which is perpendicular to both of the lines is

n = h1 1 1i × h1 2 3i = h1 2 1i. Pick any point on each of the lines, say ( 2 2 2) and ( 2 2 3), and form the

vector b = h0 0 1i connecting the two points. The distance between the two skew lines is the absolute value of the scalar

projection of b along n, that is, =
|n · b|
|n| =

|1 · 0 2 · 0 + 1 · 1|
1 + 4 + 1

=
1

6
.

78. First notice that if two lines are skew, they can be viewed as lying in two parallel planes and so the distance between the skew

lines would be the same as the distance between these parallel planes. The common normal vector to the planes must be

perpendicular to both v1 = h1 6 2i and v2 = h2 15 6i, the direction vectors of the two lines respectively. Thus set
n = v1 × v2 = h36 30 4 6 15 12i = h6 2 3i. Setting = 0 and = 0 gives the points (1 1 0) and (1 5 2).

So in the notation of Equation 8, 6 2 + 0 + 1 = 0 1 = 4 and 6 10 6 + 2 = 0 2 = 10.

Then by Exercise 75, the distance between the two skew lines is given by =
| 4 10|
36 + 4 + 9

=
14

7
= 2.

Alternate solution (without reference to planes): We already know that the direction vectors of the two lines are

v1 = h1 6 2i and v2 = h2 15 6i. Then n = v1 × v2 = h6 2 3i is perpendicular to both lines. Pick any point on
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SECTION 13.1 VECTOR FUNCTIONS AND SPACE CURVES 845

1–2 Find the domain of the vector function.

1.

2.

r�t� � �s4 � t 2 , e�3 t, ln�t � 1� �

r�t� �
t � 2

t � 2
i � sin t j � ln�9 � t2� k

3–6 Find the limit.

3.

4.

lim
tl0
�e�3 t i �

t 2

sin2t
j � cos 2t k�

lim
tl1
� t 2 � t

t � 1
i � st � 8 j �

sin � t

ln t
k�

13.1 Exercises

; Graphing calculator or computer required 1. Homework Hints available at stewartcalculus.com

A third method for visualizing the twisted cubic is to realize that it also lies on the cylin-
der . So it can be viewed as the curve of intersection of the cylinders and

. (See Figure 11.)

We have seen that an interesting space curve, the helix, occurs in the model of DNA.
Another notable example of a space curve in science is the trajectory of a positively charged
particle in orthogonally oriented electric and magnetic fields E and B. Depending on the 
initial velocity given the particle at the origin, the path of the particle is either a space curve
whose projection on the horizontal plane is the cycloid we studied in Section 10.1 [Fig-
ure 12(a)] or a curve whose projection is the trochoid investigated in Exercise 40 in Sec-
tion 10.1 [Figure 12(b)].

For further details concerning the physics involved and animations of the trajectories of
the particles, see the following web sites:

■ www.phy.ntnu.edu.tw/java/emField/emField.html

■ www.physics.ucla.edu/plasma-exp/Beam/

z � x 3 y � x 2

z � x 3

FIGURE 11

8

4

0z

0
x

1 0 2
y

4

_4

_8
_1

(a)  r(t) = kt-sin t, 1-cos t, tl

B

E

t

(b)  r(t) = kt-    sin t, 1-    cos t, tl3

2

3

2

B

E

t

FIGURE 12
Motion of a charged particle in 
orthogonally oriented electric 
and magnetic fields

FIGURE 13

Visual 13.1C shows how curves arise 

as intersections of surfaces.

TEC

Some computer algebra systems provide us

with a clearer picture of a space curve by

enclosing it in a tube. Such a plot enables us

to see whether one part of a curve passes in

front of or behind another part of the curve. 

For example, Figure 13 shows the curve of 

Figure 12(b) as rendered by the tubeplot
command in Maple.
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846 CHAPTER 13 VECTOR FUNCTIONS

5.

6.

7–14 Sketch the curve with the given vector equation. Indicate with
an arrow the direction in which increases.

7. 8.

9. 10.

11. 12.

13.

14.

15–16 Draw the projections of the curve on the three coordinate
planes. Use these projections to help sketch the curve.
15. 16.

17–20 Find a vector equation and parametric equations for the line
segment that joins to .

17. , 18. ,
19. , 20. ,

21–26 Match the parametric equations with the graphs 
(labeled I–VI). Give reasons for your choices.

lim
tl�

�1 � t 2

1 � t 2 , tan�1 t, 1 � e�2t

t 	
lim
tl�

�te�t, t 3 � t
2t 3 � 1 , t sin 1

t	

t
r�t� � �sin t, t� r�t� � � t 3, t 2 �

r�t� � � t, 2 � t, 2t � r�t� � �sin � t, t, cos � t �

r�t� � �1, cos t, 2 sin t� r�t� � t 2 i � t j � 2k
r�t� � t 2 i � t 4 j � t 6 k
r�t� � cos t i � cos t j � sin t k

r�t� � � t, sin t, 2 cos t� r�t� � � t, t, t 2 �

P Q

P�2, 0, 0� Q�6, 2, �2� P��1, 2, �2� Q��3, 5, 1�

P�0, �1, 1� Q(1
2, 1

3, 1
4) P�a, b, c� Q�u, v, w�

III IV

I II

V VIz

x y
y

z

x

x
y

z z

x y

y
x

z

x
y

z

21. ,  ,  ,  
22. ,  ,  
23. , ,
24. ,  ,  
25. ,  ,  ,  
26. ,  ,  

27. Show that the curve with parametric equations ,
, lies on the cone , and use this

fact to help sketch the curve.
28. Show that the curve with parametric equations ,

, is the curve of intersection of the surfaces
and . Use this fact to help sketch the curve.

29. At what points does the curve intersect
the paraboloid ?

30. At what points does the helix intersect
the sphere ?

; 31–35 Use a computer to graph the curve with the given vector
equation. Make sure you choose a parameter domain and view-
points that reveal the true nature of the curve.
31.

32.

33.

34.

35.

; 36. Graph the curve with parametric equations ,
. Explain its shape by graphing its projections onto

the three coordinate planes.

; 37. Graph the curve with parametric equations

Explain the appearance of the graph by showing that it lies on
a cone.

; 38. Graph the curve with parametric equations

Explain the appearance of the graph by showing that it lies on
a sphere.

x � cos t y � sin t z � 1
�1 � t 2�

x � t y � 1
�1 � t 2 � z � t 2

x � cos t y � sin t z � cos 2t
x � cos 8t y � sin 8t z � e 0.8 t t � 0
x � cos2 t y � sin2 t z � t

x � t cos t
y � t sin t z � t z2 � x 2 � y 2

x � sin t
y � cos t z � sin2t
z � x 2 x 2 � y 2 � 1

r�t� � t i � �2t � t 2� k
z � x 2 � y 2

r�t� � �sin t, cos t, t�
x 2 � y 2 � z2 � 5

r�t� � �cos t sin 2t, sin t sin 2t, cos 2t �

t � 0z � t sin ty � tx � t cos t

r�t� � � t 2, ln t, t�

r�t� � � t, t sin t, t cos t �

r�t� � � t, e t, cos t �

r�t� � �cos 2t, cos 3t, cos 4t �

x � sin t y � sin 2t,
z � cos 4 t

x � �1 � cos 16t� cos t

y � �1 � cos 16t� sin t

z � 1 � cos 16t

x � s1 � 0.25 cos 2 10t cos t

y � s1 � 0.25 cos 2 10t sin t

z � 0.5 cos 10t
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SECTION 13.2 DERIVATIVES AND INTEGRALS OF VECTOR FUNCTIONS 847

39. Show that the curve with parametric equations ,
, passes through the points (1, 4, 0)

and (9, �8, 28) but not through the point (4, 7, �6).

40–44 Find a vector function that represents the curve of inter-
section of the two surfaces.
40. The cylinder and the surface 

41. The cone and the plane 

42. The paraboloid and the parabolic 
cylinder

43. The hyperboloid and the cylinder 

44. The semiellipsoid , , and the 
cylinder

; 45. Try to sketch by hand the curve of intersection of the circu-
lar cylinder and the parabolic cylinder . 
Then find parametric equations for this curve and use these
equations and a computer to graph the curve.

; 46. Try to sketch by hand the curve of intersection of the 
parabolic cylinder and the top half of the ellipsoid

. Then find parametric equations for 
this curve and use these equations and a computer to graph 
the curve.

47. If two objects travel through space along two different
curves, it’s often important to know whether they will
collide. (Will a missile hit its moving target? Will two
aircraft collide?) The curves might intersect, but we need to
know whether the objects are in the same position at the
same time. Suppose the trajectories of two particles are
given by the vector functions

for . Do the particles collide?

z � 1 � t 3y � 1 � 3t

z � xyx 2 � y 2 � 4

z � 1 � yz � sx 2 � y 2

z � 4x 2 � y 2

y � x 2

x 2 � y 2 � 1z � x 2 � y 2

y � 0x 2 � y 2 � 4z 2 � 4
x 2 � z 2 � 1

z � x 2x 2 � y 2 � 4

y � x 2

x 2 � 4y 2 � 4z2 � 16

r2 �t� � �4t � 3, t 2, 5t � 6 �r1 �t� � � t 2, 7t � 12, t 2 �

t � 0

x � t 2 48. Two particles travel along the space curves

Do the particles collide? Do their paths intersect?
49. Suppose and are vector functions that possess limits as

and let be a constant. Prove the following prop erties
of limits.
(a)

(b)

(c)

(d)

50. The view of the trefoil knot shown in Figure 8 is accurate,
but it doesn’t reveal the whole story. Use the parametric
equations

to sketch the curve by hand as viewed from above, with
gaps indicating where the curve passes over itself. Start by
showing that the projection of the curve onto the -plane
has polar coordinates and , so
varies between 1 and 3. Then show that has maximum and
minimum values when the projection is halfway between

and .
; When you have finished your sketch, use a computer to

draw the curve with viewpoint directly above and compare
with your sketch. Then use the computer to draw the curve
from several other viewpoints. You can get a better impres-
sion of the curve if you plot a tube with radius 0.2 around 
the curve. (Use the tubeplot command in Maple or the
tubecurve or Tube command in Mathematica.)

51. Show that if and only if for every 
there is a number such that 

if then  

t l a c

lim
tla

�u�t� � v�t�� � lim
tla

u�t� � lim
tla

v�t�

lim
tla

cu�t� � c lim
tla

u�t�

lim
tla

�u�t� � v�t�� � lim
tla

u�t� � lim
tla

v�t�

lim
tla

�u�t� � v�t�� � lim
tla

u�t� � lim
tla

v�t�

x � �2 � cos 1.5t� cos t

y � �2 � cos 1.5t� sin t

z � sin 1.5t

xy
r � 2 � cos 1.5t � � t r

z

r � 1 r � 3

lim tl a r�t� � b 	 
 0
� 
 0

0 �  t � a  � �  r�t� � b  � 	

vu

r2 �t� � �1 � 2t, 1 � 6t, 1 � 14t �r1 �t� � � t, t 2, t 3 �

13.2 Derivatives and Integrals of Vector Functions

Later in this chapter we are going to use vector functions to describe the motion of planets
and other objects through space. Here we prepare the way by developing the calculus of vec-
tor functions.

Derivatives
The derivative of a vector function is defined in much the same way as for real-
valued functions:

r r

1
dr
dt � r�t� � lim

hl 0

r�t � h� � r�t�
h
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13 VECTOR FUNCTIONS

13.1 Vector Functions and Space Curves

1. The component functions 4 2, 3 , and ln( + 1) are all defined when 4 2 0 2 2 and

+ 1 0 1, so the domain of r is ( 1 2].

2. The component functions 2

+ 2
, sin , and ln(9 2) are all defined when 6= 2 and 9 2 0 3 3,

so the domain of r is ( 3 2) ( 2 3).

3. lim
0

3 = 0 = 1, lim
0

2

sin2
= lim

0

1

sin2

2

=
1

lim
0

sin2

2

=
1

lim
0

sin
2 =

1

12
= 1,

and lim
0
cos 2 = cos 0 = 1. Thus

lim
0

3 i+
2

sin2
j+ cos 2 k = lim

0

3 i+ lim
0

2

sin2
j+ lim

0
cos 2 k = i+ j+ k.

4. lim
1

2

1
= lim

1

( 1)

1
= lim

1
= 1, lim

1
+ 8 = 3, lim

1

sin

ln
= lim

1

cos

1
= [by l’Hospital’s Rule].

Thus the given limit equals i+ 3 j k.

5. lim 1 + 2

1 2
= lim

(1 2) + 1

(1 2) 1
=
0 + 1

0 1
= 1, lim tan 1 =

2
, lim 1 2

= lim
1 1

2
= 0 0 = 0. Thus

lim
1 + 2

1 2
tan 1 1 2

= 1
2
0 .

6. lim = lim = lim
1
= 0 [by l’Hospital’s Rule], lim

3 +

2 3 1
= lim

1 + (1 2)

2 (1 3)
=
1 + 0

2 0
=
1

2
,

and lim sin
1
= lim

sin(1 )

1
= lim

cos(1 )( 1 2)

1 2
= lim cos

1
= cos 0 = 1 [again by l’Hospital’s Rule].

Thus lim
3 +

2 3 1
sin

1
= 0 1

2
1 .

7. The corresponding parametric equations for this curve are = sin , = .

We can make a table of values, or we can eliminate the parameter: =

= sin , with R. By comparing different values of , we find the direction in

which increases as indicated in the graph.
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314 ¤ CHAPTER 13 VECTOR FUNCTIONS

8. The corresponding parametric equations for this curve are = 3, = 2.

We can make a table of values, or we can eliminate the parameter:

= 3 = 3 = 2 = ( 3 )
2
= 2 3,

with R R. By comparing different values of , we find the

direction in which increases as indicated in the graph.

9. The corresponding parametric equations are = , = 2 , = 2 , which are

parametric equations of a line through the point (0 2 0) and with direction vector

h1 1 2i.

10. The corresponding parametric equations are = sin , = , = cos .

Note that 2 + 2 = sin2 + cos2 = 1, so the curve lies on the circular

cylinder 2 + 2 = 1. A point ( ) on the curve lies directly to the left or

right of the point ( 0 ) which moves clockwise (when viewed from the left)

along the circle 2 + 2 = 1 in the -plane as increases. Since = , the

curve is a helix that spirals toward the right around the cylinder.

11. The corresponding parametric equations are = 1, = cos , = 2 sin .

Eliminating the parameter in and gives 2 + ( 2)2 = cos2 + sin2 = 1

or 2 + 2 4 = 1. Since = 1, the curve is an ellipse centered at (1 0 0) in

the plane = 1.

12. The parametric equations are = 2, = , = 2, so we have = 2 with = 2.

Thus the curve is a parabola in the plane = 2 with vertex (0 0 2).
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SECTION 13.1 VECTOR FUNCTIONS AND SPACE CURVES ¤ 315

13. The parametric equations are = 2, = 4, = 6. These are positive

for 6= 0 and 0 when = 0. So the curve lies entirely in the first octant.

The projection of the graph onto the -plane is = 2, 0, a half parabola.

Onto the -plane = 3, 0, a half cubic, and the -plane, 3 = 2.

14. If = cos , = cos , = sin , then 2 + 2 = 1 and 2 + 2 = 1,

so the curve is contained in the intersection of circular cylinders along the

- and -axes. Furthermore, = , so the curve is an ellipse in the

plane = , centered at the origin.

15. The projection of the curve onto the -plane is given by r( ) = h sin 0i [we use 0 for the -component] whose graph

is the curve = sin , = 0. Similarly, the projection onto the -plane is r( ) = h 0 2 cos i, whose graph is the cosine
wave = 2cos , = 0, and the projection onto the -plane is r( ) = h0 sin 2 cos i whose graph is the ellipse
2 + 1

4
2 = 1, = 0.

-plane -plane -plane

From the projection onto the -plane we see that the curve lies on an elliptical

cylinder with axis the -axis. The other two projections show that the curve

oscillates both vertically and horizontally as we move in the -direction,

suggesting that the curve is an elliptical helix that spirals along the cylinder.

c° 2012 Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part.

NOT FOR SALE

°°cc 2012 Cengage Learning. All Rights Reserved. May not be scanned, copied, or2012 Cengage Learning. All Rights Reserved. May not be scanned, copied, duplicated, or posted to a publicly accessible website, in whole or in part.licated, or posted to a publicly accessible website, in whole or in par

541



316 ¤ CHAPTER 13 VECTOR FUNCTIONS

16. The projection of the curve onto the -plane is given by r( ) = h 0i whose graph is the line = , = 0.

The projection onto the -plane is r( ) = 0 2 whose graph is the parabola = 2, = 0.

The projection onto the -plane is r( ) = 0 2 whose graph is the parabola = 2, = 0.

-plane -plane -plane

From the projection onto the -plane we see that the curve lies on the vertical

plane = . The other two projections show that the curve is a parabola contained

in this plane.

17. Taking r0 = h2 0 0i and r1 = h6 2 2i, we have from Equation 12.5.4
r( ) = (1 ) r0 + r1 = (1 ) h2 0 0i+ h6 2 2i, 0 1 or r( ) = h2 + 4 2 2 i, 0 1.

Parametric equations are = 2 + 4 , = 2 , = 2 , 0 1.

18. Taking r0 = h 1 2 2i and r1 = h 3 5 1i, we have from Equation 12.5.4
r( ) = (1 ) r0 + r1 = (1 ) h 1 2 2i+ h 3 5 1i, 0 1 or r( ) = h 1 2 2 + 3 2 + 3 i, 0 1.

Parametric equations are = 1 2 , = 2 + 3 , = 2 + 3 , 0 1.

19. Taking r0 = h0 1 1i and r1 = 1
2

1
3

1
4
, we have

r( ) = (1 ) r0 + r1 = (1 ) h0 1 1i+ 1
2

1
3

1
4
, 0 1 or r( ) = 1

2
1 + 4

3
1 3

4
, 0 1.

Parametric equations are = 1
2 , = 1 + 4

3 , = 1 3
4 , 0 1.

20. Taking r0 = h i and r1 = h i, we have
r( ) = (1 ) r0 + r1 = (1 ) h i+ h i, 0 1 or r( ) = h + ( ) + ( ) + ( ) i,
0 1. Parametric equations are = + ( ) , = + ( ) , = + ( ) , 0 1.

21. = cos , = , = sin , 0. At any point ( ) on the curve, 2 + 2 = 2 cos2 + 2 sin2 = 2 = 2 so the

curve lies on the circular cone 2 + 2 = 2 with axis the -axis. Also notice that 0; the graph is II.

22. = cos , = sin , = 1 (1 + 2). At any point on the curve we have 2 + 2 = cos2 + sin2 = 1, so the curve lies

on a circular cylinder 2 + 2 = 1 with axis the -axis. Notice that 0 1 and = 1 only for = 0. A point ( ) on
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SECTION 13.1 VECTOR FUNCTIONS AND SPACE CURVES ¤ 317

the curve lies directly above the point ( 0), which moves counterclockwise around the unit circle in the -plane as

increases, and 0 as ± . The graph must be VI.

23. = , = 1 (1 + 2), = 2. At any point on the curve we have = 2, so the curve lies on a parabolic cylinder parallel

to the -axis. Notice that 0 1 and 0. Also the curve passes through (0 1 0) when = 0 and 0, as

± , so the graph must be V.

24. = cos , = sin , = cos 2 . 2 + 2 = cos2 + sin2 = 1, so the curve lies on a circular cylinder with axis the

-axis. A point ( ) on the curve lies directly above or below ( 0), which moves around the unit circle in the -plane

with period 2 . At the same time, the -value of the point ( ) oscillates with a period of . So the curve repeats itself and

the graph is I.

25. = cos 8 , = sin 8 , = 0 8 , 0. 2 + 2 = cos2 8 + sin2 8 = 1, so the curve lies on a circular cylinder with

axis the -axis. A point ( ) on the curve lies directly above the point ( 0), which moves counterclockwise around the

unit circle in the -plane as increases. The curve starts at (1 0 1), when = 0, and (at an increasing rate) as

, so the graph is IV.

26. = cos2 , = sin2 , = . + = cos2 + sin2 = 1, so the curve lies in the vertical plane + = 1.

and are periodic, both with period , and increases as increases, so the graph is III.

27. If = cos , = sin , = , then 2 + 2 = 2 cos2 + 2 sin2 = 2 = 2,

so the curve lies on the cone 2 = 2 + 2. Since = , the curve is a spiral on

this cone.

28. Here 2 = sin2 = and 2 + 2 = sin2 + cos2 = 1, so the

curve is contained in the intersection of the parabolic cylinder

= 2 with the circular cylinder 2 + 2 = 1. We get the complete

intersection for 0 2 .

29. Parametric equations for the curve are = , = 0, = 2 2. Substituting into the equation of the paraboloid

gives 2 2 = 2 2 = 2 2 = 0, 1. Since r(0) = 0 and r(1) = i+ k, the points of intersection

are (0 0 0) and (1 0 1).

30. Parametric equations for the helix are = sin , = cos , = . Substituting into the equation of the sphere gives

sin2 + cos2 + 2 = 5 1 + 2 = 5 = ±2. Since r(2) = hsin 2 cos 2 2i and
r( 2) = hsin( 2) cos( 2) 2i, the points of intersection are (sin 2 cos 2 2) (0 909 0 416 2) and

(sin( 2) cos( 2) 2) ( 0 909 0 416 2).
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318 ¤ CHAPTER 13 VECTOR FUNCTIONS

31. r( ) = hcos sin 2 sin sin 2 cos 2 i.
We include both a regular plot and a plot

showing a tube of radius 0.08 around the

curve.

32. r( ) = 2 ln 33. r( ) = h sin cos i

34. r( ) = cos 35. r( ) = hcos 2 cos 3 cos 4 i

36. = sin , = sin 2 , = cos 4 .
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SECTION 13.1 VECTOR FUNCTIONS AND SPACE CURVES ¤ 319

We graph the projections onto the coordinate planes.

-plane -plane -plane

From the projection onto the -plane we see that from above the curve appears to be shaped like a “figure eight.”

The curve can be visualized as this shape wrapped around an almost parabolic cylindrical surface, the profile of

which is visible in the projection onto the -plane.

37. = (1 + cos 16 ) cos , = (1 + cos 16 ) sin , = 1 + cos 16 . At any

point on the graph,
2 + 2 = (1 + cos 16 )2 cos2 + (1 + cos 16 )2 sin2

= (1 + cos 16 )2 = 2, so the graph lies on the cone 2 + 2 = 2.

From the graph at left, we see that this curve looks like the projection of a

leaved two-dimensional curve onto a cone.

38. = 1 0 25 cos2 10 cos , = 1 0 25 cos2 10 sin ,

= 0 5 cos 10 . At any point on the graph,

2 + 2 + 2 = (1 0 25 cos2 10 ) cos2

+(1 0 25 cos2 10 ) sin2 + 0 25 cos2

= 1 0 25 cos2 10 + 0 25 cos2 10 = 1,

so the graph lies on the sphere 2 + 2 + 2 = 1, and since = 0 5 cos 10

the graph resembles a trigonometric curve with ten peaks projected onto the

sphere. We get the complete graph for 0 2 .

39. If = 1, then = 1, = 4, = 0, so the curve passes through the point (1 4 0). If = 3, then = 9, = 8, = 28,

so the curve passes through the point (9 8 28). For the point (4 7 6) to be on the curve, we require = 1 3 = 7

= 2 But then = 1 + ( 2)3 = 7 6= 6, so (4 7 6) is not on the curve.

40. The projection of the curve of intersection onto the -plane is the circle 2 + 2 = 4, = 0.

Then we can write = 2 cos , = 2 sin , 0 2 . Since also lies on the surface = , we have

= = (2 cos )(2 sin ) = 4 cos sin , or 2 sin(2 ). Then parametric equations for are = 2 cos , = 2 sin ,

= 2 sin(2 ), 0 2 , and the corresponding vector function is r( ) = 2 cos i+ 2 sin j+ 2 sin(2 )k, 0 2 .
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320 ¤ CHAPTER 13 VECTOR FUNCTIONS

41. Both equations are solved for , so we can substitute to eliminate : 2 + 2 = 1 + 2 + 2 = 1 + 2 + 2

2 = 1 + 2 = 1
2
( 2 1). We can form parametric equations for the curve of intersection by choosing a

parameter = , then = 1
2
( 2 1) and = 1 + = 1 + 1

2
( 2 1) = 1

2
( 2 + 1). Thus a vector function representing

is r( ) = i+ 1
2
( 2 1) j+ 1

2
( 2 + 1)k.

42. The projection of the curve of intersection onto the -plane is the parabola = 2, = 0. Then we can choose the

parameter = = 2. Since also lies on the surface = 4 2 + 2, we have = 4 2 + 2 = 4 2 + ( 2)2.

Then parametric equations for are = , = 2, = 4 2 + 4, and the corresponding vector function

is r( ) = i+ 2 j+ (4 2 + 4)k.

43. The projection of the curve of intersection onto the -plane is the circle 2 + 2 = 1, = 0, so we can write = cos ,

= sin , 0 2 . Since also lies on the surface = 2 2, we have = 2 2 = cos2 sin2 or cos 2 .

Thus parametric equations for are = cos , = sin , = cos 2 , 0 2 , and the corresponding vector function

is r( ) = cos i+ sin j+ cos 2 k, 0 2 .

44. The projection of the curve of intersection onto the -plane is the circle 2 + 2 = 1, = 0, so we can write = cos ,

= sin , 0 2 . also lies on the surface 2 + 2 + 4 2 = 4, and since 0 we can write

= 4 2 4 2 = 4 cos2 4 sin2 = 4 cos2 4(1 cos2 ) = 3 cos2 = 3 | cos |
Thus parametric equations for are = cos , = 3 | cos |, = sin , 0 2 , and the corresponding vector function

is r( ) = cos i+ 3 | cos | j+ sin k, 0 2 .

45. The projection of the curve of intersection onto the

-plane is the circle 2 + 2 = 4 = 0. Then we can write

= 2cos , = 2 sin , 0 2 . Since also lies on

the surface = 2, we have = 2 = (2 cos )2 = 4cos2 .

Then parametric equations for are = 2cos , = 2 sin ,

= 4cos2 , 0 2 .

46.

= = 2 4 2 = 16 2 4 2 = 16 2 4 4 = 4 1
2

2 4.

Note that is positive because the intersection is with the top half of the ellipsoid. Hence the curve is given

by = , = 2, = 4 1
4
2 4.
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852 CHAPTER 13 VECTOR FUNCTIONS

1. The figure shows a curve given by a vector function .
(a) Draw the vectors and .
(b) Draw the vectors

(c) Write expressions for and the unit tangent vector T(4).
(d) Draw the vector T(4).

2. (a) Make a large sketch of the curve described by the vector
function , , and draw the vectors
r(1), r(1.1), and r(1.1) � r(1).

(b) Draw the vector starting at (1, 1), and compare it with
the vector

Explain why these vectors are so close to each other in
length and direction.

3–8
(a) Sketch the plane curve with the given vector equation.
(b) Find .
(c) Sketch the position vector and the tangent vector for

the given value of .

3. ,

4. ,

5. ,

6. ,

7. ,

8. ,

9–16 Find the derivative of the vector function.

9.

10.

11.

12.

C r�t�
r�4.5� � r�4� r�4.2� � r�4�

r�4.5� � r�4�
0.5

and
r�4.2� � r�4�

0.2

r��4�

x0 1

1

y
RC

Q

P

r(4.5)

r(4.2)

r(4)

r�t� � � t 2, t � 0 � t � 2

r��1�

r�1.1� � r�1�
0.1

r��t�
r�t� r��t�

t

r�t� � � t � 2, t 2 � 1 � t � �1

r�t� � � t 2, t 3 � t � 1

r�t� � sin t i � 2 cos t j t � ��4

r�t� � e t i � e �t j t � 0

r�t� � e2 t i � et j t � 0

r�t� � �1 � cos t� i � �2 � sin t� j t � ��6

r�t� � � t sin t, t 2, t cos 2t �

r�t� � � tan t, sec t, 1�t 2 �

r�t� � t i � j � 2st k

r�t� �
1

1 � t
i �

t

1 � t
j �

t 2

1 � t
k

13.

14.

15.

16.

17–20 Find the unit tangent vector at the point with the given
value of the parameter .

17. ,

18. ,

19. ,

20. ,

21. If , find and

22. If , find , , and 

23–26 Find parametric equations for the tangent line to the curve
with the given parametric equations at the specified point.

23. ,  ,  ;  

24. ,  ,  ;  

25. , ,  ;  

26. , ,  ;  

27. Find a vector equation for the tangent line to the curve of inter-
section of the cylinders and at the
point .

28. Find the point on the curve ,
, where the tangent line is parallel to the plane

.

29–31 Find parametric equations for the tangent line to the curve
with the given parametric equations at the specified point. Illus-
trate by graphing both the curve and the tangent line on a common
screen.

29. , , ;  

30. , , ;

31. , , ;  

32. (a) Find the point of intersection of the tangent lines to the
curve at the points where

and .

; (b) Illustrate by graphing the curve and both tangent lines.

33. The curves and inter-
sect at the origin. Find their angle of intersection correct to the
nearest degree.

r�t� � at cos 3t i � b sin3t j � c cos 3t k

r�t� � a � t b � t 2 c

r�t� � t a � �b � t c�

T�t�
t

r�t� � � te�t, 2 arctan t, 2e t � t � 0

r�t� � � t 3 � 3t, t 2 � 1, 3t � 4 � t � 1

r�t� � cos t i � 3t j � 2 sin 2t k t � 0

r�t� � sin2t i � cos2t j � tan2 t k t � ��4

r�t� � � t, t 2, t 3 � r��t�, T�1�, r��t�, r��t� � r��t�.

r�t� � �e 2 t, e�2 t, te 2 t� T�0� r��0� r��t� � r��t�.

x � 1 � 2st y � t 3 � t z � t 3 � t �3, 0, 2�

x � e t y � te t z � te t2

�1, 0, 0�

x � e�t cos t y � e�t sin t z � e�t �1, 0, 1�

x � st 2 � 3 y � ln�t 2 � 3� z � t �2, ln 4, 1�

x 2 � y 2 � 25 y 2 � z 2 � 20
�3, 4, 2�

r�t� � �2 cos t, 2 sin t, e t�
0 � t � �
s3 x � y � 1

CAS

x � t y � e�t z � 2t � t 2 �0, 1, 0�

x � 2 cos t y � 2 sin t z � 4 cos 2t (s3 , 1, 2)
x � t cos t y � t z � t sin t ���, �, 0�

r�t� � �sin � t, 2 sin � t, cos � t �
t � 0 t � 0.5

r2�t� � �sin t, sin 2t, t �r1�t� � � t, t 2, t 3 �

r�t� � e t 2

i � j � ln�1 � 3t� k

13.2 Exercises

; Graphing calculator or computer required Computer algebra system required 1. Homework Hints available at stewartcalculus.comCAS
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SECTION 13.3 ARC LENGTH AND CURVATURE 853

34. At what point do the curves and
intersect? Find their angle of inter-

section correct to the nearest degree.

35–40 Evaluate the integral.

35.

36.

37.

38.

39.

40.

41. Find if and .
42. Find if and .
43. Prove Formula 1 of Theorem 3.
44. Prove Formula 3 of Theorem 3.
45. Prove Formula 5 of Theorem 3.
46. Prove Formula 6 of Theorem 3.
47. If and , use 

Formula 4 of Theorem 3 to find 

y2

0
�t i � t 3 j � 3t 5 k� dt

y1

0 � 4
1 � t 2 j �

2t
1 � t 2 k� dt

y��2

0
�3 sin 2t cos t i � 3 sin t cos 2t j � 2 sin t cos t k� dt

y2

1
(t 2 i � tst � 1 j � t sin � t k) dt

y �sec2 t i � t�t 2 � 1�3 j � t 2 ln t k� dt

y �te 2t i �
t

1 � t j �
1

s1 � t 2
k� dt

r�t� r��t� � 2t i � 3t 2 j � st k r�1� � i � j
r�t� r��t� � t i � e t j � te t k r�0� � i � j � k

r2�s� � �3 � s, s � 2, s 2 �
r1�t� � � t, 1 � t, 3 � t 2 �

v�t� � � t, cos t, sin t�u�t� � �sin t, cos t, t�

d
dt 	u�t� � v�t�


48. If and are the vector functions in Exercise 47, use For-
mula 5 of Theorem 3 to find 

49. Find , where , ,
, and .

50. If , where are the vector functions in
Exercise 49, find .

51. Show that if is a vector function such that exists, then

52. Find an expression for .

53. If , show that .

[Hint: ]
54. If a curve has the property that the position vector is

always perpendicular to the tangent vector , show that 
the curve lies on a sphere with center the origin.

55. If , show that

56. Show that the tangent vector to a curve defined by a vector
function points in the direction of increasing . [Hint: Refer
to Figure 1 and consider the cases and separately.]

d
dt 	u�t� � v�t�


f ��2� f �t� � u�t� � v�t� u�2� � �1, 2, �1 �
u��2� � �3, 0, 4 � v�t� � � t, t 2, t 3 �

r�t� � u�t� � v�t� u and v
r��2�

r r�

d
dt 	r�t� � r��t�
 � r�t� � r��t�

d
dt 	u�t� � �v�t� � w�t��


r�t� � 0 d
dt � r�t� � �

1
� r�t� � r�t� � r��t�

� r�t� �2 � r�t� � r�t�

r�t�
r��t�

u�t� � r�t� � 	r��t� � r��t�


u��t� � r�t� � 	r��t� � r	�t�


r�t� t
h 
 0 h � 0

vu

In Section 10.2 we defined the length of a plane curve with parametric equations ,
, , as the limit of lengths of inscribed polygons and, for the case where

and are continuous, we arrived at the formula

The length of a space curve is defined in exactly the same way (see Figure 1). Suppose
that the curve has the vector equation , , or, equivalently,
the parametric equations , , , where , , and are continuous. If
the curve is traversed exactly once as increases from to , then it can be shown that its
length is

x � f �t�
y � t�t� a � t � b
f � t�

1 L � yba s	 f ��t�
2 � 	t��t�
2 dt � yb

a
��dx

dt �2
� �dy

dt �2
dt

r�t� � � f �t�, t�t�, h�t� � a � t � b
x � f �t� y � t�t� z � h�t� f � t� h�

t a b

2 L � yba s	 f ��t�
2 � 	t��t�
2 � 	h��t�
2 dt

� yb

a
��dx

dt �2

� �dy
dt �2

� �dz

dt �2

dt

13.3 Arc Length and Curvature

FIGURE 1
The length of a space curve is the limit
of lengths of inscribed polygons.

0

z

x
y
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326 ¤ CHAPTER 13 VECTOR FUNCTIONS

lim
0

r(1 + ) r(1) , and we recognize r(1 1) r(1)

0 1
as the expression after the limit sign with = 0 1 Since is

close to 0, we would expect r(1 1) r(1)

0 1
to be a vector close to r0(1).

3. Since ( + 2)2 = 2 = 1

= ( + 2)2 + 1, the curve is a

parabola.

(a), (c) (b) r0( ) = h1 2 i,
r0( 1) = h1 2i

4. Since = 2 = ( 3)2 3 = 2 3,

the curve is the graph of = 2 3.

(a), (c) (b) r0( ) = 2 3 2 ,

r0(1) = h2 3i

5. = sin , = 2cos so
2 + ( 2)2 = 1 and the curve is

an ellipse.

(a), (c) (b) r0( ) = cos i 2 sin j,

r0
4

=
2

2
i 2 j

6. Since = =
1
=
1 the

curve is part of the hyperbola

=
1 . Note that 0, 0.

(a), (c) (b) r0( ) = i j,

r0(0) = i j

7. Since = 2 = ( )2 = 2, the

curve is part of a parabola. Note

that here 0, 0.

(a), (c) (b) r0( ) = 2 2 i+ j,

r0(0) = 2 i+ j

c° 2012 Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part.

NOT FOR SALE

°°cc 2012 Cengage Learning. All Rights Reserved. May not be scanned, copied, or2012 Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part.duplicated, or posted to a publicly accessible website, in whole or in part.

550



SECTION 13.2 DERIVATIVES AND INTEGRALS OF VECTOR FUNCTIONS ¤ 327

8. = 1 + cos , = 2 + sin so

( 1)2 + ( 2)2 = 1 and the

curve is a circle.

(a), (c) (b) r0( ) = sin i+ cos j,

r0
6

=
1

2
i+

3

2
j

9. r0( ) = [ sin ] 2 [ cos 2 ] = h cos + sin 2 ( sin 2 ) · 2 + cos 2 i

= h cos + sin 2 cos 2 2 sin 2 i

10. r( ) = tan sec 1 2 r0( ) = sec2 sec tan 2 3

11. r( ) = i+ j+ 2 k r0( ) = 1 i+ 0 j+ 2 1
2

1 2 k = i+
1
k

12. r( ) = 1

1 +
i +

1 +
j +

2

1 +
k

r0( ) =
0 1(1)

(1 + )2
i+

(1 + ) · 1 (1)

(1 + )2
j+

(1 + ) · 2 2(1)

(1 + )2
k =

1

(1 + )2
i+

1

(1 + )2
j+

2 + 2

(1 + )2
k

13. r( ) =
2
i j+ ln(1 + 3 )k r0( ) = 2

2
i+

3

1 + 3
k

14. r0( ) = [ ( 3 sin 3 ) + cos 3 ] i+ · 3 sin2 cos j+ · 3 cos2 ( sin )k

= ( cos 3 3 sin 3 ) i+ 3 sin2 cos j 3 cos2 sin k

15. r0( ) = 0+ b+ 2 c = b+ 2 c by Formulas 1 and 3 of Theorem 3.

16. To find r0( ), we first expand r( ) = a× (b+ c) = (a× b) + 2(a× c), so r0( ) = a× b+ 2 (a× c).

17. r0( ) = + 2 (1 + 2) 2 r0(0) = h1 2 2i. So |r0(0)| = 12 + 22 + 22 = 9 = 3 and

T(0) =
r0(0)
|r0(0)| =

1
3
h1 2 2i = 1

3
2
3

2
3
.

18. r0( ) = 3 2 + 3 2 3 r0(1) = h6 2 3i. Thus

T(1) =
r0(1)
|r0(1)| =

1

62 + 22 + 32
h6 2 3i = 1

7 h6 2 3i = 6
7

2
7

3
7
.

19. r0( ) = sin i + 3 j + 4 cos 2 k r0(0) = 3 j + 4k. Thus

T(0) =
r0(0)
|r0(0)| =

1

02 + 32 + 42
(3 j+ 4k) = 1

5 (3 j+ 4k) =
3
5 j+

4
5 k.

20. r0( ) = 2 sin cos i 2 cos sin j+ 2 tan sec2 k

r0 4
= 2 · 2

2 · 2
2 i 2 · 2

2 · 2
2 j+ 2 · 1 · ( 2)2 k = i j+ 4k and r0 4

= 1 + 1 + 16 = 18 = 3 2. Thus

T
4
=

r0
4

r0
4

=
1

3 2
(i j+ 4k) =

1

3 2
i

1

3 2
j+

4

3 2
k.
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328 ¤ CHAPTER 13 VECTOR FUNCTIONS

21. r( ) = 2 3 r0( ) = 1 2 3 2 . Then r0(1) = h1 2 3i and |r0(1)| = 12 + 22 + 32 = 14, so

T(1) =
r0(1)
|r0(1)| =

1

14
h1 2 3i = 1

14

2

14

3

14
. r00( ) = h0 2 6 i, so

r0( )× r00( ) =
i j k

1 2 3 2

0 2 6

=
2 3 2

2 6
i

1 3 2

0 6
j +

1 2

0 2
k

= (12 2 6 2) i (6 0) j+ (2 0)k = 6 2 6 2

22. r( ) = 2 2 2 r0( ) = 2 2 2 2 (2 + 1) 2 r0(0) = 2 0 2 0 (0 + 1) 0 = h2 2 1i

and |r0(0)| = 22 + ( 2)2 + 12 = 3. ThenT(0) = r0 (0)
|r0 (0)| =

1
3
h2 2 1i = 2

3
2
3

1
3
.

r00( ) = 4 2 4 2 (4 + 4) 2 r00(0) = 4 0 4 0 (0 + 4) 0 = h4 4 4i.

r0( ) · r00( ) = 2 2 2 2 (2 + 1) 2 · 4 2 4 2 (4 + 4) 2

= (2 2 )(4 2 ) + ( 2 2 )(4 2 ) + ((2 + 1) 2 )((4 + 4) 2 )

= 8 4 8 4 + (8 2 + 12 + 4) 4 = (8 2 + 12 + 12) 4 8 4

23. The vector equation for the curve is r( ) = 1 + 2 3 3 + , so r0( ) = 1 3 2 1 3 2 + 1 . The point

(3 0 2) corresponds to = 1, so the tangent vector there is r0(1) = h1 2 4i. Thus, the tangent line goes through the point
(3 0 2) and is parallel to the vector h1 2 4i. Parametric equations are = 3 + , = 2 , = 2 + 4 .

24. The vector equation for the curve is r( ) =
2

, so r0( ) = + 2 2 2
+

2

. The point (1 0 0)

corresponds to = 0, so the tangent vector there is r0(0) = h1 1 1i. Thus, the tangent line is parallel to the vector h1 1 1i
and includes the point (1 0 0). Parametric equations are = 1 + 1 · = 1 + , = 0+ 1 · = , = 0 + 1 · = .

25. The vector equation for the curve is r( ) = cos sin , so

r0( ) = ( sin ) + (cos )( ), cos + (sin )( ), ( )

= (cos + sin ) (cos sin )

The point (1 0 1) corresponds to = 0, so the tangent vector there is

r0(0) = 0(cos 0 + sin 0) 0(cos 0 sin 0) 0 = h 1 1 1i. Thus, the tangent line is parallel to the vector
h 1 1 1i and parametric equations are = 1 + ( 1) = 1 , = 0 + 1 · = , = 1 + ( 1) = 1 .

26. The vector equation for the curve is r( ) = 2 + 3 ln( 2 + 3) , so r0( ) = 2 + 3 2 ( 2 + 3) 1 . At (2 ln 4 1),

= 1 and r0(1) = 1
2

1
2
1 . Thus, parametric equations of the tangent line are = 2 + 1

2
, = ln 4 + 1

2
, = 1 + .

27. First we parametrize the curve of intersection. The projection of onto the -plane is contained in the circle
2 + 2 = 25, = 0, so we can write = 5 cos , = 5 sin . also lies on the cylinder 2 + 2 = 20, and 0

near the point (3 4 2), so we can write = 20 2 = 20 25 sin2 . A vector equation then for is
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SECTION 13.2 DERIVATIVES AND INTEGRALS OF VECTOR FUNCTIONS ¤ 329

r( ) = 5 cos 5 sin 20 25 sin2 r0( ) = 5 sin 5 cos 1
2
(20 25 sin2 ) 1 2( 50 sin cos ) .

The point (3 4 2) corresponds to = cos 1 3
5
, so the tangent vector there is

r0 cos 1 3
5

= 5 4
5

5 3
5

1
2
20 25 4

5

2 1 2

50 4
5

3
5

= h 4 3 6i.

The tangent line is parallel to this vector and passes through (3 4 2), so a vector equation for the line

is r( ) = (3 4 )i+ (4 + 3 )j+ (2 6 )k.

28. r( ) = 2 cos 2 sin r0( ) = 2 sin 2 cos . The tangent line to the curve is parallel to the plane when the

curve’s tangent vector is orthogonal to the plane’s normal vector. Thus we require 2 sin 2 cos · 3 1 0 = 0

2 3 sin + 2 cos + 0 = 0 tan = 1
3

=
6
[since 0 ].

r
6
= 3 1 6 , so the point is ( 3 1 6).

29. r( ) = 2 2 r0( ) = 1 2 2 . At (0 1 0),

= 0 and r0(0) = h1 1 2i. Thus, parametric equations of the tangent
line are = , = 1 , = 2 .

30. r( ) = h2 cos 2 sin 4 cos 2 i,

r0( ) = h 2 sin 2 cos 8 sin 2 i. At 3 1 2 , =
6
and

r0( 6 ) = 1 3 4 3 . Thus, parametric equations of the

tangent line are = 3 , = 1 + 3 , = 2 4 3 .

31. r( ) = h cos sin i r0( ) = hcos sin 1 cos + sin i.
At ( 0), = and r0( ) = h 1 1 i. Thus, parametric equations
of the tangent line are = , = + , = .

32. (a) The tangent line at = 0 is the line through the point with position vector r(0) = hsin 0 2 sin 0 cos 0i = h0 0 1i, and in
the direction of the tangent vector, r0(0) = h cos 0 2 cos 0 sin 0i = h 2 0i. So an equation of the line is
h i = r(0) + r0(0) = h0 + 0 + 2 1i = h 2 1i.
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r 1
2

= sin
2
2 sin

2
cos

2
= h1 2 0i ,

r0 1
2
= cos

2
2 cos

2
sin

2
= h0 0 i .

So the equation of the second line is

h i = h1 2 0i+ h0 0 i = h1 2 i.
The lines intersect where h 2 1i = h1 2 i,
so the point of intersection is (1 2 1).

(b)

33. The angle of intersection of the two curves is the angle between the two tangent vectors to the curves at the point of

intersection. Since r01( ) = 1 2 3 2 and = 0 at (0 0 0), r01(0) = h1 0 0i is a tangent vector to r1 at (0 0 0). Similarly,

r02( ) = hcos 2 cos 2 1i and since r2(0) = h0 0 0i, r02 (0) = h1 2 1i is a tangent vector to r2 at (0 0 0). If is the angle

between these two tangent vectors, then cos = 1

1 6
h1 0 0i · h1 2 1i = 1

6
and = cos 1 1

6
66 .

34. To find the point of intersection, we must find the values of and which satisfy the following three equations simultaneously:

= 3 , 1 = 2, 3 + 2 = 2. Solving the last two equations gives = 1, = 2 (check these in the first equation).

Thus the point of intersection is (1 0 4). To find the angle of intersection, we proceed as in Exercise 33. The tangent

vectors to the respective curves at (1 0 4) are r01(1) = h1 1 2i and r02(2) = h 1 1 4i. So

cos = 1

6 18
( 1 1 + 8) = 6

6 3
= 1

3
and = cos 1 1

3
55 .

Note: In Exercise 33, the curves intersect when the value of both parameters is zero. However, as seen in this exercise, it is not

necessary for the parameters to be of equal value at the point of intersection.

35. 2

0
( i 3 j+ 3 5 k) =

2

0
i

2

0
3 j+

2

0
3 5 k

= 1
2
2 2

0
i 1

4
4 2

0
j+ 1

2
6 2

0
k

= 1
2
(4 0) i 1

4
(16 0) j+ 1

2
(64 0)k = 2 i 4 j+ 32k

36.
1

0

4

1 + 2
j+

2

1 + 2
k = 4 tan 1 j+ ln(1 + 2)k

1

0
= 4 tan 1 1 j+ ln 2k 4 tan 1 0 j+ ln 1k

= 4
4
j+ ln 2k 0 j 0k = j+ ln 2k

37. 2

0
(3 sin2 cos i+ 3 sin cos2 j+ 2 sin cos k)

=
2

0
3 sin2 cos i+

2

0
3 sin cos2 j+

2

0
2 sin cos k

= sin3
2

0
i+ cos3

2

0
j+ sin2

2

0
k = (1 0) i+ (0 + 1) j+ (1 0)k = i+ j+ k

38. 2

1
2 i+ 1 j+ sin k = 1

3
3 i+ 2

5
( 1)5 2 + 2

3
( 1)3 2 j

2

1
+ 1 cos

2

1
+

2

1
1 cos k

= 7
3 i+

16
15 j+

3 + 1
2 sin

2

1
k = 7

3 i+
16
15 j

3 k
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39. (sec2 i+ ( 2 + 1)3 j+ 2 ln k) = sec2 i+ ( 2 + 1)3 j+ 2 ln k

= tan i+ 1
8
( 2 + 1)4 j+ 1

3
3 ln 1

9
3 k+C,

whereC is a vector constant of integration. [For the -component, integrate by parts with = ln , = 2 .]

40. 2 i+
1

j+
1

1 2
k = 2 i+

1
j+

1

1 2
k

= 1
2

2 1
2

2 i+ 1+
1

1
j+

1

1 2
k

= 1
2

2 1
4

2 i+ ( ln | 1 |) j+ sin 1 k+C

41. r0( ) = 2 i+ 3 2 j+ k r( ) = 2 i+ 3 j+ 2
3
3 2 k+C, whereC is a constant vector.

But i+ j = r (1) = i+ j+ 2
3
k+C. ThusC = 2

3
k and r( ) = 2 i+ 3 j+ 2

3
3 2 2

3
k.

42. r0( ) = i+ j+ k r( ) = 1
2
2 i+ j+ k+C. But i+ j+ k = r (0) = j k+C.

ThusC = i+ 2k and r( ) = 1
2
2 + 1 i+ j+ ( + 2)k.

For Exercises 43–46, let u( ) = h 1( ) 2( ) 3( )i and v( ) = h 1( ) 2( ) 3( )i. In each of these exercises, the procedure is to apply
Theorem 2 so that the corresponding properties of derivatives of real-valued functions can be used.

43. [u( ) + v( )] = h 1( ) + 1( ) 2( ) + 2( ) 3( ) + 3( )i

= [ 1( ) + 1 ( )] [ 2( ) + 2( )] [ 3( ) + 3( )]

= h 0
1( ) +

0
1( )

0
2( ) +

0
2( )

0
3( ) +

0
3( )i

= h 0
1( )

0
2 ( )

0
3( )i+ h 0

1( )
0
2( )

0
3( )i = u0( ) + v0( )

44. [ ( )u( )] = h ( ) 1( ) ( ) 2( ) ( ) 3( )i

= [ ( ) 1( )] [ ( ) 2( )] [ ( ) 3( )]

= h 0( ) 1( ) + ( ) 0
1( )

0( ) 2( ) + ( ) 0
2( )

0( ) 3( ) + ( ) 0
3( )i

= 0( ) h 1( ) 2( ) 3( )i+ ( ) h 0
1( )

0
2( )

0
3( )i = 0( )u( ) + ( )u0( )

45. [u( )× v( )] = h 2( ) 3( ) 3( ) 2( ) 3( ) 1( ) 1( ) 3( ) 1( ) 2( ) 2( ) 1( )i

= h 0
2 3( ) + 2( )

0
3( )

0
3( ) 2( ) 3( )

0
2( )

0
3( ) 1( ) + 3( )

0
1 ( )

0
1( ) 3( ) 1( )

0
3( )

0
1( ) 2( ) + 1( )

0
2( )

0
2( ) 1( ) 2( )

0
1( )i

= h 0
2( ) 3( )

0
3( ) 2 ( )

0
3( ) 1( )

0
1( ) 3( )

0
1( ) 2( )

0
2( ) 1( )i

+ h 2( )
0
3( ) 3( )

0
2( ) 3( )

0
1 ( ) 1( )

0
3( ) 1( )

0
2( ) 2( )

0
1( )i

= u0( )× v( ) + u( )× v0( )
[continued]

c° 2012 Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part.

NOT FOR SALE

°°cc 2012 Cengage Learning. All Rights Reserved. May not be scanned, copied, or2012 Cengage Learning. All Rights Reserved. May not be scanned, copied, duplicated, or posted to a publicly accessible website, in whole or in part.licated, or posted to a publicly accessible website, in whole or in par

555



556 TABLE OF CONTENTS

2.1.7 Questions with Solutions on Chapter 13.3



860 CHAPTER 13 VECTOR FUNCTIONS

1–6 Find the length of the curve.

1. ,

2. ,

3. ,

4. ,

5. ,

6. ,

7–9 Find the length of the curve correct to four decimal places.
(Use your calculator to approximate the integral.)

7. ,

8. ,

9. ,

; 10. Graph the curve with parametric equations ,
, . Find the total length of this curve 

correct to four decimal places.

11. Let be the curve of intersection of the parabolic cylinder
and the surface . Find the exact length of

from the origin to the point .

12. Find, correct to four decimal places, the length of the curve 
of intersection of the cylinder and the plane

.

13–14 Reparametrize the curve with respect to arc length mea-
sured from the point where in the direction of increasing .

13.

14.

15. Suppose you start at the point and move 5 units
along the curve , , in the
positive direction. Where are you now?

16. Reparametrize the curve

with respect to arc length measured from the point (1, 0) in
the direction of increasing . Express the reparametrization in
its simplest form. What can you conclude about the curve?

r�t� � � t, 3 cos t, 3 sin t� �5 � t � 5

r�t� � �2t, t 2, 1
3 t 3 � 0 � t � 1

r�t� � s2 t i � e t j � e�t k 0 � t � 1

r�t� � cos t i � sin t j � ln cos t k 0 � t � ��4

r�t� � i � t 2 j � t 3 k 0 � t � 1

r�t� � 12t i � 8t 3�2 j � 3t 2 k 0 � t � 1

r�t� � � t 2, t 3, t 4 � 0 � t � 2

r�t� � � t, e�t, te�t � 1 � t � 3

r�t� � �sin t, cos t, tan t� 0 � t � ��4

x � sin t
y � sin 2t z � sin 3t

C
x 2 � 2y 3z � xy C

�6, 18, 36�

4x 2 � y 2 � 4
x � y � z � 2

t � 0 t

r�t� � 2t i � �1 � 3t� j � �5 � 4t� k

r�t� � e 2 t cos 2t i � 2 j � e 2 t sin 2t k

�0, 0, 3�
x � 3 sin t y � 4t z � 3 cos t

r�t� � � 2

t 2 � 1
� 1� i �

2t

t 2 � 1
j

t

17–20
(a) Find the unit tangent and unit normal vectors and .
(b) Use Formula 9 to find the curvature.

17.

18. ,

19.

20.

21–23 Use Theorem 10 to find the curvature.

21.

22.

23.

24. Find the curvature of at the 
point .

25. Find the curvature of at the point (1, 1, 1).

; 26. Graph the curve with parametric equations ,
, and find the curvature at the 

point .

27–29 Use Formula 11 to find the curvature.

27. 28. 29.

30–31 At what point does the curve have maximum curvature?
What happens to the curvature as ?

30. 31.

32. Find an equation of a parabola that has curvature 4 at the 
origin.

33. (a) Is the curvature of the curve shown in the figure greater
at or at ? Explain.

(b) Estimate the curvature at and at by sketching the 
osculating circles at those points.

T�t� N�t�

r�t� � � t, 3 cos t, 3 sin t�

r�t� � � t 2, sin t � t cos t, cos t � t sin t� t � 0

r�t� � �s2 t, e t, e �t�
r�t� � � t, 1

2 t 2, t 2�

r�t� � t 3 j � t 2 k

r�t� � t i � t 2 j � e t k

r�t� � 3t i � 4 sin t j � 4 cos t k

r�t� � � t 2, ln t, t ln t �
�1, 0, 0�

r�t� � � t, t 2, t 3 �

x � cos t
y � sin t z � sin 5t

�1, 0, 0�

y � x 4 y � tan x y � xe x

x l �

y � ln x y � e x

C
P Q

P Q

1

1 x0

y P

Q

C

13.3 Exercises

; Graphing calculator or computer required Computer algebra system required 1. Homework Hints available at stewartcalculus.comCAS
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SECTION 13.3 ARC LENGTH AND CURVATURE 861

; 34–35 Use a graphing calculator or computer to graph both the
curve and its curvature function on the same screen. Is the
graph of what you would expect?
34. 35.

36–37 Plot the space curve and its curvature function . 
Comment on how the curvature reflects the shape of the curve.
36. ,

37. ,

38–39 Two graphs, and , are shown. One is a curve
and the other is the graph of its curvature function .
Identify each curve and explain your choices.
38. 39.

40. (a) Graph the curve . At how
many points on the curve does it appear that the curva-
ture has a local or absolute maximum?

(b) Use a CAS to find and graph the curvature function.
Does this graph confirm your conclusion from part (a)?

41. The graph of is shown in
Figure 12(b) in Section 13.1. Where do you think the curva-
ture is largest? Use a CAS to find and graph the curvature
function. For which values of is the curvature largest?

42. Use Theorem 10 to show that the curvature of a plane para-
metric curve , is

where the dots indicate derivatives with respect to .

43–45 Use the formula in Exercise 42 to find the curvature.
43. ,
44. ,
45. ,

46. Consider the curvature at for each member of the
family of functions . For which members is
largest?

��x�
�

y � x 4 � 2x 2 y � x�2

CAS ��t�

r�t� � � t � sin t, 1 � cos t, 4 cos�t�2�� 0 � t � 8�

r�t� � � tet, e�t, s2 t � �5 � t � 5

y � f �x�ba
y � ��x�

y

x

a

b

y

x

a

b

r�t� � �sin 3t, sin 2t, sin 3t �CAS

r�t� � � t �
3
2 sin t, 1 �

3
2 cos t, t �CAS

t

y � t�t�x � f �t�

� � 	 x�y�� � y�x�� 	

x� 2 � y� 2 �3�2

t

y � t 3x � t 2

y � b sin 	tx � a cos 	t
y � e t sin tx � e t cos t

x � 0
��0�f �x� � e cx

47–48 Find the vectors , , and at the given point.
47. ,

48. ,

49–50 Find equations of the normal plane and osculating plane
of the curve at the given point.
49. , , ;

50. , , ;  

; 51. Find equations of the osculating circles of the ellipse
at the points and . Use a graph-

ing calculator or computer to graph the ellipse and both
osculating circles on the same screen.

; 52. Find equations of the osculating circles of the parabola
at the points and . Graph both oscu lating

circles and the parabola on the same screen.

53. At what point on the curve , , is the 
normal plane parallel to the plane ?

54. Is there a point on the curve in Exercise 53 where the 
oscu lating plane is parallel to the plane ?
[Note: You will need a CAS for differentiating, for simplify-
ing, and for computing a cross product.]

55. Find equations of the normal and osculating planes of the
curve of intersection of the parabolic cylinders and

at the point .

56. Show that the osculating plane at every point on the curve
is the same plane. What can you

conclude about the curve?

57. Show that the curvature is related to the tangent and 
normal vectors by the equation

58. Show that the curvature of a plane curve is ,
where is the angle between and ; that is, is the angle
of inclination of the tangent line. (This shows that the 
definition of curvature is consistent with the definition for
plane curves given in Exercise 69 in Section 10.2.)

59. (a) Show that is perpendicular to .
(b) Show that is perpendicular to .
(c) Deduce from parts (a) and (b) that for

some number called the torsion of the curve. (The
torsion measures the degree of twisting of a curve.)

(d) Show that for a plane curve the torsion is .

r�t� � � t 2, 2
3 t 3, t� (1, 2

3, 1)
r�t� � �cos t, sin t, ln cos t� �1, 0, 0�

x � 2 sin 3t y � t z � 2 cos 3t �0, �, �2�

x � t y � t 2 z � t 3 �1, 1, 1�

9x 2 � 4y 2 � 36 �2, 0� �0, 3�

y � 1
2 x 2 �0, 0� (1, 1

2 )

x � t 3 y � 3t z � t 4

6x � 6y � 8z � 1

CAS

x � y � z � 1

x � y 2

z � x 2 �1, 1, 1�

r�t� � � t � 2, 1 � t, 1
2t 2 �

�

dT
ds � �N

BNT

� � 	 d
�ds 	

iT


BdB�ds
TdB�ds

dB�ds � ���s�N
��s�

� �s� � 0
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53. |r( )| = [r( ) · r( )]1 2 = 1
2
[r( ) · r( )] 1 2 [2r( ) · r0( )] = 1

|r( )| r( ) · r
0( )

54. Since r( ) · r0( ) = 0, we have 0 = 2r( ) · r0( ) = [r( ) · r( )] = |r( )|2. Thus |r( )|2, and so |r( )|, is a constant,

and hence the curve lies on a sphere with center the origin.

55. Since u( ) = r( ) · [r0( )× r00( )],

u0( ) = r0( ) · [r0( )× r00( )] + r( ) · [r0( )× r00( )]

= 0 + r( ) · [r00( )× r00( ) + r0( )× r000( )] [since r0( ) r0( )× r00( )]
= r( ) · [r0( )× r000( )] [since r00( )× r00( ) = 0]

56. The tangent vector r0( ) is defined as lim
0

r( + ) r( ) . Here we assume that this limit exists and r0( ) 6= 0; then we know

that this vector lies on the tangent line to the curve. As in Figure 1, let points and have position vectors r( ) and r( + ).

The vector r( + ) r( ) points from to , so r( + ) r( ) = . If 0 then + , so lies “ahead”

of on the curve. If is sufficiently small (we can take to be as small as we like since 0) then approximates

the curve from to and hence points approximately in the direction of the curve as increases. Since is positive,

1
=
r( + ) r( ) points in the same direction. If 0, then + so lies “behind” on the curve. For

sufficiently small, approximates the curve but points in the direction of decreasing . However, is negative, so

1
=
r( + ) r( ) points in the opposite direction, that is, in the direction of increasing . In both cases, the difference

quotient r( + ) r( ) points in the direction of increasing . The tangent vector r0( ) is the limit of this difference quotient,

so it must also point in the direction of increasing .

13.3 Arc Length and Curvature

1. r( ) = h 3 cos 3 sin i r0( ) = h1 3 sin 3 cos i
|r0( )| = 12 + ( 3 sin )2 + (3 cos )2 = 1 + 9(sin2 + cos2 ) = 10.

Then using Formula 3, we have =
5

5
|r0( )| =

5

5
10 = 10

5

5
= 10 10.

2. r( ) = 2 2 1
3
3 r0( ) = 2 2 2

|r0( )| = 22 + (2 )2 + ( 2)2 = 4 + 4 2 + 4 = (2 + 2)2 = 2 + 2 for 0 1. Then using Formula 3, we have

=
1

0
|r0( )| =

1

0
(2 + 2) = 2 + 1

3
3 1

0
= 7

3
.

3. r( ) = 2 i+ j+ k r0( ) = 2 i+ j k

|r0( )| = 2
2
+ ( )2 + ( )2 = 2 + 2 + 2 = ( + )2 = + [since + 0].

Then =
1

0
|r0( )| =

1

0
( + ) =

1

0
= 1.
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334 ¤ CHAPTER 13 VECTOR FUNCTIONS

4. r( ) = cos i+ sin j+ ln cos k r0( ) = sin i+ cos j+
sin

cos
k = sin i+ cos j tan k,

|r0( )| = ( sin )2 + cos2 + ( tan )2 = 1 + tan2 = sec2 = |sec |. Since sec 0 for 0 4, here we

can say |r0( )| = sec . Then

=
4

0

sec = ln |sec + tan | 4

0
= ln sec

4
+ tan

4
ln |sec 0 + tan 0|

= ln 2 + 1 ln |1 + 0| = ln( 2 + 1)

5. r( ) = i+ 2 j+ 3 k r0( ) = 2 j+ 3 2 k |r0( )| = 4 2 + 9 4 = 4 + 9 2 [since 0].

Then =
1

0
|r0( )| =

1

0
4 + 9 2 = 1

18
· 2
3
(4 + 9 2)3 2

1

0
= 1

27
(133 2 43 2) = 1

27
(133 2 8).

6. r( ) = 12 i + 8 3 2 j + 3 2 k r0( ) = 12 i + 12 j + 6 k

|r0( )| = 144 + 144 + 36 2 = 36( + 2)2 = 6 | + 2| = 6( + 2) for 0 1. Then

=
1

0
|r0( )| =

1

0
6( + 2) = 3 2 + 12

1

0
= 15.

7. r( ) = 2 3 4 r0( ) = 2 3 2 4 3 |r0( )| = (2 )2 + (3 2)2 + (4 3)2 = 4 2 + 9 4 + 16 6, so

=
2

0
|r0( )| =

2

0
4 2 + 9 4 + 16 6 18 6833.

8. r( ) = r0( ) = 1 (1 )

|r0( )| = 12 + ( )2 + [(1 ) ]2 = 1 + 2 + (1 )2 2 = 1 + (2 2 + 2) 2 , so

=
3

1
|r0( )| =

3

1
1 + (2 + 2 + 2) 2 2 0454.

9. r( ) = hsin cos tan i r0( ) = cos sin sec2

|r0( )| = cos2 + ( sin )2 + (sec2 )2 = 1 + sec4 and =
4

0
|r0( )| =

4

0
1 + sec4 1 2780.

10. We plot two different views of the curve with parametric equations = sin , = sin 2 , = sin 3 . To help visualize the

curve, we also include a plot showing a tube of radius 0 07 around the curve.

The complete curve is given by the parameter interval [0 2 ] and we have r0( ) = hcos 2 cos 2 3 cos 3 i

|r0( )| = cos2 + 4 cos2 2 + 9 cos2 3 , so =
2

0
|r0( )| =

2

0
cos2 + 4 cos2 2 + 9 cos2 3 16 0264.
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SECTION 13.3 ARC LENGTH AND CURVATURE ¤ 335

11. The projection of the curve onto the -plane is the curve 2 = 2 or = 1
2

2, = 0. Then we can choose the parameter

= = 1
2
2. Since also lies on the surface 3 = , we have = 1

3
= 1

3
( )( 1

2
2) = 1

6
3. Then parametric

equations for are = , = 1
2
2, = 1

6
3 and the corresponding vector equation is r( ) = 1

2
2 1

6
3 . The origin

corresponds to = 0 and the point (6 18 36) corresponds to = 6, so

=
6

0
|r0( )| =

6

0
1 1

2
2 =

6

0
12 + 2 + 1

2
2 2

=
6

0
1 + 2 + 1

4
4

=
6

0
(1 + 1

2
2)2 =

6

0
(1 + 1

2
2) = + 1

6
3 6

0
= 6 + 36 = 42

12. Let be the curve of intersection. The projection of onto the -plane is the ellipse 4 2 + 2 = 4 or 2 + 2 4 = 1,

= 0. Then we can write = cos , = 2 sin , 0 2 . Since also lies on the plane + + = 2, we have

= 2 = 2 cos 2 sin . Then parametric equations for are = cos , = 2 sin , = 2 cos 2 sin ,

0 2 , and the corresponding vector equation is r( ) = hcos 2 sin 2 cos 2 sin i. Differentiating gives
r0( ) = h sin 2 cos sin 2 cos i

|r0( )| = ( sin )2 + (2 cos )2 + (sin 2 cos )2 = 2 sin2 + 8 cos2 4 sin cos . The length of is

=
2

0
|r0( )| =

2

0
2 sin2 + 8 cos2 4 sin cos 13 5191.

13. r( ) = 2 i+ (1 3 ) j+ (5 + 4 )k r0( ) = 2 i 3 j+ 4k and = |r0( )| = 4 + 9 + 16 = 29. Then

= ( ) =
0
|r0( )| =

0
29 = 29 . Therefore, = 1

29
, and substituting for in the original equation, we

have r( ( )) = 2

29
i+ 1 3

29
j+ 5 + 4

29
k.

14. r( ) = 2 cos 2 i+ 2 j+ 2 sin 2 k r0( ) = 2 2 (cos 2 sin 2 ) i+ 2 2 (cos 2 + sin 2 )k,

= |r0( )| = 2 2 (cos 2 sin 2 )2 + (cos 2 + sin 2 )2 = 2 2 2 cos2 2 + 2 sin2 2 = 2 2 2 .

= ( ) =
0
|r0( )| =

0
2 2 2 = 2 2

0
= 2 ( 2 1)

2
+ 1 = 2 = 1

2 ln 2
+ 1 .

Substituting, we have

r( ( )) =
2 1

2
ln

2
+1

cos 2 1
2
ln

2
+ 1 i+ 2 j+

2 1
2
ln

2
+1

sin 2 1
2
ln

2
+ 1 k

=
2
+ 1 cos ln

2
+ 1 i+ 2 j+

2
+ 1 sin ln

2
+ 1 k

15. Here r( ) = h3 sin 4 3 cos i, so r0( ) = h3 cos 4 3 sin i and |r0( )| = 9 cos2 + 16 + 9 sin2 = 25 = 5.

The point (0 0 3) corresponds to = 0, so the arc length function beginning at (0 0 3) and measuring in the positive

direction is given by ( ) =
0
|r0( )| =

0
5 = 5 . ( ) = 5 5 = 5 = 1, thus your location after

moving 5 units along the curve is (3 sin 1 4 3 cos 1).

16. r( ) = 2
2 + 1

1 i+
2
2 + 1

j r0( ) =
4

( 2 + 1)2
i+

2 2 + 2

( 2 + 1)2
j,

= |r0( )| = 4

( 2 + 1)2

2

+
2 2 + 2

( 2 + 1)2

2

=
4 4 + 8 2 + 4

( 2 + 1)4
=

4( 2 + 1)2

( 2 + 1)4
=

4

( 2 + 1)2
=

2
2 + 1

.

Since the initial point (1 0) corresponds to = 0, the arc length function
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336 ¤ CHAPTER 13 VECTOR FUNCTIONS

( ) =
0

r0( ) =
0

2
2 + 1

= 2arctan . Then arctan = 1
2

= tan 1
2
. Substituting, we have

r( ( )) =
2

tan2 1
2

+ 1
1 i+

2 tan 1
2

tan2 1
2

+ 1
j =

1 tan2 1
2

1 + tan2 1
2

i+
2 tan 1

2

sec2 1
2

j

=
1 tan2 1

2

sec2 1
2

i+ 2 tan 1
2

cos2 1
2

j = cos2 1
2

sin2 1
2

i+ 2 sin 1
2

cos 1
2

j = cos i+ sin j

With this parametrization, we recognize the function as representing the unit circle. Note here that the curve approaches, but

does not include, the point ( 1 0), since cos = 1 for = + 2 ( an integer) but then = tan 1
2

is undefined.

17. (a) r( ) = h 3 cos 3 sin i r0( ) = h1 3 sin 3 cos i |r0( )| = 1 + 9 sin2 + 9cos2 = 10.

Then T( ) = r0( )
|r0( )| =

1

10
h1 3 sin 3 cos i or 1

10

3

10
sin 3

10
cos .

T0( ) = 1

10
h0 3 cos 3 sin i |T0( )| = 1

10
0 + 9 cos2 + 9 sin2 = 3

10
. Thus

N( ) =
T0( )
|T0( )| =

1 10

3 10
h0 3 cos 3 sin i = h0 cos sin i.

(b) ( ) =
|T0( )|
|r0( )| =

3 10

10
=
3

10

18. (a) r( ) = 2 sin cos cos + sin

r0( ) = h2 cos + sin cos , sin + cos + sin i = h2 sin cos i

|r0( )| = 4 2 + 2 sin2 + 2 cos2 = 4 2 + 2(cos2 + sin2 ) = 5 2 = 5 [since 0]. Then

T( ) =
r0( )
|r0( )| =

1

5
h2 sin cos i = 1

5
h2 sin cos i. T0( ) = 1

5
h0 cos sin i

|T0 ( )| = 1

5
0 + cos2 + sin2 = 1

5
. ThusN( ) = T0( )

|T0( )| =
1 5

1 5
h0 cos sin i = h0 cos sin i.

(b) ( ) =
|T0( )|
|r0( )| =

1 5

5
=
1

5

19. (a) r( ) = 2 r0( ) = 2 |r0( )| = 2 + 2 + 2 = ( + )2 = + .

Then

T( ) =
r0( )
|r0( )| =

1

+
2 =

1
2 + 1

2 2 1 after multiplying by and

T0( ) =
1

2 + 1
2 2 2 0

2 2

( 2 + 1)2
2 2 1

=
1

( 2 + 1)2
( 2 + 1) 2 2 2 0 2 2 2 2 1 =

1

( 2 + 1)2
2 1 2 2 2 2 2

Then

|T0( )|= 1

( 2 + 1)2
2 2 (1 2 2 + 4 ) + 4 4 + 4 4 =

1

( 2 + 1)2
2 2 (1 + 2 2 + 4 )

=
1

( 2 + 1)2
2 2 (1 + 2 )2 =

2 (1 + 2 )

( 2 + 1)2
=

2
2 + 1
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SECTION 13.3 ARC LENGTH AND CURVATURE ¤ 337

Therefore

N( ) =
T0( )
|T0( )| =

2 + 1

2

1

( 2 + 1)2
2 (1 2 ) 2 2 2 2

=
1

2 ( 2 + 1)
2 (1 2 ) 2 2 2 2 =

1
2 + 1

1 2 2 2

(b) ( ) =
|T0( )|
|r0( )| =

2
2 + 1

· 1

+
=

2
3 + 2 +

=
2 2

4 + 2 2 + 1
=

2 2

( 2 + 1)2

20. (a) r( ) = 1
2
2 2 r0( ) = h1 2 i |r0( )| = 1 + 2 + 4 2 = 1 + 5 2. Then

T( ) =
r0( )
|r0( )| =

1

1 + 5 2
h1 2 i.

T0( ) =
5

(1 + 5 2)3 2
h1 2 i+ 1

1 + 5 2
h0 1 2i [by Formula 3 of Theorem 13.2.3]

=
1

(1 + 5 2)3 2
5 5 2 10 2 + 0 1 + 5 2 2 + 10 2 =

1

(1 + 5 2)3 2
h 5 1 2i

|T0( )| = 1

(1 + 5 2)3 2
25 2 + 1+ 4 =

1

(1 + 5 2)3 2
25 2 + 5 =

5 5 2 + 1

(1 + 5 2)3 2
=

5

1 + 5 2

ThusN( ) = T0( )
|T0( )| =

1 + 5 2

5
· 1

(1 + 5 2)3 2
h 5 1 2i = 1

5 + 25 2
h 5 1 2i.

(b) ( ) =
|T0( )|
|r0( )| =

5 (1 + 5 2)

1 + 5 2
=

5

(1 + 5 2)3 2

21. r( ) = 3 j+ 2 k r0( ) = 3 2 j+ 2 k, r00( ) = 6 j+ 2k, |r0( )| = 02 + (3 2)2 + (2 )2 = 9 4 + 4 2,

r0( )× r00( ) = 6 2 i, |r0( )× r00( )| = 6 2. Then ( ) =
|r0( )× r00( )|
|r0( )|3 =

6 2

9 4 + 4 2
3 =

6 2

(9 4 + 4 2)3 2
.

22. r( ) = i + 2 j + k r0( ) = i + 2 j + k, r00( ) = 2 j + k,

|r0( )| = 12 + (2 )2 + ( )2 = 1+ 4 2 + 2 , r0( )× r00( ) = (2 2) i j + 2k,

|r0( )× r00( )| = [(2 2) ]2 + ( )2 + 22 = (2 2)2 2 + 2 + 4 = (4 2 8 + 5) 2 + 4.

Then ( ) =
|r0( )× r00( )|
|r0( )|3 =

(4 2 8 + 5) 2 + 4

1 + 4 2 + 2
3 =

(4 2 8 + 5) 2 + 4

(1 + 4 2 + 2 )3 2
.

23. r( ) = 3 i+ 4 sin j+ 4 cos k r0( ) = 3 i+ 4 cos j 4 sin k, r00( ) = 4 sin j 4 cos k,

|r0( )| = 9 + 16 cos2 + 16 sin2 = 9 + 16 = 5, r0( )× r00( ) = 16 i+ 12 cos j 12 sin k,

|r0( )× r00( )| = 256 + 144 cos2 + 144 sin2 = 400 = 20. Then ( ) =
|r0( )× r00( )|
|r0( )|3 =

20

53
=
4

25
.

24. r( ) = 2 ln ln r0( ) = h2 1 1 + ln i, r00( ) = 2 1 2 1 . The point (1 0 0) corresponds

to = 1, and r0(1) = h2 1 1i, |r0(1)| = 22 + 12 + 12 = 6, r00(1) = h2 1 1i, r0(1)× r00(1) = h2 0 4i,

|r0(1)× r00(1)| = 22 + 02 + ( 4)2 = 20 = 2 5. Then (1) =
|r0(1)× r00(1)|

|r0(1)|3 =
2 5

6
3 =

2 5

6 6
or 30

18
.
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342 ¤ CHAPTER 13 VECTOR FUNCTIONS

44. = cos = sin ¨ = 2 cos ,

= sin = cos ¨ = 2 sin . Then

( ) =
| ¨ ¨|
[ 2 + 2]3 2

=
( sin )( 2 sin ) ( cos )( 2 cos )

[( sin )2 + ( cos )2]3 2

=
3 sin2 + 3 cos2

( 2 2 sin2 + 2 2 cos2 )3 2
=

3

( 2 2 sin2 + 2 2 cos2 )3 2

45. = cos = (cos sin ) ¨ = ( sin cos ) + (cos sin ) = 2 sin ,

= sin = (cos + sin ) ¨ = ( sin + cos ) + (cos + sin ) = 2 cos . Then

( ) =
| ¨ ¨|
[ 2 + 2]3 2

=
(cos sin )(2 cos ) (cos + sin )( 2 sin )

([ (cos sin )]2 + [ (cos + sin )]2)3 2

=
2 2 (cos2 sin cos + sin cos + sin2 )

2 (cos2 2 cos sin + sin2 + cos2 + 2cos sin + sin2 )
3 2

=
2 2 (1)

[ 2 (1 + 1)]3 2
=

2 2

3 (2)3 2
=

1

2

46. ( ) = , 0( ) = , 00( ) = 2 . Using Formula 11 we have

( ) =
| 00( )|

[1 + ( 0( ))2]3 2
=

2

[1 + ( )2]3 2
=

2

(1 + 2 2 )3 2
so the curvature at = 0 is

(0) =
2

(1 + 2)3 2
. To determine the maximum value for (0), let ( ) =

2

(1 + 2)3 2
. Then

0( ) =
2 · (1 + 2)3 2 2 · 3

2
(1 + 2)1 2(2 )

[(1 + 2)3 2]2
=
(1 + 2)1 2 2 (1 + 2) 3 3

(1 + 2)3
=

2 3

(1 + 2)5 2
. We have a critical

number when 2 3 = 0 (2 2) = 0 = 0 or = ± 2. 0( ) is positive for 2, 0 2

and negative elsewhere, so achieves its maximum value when = 2 or 2. In either case, (0) = 2

33 2
, so the members

of the family with the largest value of (0) are ( ) = 2 and ( ) = 2 .

47. 1 2
3
1 corresponds to = 1. T( ) =

r0( )
|r0( )| =

2 2 2 1

4 2 + 4 4 + 1
=

2 2 2 1

2 2 + 1
, soT(1) = 2

3
2
3

1
3
.

T0( ) = 4 (2 2 + 1) 2 2 2 2 1 + (2 2 + 1) 1 h2 4 0i [by Formula 3 of Theorem 13.2.3]

= (2 2 + 1) 2 8 2 + 4 2 + 2 8 3 + 8 3 + 4 4 = 2(2 2 + 1) 2 1 2 2 2 2

N( ) =
T0( )
|T0( )| =

2(2 2 + 1) 2 1 2 2 2 2

2(2 2 + 1) 2 (1 2 2)2 + (2 )2 + ( 2 )2
=

1 2 2 2 2

1 4 2 + 4 4 + 8 2
=

1 2 2 2 2

1 + 2 2

N(1) = 1
3

2
3

2
3
andB(1) = T(1)×N(1) = 4

9
2
9

4
9
+ 1

9
4
9
+ 2

9
= 2

3
1
3

2
3
.

48. (1 0 0) corresponds to = 0. r( ) = hcos sin ln cos i, and in Exercise 4 we found that r0( ) = h sin cos tan i
and |r0( )| = |sec |. Here we can assume

2 2
and then sec 0 |r0( )| = sec .

T( ) =
r0( )
|r0( )| =

h sin cos tan i
sec

= sin cos cos2 sin and T(0) = h0 1 0i.

T0( ) = h [(sin )( sin ) + (cos )(cos )] 2(cos )( sin ) cos i = sin2 cos2 2 sin cos cos , so
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SECTION 13.3 ARC LENGTH AND CURVATURE ¤ 343

N(0) =
T0(0)
|T0(0)| =

h 1 0 1i
1 + 0 + 1

=
1

2
h 1 0 1i = 1

2
0 1

2
.

Finally,B(0) = T(0)×N(0) = h0 1 0i × 1

2
0 1

2
= 1

2
0 1

2
.

49. (0 2) corresponds to = . r( ) = h2 sin 3 2 cos 3 i

T( ) =
r0( )
|r0( )| =

h6 cos 3 1 6 sin 3 i
36 cos2 3 + 1 + 36 sin2 3

=
1

37
h6 cos 3 1 6 sin 3 i.

T( ) = 1

37
h 6 1 0i is a normal vector for the normal plane, and so h 6 1 0i is also normal. Thus an equation for the

plane is 6 ( 0) + 1( ) + 0( + 2) = 0 or 6 = .

T0( ) = 1

37
h 18 sin 3 0 18 cos 3 i |T0( )| = 182 sin2 3 + 182 cos2 3

37
=

18

37

N( ) =
T0( )
|T0( )| = h sin 3 0 cos 3 i. SoN( ) = h0 0 1i andB( ) = 1

37
h 6 1 0i × h0 0 1i = 1

37
h1 6 0i.

SinceB( ) is a normal to the osculating plane, so is h1 6 0i.
An equation for the plane is 1( 0) + 6( ) + 0( + 2) = 0 or + 6 = 6 .

50. = 1 at (1 1 1). r0( ) = 1 2 3 2 . r0(1) = h1 2 3i is normal to the normal plane, so an equation for this plane
is 1( 1) + 2( 1) + 3( 1) = 0, or + 2 + 3 = 6.

T( ) =
r0( )
|r0( )| =

1

1 + 4 2 + 9 4
1 2 3 2 . Using the product rule on each term ofT( ) gives

T0( ) =
1

(1 + 4 2 + 9 4)3 2
1
2
(8 + 36 3) 2(1 + 4 2 + 9 4) 1

2
(8 + 36 3)2

6 (1 + 4 2 + 9 4) 1
2
(8 + 36 3)3 2

=
1

(1 + 4 2 + 9 4)3 2
4 18 3 2 18 4 6 + 12 3 =

2

(14)3 2
h11 8 9i when = 1.

N(1) k T0(1) k h11 8 9i and T(1) k r0(1) = h1 2 3i a normal vector to the osculating plane is

h11 8 9i × h1 2 3i = h42 42 14i or equivalently h3 3 1i.
An equation for the plane is 3( 1) 3( 1) + ( 1) = 0 or 3 3 + = 1.

51. The ellipse is given by the parametric equations = 2cos , = 3 sin , so using the result from Exercise 42,

( ) =
| ¨ ¨ |
[ 2 + 2]3 2

=
|( 2 sin )( 3 sin ) (3 cos )( 2 cos )|

(4 sin2 + 9 cos2 )3 2
=

6

(4 sin2 + 9cos2 )3 2
.

At (2 0), = 0. Now (0) = 6
27
= 2

9
, so the radius of the osculating circle is

1 (0) = 9
2
and its center is 5

2
0 . Its equation is therefore + 5

2

2
+ 2 = 81

4
.

At (0 3), =
2 , and 2

= 6
8 =

3
4 . So the radius of the osculating circle is

4
3 and

its center is 0 5
3
. Hence its equation is 2 + 5

3

2
= 16

9
.
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344 ¤ CHAPTER 13 VECTOR FUNCTIONS

52. = 1
2

2 0 = and 00 = 1, so Formula 11 gives ( ) =
1

(1 + 2)3 2
. So the curvature at (0 0) is (0) = 1 and

the osculating circle has radius 1 and center (0 1), and hence equation 2 + ( 1)2 = 1. The curvature at 1 1
2

is (1) =
1

(1 + 12)3 2
=

1

2 2
. The tangent line to the parabola at 1 1

2

has slope 1, so the normal line has slope 1. Thus the center of the

osculating circle lies in the direction of the unit vector 1

2

1

2
.

The circle has radius 2 2, so its center has position vector

1 1
2
+ 2 2 1

2

1

2
= 1 5

2
. So the equation of the circle

is ( + 1)2 + 5
2

2
= 8.

53. The tangent vector is normal to the normal plane, and the vector h6 6 8i is normal to the given plane.
ButT( ) k r0( ) and h6 6 8i k h3 3 4i, so we need to find such that r0( ) k h3 3 4i.
r( ) = 3 3 4 r0( ) = 3 2 3 4 3 k h3 3 4i when = 1. So the planes are parallel at the point ( 1 3 1).

54. To find the osculating plane, we first calculate the unit tangent and normal vectors.

In Maple, we use the VectorCalculus package and set r:= tˆ3,3*t,tˆ4 ;. After differentiating, the

Normalize command converts the tangent vector to the unit tangent vector: T:=Normalize(diff(r,t));. After

simplifying, we find that T( ) =
3 2 3 4 3

16 6 + 9 4 + 9
. We use a similar procedure to compute the unit normal vector,

N:=Normalize(diff(T,t));. After simplifying, we haveN( ) =
(8 6 9) 3 3(3 + 8 2) 6 2( 4 + 3)

2(4 6 + 36 2 + 9)(16 6 + 9 4 + 9)
. Then

we use the command B:=CrossProduct(T,N);. After simplification, we find thatB( ) =
6 2 2 4 3

2(4 6 + 36 2 + 9)
.

In Mathematica, we define the vector function r={tˆ3,3*t,tˆ4} and use the command Dt to differentiate. We find

T( ) by dividing the result by its magnitude, computed using the Norm command. (You may wish to include the option

Element[t,Reals] to obtain simpler expressions.) N( ) is found similarly, and we use Cross[T,N] to findB( ).

NowB( ) is parallel to 6 2 2 4 3 , so ifB( ) is parallel to h1 1 1i for some 6= 0 [sinceB(0) = 0], then

6 2 2 4 3 = h1 1 1i for some value of . But then 6 2 = 2 4 = 3 which has no solution for 6= 0. So there is
no such osculating plane.

55. First we parametrize the curve of intersection. We can choose = ; then = 2 = 2 and = 2 = 4, and the curve is

given by r( ) = 2 4 . r0( ) = 2 1 4 3 and the point (1 1 1) corresponds to = 1, so r0(1) = h2 1 4i is a normal
vector for the normal plane. Thus an equation of the normal plane is

2( 1) + 1( 1) + 4( 1) = 0 or 2 + + 4 = 7. T( ) =
r0( )
|r0( )| =

1

4 2 + 1 + 16 6
2 1 4 3 and
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SECTION 13.3 ARC LENGTH AND CURVATURE ¤ 345

T0( ) = 1
2
(4 2 + 1 + 16 6) 3 2(8 + 96 5) 2 1 4 3 + (4 2 + 1 + 16 6) 1 2 2 0 12 2 . A normal vector for

the osculating plane is B(1) = T(1) ×N(1), but r0(1) = h2 1 4i is parallel to T(1) and
T0(1) = 1

2
(21) 3 2(104)h2 1 4i+ (21) 1 2h2 0 12i = 2

21 21
h 31 26 22i is parallel toN(1) as is h 31 26 22i,

so h2 1 4i × h 31 26 22i = h126 168 21i is normal to the osculating plane. Thus an equation for the osculating
plane is 126( 1) 168( 1) 21( 1) = 0 or 6 8 = 3.

56. r( ) = + 2 1 1
2
2 r0( ) = h1 1 i, T( ) =

r0( )
|r0( )| =

1

2 + 2
h1 1 i,

T0( )= 1
2
(2 + 2) 3 2(2 )h1 1 i+ (2 + 2) 1 2 h0 0 1i

= (2 + 2) 3 2 h1 1 i (2 + 2)h0 0 1i = 1

(2+ 2)3 2 h 2i

A normal vector for the osculating plane isB( ) = T( )×N( ), but r0( ) = h1 1 i is parallel toT( ) and h 2i

is parallel toT0( ) and hence parallel toN( ), so h1 1 i × h 2i = 2 + 2 2 + 2 0 is normal to the

osculating plane for any . All such vectors are parallel to h1 1 0i, so at any point + 2 1 1
2
2 on the curve, an

equation for the osculating plane is 1[ ( + 2)] + 1[ (1 )] + 0 1
2
2 = 0 or + = 3. Because the osculating

plane at every point on the curve is the same, we can conclude that the curve itself lies in that same plane. In fact, we can

easily verify that the parametric equations of the curve satisfy + = 3.

57. =
T

=
T

=
| T | andN =

T

| T | , so N =

T T

T
=

T
=

T by the Chain Rule.

58. For a plane curve, T = |T| cos i + |T| sin j = cos i + sin j. Then

T
=

T
= ( sin i+ cos j) and T

= | sin i+ cos j| = . Hence for a plane

curve, the curvature is = | |.

59. (a) |B| = 1 B ·B = 1 (B ·B) = 0 2
B ·B = 0 B

B

(b) B = T×N
B
= (T×N) = (T×N) 1

= (T×N) 1

|r0( )| = [(T
0 ×N) + (T×N0)]

1

|r0( )|

= T0 × T0

|T0| + (T×N0)
1

|r0( )| =
T×N0

|r0( )|
B

T

(c) B = T×N T N,B T andB N. SoB, T andN form an orthogonal set of vectors in the three-

dimensional space R3. From parts (a) and (b), B is perpendicular to bothB and T, so B is parallel toN.

Therefore, B = ( )N, where ( ) is a scalar.
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SECTION 14.1 FUNCTIONS OF SEVERAL VARIABLES 889

for a medium box, and $4.50 for a large box. Fixed costs 
are $8000.
(a) Express the cost of making small boxes, medium 

boxes, and large boxes as a function of three variables:
.

(b) Find and interpret it.
(c) What is the domain of ?

9. Let .
(a) Evaluate .
(b) Find the domain of .
(c) Find the range of .

10. Let .
(a) Evaluate .
(b) Find and sketch the domain of .
(c) Find the range of .

11. Let .
(a) Evaluate .
(b) Find and describe the domain of .

12. Let .
(a) Evaluate .
(b) Find and describe the domain of .

13–22 Find and sketch the domain of the function.

13. 14.

15. 16.

17.

18.

19.

20.

21.

22.

23–31 Sketch the graph of the function.

23. 24.

25. 26.

27. 28.

29. 30.

31.

32. Match the function with its graph (labeled I–VI). Give reasons
for your choices.

(a) (b)

(c) (d)

(e) (f )

yx
z

C � f �x, y, z�
f �3000, 5000, 4000�

f

t�x, y� � cos�x � 2y�
t�2, �1�

t
t

F �x, y� � 1 � s4 � y 2

F �3, 1�
F

F

f �x, y, z� � sx � sy � sz � ln�4 � x 2 � y 2 � z 2�
f �1, 1, 1�

f

t�x, y, z� � x 3y 2zs10 � x � y � z
t�1, 2, 3�

t

f �x, y� � sxyf �x, y� � s2x � y

f �x, y� � sx 2 � y 2f �x, y� � ln�9 � x 2 � 9y2 �

f �x, y� � s1 � x 2 � s1 � y 2

f �x, y� � sy � s25 � x 2 � y 2

f �x, y� �
sy � x 2

1 � x 2

f �x, y� � arcsin�x 2 � y 2 � 2�

f �x, y, z� � s1 � x 2 � y 2 � z2

f �x, y, z� � ln�16 � 4x 2 � 4y2 � z2 �

f �x, y� � 2 � xf �x, y� � 1 � y

f �x, y� � e�yf �x, y� � 10 � 4x � 5y

f �x, y� � 1 � 2x 2 � 2y 2f �x, y� � y 2 � 1

f �x, y� � s4x 2 � y 2f �x, y� � 9 � x 2 � 9y 2

f �x, y� � s4 � 4x 2 � y 2

f �x, y� � � xy �f �x, y� � � x � � � y �
f �x, y� � �x 2 � y 2 �2f �x, y� �

1

1 � x 2 � y 2

f �x, y� � sin(�x � � � y �)f �x, y� � �x � y�2

33. A contour map for a function is shown. Use it to esti mate the
values of and . What can you say about the
shape of the graph?

34. Shown is a contour map of atmospheric pressure in North
America on August 12, 2008. On the level curves (called 
isobars) the pressure is indicated in millibars (mb).
(a) Estimate the pressure at (Chicago), (Nashville), 

(San Francisco), and (Vancouver).
(b) At which of these locations were the winds strongest?

I II z

yx

z

yx

III IV z

yx

z

y

x

V VIz

yx

z

yx

f
f �3, �2�f ��3, 3�

y

x0 1

1
70 60 50 40

30

20

10

NC
VS

C

N

V

S

1004

1008

1012

1016

1012
1008

1016
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9. (a) (2 1) = cos(2 + 2( 1)) = cos(0) = 1

(b) + 2 is defined for all choices of values for and and the cosine function is defined for all input values, so the domain

of is R2.

(c) The range of the cosine function is [ 1 1] and + 2 generates all possible input values for the cosine function, so the

range of cos( + 2 ) is [ 1 1].

10. (a) (3 1) = 1 + 4 12 = 1+ 3

(b) 4 2 is defined only when 4 2 0, or 2 4

2 2. So the domain of is {( ) | 2 2}.

(c) We know 0 4 2 2 so 1 1 + 4 2 3. Thus the range of is [1 3].

11. (a) (1 1 1) = 1 + 1 + 1 + ln(4 12 12 12) = 3 + ln 1 = 3

(b) , , are defined only when 0, 0, 0, and ln(4 2 2 2) is defined when

4 2 2 2 0 2 + 2 + 2 4, thus the domain is

( ) | 2 + 2 + 2 4 0 0 0 , the portion of the interior of a sphere of radius 2, centered at the

origin, that is in the first octant.

12. (a) (1 2 3) = 13 · 22 · 3 10 1 2 3 = 12 4 = 24

(b) is defined only when 10 0 10 , so the domain is {( ) | 10 }, the
points on or below the plane + + = 10.

13. 2 is defined only when 2 0, or 2 .

So the domain of is {( ) | 2 }.
14. We need 0, so = {( ) | 0}, the first and
third quadrants.
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376 ¤ CHAPTER 14 PARTIAL DERIVATIVES

15. ln(9 2 9 2) is defined only when

9 2 9 2 0, or 1
9

2 + 2 1. So the domain of

is ( ) 1
9

2 + 2 1 , the interior of an ellipse.

16. 2 2 is defined only when 2 2 0

2 2 | | | | | | | |. So
the domain of is {( ) | | | | |}.

17. 1 2 is defined only when 1 2 0, or
2 1 1 1, and 1 2 is defined

only when 1 2 0, or 2 1 1 1.

Thus the domain of is

{( ) | 1 1 1 1}.

18. + 25 2 2 is defined only when 0 and

25 2 2 0 2 + 2 25. So the domain

of is ( ) | 2 + 2 25 0 , a half disk of

radius 5.

19. 2 is defined only when 2 0, or 2.

In addition, is not defined if 1 2 = 0

= ±1. Thus the domain of is

( ) | 2 6= ±1 .

20. arcsin( 2 + 2 2) is defined only when

1 2 + 2 2 1 1 2 + 2 3. Thus

the domain of is ( ) | 1 2 + 2 3 .
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SECTION 14.1 FUNCTIONS OF SEVERAL VARIABLES 889

for a medium box, and $4.50 for a large box. Fixed costs 
are $8000.
(a) Express the cost of making small boxes, medium 

boxes, and large boxes as a function of three variables:
.

(b) Find and interpret it.
(c) What is the domain of ?

9. Let .
(a) Evaluate .
(b) Find the domain of .
(c) Find the range of .

10. Let .
(a) Evaluate .
(b) Find and sketch the domain of .
(c) Find the range of .

11. Let .
(a) Evaluate .
(b) Find and describe the domain of .

12. Let .
(a) Evaluate .
(b) Find and describe the domain of .

13–22 Find and sketch the domain of the function.

13. 14.

15. 16.

17.

18.

19.

20.

21.

22.

23–31 Sketch the graph of the function.

23. 24.

25. 26.

27. 28.

29. 30.

31.

32. Match the function with its graph (labeled I–VI). Give reasons
for your choices.

(a) (b)

(c) (d)

(e) (f )

yx
z

C � f �x, y, z�
f �3000, 5000, 4000�

f

t�x, y� � cos�x � 2y�
t�2, �1�

t
t

F �x, y� � 1 � s4 � y 2

F �3, 1�
F

F

f �x, y, z� � sx � sy � sz � ln�4 � x 2 � y 2 � z 2�
f �1, 1, 1�

f

t�x, y, z� � x 3y 2zs10 � x � y � z
t�1, 2, 3�

t

f �x, y� � sxyf �x, y� � s2x � y

f �x, y� � sx 2 � y 2f �x, y� � ln�9 � x 2 � 9y2 �

f �x, y� � s1 � x 2 � s1 � y 2

f �x, y� � sy � s25 � x 2 � y 2

f �x, y� �
sy � x 2

1 � x 2

f �x, y� � arcsin�x 2 � y 2 � 2�

f �x, y, z� � s1 � x 2 � y 2 � z2

f �x, y, z� � ln�16 � 4x 2 � 4y2 � z2 �

f �x, y� � 2 � xf �x, y� � 1 � y

f �x, y� � e�yf �x, y� � 10 � 4x � 5y

f �x, y� � 1 � 2x 2 � 2y 2f �x, y� � y 2 � 1

f �x, y� � s4x 2 � y 2f �x, y� � 9 � x 2 � 9y 2

f �x, y� � s4 � 4x 2 � y 2

f �x, y� � � xy �f �x, y� � � x � � � y �
f �x, y� � �x 2 � y 2 �2f �x, y� �

1

1 � x 2 � y 2

f �x, y� � sin(�x � � � y �)f �x, y� � �x � y�2

33. A contour map for a function is shown. Use it to esti mate the
values of and . What can you say about the
shape of the graph?

34. Shown is a contour map of atmospheric pressure in North
America on August 12, 2008. On the level curves (called 
isobars) the pressure is indicated in millibars (mb).
(a) Estimate the pressure at (Chicago), (Nashville), 

(San Francisco), and (Vancouver).
(b) At which of these locations were the winds strongest?

I II z

yx

z

yx

III IV z

yx

z

y

x

V VIz

yx

z

yx

f
f �3, �2�f ��3, 3�

y

x0 1

1
70 60 50 40

30

20

10

NC
VS

C

N

V

S

1004

1008

1012

1016

1012
1008

1016
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SECTION 14.1 FUNCTIONS OF SEVERAL VARIABLES ¤ 375

9. (a) (2 1) = cos(2 + 2( 1)) = cos(0) = 1

(b) + 2 is defined for all choices of values for and and the cosine function is defined for all input values, so the domain

of is R2.

(c) The range of the cosine function is [ 1 1] and + 2 generates all possible input values for the cosine function, so the

range of cos( + 2 ) is [ 1 1].

10. (a) (3 1) = 1 + 4 12 = 1+ 3

(b) 4 2 is defined only when 4 2 0, or 2 4

2 2. So the domain of is {( ) | 2 2}.

(c) We know 0 4 2 2 so 1 1 + 4 2 3. Thus the range of is [1 3].

11. (a) (1 1 1) = 1 + 1 + 1 + ln(4 12 12 12) = 3 + ln 1 = 3

(b) , , are defined only when 0, 0, 0, and ln(4 2 2 2) is defined when

4 2 2 2 0 2 + 2 + 2 4, thus the domain is

( ) | 2 + 2 + 2 4 0 0 0 , the portion of the interior of a sphere of radius 2, centered at the

origin, that is in the first octant.

12. (a) (1 2 3) = 13 · 22 · 3 10 1 2 3 = 12 4 = 24

(b) is defined only when 10 0 10 , so the domain is {( ) | 10 }, the
points on or below the plane + + = 10.

13. 2 is defined only when 2 0, or 2 .

So the domain of is {( ) | 2 }.
14. We need 0, so = {( ) | 0}, the first and
third quadrants.
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376 ¤ CHAPTER 14 PARTIAL DERIVATIVES

15. ln(9 2 9 2) is defined only when

9 2 9 2 0, or 1
9

2 + 2 1. So the domain of

is ( ) 1
9

2 + 2 1 , the interior of an ellipse.

16. 2 2 is defined only when 2 2 0

2 2 | | | | | | | |. So
the domain of is {( ) | | | | |}.

17. 1 2 is defined only when 1 2 0, or
2 1 1 1, and 1 2 is defined

only when 1 2 0, or 2 1 1 1.

Thus the domain of is

{( ) | 1 1 1 1}.

18. + 25 2 2 is defined only when 0 and

25 2 2 0 2 + 2 25. So the domain

of is ( ) | 2 + 2 25 0 , a half disk of

radius 5.

19. 2 is defined only when 2 0, or 2.

In addition, is not defined if 1 2 = 0

= ±1. Thus the domain of is

( ) | 2 6= ±1 .

20. arcsin( 2 + 2 2) is defined only when

1 2 + 2 2 1 1 2 + 2 3. Thus

the domain of is ( ) | 1 2 + 2 3 .
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2.1.10 Questions with Solutions on Chapter 14.2



is a rational function of three variables and so is continuous at every point in except
where . In other words, it is discontinuous on the sphere with center the
origin and radius 1.

If we use the vector notation introduced at the end of Section 14.1, then we can write the
definitions of a limit for functions of two or three variables in a single compact form as 
follows.

If is defined on a subset D of , then means that for
every number there is a corresponding number such that

if  and  then

Notice that if , then and , and is just the definition of a limit for
functions of a single variable. For the case , we have , , 
and , so becomes Definition 1. If , then

, , and becomes the definition of a limit of a function of three
variables. In each case the definition of continuity can be written as

� 3

x 2 � y 2 � z2 � 1

f �n lim xl a f �x� � L
� � 0 � � 0

x � D 0 � � x � a � � � � f �x� � L � � �

n � 1 x � x a � a
n � 2 x � �x, y � a � �a, b �

�x � a � � s�x � a� 2 � �y � b� 2 n � 3
x � �x, y, z � a � �a, b, c �

lim
xl a

f �x� � f �a�

5

5

5
5

SECTION 14.2 LIMITS AND CONTINUITY 899

1. Suppose that . What can you say 
about the value of ? What if is continuous?

2. Explain why each function is continuous or discontinuous.
(a) The outdoor temperature as a function of longitude, 

latitude, and time
(b) Elevation (height above sea level) as a function of

longitude, latitude, and time
(c) The cost of a taxi ride as a function of distance traveled 

and time

3–4 Use a table of numerical values of for near the
origin to make a conjecture about the value of the limit of
as . Then explain why your guess is correct.

3. 4.

5–22 Find the limit, if it exists, or show that the limit does 
not exist.

5. 6.

7. 8.

9. 10.

lim�x, y�l �3, 1� f �x, y� � 6
ff �3, 1�

�x, y�f �x, y�

�x, y� l �0, 0�
f �x, y�

f �x, y� �
2xy

x 2 � 2y 2f �x, y� �
x 2y 3 � x 3y 2 � 5

2 � xy

lim
�x, y�l �1, 2�

�5x 3 � x 2y 2� lim
�x, y�l �1, �1�

e�xy cos�x � y�

lim
�x, y�l �1, 0�

ln� 1 � y 2

x 2 � xy�lim
�x, y�l �2, 1�

4 � xy

x 2 � 3y 2

lim
�x, y�l �0, 0�

x 4 � 4y 2

x 2 � 2y 2 lim
�x, y�l �0, 0�

5y 4 cos2 x

x 4 � y 4

11. 12.

13. 14.

15. 16.

17. 18.

19.

20.

21.

22.

; 23–24 Use a computer graph of the function to explain why the
limit does not exist.

23. 24.

lim
�x, y�l �0, 0�

xy

sx 2 � y 2
lim

�x, y�l �0, 0�

x 4 � y 4

x 2 � y 2

lim
�x, y�l �0, 0�

x 2ye y

x 4 � 4y 2 lim
�x, y�l �0, 0�

x 2 sin2 y

x 2 � 2y 2

lim
�x, y�l �0, 0�

x 2 � y 2

sx 2 � y 2 � 1 � 1
lim

�x, y�l �0, 0�

xy 4

x 2 � y 8

lim
�x, y, z�l ��, 0, 1	3�

ey2

tan�xz�

lim
�x, y, z�l �0, 0, 0�

xy � yz

x 2 � y 2 � z2

lim
�x, y, z�l �0, 0, 0�

xy � yz 2 � xz2

x 2 � y 2 � z 4

lim
�x, y, z�l �0, 0, 0�

yz

x 2 � 4y 2 � 9z2

lim
�x, y�l �0, 0�

2x 2 � 3xy � 4y 2

3x 2 � 5y 2 lim
�x, y�l �0, 0�

xy 3

x 2 � y6

lim
�x, y�l �1, 0�

xy � y

�x � 1�2 � y 2lim
�x, y�l �0, 0�

y 2 sin2 x

x 4 � y 4

14.2 Exercises

; Graphing calculator or computer required 1. Homework Hints available at stewartcalculus.com
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900 CHAPTER 14 PARTIAL DERIVATIVES

25–26 Find and the set on which is 
continuous.
25. ,

26. ,

; 27–28 Graph the function and observe where it is discontinuous.
Then use the formula to explain what you have observed.

27. 28.

29–38 Determine the set of points at which the function is 
continuous.

29. 30.

31. 32.

33.

34.

35.

36.

37.

38.

f �x, y� � e 1	�x�y� f �x, y� �
1

1 � x 2 � y 2

F�x, y� �
xy

1 � e x�y F�x, y� � coss1 � x � y

F�x, y� �
1 � x 2 � y 2

1 � x 2 � y 2 H�x, y� �
e x � e y

e xy � 1

G�x, y� � ln�x 2 � y 2 � 4 �

G�x, y� � tan�1(�x � y��2)
f �x, y, z� � arcsin�x 2 � y 2 � z 2�

f �x, y, z� � sy � x 2 ln z

f �x, y� � 

1

x 2 y 3

2x 2 � y 2 if

if

�x, y� � �0, 0�

�x, y� � �0, 0�

f �x, y� � 

0

xy
x 2 � xy � y 2 if

if

�x, y� � �0, 0�

�x, y� � �0, 0�

hh�x, y� � t� f �x, y��

f �x, y� � 2x � 3y � 6t�t� � t 2 � st

f �x, y� �
1 � xy

1 � x 2 y 2t�t� � t � ln t

39–41 Use polar coordinates to find the limit. [If are 
polar coordinates of the point with , note that 
as .]

39.

40.

41.

; 42. At the beginning of this section we considered the function

and guessed that as on the basis
of numerical evidence. Use polar coordinates to confirm the
value of the limit. Then graph the function.

; 43. Graph and discuss the continuity of the function

44. Let

(a) Show that as along any path
through of the form with .

(b) Despite part (a), show that is discontinuous at .
(c) Show that is discontinuous on two entire curves.

45. Show that the function given by is continuous
on .  [Hint: Consider .]

46. If , show that the function f given by is
continuous on .

f �x, y� � 
0  if y 	 0  or y 
 x 4

1  if 0 � y � x 4

f �x, y� l 0 �x, y� l �0, 0�
�0, 0� y � mx a a � 4

f �0, 0�
f

f f �x� � � x �
� n � x � a �2 � �x � a� � �x � a�

c � Vn f �x� � c � x
� n

lim
�x, y�l �0, 0�

e�x2�y2
� 1

x 2 � y 2

f �x, y� �
sin�x2 � y2 �

x2 � y2

�x, y� l �0, 0�f �x, y� l 1

f �x, y� � 

1

sin xy
xy if

if

xy � 0

xy � 0

lim
�x, y�l �0, 0�

�x2 � y2 � ln�x2 � y2 �

�r, ��
r l 0�r 
 0�x, y�

�x, y� l �0, 0�

lim
�x, y�l �0, 0�

x3 � y3

x2 � y2

On a hot day, extreme humidity makes us think the temperature is higher than it really 
is, whereas in very dry air we perceive the temperature to be lower than the thermom-
eter indicates. The National Weather Service has devised the heat index (also called the
temperature-humidity index, or humidex, in some countries) to describe the combined
effects of temperature and humidity. The heat index I is the perceived air temperature when
the actual temperature is T and the relative humidity is H. So I is a function of T and H and
we can write The following table of values of I is an excerpt from a table com-
piled by the National Weather Service.

I � f �T, H �.

14.3 Partial Derivatives
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4. We make a table of values of

( ) =
2

2 + 2 2
for a set of ( )

points near the origin.

It appears from the table that the values of ( ) are not approaching a single value as ( ) approaches the origin. For

verification, if we first approach (0 0) along the -axis, we have ( 0) = 0, so ( ) 0. But if we approach (0 0) along

the line = , ( ) =
2 2

2 + 2 2
=
2

3
( 6= 0), so ( ) 2

3 . Since approaches different values along different paths

to the origin, this limit does not exist.

5. ( ) = 5 3 2 2 is a polynomial, and hence continuous, so lim
( ) (1 2)

( ) = (1 2) = 5(1)3 (1)2(2)2 = 1.

6. is a polynomial and therefore continuous. Since is a continuous function, the composition is also continuous.

Similarly, + is a polynomial and cos is a continuous function, so the composition cos( + ) is continuous.

The product of continuous functions is continuous, so ( ) = cos( + ) is a continuous function and

lim
( ) (1 1)

( ) = (1 1) = (1)( 1) cos(1 + ( 1)) = 1 cos 0 = .

7. ( ) =
4
2 + 3 2

is a rational function and hence continuous on its domain.

(2 1) is in the domain of , so is continuous there and lim
( ) (2 1)

( ) = (2 1) =
4 (2)(1)

(2)2 + 3(1)2
=
2

7
.

8. 1 + 2

2 +
is a rational function and hence continuous on its domain, which includes (1 0). ln is a continuous function for

0, so the composition ( ) = ln
1 + 2

2 +
is continuous wherever 1 +

2

2 +
0. In particular, is continuous at

(1 0) and so lim
( ) (1 0)

( ) = (1 0) = ln
1 + 02

12 + 1 · 0 = ln
1

1
= 0.

9. ( ) = ( 4 4 2) ( 2 + 2 2). First approach (0 0) along the -axis. Then ( 0) = 4 2 = 2 for 6= 0, so

( ) 0. Now approach (0 0) along the -axis. For 6= 0, (0 ) = 4 2 2 2 = 2, so ( ) 2. Since has

two different limits along two different lines, the limit does not exist.
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SECTION 14.2 LIMITS AND CONTINUITY ¤ 393

10. ( ) = (5 4 cos2 ) ( 4 + 4). First approach (0 0) along the -axis. Then ( 0) = 0 4 = 0 for 6= 0, so

( ) 0. Next approach (0 0) along the -axis. For 6= 0, (0 ) = 5 4 4 = 5, so ( ) 5. Since has two

different limits along two different lines, the limit does not exist.

11. ( ) = ( 2 sin2 ) ( 4 + 4). On the -axis, ( 0) = 0 for 6= 0, so ( ) 0 as ( ) (0 0) along the

-axis. Approaching (0 0) along the line = , ( ) =
2 sin2

4 + 4
=
sin2

2 2
=
1

2

sin
2

for 6= 0 and

lim
0

sin
= 1, so ( ) 1

2
. Since has two different limits along two different lines, the limit does not exist.

12. ( ) =
( 1)2 + 2

. On the -axis, ( 0) = 0 ( 1)2 = 0 for 6= 1, so ( ) 0 as ( ) (1 0) along

the -axis. Approaching (1 0) along the line = 1, ( 1) =
( 1) ( 1)

( 1)2 + ( 1)2
=
( 1)2

2( 1)2
=
1

2
for 6= 1,

so ( ) 1
2
along this line. Thus the limit does not exist.

13. ( ) =
2 + 2

. We can see that the limit along any line through (0 0) is 0, as well as along other paths through

(0 0) such as = 2 and = 2. So we suspect that the limit exists and equals 0; we use the Squeeze Theorem to prove our

assertion. 0
2 + 2

| | since | | 2 + 2, and | | 0 as ( ) (0 0). So lim
( ) (0 0)

( ) = 0.

14. ( ) =
4 4

2 + 2
=
( 2 + 2)( 2 2)

2 + 2
= 2 2 for ( ) 6= (0 0). Thus the limit as ( ) (0 0) is 0.

15. Let ( ) =
2

4 + 4 2
. Then ( 0) = 0 for 6= 0, so ( ) 0 as ( ) (0 0) along the -axis. Approaching

(0 0) along the -axis or the line = also gives a limit of 0. But 2 =
2 2 2

4 + 4( 2)2
=

4 2

5 4
=

2

5
for 6= 0, so

( ) 0 5 = 1
5 as ( ) (0 0) along the parabola = 2. Thus the limit doesn’t exist.

16. We can use the Squeeze Theorem to show that lim
( ) (0 0)

2 sin2

2 + 2 2
= 0:

0
2 sin2

2 + 2 2
sin2 since

2

2 + 2 2
1, and sin2 0 as ( ) (0 0), so lim

( ) (0 0)

2 sin2

2 + 2 2
= 0.

17. lim
( ) (0 0)

2 + 2

2 + 2 + 1 1
= lim

( ) (0 0)

2 + 2

2 + 2 + 1 1
·

2 + 2 + 1 + 1
2 + 2 + 1 + 1

= lim
( ) (0 0)

2 + 2 2 + 2 + 1 + 1

2 + 2
= lim

( ) (0 0)

2 + 2 + 1 + 1 = 2
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SECTION 14.2 LIMITS AND CONTINUITY ¤ 395

25. ( ) = ( ( )) = (2 + 3 6)2 + 2 + 3 6. Since is a polynomial, it is continuous on R2 and is

continuous on its domain { | 0}. Thus is continuous on its domain.

= {( ) | 2 + 3 6 0} = ( ) | 2
3
+ 2 , which consists of all points on or above the line = 2

3
+2.

26. ( ) = ( ( )) =
1

1 + 2 2
+ ln

1

1 + 2 2
. is a rational function, so it is continuous on its domain. Because

1 + 2 2 0, the domain of is R2, so is continuous everywhere. is continuous on its domain { | 0}. Thus is

continuous on its domain ( )
1

1 + 2 2
0 = {( ) | 1} which consists of all points between (but not on)

the two branches of the hyperbola = 1 .

27. From the graph, it appears that is discontinuous along the line = .

If we consider ( ) = 1 ( ) as a composition of functions,

( ) = 1 ( ) is a rational function and therefore continuous except

where = 0 = . Since the function ( ) = is continuous

everywhere, the composition ( ( )) = 1 ( ) = ( ) is

continuous except along the line = , as we suspected.

28. We can see a circular break in the graph, corresponding approximately to

the unit circle, where is discontinuous. Since ( ) =
1

1 2 2
is

a rational function, it is continuous except where 1 2 2 = 0

2 + 2 = 1, confirming our observation that is discontinuous on the

circle 2 + 2 = 1.

29. The functions and 1+ are continuous everywhere, and 1+ is never zero, so ( ) =
1 +

is continuous

on its domain R2.

30. ( ) = cos 1 + = ( ( )) where ( ) = 1 + , continuous on its domain

{( ) | 1 + 0} = {( ) | + 1}, and ( ) = cos is continuous everywhere. Thus is continuous on its

domain {( ) | + 1}.

31. ( ) =
1 + 2 + 2

1 2 2
is a rational function and thus is continuous on its domain

( ) | 1 2 2 6= 0 = ( ) | 2 + 2 6= 1 .

32. The functions + and 1 are continuous everywhere, so ( ) =
+

1
is continuous except where

1 = 0 = 0 = 0 or = 0. Thus is continuous on its domain {( ) | 6= 0 6= 0}.
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2.1.11 Questions with Solutions on Chapter 14.3



912 CHAPTER 14 PARTIAL DERIVATIVES

5  –8 Determine the signs of the partial derivatives for the 
function whose graph is shown.

5. (a) (b)

6. (a) (b)

7. (a) (b)

8. (a) (b)

9. The following surfaces, labeled , , and , are graphs of a
function and its partial derivatives and . Identify each
surface and give reasons for your choices.

f

1x

y

z

2

fx�1, 2� fy�1, 2�

fx��1, 2� fy��1, 2�

fxx��1, 2� fyy��1, 2�

fxy�1, 2� fxy��1, 2�

a b c
f fx fy

b_4

_3 _1 0 1 3

0
_2

y

x

z 0

2

4

2
_2

a

8

_8

_4

_3 _1 0 1 3

0
_2

y

x

z 0

2

4

2
_2

c

8

_8

_3 _1 0 1 3

0
_2

y

x

z 0

2

4

2
_2

_4

10. A contour map is given for a function . Use it to estimate
and .

11. If , find and and inter-
pret these numbers as slopes. Illustrate with either hand-drawn
sketches or computer plots.

12. If , find and and inter-
pret these numbers as slopes. Illustrate with either hand-drawn
sketches or computer plots.

; 13–14 Find and and graph , , and with domains and 
viewpoints that enable you to see the relationships between them.

13. 14.

15–40 Find the first partial derivatives of the function.

15. 16.

17. 18.

19. 20.

21. 22.

23. 24.

25. 26.

27. 28.

29. 30.

31. 32.

33. 34.

35. 36.

37. 38.

39.

40.

41– 44 Find the indicated partial derivative.

41. ;

f
fx�2, 1� fy�2, 1�

3 x

y

3

_2

0
6 8

10

14

16

12

18

2

4

_4

1

f �x, y� � 16 � 4x 2 � y 2 fx�1, 2� fy�1, 2�

f �x, y� � s4 � x 2 � 4y 2 fx�1, 0� fy�1, 0�

fx fy f fx fy

f �x, y� � x 2y3 f �x, y� �
y

1 � x 2y2

f �x, y� � y 5 � 3xy f �x, y� � x 4y 3 � 8x 2y

f �x, t� � e�t cos �x f �x, t� � sx ln t

z � �2x � 3y�10 z � tan xy

f �x, y� �
x

y
f �x, y� �

x

�x � y�2

f �x, y� �
ax � by

cx � dy
w �

ev

u � v 2

t�u, v� � �u 2v � v 3�5 u�r, �� � sin�r cos ��

R�p, q� � tan�1�pq 2� f �x, y� � x y

F�x, y� � yx
y

cos�e t� dt F��, �� � y�

�
st 3 � 1 dt

f �x, y, z� � xz � 5x 2y 3z4 f �x, y, z� � x sin�y � z�

w � ln�x � 2y � 3z� w � ze xyz

u � xy sin�1�yz� u � x y�z

h�x, y, z, t� � x 2y cos�z�t� ��x, y, z, t� �
�x � �y 2

	z � 
t 2

u � sx 2
1 � x 2

2 � � � � � x 2
n

u � sin�x1 � 2x2 � � � � � nxn �

f �x, y� � ln(x � sx 2 � y 2 ) fx �3, 4�
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SECTION 14.3 PARTIAL DERIVATIVES 913

70. ;

71. If , find . [Hint: Which
order of differentiation is easiest?]

72. If , find . [Hint: Use a dif-
ferent order of differentiation for each term.]

73. Use the table of values of to estimate the values of
, , and .

74. Level curves are shown for a function . Determine whether
the following partial derivatives are positive or negative at the
point .
(a) (b) (c)
(d) (e)

75. Verify that the function is a solution of the
heat conduction equation .

76. Determine whether each of the following functions is a
solution of Laplace’s equation .
(a) (b)
(c) (d)
(e)
(f )

77. Verify that the function is a solution of
the three-dimensional Laplace equation .

78. Show that each of the following functions is a solution of the
wave equation .
(a) (b)
(c)
(d)

79. If and are twice differentiable functions of a single vari-
able, show that the function

is a solution of the wave equation given in Exercise 78.

u � x a y bz c �6u
�x �y 2 �z 3

f �x, y, z� � xy 2z3 � arcsin(xsz ) fxzy

txyz

f �x, y�
fx�3, 2� fx�3, 2.2� fx y�3, 2�

12.5

18.1

20.0

10.2

17.5

22.4

9.3

15.9

26.1

x
y

2.5

3.0

3.5

1.8 2.0 2.2

f

P
fx fy fxx

fxy fyy

10 8 6 4 2

y

x

P

u � e��2k2 t sin kx
ut � �2uxx

uxx � uyy � 0
u � x 2 � y 2 u � x 2 � y 2

u � x 3 � 3xy 2 u � ln sx 2 � y 2

t�x, y, z� � s1 � xz � s1 � xy

u � sin x cosh y � cos x sinh y
u � e�x cos y � e�y cos x

u � 1�sx 2 � y 2 � z 2

uxx � u yy � uzz � 0

ut t � a 2uxx

u � sin�kx� sin�akt� u � t��a 2t 2 � x 2 �
u � �x � at�6 � �x � at�6

u � sin�x � at� � ln�x � at�

f t

u�x, t� � f �x � at� � t�x � at�

42. ;

43. ;

44. ;

45–46 Use the definition of partial derivatives as limits to find
and .

45. 46.

47–50 Use implicit differentiation to find and .
47. 48.

49. 50.

51–52 Find and .
51. (a) (b)

52. (a) (b)
(c)

53–58 Find all the second partial derivatives.
53. 54.

55. 56.

57. 58.

59–62 Verify that the conclusion of Clairaut’s Theorem holds, that
is, .
59. 60.

61. 62.

63–70 Find the indicated partial derivative(s).
63. ;  ,  

64. ;

65. ;
66. ;

67. ;

68. ;

69. ;  ,  

f �x, y� � arctan�y�x� fx �2, 3�

f �x, y, z� �
y

x � y � z
fy �2, 1, �1�

fz �0, 0, ��4�f �x, y, z� � ssin2x � sin2y � sin2z

fy�x, y�fx�x, y�

f �x, y� �
x

x � y 2f �x, y� � xy 2 � x 3y

4

�z��y�z��x
x 2 � 2y 2 � 3z2 � 1

e z � xyz

x 2 � y 2 � z 2 � 2z � 4

yz � x ln y � z2

�z��y�z��x
z � f �x � y�z � f �x� � t�y�

z � f �xy�z � f �x�t�y�
z � f �x�y�

f �x, y� � sin2�mx � ny�f �x, y� � x 3y 5 � 2x 4y

v �
xy

x � yw � su 2 � v 2

v � e xey
z � arctan x � y

1 � xy

ux y � uyx

u � e xy sin yu � x 4y 3 � y 4

u � cos�x 2y� u � ln�x � 2y�

fxyxfxxxf �x, y� � x 4y 2 � x 3y

fyxyf �x, y� � sin�2x � 5y�

f �x, y, z� � exyz2 fxyz

t�r, s, t� � e r sin�st� trst

� 3u
�r 2 ��

u � e r� sin �

� 3z

�u �v �w
z � usv � w

� 3w

�x 2 �y
� 3w

�z �y �xw �
x

y � 2z
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400 ¤ CHAPTER 14 PARTIAL DERIVATIVES

wind speed increases (with the same time duration). Similarly, (40 15) = lim
0

(40 15 + ) (40 15) which we

can approximate by considering = 5 and = 5: (40 15)
(40 20) (40 15)

5
=
28 25

5
= 0 6,

(40 15)
(40 10) (40 15)

5
=
21 25

5
= 0 8. Averaging these values, we have (40 15) 0 7. Thus, when a

40-knot wind has been blowing for 15 hours, the wave heights increase by about 0 7 feet for every additional hour that the

wind blows.

(c) For fixed values of , the function values ( ) appear to increase in smaller and smaller increments, becoming nearly

constant as increases. Thus, the corresponding rate of change is nearly 0 as increases, suggesting that

lim ( ) = 0.

5. (a) If we start at (1 2) and move in the positive -direction, the graph of increases. Thus (1 2) is positive.

(b) If we start at (1 2) and move in the positive -direction, the graph of decreases. Thus (1 2) is negative.

6. (a) The graph of decreases if we start at ( 1 2) and move in the positive -direction, so ( 1 2) is negative.

(b) The graph of decreases if we start at ( 1 2) and move in the positive -direction, so ( 1 2) is negative.

7. (a) = ( ), so is the rate of change of in the -direction. is negative at ( 1 2) and if we move in the

positive -direction, the surface becomes less steep. Thus the values of are increasing and ( 1 2) is positive.

(b) is the rate of change of in the -direction. is negative at ( 1 2) and if we move in the positive -direction, the

surface becomes steeper. Thus the values of are decreasing, and ( 1 2) is negative.

8. (a) = ( ), so is the rate of change of in the -direction. is positive at (1 2) and if we move in the positive

-direction, the surface becomes steeper, looking in the positive -direction. Thus the values of are increasing and

(1 2) is positive.

(b) is negative at ( 1 2) and if we move in the positive -direction, the surface gets steeper (with negative slope), looking

in the positive -direction. This means that the values of are decreasing as increases, so ( 1 2) is negative.

9. First of all, if we start at the point (3 3) and move in the positive -direction, we see that both and decrease, while

increases. Both and have a low point at about (3 1 5), while is 0 at this point. So is definitely the graph of , and

one of and is the graph of . To see which is which, we start at the point ( 3 1 5) and move in the positive -direction.
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SECTION 14.3 PARTIAL DERIVATIVES ¤ 401

traces out a line with negative slope, while traces out a parabola opening downward. This tells us that is the -derivative

of . So is the graph of , is the graph of , and is the graph of .

10. (2 1) is the rate of change of at (2 1) in the -direction. If we start at (2 1), where (2 1) = 10, and move in the

positive -direction, we reach the next contour line [where ( ) = 12] after approximately 0 6 units. This represents an

average rate of change of about 2
0 6
. If we approach the point (2 1) from the left (moving in the positive -direction) the

output values increase from 8 to 10 with an increase in of approximately 0 9 units, corresponding to an average rate of

change of 2
0 9
. A good estimate for (2 1) would be the average of these two, so (2 1) 2 8. Similarly, (2 1) is the

rate of change of at (2 1) in the -direction. If we approach (2 1) from below, the output values decrease from 12 to 10 with

a change in of approximately 1 unit, corresponding to an average rate of change of 2. If we start at (2 1) and move in the

positive -direction, the output values decrease from 10 to 8 after approximately 0.9 units, a rate of change of 2
0 9
. Averaging

these two results, we estimate (2 1) 2 1.

11. ( ) = 16 4 2 2 ( ) = 8 and ( ) = 2 (1 2) = 8 and (1 2) = 4. The graph

of is the paraboloid = 16 4 2 2 and the vertical plane = 2 intersects it in the parabola = 12 4 2, = 2

(the curve 1 in the first figure). The slope of the tangent line

to this parabola at (1 2 8) is (1 2) = 8. Similarly the

plane = 1 intersects the paraboloid in the parabola

= 12 2, = 1 (the curve 2 in the second figure) and

the slope of the tangent line at (1 2 8) is (1 2) = 4.

12. ( ) = (4 2 4 2)1 2 ( ) = (4 2 4 2) 1 2 and ( ) = 4 (4 2 4 2) 1 2

(1 0) = 1

3
, (1 0) = 0. The graph of is the upper half of the ellipsoid 2 + 2 + 4 2 = 4 and the plane = 0

intersects the graph in the semicircle 2 + 2 = 4, 0 and the slope of the tangent line 1 to this semicircle

at 1 0 3 is (1 0) = 1

3
. Similarly the plane = 1

intersects the graph in the semi-ellipse 2 + 4 2 = 3, 0

and the slope of the tangent line 2 to this semi-ellipse at

1 0 3 is (1 0) = 0.

c° 2012 Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part.

NOT FOR SALE

°°cc 2012 Cengage Learning. All Rights Reserved. May not be scanned, copied, or2012 Cengage Learning. All Rights Reserved. May not be scanned, copied, duplicated, or posted to a publicly accessible website, in whole or in part.licated, or posted to a publicly accessible website, in whole or in par

586



SECTION 14.3 PARTIAL DERIVATIVES ¤ 403

negative if 0). The traces of in planes parallel to the -plane have two extreme values, and the traces of in these

planes have two zeros.

15. ( ) = 5 3 ( ) = 0 3 = 3 , ( ) = 5 4 3

16. ( ) = 4 3 + 8 2

( ) = 4 3 · 3 + 8 · 2 · = 4 3 3 + 16 , ( ) = 4 · 3 2 + 8 2 · 1 = 3 4 2 + 8 2

17. ( ) = cos ( ) = ( sin ) ( ) = sin , ( ) = ( 1) cos = cos

18. ( ) = ln ( ) = 1
2

1 2 ln = (ln ) (2 ), ( ) = · 1 =

19. = (2 + 3 )10 = 10(2 + 3 )9 · 2 = 20(2 + 3 )9, = 10(2 + 3 )9 · 3 = 30(2 + 3 )9

20. = tan = (sec2 )( ) = sec2 , = (sec2 )( ) = sec2

21. ( ) = = 1 ( ) = 1 = 1 , ( ) = 2 = 2

22. ( ) =
( + )2

( ) =
( + )2(1) ( )(2)( + )

[( + )2]2
=

+ 2

( + )3
=
( + )3

,

( ) =
( + )2(0) ( )(2)( + )

[( + )2]2
=

2

( + )3

23. ( ) =
+

+
( ) =

( + )( ) ( + )( )

( + )2
=
( )

( + )2
,

( ) =
( + )( ) ( + )( )

( + )2
=
( )

( + )2

24. =
+ 2

=
0( + 2) (1)

( + 2)2
=

( + 2)2
, =

( + 2) (2 )

( + 2)2
=

( + 2 2 )

( + 2)2

25. ( ) = ( 2 3)5 ( ) = 5( 2 3)4 · 2 = 10 ( 2 3)4,

( ) = 5( 2 3)4( 2 3 2) = 5( 2 3 2)( 2 3)4

26. ( ) = sin( cos ) ( ) = cos( cos ) · cos = cos cos( cos ),

( ) = cos( cos )( sin ) = sin cos( cos )

27. ( ) = tan 1( 2) ( ) =
1

1 + ( 2)2
· 2 =

2

1 + 2 4
, ( ) =

1

1 + ( 2)2
· 2 =

2

1 + 2 4

28. ( ) = ( ) = 1, ( ) = ln
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404 ¤ CHAPTER 14 PARTIAL DERIVATIVES

29. ( ) = cos( ) ( ) = cos = cos( ) by the Fundamental Theorem of Calculus, Part 1;

( ) = cos = cos = cos = cos( ).

30. ( ) = 3 + 1

( ) = 3 + 1 = 3 + 1 = 3 + 1 = 3 + 1 by the Fundamental

Theorem of Calculus, Part 1; ( ) = 3 + 1 = 3 + 1.

31. ( ) = 5 2 3 4 ( ) = 10 3 4, ( ) = 15 2 2 4, ( ) = 20 2 3 3

32. ( ) = sin( ) ( ) = sin( ), ( ) = cos( ),

( ) = cos( )( 1) = cos( )

33. = ln( + 2 + 3 ) =
1

+ 2 + 3
, =

2

+ 2 + 3
, =

3

+ 2 + 3

34. =

= · = 2 , = · = 2 , = · + · 1 = ( + 1)

35. = sin 1( ) = sin 1( ), = · 1

1 ( )2
( )+ sin 1( ) · =

1 2 2
+ sin 1( ),

= · 1

1 ( )2
( ) =

2

1 2 2

36. = = ( ) 1, = ln · 1 = ln , = ln ·
2
=

2
ln

37. ( ) = 2 cos( ) ( ) = 2 cos( ), ( ) = 2 cos( ),

( ) = 2 sin( )(1 ) = ( 2 ) sin( ), ( ) = 2 sin( )( 2) = ( 2 2) sin( )

38. ( ) =
+ 2

+ 2
( ) =

1

+ 2
( ) =

+ 2
,

( ) =
1

+ 2
(2 ) =

2

+ 2
, ( ) =

( + 2)(0) ( + 2)( )

( + 2)2
=

( + 2)

( + 2)2
,

( ) =
( + 2)(0) ( + 2)(2 )

( + 2)2
=

2 ( + 2)

( + 2)2

39. = 2
1 +

2
2 + · · ·+ 2 . For each = 1, , , = 1

2
2
1 +

2
2 + · · ·+ 2 1 2

(2 ) =
2
1 +

2
2 + · · ·+ 2

.

40. = sin( 1 + 2 2 + · · ·+ ). For each = 1, , , = cos( 1 + 2 2 + · · ·+ ).
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SECTION 14.3 PARTIAL DERIVATIVES ¤ 407

(b) = ( + ). Let = + . Then = = (1) = 0( ) = 0( + ),

= = (1) = 0( ) = 0( + ).

52. (a) = ( ) ( ) = 0( ) ( ), = ( ) 0( )

(b) = ( ). Let = . Then = and = . Hence = = · = 0( ) = 0( )

and = = · = 0( ) = 0( ).

(c) = . Let = . Then =
1 and =

2
. Hence = = 0( )

1
=

0( )

and = = 0( )
2

=
0( )
2

.

53. ( ) = 3 5 + 2 4 ( ) = 3 2 5 + 8 3 , ( ) = 5 3 4 + 2 4. Then ( ) = 6 5 + 24 2 ,

( ) = 15 2 4 + 8 3, ( ) = 15 2 4 + 8 3, and ( ) = 20 3 3.

54. ( ) = sin2( + ) ( ) = 2 sin( + ) cos( + ) · = sin(2 + 2 ) [using the

identity sin 2 = 2 sin cos ], ( ) = 2 sin( + ) cos( + ) · = sin(2 + 2 ).

Then ( ) = cos(2 + 2 ) · 2 = 2 2 cos(2 + 2 ),

( ) = cos(2 + 2 ) · 2 = 2 cos(2 + 2 ),

( ) = cos(2 + 2 ) · 2 = 2 cos(2 + 2 ), and

( ) = cos(2 + 2 ) · 2 = 2 2 cos(2 + 2 ).

55. = 2 + 2 = 1
2
( 2 + 2) 1 2 · 2 =

2 + 2
, = 1

2
( 2 + 2) 1 2 · 2 =

2 + 2
. Then

=
1 · 2 + 2 · 1

2
( 2 + 2) 1 2(2 )

2 + 2
2 =

2 + 2 2 2 + 2

2 + 2
=

2 + 2 2

( 2 + 2)3 2
=

2

( 2 + 2)3 2
,

= 1
2

2 + 2 3 2
(2 ) =

( 2 + 2)3 2
, = 1

2
2 + 2 3 2

(2 ) =
( 2 + 2)3 2

,

=
1 · 2 + 2 · 1

2
( 2 + 2) 1 2(2 )

2 + 2
2 =

2 + 2 2 2 + 2

2 + 2
=

2 + 2 2

( 2 + 2)3 2
=

2

( 2 + 2)3 2
.

56. = =
( ) (1)

( )2
=

2

( )2
,

=
( ) ( 1)

( )2
=

2

( )2
. Then = 2( 2)( ) 3(1) =

2 2

( )3
,

=
2 ( )2 2 · 2( )( 1)

[( )2]2
=

2 ( ) + 2 2

( )3
=

2

( )3
,

=
2 ( )2 2 · 2( )(1)

[( )2]2
=
2 ( ) 2 2

( )3
=

2

( )3
, = 2( 2)( ) 3( 1) =

2 2

( )3
.
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2.1.12 Questions with Solutions on Chapter 14.4



922 CHAPTER 14 PARTIAL DERIVATIVES

; Graphing calculator or computer required Computer algebra system required 1. Homework Hints available at stewartcalculus.comCAS

1–6 Find an equation of the tangent plane to the given surface at
the specified point.

1. ,

2. ,

3. ,

4. ,

5. ,

6. ,

; 7–8 Graph the surface and the tangent plane at the given point.
(Choose the domain and viewpoint so that you get a good view
of both the surface and the tangent plane.) Then zoom in until
the surface and the tangent plane become indistinguishable.

7. ,

8. ,

9–10 Draw the graph of and its tangent plane at the given
point. (Use your computer algebra system both to compute the 
partial derivatives and to graph the surface and its tangent plane.)
Then zoom in until the surface and the tangent plane become 
indistinguishable.

9.

10.

11–16 Explain why the function is differentiable at the given
point. Then find the linearization of the function at 
that point.

11. ,

12. ,

13. ,

14. ,

z � 3y 2 � 2x 2 � x �2, �1, �3�

z � 3�x � 1�2 � 2�y � 3�2 � 7 �2, �2, 12�

z � sxy �1, 1, 1�

z � xe xy �2, 0, 2�

z � x sin�x � y� ��1, 1, 0�

z � ln�x � 2y� �3, 1, 0�

z � x 2 � xy � 3y 2 �1, 1, 5�

z � arctan�xy 2� �1, 1, ��4�

CAS f

f �x, y� �
xy sin�x � y�
1 � x 2 � y 2 , �1, 1, 0�

f �x, y� � e�xy�10 (sx � sy � sxy ), �1, 1, 3e�0.1�

L�x, y�

�2, 3�f �x, y� � 1 � x ln�xy � 5�

�1, 1�f �x, y� � x 3y 4

�2, 1�f �x, y� �
x

x � y

�3, 0�f �x, y� � sx � e 4y

15. ,

16. ,

17–18 Verify the linear approximation at .

17. 18.

19. Given that is a differentiable function with ,
, and , use a linear approximation

to estimate .

; 20. Find the linear approximation of the function
at and use it to approximate

. Illustrate by graphing and the tangent plane.

21. Find the linear approximation of the function
at and use it to 

approximate the number .

22. The wave heights in the open sea depend on the speed 
of the wind and the length of time that the wind has been
blowing at that speed. Values of the function are
recorded in feet in the following table. Use the table to find
a linear approximation to the wave height function when 
is near 40 knots and is near 20 hours. Then estimate the
wave heights when the wind has been blowing for 24 hours
at 43 knots.

f �x, y� � e�xy cos y ��, 0�

f �x, y� � y � sin�x�y� �0, 3�

�0, 0�

2x � 3

4y � 1
� 3 � 2x � 12y sy � cos2x � 1 �

1
2 y

f f �2, 5� � 6
fx �2, 5� � 1 fy �2, 5� � �1

f �2.2, 4.9�

f �x, y� � 1 � xy cos �y �1, 1�
f �1.02, 0.97� f

f �x, y, z� � sx 2 � y 2 � z 2 �3, 2, 6�
s�3.02� 2 � �1.97� 2 � �5.99� 2

h v
t

h � f �v, t�

v
t

5

9

14

19

24

7

13

21

29

37

8

16

25

36

47

8

17

28

40

54

9

18

31

45

62

9

19

33

48

67

9

19

33

50

69

v
t 5 10 15 20 30 40 50

20

30

40

50

60

Duration (hours)

W
in

d 
sp

ee
d 

(k
no

ts
)

14.4 Exercises

We are given that , , and . To estimate the largest error
in the volume, we therefore use , , and together with ,

, and :

Thus an error of only cm in measuring each dimension could lead to an error of
approximately 1980 cm in the calculated volume! This may seem like a large error, but
it’s only about 1% of the volume of the box.

� �x � � 0.2 � �y � � 0.2 � �z � � 0.2
dx � 0.2 dy � 0.2 dz � 0.2 x � 75

y � 60 z � 40

�V � dV � �60��40��0.2� � �75��40��0.2� � �75��60��0.2� � 1980

0.2
3
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416 ¤ CHAPTER 14 PARTIAL DERIVATIVES

14.4 Tangent Planes and Linear Approximations

1. = ( ) = 3 2 2 2 + ( ) = 4 + 1, ( ) = 6 , so (2 1) = 7, (2 1) = 6.

By Equation 2, an equation of the tangent plane is ( 3) = (2 1)( 2) + (2 1)[ ( 1)]

+ 3 = 7( 2) 6( + 1) or = 7 6 + 5.

2. = ( ) = 3( 1)2 + 2( + 3)2 + 7 ( ) = 6( 1), ( ) = 4( + 3), so (2 2) = 6 and

(2 2) = 4. By Equation 2, an equation of the tangent plane is 12 = (2 2)( 2) + (2 2) [ ( 2)]

12 = 6( 2) + 4( + 2) or = 6 + 4 + 8.

3. = ( ) = ( ) = 1
2
( ) 1 2 · = 1

2
, ( ) = 1

2
( ) 1 2 · = 1

2
, so (1 1) = 1

2

and (1 1) = 1
2
. Thus an equation of the tangent plane is 1 = (1 1)( 1) + (1 1)( 1)

1 = 1
2 ( 1) + 1

2 ( 1) or + 2 = 0.

4. = ( ) = ( ) = + , ( ) = 2 , so (2 0) = 1, (2 0) = 4, and an equation of

the tangent plane is 2 = (2 0)( 2) + (2 0)( 0) 2 = 1( 2) + 4( 0) or = + 4 .

5. = ( ) = sin( + ) ( ) = · cos( + ) + sin( + ) · 1 = cos( + ) + sin( + ),

( ) = cos( + ), so ( 1 1) = ( 1) cos 0 + sin 0 = 1, ( 1 1) = ( 1) cos 0 = 1 and an equation of the

tangent plane is 0 = ( 1)( + 1) + ( 1)( 1) or + + = 0.

6. = ( ) = ln( 2 ) ( ) = 1 ( 2 ), ( ) = 2 ( 2 ), so (3 1) = 1, (3 1) = 2, and

an equation of the tangent plane is 0 = (3 1)( 3) + (3 1)( 1) = 1( 3) + ( 2)( 1) or

= 2 1.

7. = ( ) = 2 + + 3 2, so ( ) = 2 + (1 1) = 3, ( ) = + 6 (1 1) = 7 and an

equation of the tangent plane is 5 = 3( 1) + 7( 1) or = 3 + 7 5. After zooming in, the surface and the

tangent plane become almost indistinguishable. (Here, the tangent plane is below the surface.) If we zoom in farther, the

surface and the tangent plane will appear to coincide.
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SECTION 14.4 TANGENT PLANES AND LINEAR APPROXIMATIONS ¤ 417

8. = ( ) = arctan( 2) =
1

1 + ( 2)2
( 2) =

2

1 + 2 4
, =

1

1 + ( 2)2
(2 ) =

2

1 + 2 4
,

(1 1) = 1
1+1

= 1
2
, (1 1) = 2

1+ 1
= 1, so an equation of the tangent plane is

4
= 1

2
( 1) + 1( 1) or

= 1
2
+ 3

2
+

4
. After zooming in, the surface and the tangent plane become almost indistinguishable. (Here the

tangent plane is above the surface.) If we zoom in farther, the surface and the tangent plane will appear to coincide.

9. ( ) =
sin ( )

1 + 2 + 2
. A CAS gives ( ) =

sin ( ) + cos ( )

1 + 2 + 2

2 2 sin ( )

(1 + 2 + 2)2
and

( ) =
sin ( ) cos ( )

1 + 2 + 2

2 2 sin ( )

(1 + 2 + 2)2
. We use the CAS to evaluate these at (1 1), and then

substitute the results into Equation 2 to compute an equation of the tangent plane: = 1
3

1
3
. The surface and tangent

plane are shown in the first graph below. After zooming in, the surface and the tangent plane become almost indistinguishable,

as shown in the second graph. (Here, the tangent plane is shown with fewer traces than the surface.) If we zoom in farther, the

surface and the tangent plane will appear to coincide.

10. ( ) = 10 + + . A CAS gives

( ) = 1
10

10 + + + 10 1

2
+

2
and

( ) = 1
10

10 + + + 10 1

2
+

2
. We use the CAS to evaluate these at (1 1),

and then substitute the results into Equation 2 to get an equation of the tangent plane: = 0 7 0 1 + 0 7 0 1 + 1 6 0 1.

The surface and tangent plane are shown in the first graph below. After zooming in, the surface and the tangent plane become
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418 ¤ CHAPTER 14 PARTIAL DERIVATIVES

almost indistinguishable, as shown in the second graph. (Here, the tangent plane is above the surface.) If we zoom in farther,

the surface and the tangent plane will appear to coincide.

11. ( ) = 1+ ln( 5). The partial derivatives are ( ) = · 1

5
( )+ ln( 5) · 1 =

5
+ ln( 5)

and ( ) = · 1

5
( ) =

2

5
, so (2 3) = 6 and (2 3) = 4. Both and are continuous functions for

5, so by Theorem 8, is differentiable at (2 3). By Equation 3, the linearization of at (2 3) is given by

( ) = (2 3) + (2 3)( 2) + (2 3)( 3) = 1 + 6( 2) + 4( 3) = 6 + 4 23.

12. ( ) = 3 4. The partial derivatives are ( ) = 3 2 4 and ( ) = 4 3 3, so (1 1) = 3 and (1 1) = 4.

Both and are continuous functions, so is differentiable at (1 1) by Theorem 8. The linearization of at (1 1) is given

by ( ) = (1 1) + (1 1)( 1) + (1 1)( 1) = 1 + 3( 1) + 4( 1) = 3 + 4 6.

13. ( ) =
+

. The partial derivatives are ( ) =
1( + ) (1)

( + )2
= ( + )2 and

( ) = ( 1)( + ) 2 · 1 = ( + )2, so (2 1) = 1
9
and (2 1) = 2

9
. Both and are continuous

functions for 6= , so is differentiable at (2 1) by Theorem 8. The linearization of at (2 1) is given by

( ) = (2 1) + (2 1)( 2) + (2 1)( 1) = 2
3
+ 1

9
( 2) 2

9
( 1) = 1

9
2
9
+ 2

3
.

14. ( ) = + 4 = ( + 4 )1 2. The partial derivatives are ( ) = 1
2
( + 4 ) 1 2 and

( ) = 1
2
( + 4 ) 1 2(4 4 ) = 2 4 ( + 4 ) 1 2, so (3 0) = 1

2
(3 + 0) 1 2 = 1

4
and

(3 0) = 2 0(3 + 0) 1 2 = 1. Both and are continuous functions near (3 0), so is

differentiable at (3 0) by Theorem 8. The linearization of at (3 0) is

( ) = (3 0) + (3 0)( 3) + (3 0)( 0) = 2 + 1
4
( 3) + 1( 0) = 1

4
+ + 5

4
.

15. ( ) = cos . The partial derivatives are ( ) = ( ) cos = cos and

( ) = ( sin ) + (cos ) ( ) = (sin + cos ), so ( 0) = 0 and ( 0) = .

Both and are continuous functions, so is differentiable at ( 0), and the linearization of at ( 0) is

( ) = ( 0) + ( 0)( ) + ( 0)( 0) = 1 + 0( ) ( 0) = 1 .
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SECTION 14.4 TANGENT PLANES AND LINEAR APPROXIMATIONS ¤ 419

16. ( ) = + sin( ). The partial derivatives are ( ) = (1 ) cos( ) and ( ) = 1 + ( 2) cos( ), so

(0 3) = 1
3
and (0 3) = 1. Both and are continuous functions for 6= 0, so is differentiable at (0 3), and the

linearization of at (0 3) is

( ) = (0 3) + (0 3)( 0) + (0 3)( 3) = 3 + 1
3
( 0) + 1( 3) = 1

3
+ .

17. Let ( ) =
2 + 3

4 + 1
. Then ( ) =

2

4 + 1
and ( ) = (2 + 3)( 1)(4 + 1) 2(4) =

8 12

(4 + 1)2
. Both and

are continuous functions for 6= 1
4
, so by Theorem 8, is differentiable at (0 0). We have (0 0) = 2, (0 0) = 12

and the linear approximation of at (0 0) is ( ) (0 0) + (0 0)( 0) + (0 0)( 0) = 3 + 2 12 .

18. Let ( ) = + cos2 . Then ( ) = 1
2
( + cos2 ) 1 2(2 cos )( sin ) = cos sin + cos2 and

( ) = 1
2
( + cos2 ) 1 2(1) = 1 2 + cos2 . Both and are continuous functions for cos2 , so

is differentiable at (0 0) by Theorem 8. We have (0 0) = 0 and (0 0) = 1
2
, so the linear approximation of at (0 0) is

( ) (0 0) + (0 0)( 0) + (0 0)( 0) = 1 + 0 + 1
2
= 1 + 1

2
.

19. We can estimate (2 2 4 9) using a linear approximation of at (2 5), given by

( ) (2 5) + (2 5)( 2) + (2 5)( 5) = 6 + 1( 2) + ( 1)( 5) = + 9. Thus

(2 2 4 9) 2 2 4 9 + 9 = 6 3.

20. ( ) = 1 cos ( ) = cos and

( ) = [ ( sin ) + (cos )(1)] = sin cos , so (1 1) = 1, (1 1) = 1. Then the linear

approximation of at (1 1) is given by

( ) (1 1) + (1 1)( 1) + (1 1)( 1)

= 2 + (1)( 1) + (1)( 1) = +

Thus (1 02 0 97) 1 02 + 0 97 = 1 99. We graph and its

tangent plane near the point (1 1 2) below. Notice near = 1 the

surfaces are almost identical.

21. ( ) = 2 + 2 + 2 ( ) =
2 + 2 + 2

, ( ) =
2 + 2 + 2

, and

( ) =
2 + 2 + 2

, so (3 2 6) = 3
7
, (3 2 6) = 2

7
, (3 2 6) = 6

7
. Then the linear approximation of
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SECTION 14.6 DIRECTIONAL DERIVATIVES AND THE GRADIENT VECTOR 943

1. Level curves for barometric pressure (in millibars) are shown
for 6:00 AM on November 10, 1998. A deep low with pressure
972 mb is moving over northeast Iowa. The distance along the
red line from K (Kearney, Nebraska) to S (Sioux City, Iowa) is
300 km. Estimate the value of the directional derivative of the
pressure function at Kearney in the direction of Sioux City.
What are the units of the directional derivative?

2. The contour map shows the average maximum temperature for
November 2004 (in ). Estimate the value of the directional
derivative of this temperature function at Dubbo, New South
Wales, in the direction of Sydney. What are the units?

3. A table of values for the wind-chill index is given
in Exercise 3 on page 911. Use the table to estimate the value
of , where .

4–6 Find the directional derivative of at the given point in the
direction indicated by the angle .

4. ,  ,  

5. ,  ,  

6. ,  ,  

1012

1012

1008

1008

1004
1000
996
992

988

980

976

984

1016
1020
1024

972

K

S

�C

Sydney

Dubbo

30

27 24

24

21
18

0 100 200 300
(Distance in kilometers)

Re
pr

in
te

d 
by

 p
er

m
is

si
on

 o
f t

he
 C

om
m

on
w

ea
lth

 o
f A

us
tra

lia
.

W � f �T, v�

Du f ��20, 30� u � �i � j��s2

f
�

f �x, y� � x 3y 4 � x 4y 3 �1, 1� � � ��6

f �x, y� � ye�x �0, 4� � � 2��3

f �x, y� � e x cos y �0, 0� � � ��4

7–10
(a) Find the gradient of .
(b) Evaluate the gradient at the point .
(c) Find the rate of change of at in the direction of the 

vector .

7. ,  ,  

8. ,  ,  

9. ,  ,  

10. ,  ,  

11–17 Find the directional derivative of the function at the given
point in the direction of the vector .

11. ,  ,  

12. ,  ,  

13. ,  ,  

14. ,  ,  

15. ,  ,  

16. ,  ,  

17. ,  ,  

18. Use the figure to estimate .

19. Find the directional derivative of at in
the direction of .

20. Find the directional derivative of at
in the direction of .

21–26 Find the maximum rate of change of at the given point and
the direction in which it occurs.

21. ,

22. ,

23. ,

24. ,

25. ,

26. ,

f
P

f P
u

f �x, y� � sin�2x � 3y� P��6, 4� u � 1
2 (s3 i � j)

f �x, y� � y 2�x P�1, 2� u � 1
3 (2 i � s5 j)

f �x, y, z� � x 2yz � xyz 3 P�2, �1, 1� u � �0, 4
5, �

3
5 �

f �x, y, z� � y 2e xyz P�0, 1, �1� u � � 3
13 , 4

13 , 12
13 �

v

f �x, y� � e x sin y �0, ��3� v � ��6, 8 �

f �x, y� �
x

x 2 � y 2 �1, 2� v � �3, 5 �

t�p, q� � p4 � p2q3 �2, 1� v � i � 3 j

t�r, s� � tan�1�rs� �1, 2� v � 5 i � 10 j

f �x, y, z� � xe y � ye z � ze x �0, 0, 0� v � �5, 1, �2 �

f �x, y, z� � sxyz �3, 2, 6� v � ��1, �2, 2 �

h�r, s, t� � ln�3r � 6s � 9t� �1, 1, 1� v � 4 i � 12 j � 6k

Du f �2, 2�
y

x0

(2, 2)

±f(2, 2)

u

f �x, y� � sxy P�2, 8�
Q�5, 4�

f �x, y, z� � xy � yz � zx
P�1, �1, 3� Q�2, 4, 5�

f

f �x, y� � 4ysx �4, 1�

f �s, t� � te st �0, 2�

f �x, y� � sin�xy� �1, 0�

f �x, y, z� � �x � y��z �1, 1, �1�

f �x, y, z� � sx 2 � y 2 � z 2 �3, 6, �2�

f �p, q, r� � arctan�pqr� �1, 2, 1�

14.6 Exercises

; Graphing calculator or computer required 1. Homework Hints available at stewartcalculus.com
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944 CHAPTER 14 PARTIAL DERIVATIVES

27. (a) Show that a differentiable function decreases most
rapidly at in the direction opposite to the gradient vector,
that is, in the direction of .

(b) Use the result of part (a) to find the direction in which the
function decreases fastest at the 
point .

28. Find the directions in which the directional derivative of
at the point has the value 1.

29. Find all points at which the direction of fastest change of the
function is .

30. Near a buoy, the depth of a lake at the point with coordi nates
is , where , , and are

measured in meters. A fisherman in a small boat starts at the
point and moves toward the buoy, which is located at

. Is the water under the boat getting deeper or shallower
when he departs? Explain.

31. The temperature in a metal ball is inversely proportional to
the distance from the center of the ball, which we take to be the
origin. The temperature at the point is .
(a) Find the rate of change of at in the direction

toward the point .
(b) Show that at any point in the ball the direction of greatest

increase in temperature is given by a vector that points
toward the origin.

32. The temperature at a point is given by 

where is measured in and , , in meters.
(a) Find the rate of change of temperature at the point

in the direction toward the point .
(b) In which direction does the temperature increase fastest 

at ?
(c) Find the maximum rate of increase at .

33. Suppose that over a certain region of space the electrical poten-
tial is given by .
(a) Find the rate of change of the potential at in the

direction of the vector .
(b) In which direction does change most rapidly at ?
(c) What is the maximum rate of change at ?

34. Suppose you are climbing a hill whose shape is given by the
equation , where , , and are
measured in meters, and you are standing at a point with coor-
dinates . The positive -axis points east and the
positive -axis points north.
(a) If you walk due south, will you start to ascend or descend?

At what rate?
(b) If you walk northwest, will you start to ascend or descend?

At what rate?
(c) In which direction is the slope largest? What is the rate of

ascent in that direction? At what angle above the horizontal
does the path in that direction begin?

f
x

�� f �x�

f �x, y� � x 4y � x 2 y 3

�2, �3�

f �x, y� � ye�xy �0, 2�

f �x, y� � x 2 � y 2 � 2x � 4y i � j

�x, y� z � 200 � 0.02x 2 � 0.001y 3 x y z

�80, 60�
�0, 0�

T

�1, 2, 2� 120�
T �1, 2, 2�

�2, 1, 3�

�x, y, z�

T�x, y, z� � 200e�x 2�3y 2�9z 2

T �C x y z

P�2, �1, 2� �3, �3, 3�

P
P

V V�x, y, z� � 5x 2 � 3xy � xyz
P�3, 4, 5�

v � i � j � k
V P

P

z � 1000 � 0.005x 2 � 0.01y 2 x y z

�60, 40, 966� x
y

35. Let be a function of two variables that has continuous 
partial derivatives and consider the points , ,

, and . The directional derivative of at in
the direction of the vector is 3 and the directional deriva-
tive at in the direction of is 26. Find the directional
derivative of at in the direction of the vector .

36. Shown is a topographic map of Blue River Pine Provincial
Park in British Columbia. Draw curves of steepest descent
from point (descending to Mud Lake) and from point .

37. Show that the operation of taking the gradient of a function has
the given property. Assume that and are differen tiable func-
tions of and and that , are constants.
(a) (b) 

(c) (d) 

38. Sketch the gradient vector for the function whose
level curves are shown. Explain how you chose the direction
and length of this vector.

39. The second directional derivative of is

If and , calculate
.

f
A�1, 3� B�3, 3�

C�1, 7� D�6, 15� f A
ABl

A ACl

f A ADl

A B

2000 m
2200 m

2200 m

2200 m

Blue RiverBlue River

Smoke CreekSmoke Creek

North Thompson RiverNorth Thompson River

Mud LakeMud Lake

Mud CreekMud Creek

Blue River

Blue River Pine Provincial Park

A

B
1000 m

Reproduced with the permission of Natural Resources Canada 2009,  
courtesy of the Centre of Topographic Information.

u v
x y a b

��au � bv� � a �u � b �v ��uv� � u �v � v �u

��u
v� �

v �u � u �v

v 2 �un � nu n�1 �u

� f �4, 6� f

20

2

4

6

4 6 x

y

_1

0
1 3 5

_3

_5

(4, 6)

f �x, y�

Du
2 f �x, y� � Du	Du f �x, y�


u � � 3
5 , 4

5 �f �x, y� � x 3 � 5x 2y � y 3

Du
2 f �2, 1�
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SECTION 14.6 DIRECTIONAL DERIVATIVES AND THE GRADIENT VECTOR ¤ 437

14.6 Directional Derivatives and the Gradient Vector

1. We can approximate the directional derivative of the pressure function at K in the direction of S by the average rate of change

of pressure between the points where the red line intersects the contour lines closest to K (extend the red line slightly at the

left). In the direction of S, the pressure changes from 1000 millibars to 996 millibars and we estimate the distance between

these two points to be approximately 50 km (using the fact that the distance from K to S is 300 km). Then the rate of change of

pressure in the direction given is approximately 996 1000
50

= 0 08 millibar km.

2. First we draw a line passing through Dubbo and Sydney. We approximate the directional derivative at Dubbo in the direction

of Sydney by the average rate of change of temperature between the points where the line intersects the contour lines closest to

Dubbo. In the direction of Sydney, the temperature changes from 30 C to 27 C. We estimate the distance between these two

points to be approximately 120 km, so the rate of change of maximum temperature in the direction given is approximately

27 30
120

= 0 025 C km.

3. u ( 20 30) = ( 20 30) · u = ( 20 30) 1

2
+ ( 20 30) 1

2
.

( 20 30) = lim
0

( 20 + 30) ( 20 30) , so we can approximate ( 20 30) by considering = ±5 and

using the values given in the table: ( 20 30)
( 15 30) ( 20 30)

5
=

26 ( 33)

5
= 1 4,

( 20 30)
( 25 30) ( 20 30)

5
=

39 ( 33)

5
= 1 2. Averaging these values gives ( 20 30) 1 3.

Similarly, ( 20 30) = lim
0

( 20 30 + ) ( 20 30) , so we can approximate ( 20 30) with = ±10:

( 20 30)
( 20 40) ( 20 30)

10
=

34 ( 33)

10
= 0 1,

( 20 30)
( 20 20) ( 20 30)

10
=

30 ( 33)

10
= 0 3. Averaging these values gives ( 20 30) 0 2.

Then u ( 20 30) 1 3 1

2
+ ( 0 2) 1

2
0 778.

4. ( ) = 3 4 + 4 3 ( ) = 3 2 4 + 4 3 3 and ( ) = 4 3 3 + 3 4 2. If u is a unit vector in the

direction of =
6
, then from Equation 6, u (1 1) = (1 1) cos

6
+ (1 1) sin

6
= 7 · 3

2
+ 7 · 1

2
= 7+ 7 3

2
.

5. ( ) = ( ) = and ( ) = . If u is a unit vector in the direction of = 2 3, then

from Equation 6, u (0 4) = (0 4) cos 2
3
+ (0 4) sin 2

3
= 4 · 1

2
+ 1 · 3

2
= 2+ 3

2
.

6. ( ) = cos ( ) = cos and ( ) = sin . If u is a unit vector in the direction of =
4
, then

from Equation 6, u (0 0) = (0 0) cos 4
+ (0 0) sin 4

= 1 · 2
2 + 0 = 2

2 .
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438 ¤ CHAPTER 14 PARTIAL DERIVATIVES

7. ( ) = sin(2 + 3 )

(a) ( ) = i+ j = [cos(2 + 3 ) · 2] i+ [cos(2 + 3 ) · 3] j = 2 cos (2 + 3 ) i+ 3 cos (2 + 3 ) j

(b) ( 6 4) = (2 cos 0) i+ (3 cos 0) j = 2 i+ 3 j

(c) By Equation 9, u ( 6 4) = ( 6 4) · u = (2 i+ 3 j) · 1
2

3 i j = 1
2
2 3 3 = 3 3

2
.

8. ( ) = 2

(a) ( ) = i+ j = 2( 2)i+ (2 ) j =
2

2
i+

2
j

(b) (1 2) = 4 i+ 4 j

(c) By Equation 9, u (1 2) = (1 2) · u = ( 4 i+ 4 j) · 1
3
2 i+ 5 j = 1

3
8 + 4 5 = 4

3
5 2 .

9. ( ) = 2 3

(a) ( ) = h ( ) ( ) ( )i = 2 3 2 3 2 3 2

(b) (2 1 1) = h 4 + 1 4 2 4 + 6i = h 3 2 2i

(c) By Equation 14, u (2 1 1) = (2 1 1) · u = h 3 2 2i · 0 4
5

3
5
= 0 + 8

5
6
5
= 2

5
.

10. ( ) = 2

(a) ( ) = h ( ) ( ) ( )i = 2 ( ) 2 · ( ) + · 2 2 ( )

= 3 ( 2 + 2 ) 3

(b) (0 1 1) = h 1 2 0i

(c) u (0 1 1) = (0 1 1) · u = h 1 2 0i · 3
13

4
13

12
13

= 3
13
+ 8

13
+ 0 = 5

13

11. ( ) = sin ( ) = h sin cos i, (0 3) = 3
2

1
2
, and a

unit vector in the direction of v is u = 1

( 6)2+82
h 6 8i = 1

10
h 6 8i = 3

5
4
5
, so

u (0 3) = (0 3) · u = 3
2

1
2
· 3

5
4
5
= 3 3

10 + 4
10 =

4 3 3
10 .

12. ( ) =
2 + 2

( ) =
( 2 + 2)(1) (2 )

( 2 + 2)2
0 (2 )

( 2 + 2)2
=

2 2

( 2 + 2)2
2

( 2 + 2)2
,

(1 2) = 3
25

4
25
, and a unit vector in the direction of v = h3 5i is u = 1

9+25
h3 5i = 3

34

5

34
, so

u (1 2) = (1 2) · u = 3
25

4
25

· 3

34

5

34
= 9

25 34

20

25 34
= 11

25 34
.

13. ( ) = 4 2 3 ( ) = 4 3 2 3 i+ 3 2 2 j, (2 1) = 28 i 12 j, and a unit

vector in the direction of v is u = 1

12+32
(i + 3 j) = 1

10
(i + 3 j), so

u (2 1) = (2 1) · u = (28 i 12 j) · 1

10
(i+ 3 j) = 1

10
(28 36) = 8

10
or 4 10

5
.
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SECTION 14.6 DIRECTIONAL DERIVATIVES AND THE GRADIENT VECTOR ¤ 439

14. ( ) = tan 1( ) ( ) =
1

1 + ( )2
· i+

1

1 + ( )2
· j =

1 + 2 2
i+

1 + 2 2
j,

(1 2) = 2
5 i+

1
5 j, and a unit vector in the direction of v is u =

1

52+102
(5 i+ 10 j) = 1

5 5
(5 i+ 10 j) = 1

5
i+ 2

5
j,

so u (1 2) = (1 2) · u = ( 2
5
i+ 1

5
j) · ( 1

5
i+ 2

5
j) = 2

5 5
+ 2

5 5
= 4

5 5
or 4 5

25
.

15. ( ) = + + ( ) = h + + + i, (0 0 0) = h1 1 1i, and a unit

vector in the direction of v is u = 1
25+1+4

h5 1 2i = 1

30
h5 1 2i, so

u (0 0 0) = (0 0 0) · u = h1 1 1i · 1

30
h5 1 2i = 4

30
.

16. ( ) =

( ) = 1
2
( ) 1 2 · 1

2
( ) 1 2 · 1

2
( ) 1 2 · =

2 2 2
,

(3 2 6) = 12

2 36

18

2 36

6

2 36
= 1 3

2
1
2
, and a unit vector in the

direction of v is u = 1
1+ 4+4

h 1 2 2i = 1
3

2
3

2
3
, so

u (3 2 6) = (3 2 6) · u = 1 3
2

1
2
· 1

3
2
3

2
3
= 1

3
1 + 1

3
= 1.

17. ( ) = ln(3 + 6 + 9 ) ( ) = h3 (3 + 6 + 9 ) 6 (3 + 6 + 9 ) 9 (3 + 6 + 9 )i,

(1 1 1) = 1
6

1
3

1
2
, and a unit vector in the direction of v = 4 i + 12 j + 6k

is u = 1
16+144+36

(4 i+ 12 j+ 6k) = 2
7
i + 6

7
j + 3

7
k, so

u (1 1 1) = (1 1 1) · u = 1
6

1
3

1
2
· 2

7
6
7

3
7
= 1

21
+ 2

7
+ 3

14
= 23

42
.

18. u (2 2) = (2 2) · u, the scalar projection of (2 2) onto u, so we draw a

perpendicular from the tip of (2 2) to the line containing u. We can use the

point (2 2) to determine the scale of the axes, and we estimate the length of the

projection to be approximately 3.0 units. Since the angle between (2 2) and u

is greater than 90 , the scalar projection is negative. Thus u (2 2) 3.

19. ( ) = ( ) = 1
2
( ) 1 2( ) 1

2
( ) 1 2( ) =

2 2
, so (2 8) = 1 1

4
.

The unit vector in the direction of = h5 2 4 8i = h3 4i is u = 3
5

4
5
, so

u (2 8) = (2 8) · u = 1 1
4
· 3

5
4
5
= 2

5
.

20. ( ) = + + ( ) = h + + + i, so (1 1 3) = h2 4 0i. The unit vector in the

direction of = h1 5 2i is u = 1

30
h1 5 2i, so u (1 1 3) = (1 1 3) · u = h2 4 0i · 1

30
h1 5 2i = 22

30
.
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440 ¤ CHAPTER 14 PARTIAL DERIVATIVES

21. ( ) = 4 ( ) = 4 · 1
2

1 2 4 = h2 4 i.

(4 1) = h1 8i is the direction of maximum rate of change, and the maximum rate is | (4 1)| = 1 + 64 = 65.

22. ( ) = ( ) = ( ) ( ) + (1) = 2 ( + 1) .

(0 2) = h4 1i is the direction of maximum rate of change, and the maximum rate is | (0 2)| = 16 + 1 = 17.

23. ( ) = sin( ) ( ) = h cos( ) cos( )i, (1 0) = h0 1i. Thus the maximum rate of change is

| (1 0)| = 1 in the direction h0 1i.

24. ( ) =
+

( ) =
1 1 +

2
, (1 1 1) = h 1 1 2i. Thus the maximum rate of

change is | (1 1 1)| = 1 + 1 + 4 = 6 in the direction h 1 1 2i.

25. ( ) = 2 + 2 + 2

( ) = 1
2 (

2 + 2 + 2) 1 2 · 2 1
2 (

2 + 2 + 2) 1 2 · 2 1
2 (

2 + 2 + 2) 1 2 · 2

=
2 + 2 + 2 2 + 2 + 2 2 + 2 + 2

(3 6 2) = 3

49

6

49

2

49
= 3

7
6
7

2
7
. Thus the maximum rate of change is

| (3 6 2)| = 3
7

2
+ 6

7

2
+ 2

7

2
= 9+ 36+ 4

49
= 1 in the direction 3

7
6
7

2
7
or equivalently h3 6 2i.

26. ( ) = arctan( ) ( ) =
1 + ( )2 1 + ( )2 1 + ( )2

, (1 2 1) = 2
5

1
5

2
5
. Thus

the maximum rate of change is | (1 2 1)| = 4
25
+ 1

25
+ 4

25
= 9

25
= 3

5
in the direction 2

5
1
5

2
5
or equivalently

h2 1 2i.

27. (a) As in the proof of Theorem 15, u = | | cos . Since the minimum value of cos is 1 occurring when = , the

minimum value of u is | | occurring when = , that is when u is in the opposite direction of

(assuming 6= 0).

(b) ( ) = 4 2 3 ( ) = 4 3 2 3 4 3 2 2 , so decreases fastest at the point (2 3) in the

direction (2 3) = h12 92i = h 12 92i.

28. ( ) = ( ) = ( ) = 2 , ( ) = ( ) + = (1 ) and

(0 2) = 4 0 = 4, (0 2) = (1 0) 0 = 1. If u is a unit vector which makes an angle with the positive -axis,

then u (0 2) = (0 2) cos + (0 2) sin = 4 cos + sin . We want u (0 2) = 1, so 4 cos + sin = 1

sin = 1 + 4 cos sin2 = (1 + 4 cos )2 1 cos2 = 1 + 8 cos + 16 cos2
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SECTION 14.6 DIRECTIONAL DERIVATIVES AND THE GRADIENT VECTOR ¤ 441

17 cos2 + 8cos = 0 cos (17 cos + 8) = 0 cos = 0 or cos = 8
17
. If cos = 0 then =

2
or = 3

2

but 3
2
does not satisfy the original equation. If cos = 8

17
then = cos 1 8

17
or = 2 cos 1 8

17
but

= cos 1 8
17

is not a solution of the original equation. Thus the directions are =
2
or

= 2 cos 1 8
17

4 22 rad.

29. The direction of fastest change is ( ) = (2 2) i+ (2 4) j, so we need to find all points ( ) where ( ) is

parallel to i+ j (2 2) i+ (2 4) j = (i+ j) = 2 2 and = 2 4. Then 2 2 = 2 4

= + 1 so the direction of fastest change is i+ j at all points on the line = + 1.

30. The fisherman is traveling in the direction h 80 60i. A unit vector in this direction is u = 1
100
h 80 60i = 4

5
3
5
,

and if the depth of the lake is given by ( ) = 200 + 0 02 2 0 001 3, then ( ) = 0 04 0 003 2 .

u (80 60) = (80 60) · u = h3 2 10 8i · 4
5

3
5
= 3 92. Since u (80 60) is positive, the depth of the lake is

increasing near (80 60) in the direction toward the buoy.

31. =
2 + 2 + 2

and 120 = (1 2 2) =
3
so = 360.

(a) u = h1 1 1i
3

,

u (1 2 2) = (1 2 2) ·u = 360 2 + 2 + 2 3 2h i
(1 2 2)

·u = 40
3
h1 2 2i · 1

3
h1 1 1i = 40

3 3

(b) From (a), = 360 2 + 2 + 2 3 2h i, and since h i is the position vector of the point ( ), the

vector h i, and thus , always points toward the origin.

32. = 400
2 3 2 9 2h 3 9 i

(a) u = 1

6
h1 2 1i, (2 1 2) = 400 43h2 3 18i and

u (2 1 2) =
400 43

6
(26) =

5200 6

3 43
C m.

(b) (2 1 2) = 400 43h 2 3 18i or equivalently h 2 3 18i.

(c) | | = 400 2 3 2 9 2
2 + 9 2 + 81 2 C m is the maximum rate of increase. At (2 1 2) the maximum rate

of increase is 400 43 337 C m.

33. ( ) = h10 3 + 3 i, (3 4 5) = h38 6 12i

(a) u (3 4 5) = h38 6 12i · 1

3
h1 1 1i = 32

3

(b) (3 4 5) = h38 6 12i, or equivalently, h19 3 6i.

(c) | (3 4 5)| = 382 + 62 + 122 = 1624 = 2 406
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2.1.14 Questions with Solutions on Chapter 14.7



SECTION 14.7 MAXIMUM AND MINIMUM VALUES 953

We close this section by giving a proof of the first part of the Second Derivatives Test.
Part (b) has a similar proof.

PROOF OF THEOREM 3, PART (a) We compute the second-order directional derivative of
in the direction of . The first-order derivative is given by Theorem 14.6.3:

Applying this theorem a second time, we have

(by Clairaut’s Theorem)

If we complete the square in this expression, we obtain

We are given that and . But and are con-
tinuous functions, so there is a disk with center and radius such that

and whenever is in . Therefore, by looking at Equation
10, we see that whenever is in . This means that if is the curve
obtained by intersecting the graph of with the vertical plane through in
the direction of , then is concave upward on an interval of length . This is true in
the direction of every vector , so if we restrict to lie in , the graph of lies above
its horizontal tangent plane at . Thus whenever is in . This
shows that is a local minimum.

u � �h, k �

Du f � fxh � fyk

D 2
u f � Du�Du f � �

�

�x
�Du f �h �

�

�y
�Du f �k

� � fxxh � fyxk�h � � fxyh � fyyk�k

� fxxh2 � 2 fxyhk � fyyk 2

D 2
u f � fxx�h �

fx y

fxx
k�2

�
k 2

fxx
� fxx fyy � f 2

xy �

fxx�a, b� � 0 D�a, b� � 0 fxx D � fxx fyy � fx y
2

B �a, b� � � 0
fxx�x, y� � 0 D�x, y� � 0 �x, y� B

Du
2 f �x, y� � 0 �x, y� B C

f P�a, b, f �a, b��
u C 2�

u �x, y� B f
P f �x, y� � f �a, b� �x, y� B

f �a, b�

f

10

1. Suppose is a critical point of a function with contin-
uous second derivatives. In each case, what can you say 
about ?

(a)

(b)

2. Suppose (0, 2) is a critical point of a function t with contin-
uous second derivatives. In each case, what can you say 
about t?
(a)

(b)

(c)

3–4 Use the level curves in the figure to predict the location of 
the critical points of and whether has a saddle point or a 
local maximum or minimum at each critical point. Explain your 

�1, 1� f

f

fxx�1, 1� � 4, fx y�1, 1� � 1, fyy�1, 1� � 2

fxx�1, 1� � 4, fx y�1, 1� � 3, fyy�1, 1� � 2

txx�0, 2� � �1, tx y�0, 2� � 6, tyy�0, 2� � 1

txx�0, 2� � �1, tx y�0, 2� � 2, tyy�0, 2� � �8

txx�0, 2� � 4, tx y�0, 2� � 6, tyy�0, 2� � 9

f f

reasoning. Then use the Second Derivatives Test to confirm your
predictions.

3. f �x, y� � 4 � x 3 � y 3 � 3xy

x

y

4
4.2

5
6

1

1

3.7

3.7

3.2

3.2

2
1
0

_1

_1

14.7 Exercises

; Graphing calculator or computer required 1. Homework Hints available at stewartcalculus.com
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954 CHAPTER 14 PARTIAL DERIVATIVES

4.

5–18 Find the local maximum and minimum values and saddle
point(s) of the function. If you have three-dimensional graphing
software, graph the function with a domain and viewpoint that
reveal all the important aspects of the function.

5.

6.

7.

8.

9.

10.

11.

12.

13.

14.

15.

16.

17. ,
18. , ,

19. Show that has an infinite
number of critical points and that at each one. Then
show that has a local (and absolute) minimum at each criti-
cal point.

20. Show that has maximum values at
and minimum values at . Show 

also that has infinitely many other critical points and 
at each of them. Which of them give rise to maximum
values? Minimum values? Saddle points?

; 21–24 Use a graph or level curves or both to estimate the local 
maximum and minimum values and saddle point(s) of the func-
tion. Then use calculus to find these values precisely.
21.

f �x, y� � 3x � x 3 � 2y 2 � y 4

y

x

_2.5

_2.9
_2.7

_
1

_
1.
5

1.9

1.7

1.5

1.5

10.
5

0

_
2

1

1

_1

_1

f �x, y� � x 2 � xy � y 2 � y
f �x, y� � xy � 2x � 2y � x 2 � y 2

f �x, y� � �x � y��1 � xy�

f �x, y� � xe�2x2�2y2

f �x, y� � y 3 � 3x 2y � 6x 2 � 6y 2 � 2
f �x, y� � xy�1 � x � y�

f �x, y� � x 3 � 12xy � 8y 3

f �x, y� � xy �
1
x �

1
y

f �x, y� � e x cos y
f �x, y� � y cos x
f �x, y� � �x 2 � y 2�e y2�x2

f �x, y� � e y�y 2 � x 2�

�1 � x � 7f �x, y� � y 2 � 2y cos x
�	 
 y 
 	�	 
 x 
 	f �x, y� � sin x sin y

f �x, y� � x 2 � 4y 2 � 4xy � 2
D � 0

f

f �x, y� � x 2ye�x2�y2

(�1, �1�s2 )(�1, 1�s2 )
D � 0f

f �x, y� � x 2 � y 2 � x�2y�2

22.

23. ,
,

24. ,
,

; 25–28 Use a graphing device as in Example 4 (or Newton’s
method or a rootfinder) to find the critical points of correct to
three decimal places. Then classify the critical points and find the
highest or lowest points on the graph, if any.
25.

26.

27.

28. ,  ,  

29–36 Find the absolute maximum and minimum values of on
the set .
29. , is the closed triangular region

with vertices , , and 

30. , is the closed triangular region
with vertices , , and 

31. ,

32. ,

33. ,

34. ,

35. ,

36. ,  is the quadrilateral
whose vertices are , , , and .

; 37. For functions of one variable it is impossible for a con tinuous
function to have two local maxima and no local minimum.
But for functions of two variables such functions exist. Show
that the function

has only two critical points, but has local maxima at both of
them. Then use a computer to produce a graph with a care-
fully chosen domain and viewpoint to see how this is
possible.

; 38. If a function of one variable is continuous on an interval and
has only one critical number, then a local maximum has to be 

f �x, y� � xye�x2�y2

f �x, y� � sin x � sin y � sin�x � y�
0 � x � 2	 0 � y � 2	

f �x, y� � sin x � sin y � cos�x � y�
0 � x � 	�4 0 � y � 	�4

f

f �x, y� � x 4 � y 4 � 4x 2y � 2y

f �x, y� � y 6 � 2y 4 � x 2 � y 2 � y

f �x, y� � x 4 � y 3 � 3x 2 � y 2 � x � 2y � 1

f �x, y� � 20e�x2�y2sin 3x cos 3y 	 x 	 � 1 	 y 	 � 1

f
D

f �x, y� � x 2 � y 2 � 2x D
�2, 0� �0, 2� �0, �2�

f �x, y� � x � y � xy D
�0, 0� �0, 2� �4, 0�

f �x, y� � x 2 � y 2 � x 2 y � 4
D � 
�x, y� 	 	 x 	 � 1, 	 y 	 � 1�

f �x, y� � 4x � 6y � x 2 � y 2

D � 
�x, y� 	 0 � x � 4, 0 � y � 5�

f �x, y� � x 4 � y 4 � 4xy � 2
D � 
�x, y� 	 0 � x � 3, 0 � y � 2�

f �x, y� � xy 2 D � 
�x, y� 	 x � 0, y � 0, x 2 � y 2 � 3�

f �x, y� � 2x 3 � y 4 D � 
�x, y� 	 x 2 � y 2 � 1�

f �x, y� � x 3 � 3x � y 3 � 12y D
��2, 3� �2, 3� �2, 2� ��2, �2�

f �x, y� � ��x 2 � 1�2 � �x 2 y � x � 1�2
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SECTION 14.7 MAXIMUM AND MINIMUM VALUES 955

an absolute maximum. But this is not true for functions of two
variables. Show that the function

has exactly one critical point, and that has a local maxi mum
there that is not an absolute maximum. Then use a computer to
produce a graph with a carefully chosen domain and viewpoint
to see how this is possible.

39. Find the shortest distance from the point to the plane
.

40. Find the point on the plane that is closest to
the point .

41. Find the points on the cone that are closest to the
point .

42. Find the points on the surface that are closest to
the origin.

43. Find three positive numbers whose sum is 100 and whose 
product is a maximum.

44. Find three positive numbers whose sum is 12 and the sum of
whose squares is as small as possible.

45. Find the maximum volume of a rectangular box that is
inscribed in a sphere of radius .

46. Find the dimensions of the box with volume that has
minimal surface area.

47. Find the volume of the largest rectangular box in the first
octant with three faces in the coordinate planes and one 
vertex in the plane .

48. Find the dimensions of the rectangular box with largest 
volume if the total surface area is given as 64 cm .

49. Find the dimensions of a rectangular box of maximum volume
such that the sum of the lengths of its 12 edges is a constant .

50. The base of an aquarium with given volume is made of slate
and the sides are made of glass. If slate costs five times as
much (per unit area) as glass, find the dimensions of the aquar-
ium that minimi e the cost of the materials.

51.  cardboard box without a lid is to have a volume of
32,000 cm Find the dimensions that minimi e the amount 
of cardboard used.

52.  rectangular building is being designed to minimi e 
heat loss. The east and west walls lose heat at a rate of

per day, the north and south walls at a rate of
per day, the oor at a rate of per day, and

the roof at a rate of per day. Each wall must be at
least 30 m long, the height must be at least 4 m, and the
volume must be exactly .
(a) Find and s etch the domain of the heat loss as a function of

the lengths of the sides.

f �x, y� � 3xe y � x 3 � e 3y

f

�2, 0, �3�
x � y � z � 1

x � 2y � 3z � 6
�0, 1, 1�

z 2 � x 2 � y 2

�4, 2, 0�

y 2 � � xz

1000 cm3

x � 2y � 3z � 6

2

3.

10 units�m2

1 unit�m28 units�m2

5 units�m2

4000 m3

(b) Find the dimensions that minimi e heat loss. ( hec  both
the critical points and the points on the boundary of the
domain.)

(c) ould you design a building with even less heat loss 
if the restrictions on the lengths of the walls were removed?

53. If the length of the diagonal of a rectangular box must be ,
what is the largest possible volume?

54. Three alleles (alternative versions of a gene) , B, and  
determine the four blood types  (  or ), B (BB or B ),

 ( ), and B. The ardy-Weinberg aw states that the pro-
portion of individuals in a population who carry two different
alleles is

where , , and are the proportions of , B, and  in the 
population. Use the fact that to show that is
at most .

55. Suppose that a scientist has reason to believe that two quan ti-
ties and are related linearly, that is, , at least
approximately, for some values of and . The scientist
performs an experiment and collects data in the form of points

, , , and then plots these points. The
points don’t lie exactly on a straight line, so the scientist wants
to find constants and so that the line fits  the
points as well as possible (see the figure).

et be the vertical deviation of the point
from the line. The method of least squares determines

and so as to minimi e , the sum of the squares of
these deviations. Show that, according to this method, the line
of best fit is obtained when

Thus the line is found by solving these two equations in the
two un nowns and . (See Section 1.2 for a further discus-
sion and applications of the method of least squares.)

56. Find an equation of the plane that passes through the point
and cuts off the smallest volume in the first octant.

� 2 � 2 � 2

� � � 1
2
3

x y y � x �

�x1, y1� �x2, y2 � . . . , �x , y �

y � x �

(⁄, ›)

(xi, yi)

mxi+b

di

y

x0

� y � � x � �
�x , y �

� �1
2


�1

x � � 
�1

y


�1

x 2 � 
�1

x � 
�1

x y

�1, 2, 3�
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SECTION 14.7 MAXIMUM AND MINIMUM VALUES ¤ 449

u (0 0) = lim
0

(0 + 0 + ) (0 0)
= lim

0

3 ( )( )
= lim

0

3

1 3
and this limit does not exist, so

u (0 0) does not exist.

(b) Notice that if we start at the origin and proceed in the direction of

the - or -axis, then the graph is flat. But if we proceed in any

other direction, then the graph is extremely steep.

67. Let u = h i and v = h i. Then we know that at the given point, u = · u = + and

v = · v = + . But these are just two linear equations in the two unknowns and , and since u and v are

not parallel, we can solve the equations to find = h i at the given point. In fact,

=
u v v u .

68. Since = ( ) is differentiable at x0 = ( 0 0), by Definition 14.4.7 we have

= ( 0 0) + ( 0 0) + 1 + 2 where 1 2 0 as ( ) (0 0). Now

= (x) (x0), h i = x x0 so ( ) (0 0) is equivalent to x x0 and

h ( 0 0) ( 0 0)i = (x0). Substituting into 14.4.7 gives (x) (x0) = (x0) · (x x0)+ h 1 2i · h i

or h 1 2i · (x x0) = (x) (x0) (x0) · (x x0),

and so (x) (x0) (x0) · (x x0)

|x x0| =
h 1 2i · (x x0)

|x x0| . But x x0
|x x0| is a unit vector so

lim
x x0

h 1 2i · (x x0)

|x x0| = 0 since 1 2 0 as x x0. Hence lim
x x0

(x) (x0) (x0) · (x x0)

|x x0| = 0.

14.7 Maximum and Minimum Values

1. (a) First we compute (1 1) = (1 1) (1 1) [ (1 1)]2 = (4)(2) (1)2 = 7. Since (1 1) 0 and

(1 1) 0, has a local minimum at (1 1) by the Second Derivatives Test.

(b) (1 1) = (1 1) (1 1) [ (1 1)]2 = (4)(2) (3)2 = 1. Since (1 1) 0, has a saddle point at (1 1) by

the Second Derivatives Test.

2. (a) = (0 2) (0 2) [ (0 2)]2 = ( 1)(1) (6)2 = 37. Since 0, has a saddle point at (0 2) by the

Second Derivatives Test.
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450 ¤ CHAPTER 14 PARTIAL DERIVATIVES

(b) = (0 2) (0 2) [ (0 2)]2 = ( 1)( 8) (2)2 = 4. Since 0 and (0 2) 0, has a local

maximum at (0 2) by the Second Derivatives Test.

(c) = (0 2) (0 2) [ (0 2)]2 = (4)(9) (6)2 = 0. In this case the Second Derivatives Test gives no

information about at the point (0 2).

3. In the figure, a point at approximately (1 1) is enclosed by level curves which are oval in shape and indicate that as we move

away from the point in any direction the values of are increasing. Hence we would expect a local minimum at or near (1 1).

The level curves near (0 0) resemble hyperbolas, and as we move away from the origin, the values of increase in some

directions and decrease in others, so we would expect to find a saddle point there.

To verify our predictions, we have ( ) = 4 + 3 + 3 3 ( ) = 3 2 3 , ( ) = 3 2 3 . We

have critical points where these partial derivatives are equal to 0: 3 2 3 = 0, 3 2 3 = 0. Substituting = 2 from the

first equation into the second equation gives 3( 2)2 3 = 0 3 ( 3 1) = 0 = 0 or = 1. Then we have

two critical points, (0 0) and (1 1). The second partial derivatives are ( ) = 6 , ( ) = 3, and ( ) = 6 ,

so ( ) = ( ) ( ) [ ( )]2 = (6 )(6 ) ( 3)2 = 36 9. Then (0 0) = 36(0)(0) 9 = 9,

and (1 1) = 36(1)(1) 9 = 27. Since (0 0) 0, has a saddle point at (0 0) by the Second Derivatives Test. Since

(1 1) 0 and (1 1) 0, has a local minimum at (1 1).

4. In the figure, points at approximately ( 1 1) and ( 1 1) are enclosed by oval-shaped level curves which indicate that as we

move away from either point in any direction, the values of are increasing. Hence we would expect local minima at or near

( 1 ±1). Similarly, the point (1 0) appears to be enclosed by oval-shaped level curves which indicate that as we move away
from the point in any direction the values of are decreasing, so we should have a local maximum there. We also show

hyperbola-shaped level curves near the points ( 1 0), (1 1), and (1 1). The values of increase along some paths leaving

these points and decrease in others, so we should have a saddle point at each of these points.

To confirm our predictions, we have ( ) = 3 3 2 2 + 4 ( ) = 3 3 2, ( ) = 4 + 4 3.

Setting these partial derivatives equal to 0, we have 3 3 2 = 0 = ±1 and 4 + 4 3 = 0

2 1 = 0 = 0 ±1. So our critical points are (±1 0), (±1 ±1).

The second partial derivatives are ( ) = 6 , ( ) = 0, and ( ) = 12 2 4, so

( ) = ( ) ( ) [ ( )]2 = ( 6 )(12 2 4) (0)2 = 72 2 + 24 .

We use the Second Derivatives Test to classify the 6 critical points:

Critical Point Conclusion

(1 0) 24 6 0, 0 has a local maximum at (1 0)

(1 1) 48 0 has a saddle point at (1 1)

(1 1) 48 0 has a saddle point at (1 1)

( 1 0) 24 0 has a saddle point at ( 1 0)

( 1 1) 48 6 0, 0 has a local minimum at ( 1 1)

( 1 1) 48 6 0, 0 has a local minimum at ( 1 1)
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SECTION 14.7 MAXIMUM AND MINIMUM VALUES ¤ 451

5. ( ) = 2 + + 2 + = 2 + , = + 2 + 1, = 2, = 1, = 2. Then = 0 implies

= 2 , and substitution into = + 2 + 1 = 0 gives + 2 ( 2 ) + 1 = 0 3 = 1 = 1
3
.

Then = 2
3
and the only critical point is 1

3
2
3
.

( ) = ( )2 = (2)(2) (1)2 = 3, and since

1
3

2
3
= 3 0 and 1

3
2
3
= 2 0, 1

3
2
3
= 1

3
is a local

minimum by the Second Derivatives Test.

6. ( ) = 2 2 2 2 = 2 2 ,

= 2 2 , = 2, = 1, = 2. Then = 0 implies

= 2 + 2, and substitution into = 0 gives 2 2(2 + 2) = 0

3 = 6 = 2. Then = 2 and the only critical point is

( 2 2). ( ) = ( )2 = ( 2)( 2) 12 = 3, and since

( 2 2) = 3 0 and ( 2 2) = 2 0, ( 2 2) = 4 is a

local maximum by the Second Derivatives Test.

7. ( ) = ( )(1 ) = 2 + 2 = 1 2 + 2, = 1 2 + 2 , = 2 ,

= 2 + 2 , = 2 . Then = 0 implies 1 2 + 2 = 0 and = 0 implies 1 2 + 2 = 0. Adding the

two equations gives 1 + 2 1 2 = 0 2 = 2 = ± , but if = then = 0 implies

1 + 2 2 + 2 = 0 3 2 = 1 which has no real solution. If =

then substitution into = 0 gives 1 2 2 + 2 = 0 2 = 1

= ±1, so the critical points are (1 1) and ( 1 1). Now

(1 1) = ( 2)(2) 02 = 4 0 and

( 1 1) = (2)( 2) 02 = 4 0, so (1 1) and ( 1 1) are

saddle points.

8. ( ) = 2 2 2 2
= (1 4 2) 2 2 2 2

, = 4 2 2 2 2
, = (16 2 12) 2 2 2 2

,

= (16 2 4) 2 2 2 2
, = (16 2 4) 2 2 2 2

. Then = 0 implies 1 4 2 = 0 = ±1
2
, and

substitution into = 0 4 = 0 gives = 0, so the critical points are ± 1
2
0 . Now
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452 ¤ CHAPTER 14 PARTIAL DERIVATIVES

1
2
0 = ( 4 1 2)( 2 1 2) 02 = 8 1 0 and

1
2
0 = 4 1 2 0, so 1

2
0 = 1

2
1 2 is a local maximum.

1
2
0 = (4 1 2)(2 1 2) 02 = 8 1 0 and

1
2 0 = 4 1 2 0, so 1

2 0 = 1
2

1 2

is a local minimum.

9. ( ) = 3 + 3 2 6 2 6 2 + 2 = 6 12 , = 3 2 + 3 2 12 , = 6 12, = 6 ,

= 6 12. Then = 0 implies 6 ( 2) = 0, so = 0 or = 2. If = 0 then substitution into = 0 gives

3 2 12 = 0 3 ( 4) = 0 = 0 or = 4, so we have critical points (0 0) and (0 4). If = 2,

substitution into = 0 gives 12 + 3 2 24 = 0 2 = 4

= ±2, so we have critical points (±2 2).

(0 0) = ( 12)( 12) 02 = 144 0 and (0 0) = 12 0, so

(0 0) = 2 is a local maximum. (0 4) = (12)(12) 02 = 144 0

and (0 4) = 12 0, so (0 4) = 30 is a local minimum.

(±2 2) = (0)(0) (±12)2 = 144 0, so (±2 2) are saddle points.

10. ( ) = (1 ) = 2 2 = 2 2, = 2 2 , = 2 ,

= 1 2 2 , = 2 . Then = 0 implies (1 2 ) = 0, so = 0 or = 1 2 . If = 0 then

substitution into = 0 gives 2 = 0 (1 ) = 0 = 0 or = 1, so we have critical points (0 0) and

(1 0). If = 1 2 , substitution into = 0 gives 2 2 (1 2 ) = 0 3 2 = 0 (3 1) = 0

= 0 or = 1
3
. If = 0 then = 1, and if = 1

3
then = 1

3
, so (0 1) and 1

3
1
3
are critical points.

(0 0) = (0)(0) 12 = 1 0,

(1 0) = (0)( 2) ( 1)2 = 1 0, and

(0 1) = ( 2)(0) ( 1)2 = 1 0, so (0 0), (1 0), and (0 1) are

saddle points. 1
3

1
3
= ( 2

3
)( 2

3
) ( 1

3
)2 = 1

3
0 and

1
3

1
3
= 2

3
0, so 1

3
1
3
= 1

27
is a local maximum.

11. ( ) = 3 12 + 8 3 = 3 2 12 , = 12 + 24 2, = 6 , = 12, = 48 . Then = 0

implies 2 = 4 and = 0 implies = 2 2. Substituting the second equation into the first gives (2 2)2 = 4
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SECTION 14.7 MAXIMUM AND MINIMUM VALUES ¤ 453

4 4 = 4 4 ( 3 1) = 0 = 0 or = 1. If = 0 then

= 0 and if = 1 then = 2, so the critical points are (0 0) and (2 1).

(0 0) = (0)(0) ( 12)2 = 144 0, so (0 0) is a saddle point.

(2 1) = (12)(48) ( 12)2 = 432 0 and (2 1) = 12 0 so

(2 1) = 8 is a local minimum.

12. ( ) = +
1
+
1

=
1
2
, =

1
2
, =

2
3
,

= 1, =
2
3
. Then = 0 implies =

1
2
and = 0 implies

=
1
2
. Substituting the first equation into the second gives

=
1

(1 2)2
= 4 ( 3 1) = 0 = 0 or = 1.

is not defined when = 0, and when = 1 we have = 1, so the only critical point is (1 1).

(1 1) = (2)(2) 12 = 3 0 and (1 1) = 2 0, so (1 1) = 3 is a local minimum.

13. ( ) = cos = cos , = sin .

Now = 0 implies cos = 0 or =
2
+ for an integer.

But sin
2
+ 6= 0, so there are no critical points.

14. ( ) = cos = sin , = cos , = cos ,

= sin , = 0. Then = 0 if and only if =
2
+ for an

integer. But sin
2 + 6= 0, so = 0 = 0 and the critical

points are
2
+ 0 , an integer.

2
+ 0 = (0)(0) (±1)2 = 1 0, so each critical point is

a saddle point.

15. ( ) = ( 2 + 2)
2 2

= ( 2 + 2)
2 2

( 2 ) + 2
2 2

= 2
2 2

(1 2 2),

= ( 2 + 2)
2 2

(2 ) + 2
2 2

= 2
2 2

(1 + 2 + 2),

c° 2012 Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part.

NOT FOR SALE

°°cc 2012 Cengage Learning. All Rights Reserved. May not be scanned, copied, or2012 Cengage Learning. All Rights Reserved. May not be scanned, copied, duplicated, or posted to a publicly accessible website, in whole or in part.licated, or posted to a publicly accessible website, in whole or in par

612



454 ¤ CHAPTER 14 PARTIAL DERIVATIVES

= 2
2 2

( 2 ) + (1 2 2) 2 2
2 2

+ 2
2 2

= 2
2 2

((1 2 2)(1 2 2) 2 2),

= 2
2 2

( 2 ) + 2 (2 )
2 2

(1 2 2) = 4
2 2

( 2 + 2),

= 2
2 2

(2 ) + (1 + 2 + 2) 2 2
2 2

+ 2
2 2

= 2
2 2

((1 + 2 + 2)(1 + 2 2) + 2 2).

= 0 implies = 0, and substituting into = 0 gives

2
2

(1 2) = 0 = 0 or = ±1. Thus the critical points are
(0 0) and (±1 0). Now (0 0) = (2)(2) 0 0 and (0 0) = 2 0,

so (0 0) = 0 is a local minimum. (±1 0) = ( 4 1)(4 1) 0 0

so (±1 0) are saddle points.

16. ( ) = ( 2 2) = 2 , = (2 + 2 2) ,

= 2 , = 2 , = (2 + 4 + 2 2) . Then = 0

implies = 0 and substituting into = 0 gives (2 + 2) = 0

(2 + ) = 0 = 0 or = 2, so the critical points are (0 0) and

(0 2). (0 0) = ( 2)(2) (0)2 = 4 0 so (0 0) is a saddle point.

(0 2) = ( 2 2)( 2 2) (0)2 = 4 4 0 and (0 2) = 2 2 0, so (0 2) = 4 2 is a local

maximum.

17. ( ) = 2 2 cos = 2 sin , = 2 2 cos ,

= 2 cos , = 2 sin , = 2. Then = 0 implies = 0 or

sin = 0 = 0, , or 2 for 1 7. Substituting = 0 into

= 0 gives cos = 0 =
2
or 3

2
, substituting = 0 or = 2

into = 0 gives = 1, and substituting = into = 0 gives = 1.

Thus the critical points are (0 1),
2
0 , ( 1), 3

2
0 , and (2 1).

2
0 = 3

2
0 = 4 0 so

2
0 and 3

2
0 are saddle points. (0 1) = ( 1) = (2 1) = 4 0 and

(0 1) = ( 1) = (2 1) = 2 0, so (0 1) = ( 1) = (2 1) = 1 are local minima.

18. ( ) = sin sin = cos sin , = sin cos , = sin sin , = cos cos ,

= sin sin . Here we have and , so = 0 implies cos = 0 or sin = 0. If cos = 0

then =
2
or

2
, and if sin = 0 then = 0. Substituting = ±

2
into = 0 gives cos = 0 =

2
or

2
, and
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SECTION 14.7 MAXIMUM AND MINIMUM VALUES ¤ 455

substituting = 0 into = 0 gives sin = 0 = 0. Thus the critical points are
2
±
2
,

2
±
2
, and (0 0).

(0 0) = 1 0 so (0 0) is a saddle point.

2 ± 2
=

2 ± 2
= 1 0 and

2 2
=

2 2
= 1 0 while

2 2
=

2 2
= 1 0, so

2 2
=

2 2
= 1

are local maxima and
2 2

=
2 2

= 1 are local minima.

19. ( ) = 2 + 4 2 4 + 2 = 2 4 , = 8 4 , = 2, = 4, = 8. Then = 0

and = 0 each implies = 1
2
, so all points of the form 0

1
2 0 are critical points and for each of these we have

0
1
2 0 = (2)(8) ( 4)2 = 0. The Second Derivatives Test gives no information, but

( ) = 2 + 4 2 4 + 2 = ( 2 )2 + 2 2 with equality if and only if = 1
2
. Thus 0

1
2 0 = 2 are all local

(and absolute) minima.

20. ( ) = 2 2 2

= 2 2 2
( 2 ) + 2

2 2
= 2 (1 2)

2 2
,

= 2 2 2
( 2 ) + 2 2 2

= 2(1 2 2)
2 2

,

= 2 (2 4 5 2 + 1)
2 2

,

= 2 (1 2)(1 2 2)
2 2

, = 2 2 (2 2 3)
2 2

.

= 0 implies = 0, = 0, or = ±1. If = 0 then = 0 for any -value, so all points of the form (0 ) are critical

points. If = 0 then = 0 2 2
= 0 = 0, so (0 0) (already included above) is a critical point. If = ±1

then (1 2 2) 1 2
= 0 = ± 1

2
, so ±1 1

2
and ±1 1

2
are critical points. Now

±1 1

2
= 8 3 0, ±1 1

2
= 2 2 3 2 0 and ±1 1

2
= 8 3 0,

±1 1

2
= 2 2 3 2 0, so ±1 1

2
= 1

2

3 2 are local maximum points while

±1 1

2
= 1

2

3 2 are local minimum points. At all critical points (0 ) we have (0 ) = 0, so the Second

Derivatives Test gives no information. However, if 0 then 2 2 2

0 with equality only when = 0, so we have

local minimum values (0 ) = 0, 0. Similarly, if 0 then 2 2 2
0 with equality when = 0 so

(0 ) = 0, 0 are local maximum values, and (0 0) is a saddle point.
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456 ¤ CHAPTER 14 PARTIAL DERIVATIVES

21. ( ) = 2 + 2 + 2 2

From the graphs, there appear to be local minima of about (1 ±1) = ( 1 ±1) 3 (and no local maxima or saddle

points). = 2 2 3 2, = 2 2 2 3, = 2 + 6 4 2, = 4 3 3, = 2 + 6 2 4. Then

= 0 implies 2 4 2 2 = 0 or 4 2 = 1 or 2 = 4. Note that neither nor can be zero. Now = 0 implies

2 2 4 2 = 0, and with 2 = 4 this implies 2 6 2 = 0 or 6 = 1. Thus = ±1 and if = 1, = ±1; if = 1,

= ±1. So the critical points are (1 1), (1 1),( 1 1) and ( 1 1). Now (1 ±1) = ( 1 ±1) = 64 16 0 and

0 always, so (1 ±1) = ( 1 ±1) = 3 are local minima.

22. ( ) =
2 2

There appear to be local maxima of about (±0 7 ±0 7) 0 18 and local minima of about (±0 7 0 7) 0 18. Also,

there seems to be a saddle point at the origin.

=
2 2

(1 2 2), =
2 2

(1 2 2), = 2
2 2

(2 2 3), = 2
2 2

(2 2 3),

= (1 2 2)
2 2

(1 2 2). Then = 0 implies = 0 or = ± 1

2
.

Substituting these values into = 0 gives the critical points (0 0), 1

2
± 1

2
, 1

2
± 1

2
. Then

( ) = 2( 2 2) 4 2 2(2 2 3)(2 2 3) (1 2 2)2(1 2 2)2 , so (0 0) = 1, while 1

2
± 1

2
0

and 1

2
± 1

2
0. But 1

2

1

2
0, 1

2

1

2
0, 1

2

1

2
0, 1

2

1

2
0.

Hence (0 0) is a saddle point; 1

2

1

2
= 1

2

1

2
= 1

2
are local minima and

1

2

1

2
= 1

2

1

2
= 1

2 are local maxima.
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SECTION 14.7 MAXIMUM AND MINIMUM VALUES ¤ 457

23. ( ) = sin + sin + sin( + ), 0 2 , 0 2

From the graphs it appears that has a local maximum at about (1 1) with value approximately 2 6, a local minimum

at about (5 5) with value approximately 2 6, and a saddle point at about (3 3).

= cos + cos( + ), = cos + cos( + ), = sin sin( + ), = sin sin( + ),

= sin( + ). Setting = 0 and = 0 and subtracting gives cos cos = 0 or cos = cos . Thus =

or = 2 . If = , = 0 becomes cos + cos 2 = 0 or 2 cos2 + cos 1 = 0, a quadratic in cos . Thus

cos = 1 or 1
2
and = ,

3
, or 5

3
, giving the critical points ( ),

3 3
and 5

3
5
3
. Similarly if

= 2 , = 0 becomes (cos ) + 1 = 0 and the resulting critical point is ( ). Now

( ) = sin sin + sin sin( + )+ sin sin( + ). So ( ) = 0 and the Second Derivatives Test doesn’t apply.

However, along the line = we have ( ) = 2 sin + sin 2 = 2 sin + 2 sin cos = 2 sin (1 + cos ), and

( ) 0 for 0 while ( ) 0 for 2 . Thus every disk with center ( ) contains points where is

positive as well as points where is negative, so the graph crosses its tangent plane ( = 0) there and ( ) is a saddle point.

3 3
= 9

4
0 and

3 3
0 so

3 3
= 3 3

2
is a local maximum while 5

3
5
3

= 9
4

0 and

5
3

5
3

0, so 5
3

5
3

= 3 3
2
is a local minimum.

24. ( ) = sin + sin + cos( + ), 0
4
, 0

4

[continued]
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458 ¤ CHAPTER 14 PARTIAL DERIVATIVES

From the graphs, it seems that has a local maximum at about (0 5 0 5). = cos sin( + ),

= cos sin( + ), = sin cos( + ), = sin cos( + ), = cos( + ). Setting = 0

and = 0 and subtracting gives cos = cos . Thus = . Substituting = into = 0 gives cos sin 2 = 0 or

cos (1 2 sin ) = 0. But cos 6= 0 for 0
4
and 1 2 sin = 0 implies =

6
, so the only critical point is

6 6
.

Here
6 6

= 1 0 and
6 6

= ( 1)2 1
4

0. Thus
6 6

= 3
2
is a local maximum.

25. ( ) = 4 + 4 4 2 + 2 ( ) = 4 3 8 and ( ) = 4 3 4 2 + 2. = 0

4 ( 2 2 ) = 0, so = 0 or 2 = 2 . If = 0 then substitution into = 0 gives 4 3 = 2 = 1
3 2
, so

0 1
3 2

is a critical point. Substituting 2 = 2 into = 0 gives 4 3 8 + 2 = 0. Using a graph, solutions are

approximately = 1 526, 0 259, and 1 267. (Alternatively, we could have used a calculator or a CAS to find these roots.)

We have 2 = 2 = ± 2 , so = 1 526 gives no real-valued solution for , but

= 0 259 ±0 720 and = 1 267 ±1 592. Thus to three decimal places, the critical points are

0 1
3 2

(0 0 794), (±0 720 0 259), and (±1 592 1 267). Now since = 12 2 8 , = 8 , = 12 2,

and = (12 2 8 )(12 2) 64 2, we have (0 0 794) 0, (0 0 794) 0, (±0 720 0 259) 0,

(±1 592 1 267) 0, and (±1 592 1 267) 0. Therefore (0 0 794) 1 191 and (±1 592 1 267) 1 310

are local minima, and (±0 720 0 259) are saddle points. There is no highest point on the graph, but the lowest points are

approximately (±1 592 1 267 1 310).

26. ( ) = 6 2 4 + 2 2 + ( ) = 2 and ( ) = 6 5 8 3 2 + 1. = 0 implies = 0, and

the graph of shows that the roots of = 0 are approximately = 1 273, 0 347, and 1 211. (Alternatively, we could

have found the roots of = 0 directly, using a calculator or CAS.) So to three decimal places, the critical points are

(0 1 273), (0 0 347), and (0 1 211). Now since = 2, = 0, = 30 4 24 2 2, and = 60 4 48 2 4,

we have (0 1 273) 0, (0 1 273) 0, (0 0 347) 0, (0 1 211) 0, and (0 1 211) 0, so
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SECTION 14.7 MAXIMUM AND MINIMUM VALUES ¤ 459

(0 1 273) 3 890 and (0 1 211) 1 403 are local minima, and (0 0 347) is a saddle point. The lowest point on

the graph is approximately (0 1 273 3 890).

27. ( ) = 4 + 3 3 2 + 2 + 2 + 1 ( ) = 4 3 6 + 1 and ( ) = 3 2 + 2 2. From the

graphs, we see that to three decimal places, = 0 when 1 301, 0 170, or 1 131, and = 0 when 1 215 or

0 549. (Alternatively, we could have used a calculator or a CAS to find these roots. We could also use the quadratic formula to

find the solutions of = 0.) So, to three decimal places, has critical points at ( 1 301 1 215), ( 1 301 0 549),

(0 170 1 215), (0 170 0 549), (1 131 1 215), and (1 131 0 549). Now since = 12 2 6, = 0, = 6 + 2,

and = (12 2 6)(6 + 2), we have ( 1 301 1 215) 0, ( 1 301 0 549) 0, ( 1 301 0 549) 0,

(0 170 1 215) 0, (0 170 1 215) 0, (0 170 0 549) 0, (1 131 1 215) 0, (1 131 0 549) 0, and

(1 131 0 549) 0. Therefore, to three decimal places, ( 1 301 0 549) 3 145 and (1 131 0 549) 0 701 are

local minima, (0 170 1 215) 3 197 is a local maximum, and ( 1 301 1 215), (0 170 0 549), and (1 131 1 215)

are saddle points. There is no highest or lowest point on the graph.
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460 ¤ CHAPTER 14 PARTIAL DERIVATIVES

28. ( ) = 20
2 2

sin 3 cos 3

( ) = 20 cos 3
2 2

(3 cos 3 ) + (sin 3 )
2 2

( 2 )

= 20
2 2

cos 3 (3 cos 3 2 sin 3 )

( ) = 20 sin 3
2 2

( 3 sin 3 ) + (cos 3 )
2 2

( 2 )

= 20
2 2

sin 3 (3 sin 3 + 2 cos 3 )

Now = 0 implies cos 3 = 0 or 3 cos 3 2 sin 3 = 0. For | | 1, the solutions to cos 3 = 0 are

= ±
6

±0 524. Using a graph (or a calculator or CAS), we estimate the roots of 3 cos 3 2 sin 3 for | | 1 to be

±0 430. = 0 implies sin 3 = 0, so = 0, or 3 sin 3 + 2 cos 3 = 0. From a graph (or calculator or CAS), the

roots of 3 sin 3 + 2 cos 3 between 1 and 1 are approximately 0 and ±0 872. So to three decimal places, has critical

points at (±0 430 0), (0 430 ±0 872), ( 0 430 ±0 872), and (0 ±0 524). Now

= 20
2 2

cos 3 [(4 2 11) sin 3 12 cos 3 ]

= 20
2 2

(3 cos 3 2 sin 3 )(3 sin 3 + 2 cos 3 )

= 20
2 2

sin 3 [(4 2 11) cos 3 12 sin 3 ]

and = 2 . Then (±0 430 0) 0, (0 430 0) 0, ( 0 430 0) 0, (0 430 ±0 872) 0,

(0 430 ±0 872) 0, ( 0 430 ±0 872) 0, ( 0 430 ±0 872) 0, and (0 ±0 524) 0, so

(0 430 0) 15 973 and ( 0 430 ±0 872) 6 459 are local maxima, ( 0 430 0) 15 973 and

(0 430 ±0 872) 6 459 are local minima, and (0 ±0 524) are saddle points. The highest point on the graph is

approximately (0 430 0 15 973) and the lowest point is approximately ( 0 430 0 15 973).
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SECTION 14.7 MAXIMUM AND MINIMUM VALUES ¤ 461

29. Since is a polynomial it is continuous on , so an absolute maximum and minimum exist. Here = 2 2, = 2 , and

setting = = 0 gives (1 0) as the only critical point (which is inside ), where (1 0) = 1. Along 1: = 0 and

(0 ) = 2 for 2 2, a quadratic function which attains its minimum at = 0, where (0 0) = 0, and its maximum

at = ±2, where (0 ±2) = 4. Along 2: = 2 for 0 2, and ( 2) = 2 2 6 + 4 = 2 3
2

2 1
2
,

a quadratic which attains its minimum at = 3
2
, where 3

2
1
2
= 1

2
, and its maximum at = 0, where (0 2) = 4.

Along 3: = 2 for 0 2, and

( 2 ) = 2 2 6 + 4 = 2 3
2

2 1
2
, a quadratic which attains

its minimum at = 3
2
, where 3

2
1
2
= 1

2
, and its maximum at = 0,

where (0 2) = 4. Thus the absolute maximum of on is (0 ±2) = 4
and the absolute minimum is (1 0) = 1.

30. Since is a polynomial it is continuous on , so an absolute maximum and minimum exist. = 1 , = 1 , and

setting = = 0 gives (1 1) as the only critical point (which is inside ), where (1 1) = 1. Along 1: = 0 and

( 0) = for 0 4, an increasing function in , so the maximum value is (4 0) = 4 and the minimum value is

(0 0) = 0. Along 2: = 2 1
2
and 2 1

2
= 1

2
2 3

2
+ 2 = 1

2
3
2

2
+ 7

8
for 0 4, a quadratic

function which has a minimum at = 3
2
, where 3

2
5
4
= 7

8
, and a maximum at = 4, where (4 0) = 4.

Along 3: = 0 and (0 ) = for 0 2, an increasing function in

, so the maximum value is (0 2) = 2 and the minimum value is

(0 0) = 0. Thus the absolute maximum of on is (4 0) = 4 and the

absolute minimum is (0 0) = 0.

31. ( ) = 2 + 2 , ( ) = 2 + 2, and setting = = 0

gives (0 0) as the only critical point in , with (0 0) = 4.

On 1: = 1, ( 1) = 5, a constant.

On 2: = 1, (1 ) = 2 + + 5, a quadratic in which attains its

maximum at (1 1), (1 1) = 7 and its minimum at 1 1
2
, 1 1

2
= 19

4
.

On 3: ( 1) = 2 2 + 5 which attains its maximum at ( 1 1) and (1 1)

with (±1 1) = 7 and its minimum at (0 1), (0 1) = 5.

On 4: ( 1 ) = 2 + + 5 with maximum at ( 1 1), ( 1 1) = 7 and minimum at 1 1
2
, 1 1

2
= 19

4
.

Thus the absolute maximum is attained at both (±1 1) with (±1 1) = 7 and the absolute minimum on is attained at

(0 0) with (0 0) = 4.
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462 ¤ CHAPTER 14 PARTIAL DERIVATIVES

32. ( ) = 4 2 and ( ) = 6 2 , so the only critical point is (2 3) (which is in ) where (2 3) = 13.

Along 1: = 0, so ( 0) = 4 2 = ( 2)2 + 4, 0 4, which has a maximum value when = 2 where

(2 0) = 4 and a minimum value both when = 0 and = 4, where (0 0) = (4 0) = 0. Along 2: = 4, so

(4 ) = 6 2 = ( 3)2 + 9, 0 5, which has a maximum value when = 3 where (4 3) = 9 and a

minimum value when = 0 where (4 0) = 0. Along 3: = 5, so ( 5) = 2 + 4 + 5 = ( 2)2 + 9,

0 4, which has a maximum value when = 2 where (2 5) = 9 and

a minimum value both when = 0 and = 4, where (0 5) = (4 5) = 5.

Along 4: = 0, so (0 ) = 6 2 = ( 3)2 + 9, 0 5,

which has a maximum value when = 3 where (0 3) = 9 and a minimum

value when = 0 where (0 0) = 0. Thus the absolute maximum is

(2 3) = 13 and the absolute minimum is attained at both (0 0) and (4 0),

where (0 0) = (4 0) = 0.

33. ( ) = 4+ 4 4 + 2 is a polynomial and hence continuous on , so

it has an absolute maximum and minimum on . ( ) = 4 3 4 and

( ) = 4 3 4 ; then = 0 implies = 3, and substitution into

= 0 = 3 gives 9 = 0 ( 8 1) = 0 = 0

or = ±1. Thus the critical points are (0 0), (1 1), and ( 1 1), but only

(1 1) with (1 1) = 0 is inside . On 1: = 0, ( 0) = 4 + 2,

0 3, a polynomial in which attains its maximum at = 3, (3 0) = 83, and its minimum at = 0, (0 0) = 2.

On 2: = 3, (3 ) = 4 12 + 83, 0 2, a polynomial in which attains its minimum at = 3 3,

3 3 3 = 83 9 3 3 70 0, and its maximum at = 0, (3 0) = 83.

On 3: = 2, ( 2) = 4 8 + 18, 0 3, a polynomial in which attains its minimum at = 3 2,
3 2 2 = 18 6 3 2 10 4, and its maximum at = 3 (3 2) = 75. On 4: = 0, (0 ) = 4 + 2, 0 2, a

polynomial in which attains its maximum at = 2, (0 2) = 18, and its minimum at = 0, (0 0) = 2. Thus the absolute

maximum of on is (3 0) = 83 and the absolute minimum is (1 1) = 0.

34. = 2 and = 2 , and since = 0 = 0, there are no critical

points in the interior of . Along 1: = 0 and ( 0) = 0.

Along 2: = 0 and (0 ) = 0. Along 3: = 3 2, so let

( ) = 3 2 = 3 3 for 0 3. Then

0( ) = 3 3 2 = 0 = 1. The maximum value is 1 2 = 2

and the minimum occurs both at = 0 and = 3 where
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SECTION 14.7 MAXIMUM AND MINIMUM VALUES ¤ 463

0 3 = 3 0 = 0. Thus the absolute maximum of on is 1 2 = 2, and the absolute minimum is 0 which

occurs at all points along 1 and 2.

35. ( ) = 6 2 and ( ) = 4 3. And so = 0 and = 0 only occur when = = 0. Hence, the only critical point

inside the disk is at = = 0 where (0 0) = 0. Now on the circle 2 + 2 = 1, 2 = 1 2 so let

( ) = ( ) = 2 3 + (1 2)2 = 4 + 2 3 2 2 + 1, 1 1. Then 0( ) = 4 3 + 6 2 4 = 0 = 0,

2, or 12 . (0 ±1) = (0) = 1, 1
2 ± 3

2
= 1

2
= 13

16 , and ( 2 3) is not in . Checking the endpoints, we get

( 1 0) = ( 1) = 2 and (1 0) = (1) = 2. Thus the absolute maximum and minimum of on are (1 0) = 2 and

( 1 0) = 2.

Another method: On the boundary 2 + 2 = 1 we can write = cos , = sin , so (cos sin ) = 2 cos3 + sin4 ,

0 2 .

36. ( ) = 3 2 3 and ( ) = 3 2 + 12 and the critical

points are (1 2), (1 2), ( 1 2), and ( 1 2). But only (1 2)

and ( 1 2) are in and (1 2) = 14, ( 1 2) = 18. Along 1:

= 2 and ( 2 ) = 2 3 + 12 , 2 3, which has

a maximum at = 2 where ( 2 2) = 14 and a minimum at

= 2 where ( 2 2) = 18. Along 2: = 2 and

(2 ) = 2 3 + 12 , 2 3, which has a maximum at = 2 where (2 2) = 18 and a minimum at = 3 where

(2 3) = 11. Along 3: = 3 and ( 3) = 3 3 + 9, 2 2, which has a maximum at = 1 and = 2 where

( 1 3) = (2 3) = 11 and a minimum at = 1 and = 2 where (1 3) = ( 2 3) = 7.

Along 4: = and ( ) = 9 , 2 2, which has a maximum at = 2 where (2 2) = 18 and a minimum at

= 2 where ( 2 2) = 18. So the absolute maximum value of on is (2 2) = 18 and the minimum is

( 2 2) = 18.

37. ( ) = ( 2 1)2 ( 2 1)2 ( ) = 2( 2 1)(2 ) 2( 2 1)(2 1) and

( ) = 2( 2 1) 2. Setting ( ) = 0 gives either = 0 or 2 1 = 0.

There are no critical points for = 0, since (0 ) = 2, so we set 2 1 = 0 =
+ 1
2

[ 6= 0],

so + 1
2

= 2( 2 1)(2 ) 2 2 + 1
2

1 2
+ 1
2

1 = 4 ( 2 1). Therefore

( ) = ( ) = 0 at the points (1 2) and ( 1 0). To classify these critical points, we calculate
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( ) = 12 2 12 2 2 + 12 + 4 + 2, ( ) = 2 4,

and ( ) = 8 3 + 6 2 + 4 . In order to use the Second Derivatives

Test we calculate

( 1 0) = ( 1 0) ( 1 0) [ ( 1 0)]2 = 16 0,

( 1 0) = 10 0, (1 2) = 16 0, and (1 2) = 26 0, so

both ( 1 0) and (1 2) give local maxima.

38. ( ) = 3 3 3 is differentiable everywhere, so the requirement

for critical points is that = 3 3 2 = 0 (1) and

= 3 3 3 = 0 (2). From (1) we obtain = 2, and then (2) gives

3 3 3 6 = 0 = 1 or 0, but only = 1 is valid, since = 0

makes (1) impossible. So substituting = 1 into (1) gives = 0, and the

only critical point is (1 0).

The Second Derivatives Test shows that this gives a local maximum, since

(1 0) = 6 (3 9 3 ) (3 )2
(1 0)

= 27 0 and (1 0) = [ 6 ](1 0) = 6 0. But (1 0) = 1 is not an

absolute maximum because, for instance, ( 3 0) = 17. This can also be seen from the graph.

39. Let be the distance from (2 0 3) to any point ( ) on the plane + + = 1, so = ( 2)2 + 2 + ( + 3)2

where = 1 , and we minimize 2 = ( ) = ( 2)2 + 2 + (4 )2. Then

( ) = 2( 2) + 2(4 )( 1) = 4 + 2 12, ( ) = 2 + 2(4 )( 1) = 2 + 4 8. Solving

4 + 2 12 = 0 and 2 + 4 8 = 0 simultaneously gives = 8
3
, = 2

3
, so the only critical point is 8

3
2
3
. An absolute

minimum exists (since there is a minimum distance from the point to the plane) and it must occur at a critical point, so the

shortest distance occurs for = 8
3
, = 2

3
for which = 8

3
2
2
+ 2

3

2
+ 4 8

3
2
3

2
= 4

3
= 2

3
.

40. Here the distance from a point on the plane to the point (0 1 1) is = 2 + ( 1)2 + ( 1)2,

where = 2 1
3 + 2

3 . We can minimize
2 = ( ) = 2 + ( 1)2 + 1 1

3 + 2
3

2, so

( ) = 2 + 2 1 1
3
+ 2

3
1
3
= 20

9
4
9

2
3
and

( ) = 2( 1) + 2 1 1
3
+ 2

3
2
3
= 4

9
+ 26

9
2
3
. Solving 20

9
4
9

2
3
= 0 and 4

9
+ 26

9
2
3
= 0

simultaneously gives = 5
14
and = 2

7
, so the only critical point is 5

14
2
7
.

This point must correspond to the minimum distance, so the point on the plane closest to (0 1 1) is 5
14

2
7

29
14
.

41. Let be the distance from the point (4 2 0) to any point ( ) on the cone, so = ( 4)2 + ( 2)2 + 2 where

2 = 2 + 2, and we minimize 2 = ( 4)2 + ( 2)2 + 2 + 2 = ( ). Then

( ) = 2 ( 4) + 2 = 4 8, ( ) = 2 ( 2) + 2 = 4 4, and the critical points occur when
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SECTION 14.7 MAXIMUM AND MINIMUM VALUES ¤ 465

= 0 = 2, = 0 = 1. Thus the only critical point is (2 1). An absolute minimum exists (since there is a

minimum distance from the cone to the point) which must occur at a critical point, so the points on the cone closest

to (4 2 0) are 2 1 ± 5 .

42. The distance from the origin to a point ( ) on the surface is = 2 + 2 + 2 where 2 = 9 + , so we minimize

2 = 2 + 9 + + 2 = ( ). Then = 2 + , = + 2 , and = 0, = 0 = 0, = 0, so the only

critical point is (0 0). (0 0) = (2)(2) 1 = 3 0 with (0 0) = 2 0, so this is a minimum. Thus
2 = 9 + 0 = ±3 and the points on the surface closest to the origin are (0 ±3 0).

43. + + = 100, so maximize ( ) = (100 ). = 100 2 2, = 100 2 2 ,

= 2 , = 2 , = 100 2 2 . Then = 0 implies = 0 or = 100 2 . Substituting = 0 into

= 0 gives = 0 or = 100 and substituting = 100 2 into = 0 gives 3 2 100 = 0 so = 0 or 100
3
.

Thus the critical points are (0 0), (100 0), (0 100) and 100
3

100
3
.

(0 0) = (100 0) = (0 100) = 10,000 while 100
3

100
3

= 10,000
3

and 100
3

100
3

= 200
3

0. Thus (0 0),

(100 0) and (0 100) are saddle points whereas 100
3
, 100
3

is a local maximum. Thus the numbers are = = = 100
3
.

44. Let , , , be the positive numbers. Then + + = 12 and we want to minimize
2 + 2 + 2 = 2 + 2 + (12 )2 = ( ) for 0 , 12. = 2 + 2(12 )( 1) = 4 + 2 24,

= 2 + 2(12 )( 1) = 2 + 4 24, = 4, = 2, = 4. Then = 0 implies 4 + 2 = 24 or

= 12 2 and substituting into = 0 gives 2 + 4(12 2 ) = 24 6 = 24 = 4 and then = 4, so

the only critical point is (4 4). (4 4) = 16 4 0 and (4 4) = 4 0, so (4 4) is a local minimum. (4 4) is also

the absolute minimum [compare to the values of as 0 or 12] so the numbers are = = = 4.

45. Center the sphere at the origin so that its equation is 2 + 2 + 2 = 2, and orient the inscribed rectangular box so that its

edges are parallel to the coordinate axes. Any vertex of the box satisfies 2 + 2 + 2 = 2, so take ( ) to be the vertex

in the first octant. Then the box has length 2 , width 2 , and height 2 = 2 2 2 2 with volume given by

( ) = (2 )(2 ) 2 2 2 2 = 8 2 2 2 for 0 , 0 . Then

= (8 ) · 1
2
( 2 2 2) 1 2( 2 ) + 2 2 2 · 8 =

8 ( 2 2 2 2)
2 2 2

and =
8 ( 2 2 2 2)

2 2 2
.

Setting = 0 gives = 0 or 2 2 + 2 = 2, but 0 so only the latter solution applies. Similarly, = 0 with 0

implies 2 + 2 2 = 2. Substituting, we have 2 2 + 2 = 2 + 2 2 2 = 2 = . Then 2 + 2 2 = 2

3 2 = 2 = 2 3 = 3 = . Thus the only critical point is 3 3 . There must be a maximum

volume and here it must occur at a critical point, so the maximum volume occurs when = = 3 and the maximum

volume is
3 3

= 8
3 3

2
3

2

3

2

=
8

3 3
3.
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466 ¤ CHAPTER 14 PARTIAL DERIVATIVES

46. Let , , and be the dimensions of the box. We wish to minimize surface area= 2 + 2 + 2 , but we have

volume = = 1000 =
1000 so we minimize

( ) = 2 + 2
1000

+ 2
1000

= 2 +
2000

+
2000 . Then = 2

2000
2
and = 2

2000
2
. Setting

= 0 implies =
1000

2
and substituting into = 0 gives

4

1000
= 0 3 = 1000 [since 6= 0] = 10.

The surface area has a minimum but no maximum and it must occur at a critical point, so the minimal surface area occurs for a

box with dimensions = 10 cm, = 1000 102 = 10 cm, = 1000 102 = 10 cm.

47. Maximize ( ) =
3
(6 2 ), then the maximum volume is = .

= 1
3
(6 2 2) = 1

3
(6 2 2 ) and = 1

3
(6 4 ). Setting = 0 and = 0 gives the critical point

(2 1) which geometrically must give a maximum. Thus the volume of the largest such box is = (2)(1) 2
3
= 4

3
.

48. Surface area = 2( + + ) = 64 cm2, so + + = 32 or =
32

+
. Maximize the volume

( ) =
32

+
. Then =

32 2 2 3 2 2

( + )2
= 2 32 2 2

( + )2
and = 2 32 2 2

( + )2
. Setting

= 0 implies =
32 2

2
and substituting into = 0 gives 32(4 2) (32 2)(4 2) (32 2)2 = 0 or

3 4 + 64 2 (32)2 = 0. Thus 2 = 64
6
or = 8

6
, = 64 3

16 6
= 8

6
and = 8

6
. Thus the box is a cube with edge

length 8
6
cm.

49. Let the dimensions be , , and ; then 4 + 4 + 4 = and the volume is

= = 1
4 = 1

4
2 2, 0, 0. Then = 1

4 2 2 and = 1
4

2 2 ,

so = 0 = when 2 + = 1
4
and + 2 = 1

4
. Solving, we get = 1

12
, = 1

12
and = 1

4
= 1

12
. From

the geometrical nature of the problem, this critical point must give an absolute maximum. Thus the box is a cube with edge

length 1
12
.

50. The cost equals 5 + 2( + ) and = , so ( ) = 5 + 2 ( + ) ( ) = 5 + 2 ( 1 + 1). Then

= 5 2 2, = 5 2 2, = 0 implies = 2 (5 2), = 0 implies = 3 2
5

= . Thus the

dimensions of the aquarium which minimize the cost are = = 3 2
5

units, = 1 3 5
2

2 3.

51. Let the dimensions be , and , then minimize + 2( + ) if = 32,000 cm3. Then

( ) = + [64,000( + ) ] = + 64,000( 1 + 1), = 64,000 2, = 64,000 2.

And = 0 implies = 64,000 2; substituting into = 0 implies 3 = 64,000 or = 40 and then = 40. Now

( ) = [(2)(64,000)]2 3 3 1 0 for (40 40) and (40 40) 0 so this is indeed a minimum. Thus the

dimensions of the box are = = 40 cm, = 20 cm.
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2.1.15 Questions with Solutions on Chapter 15.3



SECTION 15.3 DOUBLE INTEGRALS OVER GENERAL REGIONS 995

1–6 Evaluate the iterated integral.

1. 2.

3. 4.

5. 6.

7–10 Evaluate the double integral.

7.

8.

9.

10.

11. Draw an example of a region that is
(a) type I but not type II
(b) type II but not type I

12. Draw an example of a region that is
(a) both type I and type II
(b) neither type I nor type II

13–14 Express as a region of type I and also as a region of 
type II. Then evaluate the double integral in two ways.

13. is enclosed by the lines 

y1

0
y2

2x
�x � y� dy dxy4

0
ysy

0
xy 2 dx dy

y2

0
y2y

y
xy dx dyy1

0
yx

x 2
�1 � 2y� dy dx

y1

0
ys 2

0
cos�s 3� dt ds

yy
D

y 2 dA, D � ��x, y� � �1 � y � 1, �y � 2 � x � y�

yy
D

y

x 5 � 1
dA, D � ��x, y� � 0 � x � 1, 0 � y � x 2�

yy
D

x dA, D � ��x, y� � 0 � x � �, 0 � y � sin x�

yy
D

x 3 dA, D � ��x, y� � 1 � x � e, 0 � y � ln x�

D

y � x, y � 0, x � 1yy
D

x dA, D

y1

0
ye

0
s1 � ev dw dv

v

14. ,  is enclosed by the curves 

15–16 Set up iterated integrals for both orders of integration. Then
evaluate the double integral using the easier order and explain why
it’s easier.

15. ,  is bounded by 

16. ,  is bounded by 

17–22 Evaluate the double integral.

17. ,  is bounded by , , 

18. , is bounded by , , 

19. ,

is the triangular region with vertices (0, 1), (1, 2), 

20.

21.

is bounded by the circle with center the origin and radius 2

22. is the triangular region with vertices ,

, and 

yy
D

y dA D y � x � 2, x � y 2

yy
D

y 2e xy dA D y � x, y � 4, x � 0

yy
D

x cos y dA D y � 0 y � x 2 x � 1

yy
D

�x 2 � 2y� dA D y � x y � x 3 x � 0

y � x 2, y � 3xDyy
D

xy dA

yy
D

y 2 dA

D �4, 1�

yy
D

xy 2 dA, D is enclosed by x � 0 and x � s1 � y 2

yy
D

�2x � y� dA,

D

yy
D

2xy dA, D �0, 0�

�1, 2� �0, 3�

15.3 Exercises

; Graphing calculator or computer required Computer algebra system required 1. Homework Hints available at stewartcalculus.comCAS

Use Property 11 to estimate the integral , where is the disk
with center the origin and radius 2.

SOLUTION Since and , we have
and therefore

Thus, using , , and in Property 11, we obtain

xxD e sin x cos y dA D

�1 � sin x � 1 �1 � cos y � 1 �1 � sin x cos y � 1

e�1 � e sin x cos y � e 1 � e

m � e�1 � 1�e M � e A�D� � ��2�2

4�

e
� yy

D

e sin x cos y dA � 4�e

EXAMPLE 6
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SECTION 15.3 DOUBLE INTEGRALS OVER GENERAL REGIONS ¤ 521

38. (1 + 2 sin + 2 sin ) = 1 + 2 sin + 2 sin

= ( ) + 2 sin + 2 sin

= (2 )(2 ) + 2 sin + sin 2

But sin is an odd function, so sin = sin = 0 by (6) in Section 4.5 [ET (7) in Section 5.5] and

(1 + 2 sin + 2 sin ) = 4 2 + 0 + 0 = 4 2.

39. Let ( ) =
( + )3

. Then a CAS gives 1

0

1

0
( ) = 1

2
and 1

0

1

0
( ) = 1

2
.

To explain the seeming violation of Fubini’s Theorem, note that has an infinite discontinuity at (0 0) and thus does not

satisfy the conditions of Fubini’s Theorem. In fact, both iterated integrals involve improper integrals which diverge at their

lower limits of integration.

40. (a) Loosely speaking, Fubini’s Theorem says that the order of integration of a function of two variables does not affect the

value of the double integral, while Clairaut’s Theorem says that the order of differentiation of such a function does not

affect the value of the second-order derivative. Also, both theorems require continuity (though Fubini’s allows a finite

number of smooth curves to contain discontinuities).

(b) To find , we first hold constant and use the single-variable Fundamental Theorem of Calculus, Part 1:

= ( ) = ( ) = ( ) . Now we use the Fundamental Theorem again:

= ( ) = ( ).

To find , we first use Fubini’s Theorem to find that ( ) = ( ) , and then use the

Fundamental Theorem twice, as above, to get = ( ). So = = ( ).

15.3 Double Integrals over General Regions

1. 4

0 0
2 =

4

0
1
2

2 2 =

=0
=

4

0
1
2

2[( )2 02] = 1
2

4

0
3 = 1

2
1
4

4 4

0
= 1

2 (64 0) = 32

2. 1

0

2

2
( ) =

1

0
1
2

2 =2

=2
=

1

0
(2) 1

2
(2)2 (2 ) + 1

2
(2 )2

=
1

0
(2 2) = 2 2

1

0
= 1 2 0 + 0 = 1

3. 1

0 2(1 + 2 ) =
1

0
+ 2 =

= 2 =
1

0
+ 2 2 ( 2)2

=
1

0
( 4) = 1

2
2 1

5
5 1

0
= 1

2
1
5

0 + 0 = 3
10

4. 2

0

2
=

2

0
1
2

2 =2

=
=

2

0
1
2
(4 2 2) = 1

2

2

0
3 3 = 3

2
1
4

4 2

0
= 3

2
(4 0) = 6

5. 1

0

2

0
cos( 3) =

1

0
cos( 3)

= 2

=0
=

1

0
2 cos( 3) = 1

3 sin(
3)

1

0
= 1

3 (sin 1 sin 0) = 1
3 sin 1
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522 ¤ CHAPTER 15 MULTIPLE INTEGRALS

6. 1

0 0
1 + =

1

0
1 +

=

=0
=

1

0
1 + = 2

3
(1 + )3 2

1

0

= 2
3
(1 + )3 2 2

3
(1 + 1)3 2 = 2

3
(1 + )3 2 4

3
2

7. 2 =
1

1 2
2 =

1

1
2 =

= 2
=

1

1
2 [ ( 2)]

=
1

1
(2 3 + 2 2) = 1

2
4 + 2

3
3 1

1
= 1

2
+ 2

3
1
2
+ 2

3
= 4

3

8.
5 + 1

=
1

0

2

0
5 + 1

=
1

0

1
5 + 1

2

2

= 2

=0

=
1

2

1

0

4

5 + 1
= 1

2
1
5
ln 5 + 1

1

0

= 1
10
(ln 2 ln 1) = 1

10
ln 2

9. =
0

sin

0
=

0
[ ] =sin=0 =

0
sin

integrate by parts
with = = sin

= cos + sin
0
= cos + sin + 0 sin 0 =

10. 3 =
1

ln

0
3 =

1
3 =ln

=0
=

1
3 ln

integrate by parts
with = ln = 3

= 1
4

4 ln 1
16

4
1
= 1

4
4 1

16
4 0 + 1

16
= 3

16
4 + 1

16

11. (a) At the right we sketch an example of a region that can be described as lying

between the graphs of two continuous functions of (a type I region) but not as

lying between graphs of two continuous functions of (a type II region). The

regions shown in Figures 6 and 8 in the text are additional examples.

(b) Now we sketch an example of a region that can be described as lying between

the graphs of two continuous functions of but not as lying between graphs of two

continuous functions of . The first region shown in Figure 7 is another example.

12. (a) At the right we sketch an example of a region that can be described as lying

between the graphs of two continuous functions of (a type I region) and also as

lying between graphs of two continuous functions of (a type II region). For

additional examples see Figures 9, 10, 12, and 14–16 in the text.

(b) Now we sketch an example of a region that can’t be described as lying between

the graphs of two continuous functions of or between graphs of two continuous

functions of . The region shown in Figure 18 is another example.
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SECTION 15.3 DOUBLE INTEGRALS OVER GENERAL REGIONS ¤ 523

13. As a type I region, lies between the lower boundary = 0 and the upper

boundary = for 0 1, so = {( ) | 0 1, 0 }. If we

describe as a type II region, lies between the left boundary = and the

right boundary = 1 for 0 1, so = {( ) | 0 1, 1}.

Thus =
1

0 0
=

1

0

=

=0
=

1

0
2 = 1

3
3 1

0
= 1

3 (1 0) = 1
3 or

=
1

0

1
=

1

0
1
2

2 =1

=
= 1

2

1

0
(1 2) = 1

2
1
3

3 1

0
= 1

2
1 1

3
0 = 1

3
.

14. The curves = 2 and = 3 intersect at points (0 0), (3 9). As a type I region,

is enclosed by the lower boundary = 2 and the upper boundary = 3 for

0 3, so = ( ) | 0 3, 2 3 . If we describe as a

type II region, is enclosed by the left boundary = 3 and the right boundary

= for 0 9, so = ( ) | 0 9, 3 . Thus

=
3

0

3
2 =

3

0
· 1
2

2 = 3

= 2 = 1
2

3

0
(9 2 4) = 1

2

3

0
(9 3 5)

= 1
2
9 · 1

4
4 1

6
6 3

0
= 1

2
9
4
· 81 1

6
· 729 0 = 243

8

or

=
9

0 3
=

9

0
1
2

2 =

= 3
= 1

2

9

0
1
9

2 = 1
2

9

0
2 1

9
3

= 1
2

1
3

3 1
9
· 1
4

4 9

0
= 1

2
1
3
· 729 1

36
· 6561 0 = 243

8

15. The curves = 2 or = + 2 and = 2 intersect when + 2 = 2

2 2 = 0 ( 2)( + 1) = 0 = 1, = 2, so the points of

intersection are (1 1) and (4 2). If we describe as a type I region, the upper

boundary curve is = but the lower boundary curve consists of two parts,

= for 0 1 and = 2 for 1 4.

Thus = {( ) | 0 1, } {( ) | 1 4, 2 } and

=
1

0
+

4

1 2
. If we describe as a type II region, is enclosed by the left boundary

= 2 and the right boundary = + 2 for 1 2, so = ( ) | 1 2, 2 + 2 and

=
2

1

+2
2 . In either case, the resulting iterated integrals are not difficult to evaluate but the region is
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524 ¤ CHAPTER 15 MULTIPLE INTEGRALS

more simply described as a type II region, giving one iterated integral rather than a sum of two, so we evaluate the latter

integral:

=
2

1

+2
2 =

2

1

= +2

= 2 =
2

1
( + 2 2) =

2

1
( 2 + 2 3)

= 1
3

3 + 2 1
4

4 2

1
= 8

3
+ 4 4 1

3
+ 1 1

4
= 9

4

16. As a type I region, = {( ) | 0 4, 4} and
2 =

4

0

4 2 . As a type II region,

= {( ) | 0 4, 0 } and 2 =
4

0 0
2 .

Evaluating 2 requires integration by parts whereas 2 does not, so

the iterated integral corresponding to as a type II region appears easier to evaluate.

2 =
4

0 0
2 =

4

0

=

=0
=

4

0

2

= 1
2

2 1
2

2
4

0
= 1

2
16 8 1

2
0 = 1

2
16 17

2

17. 1

0

2

0
cos =

1

0
sin

= 2

=0
=

1

0
sin 2 = 1

2
cos 2 1

0
= 1

2
(1 cos 1)

18. ( 2 + 2 ) =
1

0 3(
2 + 2 ) =

1

0
2 + 2 =

= 3

=
1

0
( 3 + 2 5 6) = 1

4
4 + 1

3
3 1

6
6 1

7
7 1

0

= 1
4 +

1
3

1
6

1
7 =

23
84

19. 2 =
2

1

7 3

1

2 =
2

1

2 =7 3

= 1

=
2

1
[(7 3 ) ( 1)] 2 =

2

1
(8 2 4 3)

= 8
3

3 4 2

1
= 64

3
16 8

3
+ 1 = 11

3

20.
2 =

1

1

1 2

0

2

=
1

1
2 1

2
2 = 1 2

=0
= 1

2

1

1
2(1 2)

= 1
2

1

1
( 2 4) = 1

2
1
3

3 1
5

5 1

1

= 1
2

1
3

1
5 +

1
3

1
5
= 2

15
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1002 CHAPTER 15 MULTIPLE INTEGRALS

1– 4 A region is shown. Decide whether to use polar coordinates
or rectangular coordinates and write as an iterated
integral, where is an arbitrary continuous function on .

1. 2.

3. 4.

5 –6 Sketch the region whose area is given by the integral and eval-
uate the integral.

5. 6.

7–14 Evaluate the given integral by changing to polar coordinates.

7. , where is the top half of the disk with center the
origin and radius 5

8. , where is the region in the first quadrant
enclosed by the circle and the lines and

9. , where is the region in the first quadrant
between the circles with center the origin and radii 1 and 3

10. , where is the region that lies between the 

circles and with 

11. , where D is the region bounded by the
semicircle and the y-axis

12. , where is the disk with center the 
origin and radius 2

13. ,
where

R
xx

R
f �x, y� dA

f R

0 4

4

y

x
0

y

x_1 1

1 y=1-≈

0

y

x_1 1

1

0

y

x

6

3

y3��4

��4
y2

1
r dr d� y�

��2
y2 sin �

0
r dr d�

xx
D

x 2y dA D

xx
R

�2x � y� dA R
x 2 � y 2 � 4 x � 0

y � x

xx
R

sin�x 2 � y 2� dA R

xx
R

y 2

x 2 � y 2 dA R

x 2 � y 2 � a2 x 2 � y 2 � b2 0 � a � b

xxD e�x2�y2

dA
x � s4 � y 2

DxxD cossx 2 � y 2 dA

xx
R

arctan� y�x� dA
R � ��x, y� � 1 � x 2 � y 2 � 4, 0 � y � x�

14. , where is the region in the first quadrant that lies
between the circles and

15–18 Use a double integral to find the area of the region.

15. One loop of the rose 

16. The region enclosed by both of the cardioids
and

17. The region inside the circle and outside the
circle 

18. The region inside the cardioid and outside the
circle 

19–27 Use polar coordinates to find the volume of the given solid.

19. Under the cone and above the disk 

20. Below the paraboloid and above the 
-plane

21. Enclosed by the hyperboloid and the 
plane

22. Inside the sphere and outside the 
cylinder

23. A sphere of radius 

24. Bounded by the paraboloid and the 
plane in the first octant

25. Above the cone and below the sphere

26. Bounded by the paraboloids and

27. Inside both the cylinder and the ellipsoid

28. (a) A cylindrical drill with radius is used to bore a hole
through the center of a sphere of radius . Find the volume
of the ring-shaped solid that remains.

(b) Express the volume in part (a) in terms of the height of
the ring. Notice that the volume depends only on , not 
on or .

29–32 Evaluate the iterated integral by converting to polar 
coordinates.

29. 30.

31. 32.

Dxx
D

x dA
x 2 � y 2 � 2xx 2 � y 2 � 4

r � cos 3�

r � 1 � cos �
r � 1 � cos �

�x � 1�2 � y 2 � 1
x 2 � y 2 � 1

r � 1 � cos �
r � 3 cos �

x 2 � y 2 � 4z � sx 2 � y 2

z � 18 � 2x 2 � 2y 2

xy

�x 2 � y 2 � z2 � 1
z � 2

x 2 � y 2 � z 2 � 16
x 2 � y 2 � 4

a

z � 1 � 2x 2 � 2y 2

z � 7

z � sx 2 � y 2

x 2 � y 2 � z2 � 1

z � 3x 2 � 3y 2

z � 4 � x 2 � y 2

x 2 � y 2 � 4
4x 2 � 4y 2 � z2 � 64

r1

r2

h
h

r2r1

ya
0
y0

�sa 2 �y 2
x 2 y dx dyy3

�3
ys9�x 2

0
sin�x 2 � y2� dy dx

y2

0
ys2x�x 2

0
sx 2 � y 2 dy dxy1

0
ys2�y 2

y
�x � y� dx dy

15.4 Exercises

1. Homework Hints available at stewartcalculus.com
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534 ¤ CHAPTER 15 MULTIPLE INTEGRALS

67. 3 + 3 + 2 2 = 3 + 3 + 2 2 . Now 3 is odd with respect

to and 3 is odd with respect to , and the region of integration is symmetric with respect to both and ,

so 3 = 3 = 0.

2 2 represents the volume of the solid region under the

graph of = 2 2 and above the rectangle , namely a half circular

cylinder with radius and length 2 (see the figure) whose volume is

1
2
· 2 = 1

2
2(2 ) = 2 . Thus

3 + 3 + 2 2 = 0 + 0 + 2 = 2 .

68. To find the equations of the boundary curves, we require that the

-values of the two surfaces be the same. In Maple, we use the command

solve(4-xˆ2-yˆ2=1-x-y,y); and in Mathematica, we use
Solve[4-xˆ2-yˆ2==1-x-y,y]. We find that the curves have

equations =
1± 13 + 4 4 2

2
. To find the two points of intersection

of these curves, we use the CAS to solve 13 + 4 4 2 = 0, finding that

= 1± 14
2

. So, using the CAS to evaluate the integral, the volume of intersection is

=
(1+ 14 ) 2

(1 14 ) 2

1+ 13+ 4 4 2 2

1 13+4 4 2 2

[(4 2 2) (1 )] =
49

8

15.4 Double Integrals in Polar Coordinates

1. The region is more easily described by polar coordinates: = ( ) | 0 4, 0 3
2
.

Thus ( ) =
3 2

0

4

0
( cos sin ) .

2. The region is more easily described by rectangular coordinates: = ( ) | 1 1, 0 1 2 .

Thus ( ) =
1

1

1 2

0
( ) .

3. The region is more easily described by rectangular coordinates: = ( ) | 1 1, 0 1
2
+ 1

2
.

Thus ( ) =
1

1

( +1) 2

0
( ) .

4. The region is more easily described by polar coordinates: = ( ) | 3 6,
2 2

.

Thus ( ) =
2

2

6

3
( cos sin ) .
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SECTION 15.4 DOUBLE INTEGRALS IN POLAR COORDINATES ¤ 535

5. The integral 3 4

4

2

1
represents the area of the region

= {( ) | 1 2, 4 3 4}, the top quarter portion of a
ring (annulus).

3 4

4

2

1
=

3 4

4

2

1

=
3 4

4
1
2

2 2

1
= 3

4 4
· 1
2
(4 1) =

2
· 3
2
= 3

4

6. The integral
2

2 sin

0
represents the area of the region = {( ) | 1 2 sin , 2 }. Since

= 2 sin 2 = 2 sin 2 + 2 = 2

2 + ( 1)2 = 1, is the portion in the second quadrant of a disk of

radius 1 with center (0 1).

2

2 sin

0
=

2
1
2

2 =2 sin

=0
=

2
2 sin2

=
2
2 · 1

2
(1 cos 2 ) = 1

2
sin 2

2

= 0
2
+ 0 =

2

7. The half disk can be described in polar coordinates as = {( ) | 0 5, 0 }. Then
2 =

0

5

0
( cos )2( sin ) =

0
cos2 sin

5

0
4

= 1
3
cos3

0
1
5

5 5

0
= 1

3
( 1 1) · 625 = 1250

3

8. The region is 1
8
of a disk, as shown in the figure, and can be described by = {( ) | 0 2, 4 2}. Thus

(2 ) =
2

4

2

0
(2 cos sin )

=
2

4
(2 cos sin )

2

0
2

= 2 sin + cos
2

4
1
3

3 2

0

= (2 + 0 2 2
2 )

8
3
= 16

3 4 2

9. sin( 2 + 2) =
2

0

3

1
sin( 2) =

2

0

3

1
sin( 2)

=
2

0
1
2 cos(

2)
3

1

=
2

1
2
(cos 9 cos 1) =

4
(cos 1 cos 9)

10.
2

2 + 2
=

2

0

( sin )2

2
=

2

0

sin2

=
2

0
1
2 (1 cos 2 ) = 1

2
1
2 sin 2

2

0
1
2

2

= 1
2
(2 0 0) 1

2
2 2 =

2
( 2 2)
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536 ¤ CHAPTER 15 MULTIPLE INTEGRALS

11.
2 2

=
2

2

2

0

2

=
2

2

2

0

2

=
2

2
1
2

2 2

0
= 1

2
( 4 0) =

2
(1 4)

12. cos 2 + 2 =
2

0

2

0
cos 2 =

2

0

2

0
cos . For the second integral, integrate by parts with

= , = cos . Then cos 2 + 2 =
2

0
[ sin + cos ]20 = 2 (2 sin 2 + cos 2 1).

13. is the region shown in the figure, and can be described

by = {( ) | 0 4 1 2}. Thus

arctan( ) =
4

0

2

1
arctan(tan ) since = tan .

Also, arctan(tan ) = for 0 4, so the integral becomes

4

0

2

1
=

4

0

2

1
= 1

2
2 4

0
1
2

2 2

1
=

2

32
· 3
2
= 3

64
2.

14. =

2 + 2 4
0, 0

( 1)2 + 2 1
0

=
2

0

2

0
2 cos

2

0

2 cos

0
2 cos

=
2

0
1
3 (8 cos )

2

0
1
3 (8 cos

4 )

= 8
3

8
12
cos3 sin + 3

2
( + sin cos )

2

0

= 8
3

2
3
0 + 3

2 2
= 16 3

6

15. One loop is given by the region

= {( ) | 6 6, 0 cos 3 }, so the area is

=
6

6

cos 3

0

=
6

6

1

2
2

=cos 3

=0

=
6

6

1

2
cos2 3 = 2

6

0

1

2

1 + cos 6

2

=
1

2
+
1

6
sin 6

6

0

=
12

16. By symmetry, the area of the region is 4 times the area of the region in the first quadrant enclosed by the cardiod

= 1 cos (see the figure). Here = {( ) | 0 1 cos 0 2}, so the total area is

4 ( ) = 4 = 4
2

0

1 cos

0
= 4

2

0
1
2

2 =1 cos

=0

= 2
2

0
(1 cos )2 = 2

2

0
(1 2 cos + cos2 )

= 2
2

0
1 2 cos + 1

2
(1 + cos 2 )

= 2 2 sin + 1
2
+ 1

4
sin 2

2

0

= 2
2

2 +
4
= 3

2
4
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1012 CHAPTER 15 MULTIPLE INTEGRALS

Computer algebra system required 1. Homework Hints available at stewartcalculus.comCAS

1. Electric charge is distributed over the rectangle ,
so that the charge density at is

(measured in coulombs per square meter).
Find the total charge on the rectangle.

2. Electric charge is distributed over the disk so
that the charge density at is
(measured in coulombs per square meter). Find the total charge
on the disk.

3–10 Find the mass and center of mass of the lamina that occupies
the region and has the given density function .

3. ;

4. ;

5. is the triangular region with vertices , , ;

6. is the triangular region enclosed by the lines , ,
and ; 

7. is bounded by and ; 

8. is bounded by and ; 

9. ;

10. is bounded by the parabolas and ;

11. A lamina occupies the part of the disk in the first
quadrant. Find its center of mass if the density at any point is
proportional to its distance from the -axis.

12. Find the center of mass of the lamina in Exercise 11 if the 
density at any point is proportional to the square of its 
distance from the origin.

0 � x � 5
2 � y � 5 �x, y�
� �x, y� � 2x � 4y

x 2 � y 2 � 1
�x, y� � �x, y� � sx 2 � y 2

D �

D � ��x, y� � 1 � x � 3, 1 � y � 4� ��x, y� � ky 2

D � ��x, y� � 0 � x � a, 0 � y � b� ��x, y� � 1 � x 2 � y 2

D �0, 0� �2, 1� �0, 3�
��x, y� � x � y

D x � 0 y � x
2x � y � 6 ��x, y� � x 2

D y � 1 � x 2 y � 0 ��x, y� � ky

D y � x 2 ��x, y� � kx

D � ��x, y� � 0 � y � sin��x�L�, 0 � x � L� ��x, y� � y

D y � x 2 x � y 2

��x, y� � sx

x 2 � y 2 � 1

x

y � x � 2

13. The boundary of a lamina consists of the semicircles
and together with the portions 

of the -axis that join them. Find the center of mass of the lam-
ina if the density at any point is proportional to its distance
from the origin.

14. Find the center of mass of the lamina in Exercise 13 if the den-
sity at any point is inversely proportional to its distance from
the origin.

15. Find the center of mass of a lamina in the shape of an isos-
celes right triangle with equal sides of length if the density at
any point is proportional to the square of the distance from the
vertex opposite the hypotenuse.

16. A lamina occupies the region inside the circle
but outside the circle . Find the center of mass 
if the density at any point is inversely proportional to its
distance from the origin.

17. Find the moments of inertia , , for the lamina of 
Exercise 7.

18. Find the moments of inertia , , for the lamina of 
Exercise 12.

19. Find the moments of inertia , , for the lamina of 
Exercise 15.

20. Consider a square fan blade with sides of length 2 and the
lower left corner placed at the origin. If the density of the blade
is , is it more difficult to rotate the blade
about the -axis or the -axis?

21–24 A lamina with constant density occupies the
given region. Find the moments of inertia and and the radii of
gyration and .

21. The rectangle 

22. The triangle with vertices , , and 

x

a

x 2 � y 2 � 2y
x 2 � y 2 � 1

Ix Iy I0

Ix Iy I0

Ix Iy I0

��x, y� � 1 � 0.1x
x y

��x, y� � �
Ix Iy

x y

0 � x � b, 0 � y � h

�0, 0� �b, 0� �0, h�

y � s4 � x 2y � s1 � x 2

15.5 Exercises

Let’s first calculate the probability that both X and Y differ from their means by less
than 0.02 cm. Using a calculator or computer to estimate the integral, we have

Then the probability that either X or Y differs from its mean by more than 0.02 cm is
approximately

P�3.98 � X � 4.02, 5.98 � Y � 6.02� � y4.02

3.98
y6.02

5.98
f �x, y� dy dx

�
5000

�
y4.02

3.98
y6.02

5.98
e�5000��x�4�2�� y�6�2	 dy dx


 0.91

1 � 0.91 � 0.09
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542 ¤ CHAPTER 15 MULTIPLE INTEGRALS

41. (a) We integrate by parts with = and =
2

. Then = and = 1
2

2

, so

0
2 2

= lim
0

2 2
= lim 1

2

2

0
+

0
1
2

2

= lim 1
2

2

+ 1
2 0

2
= 0 + 1

2 0

2
[by l’Hospital’s Rule]

= 1
4

2
[since

2
is an even function]

= 1
4 [by Exercise 40(c)]

(b) Let = . Then 2 = = 2

0
= lim

0
= lim

0

2
2 = 2

0
2 2

= 2 1
4

[by part(a)] = 1
2

.

15.5 Applications of Double Integrals

1. = ( ) =
5

0

5

2
(2 + 4 ) =

5

0
2 + 2 2 =5

=2

=
5

0
(10 + 50 4 8) =

5

0
(6 + 42) = 3 2 + 42

5

0
= 75 + 210 = 285 C

2. = ( ) = 2 + 2 =
2

0

1

0
2

=
2

0

1

0
2 = [ ]20

1
3

3 1

0
= 2 · 1

3
= 2

3
C

3. = ( ) =
3

1

4

1
2 =

3

1

4

1
2 = [ ]31

1
3

3 4

1
= (2)(21) = 42 ,

= 1 ( ) = 1
42

3

1

4

1
2 = 1

42

3

1

4

1
2 = 1

42
1
2

2 3

1
1
3

3 4

1
= 1

42
(4)(21) = 2,

= 1 ( ) = 1
42

3

1

4

1
3 = 1

42

3

1

4

1
3 = 1

42
[ ]31

1
4

4 4

1
= 1

42
(2) 255

4
= 85

28

Hence = 42 , ( ) = 2 85
28
.

4. = ( ) =
0 0

(1 + 2 + 2) =
0

+ 2 + 1
3

3 =

=0
=

0
+ 2 + 1

3
3

= + 1
3

3 + 1
3
3

0
= + 1

3
3 + 1

3
3 = 1

3
(3 + 2 + 2),

= ( ) =
0 0

( + 3 + 2) =
0

+ 3 + 1
3

3 =

=0
=

0
+ 3 + 1

3
3

= 1
2

2 + 1
4

4 + 1
6
3 2

0
= 1

2
2 + 1

4
4 + 1

6
2 3 = 1

12
2 (6 + 3 2 + 2 2), and

= ( ) =
0 0

( + 2 + 3) =
0

1
2

2 + 1
2

2 2 + 1
4

4 =

=0
=

0
1
2
2 + 1

2
2 2 + 1

4
4

= 1
2
2 + 1

6
2 3 + 1

4
4

0
= 1

2
2 + 1

6
3 2 + 1

4
4 = 1

12
2(6 + 2 2 + 3 2).

Hence, ( ) = =
1
12

2 (6 + 3 2 + 2 2)
1
3 (3 + 2 + 2)

1
12

2(6 + 2 2 + 3 2)
1
3 (3 + 2 + 2)

=
(6 + 3 2 + 2 2)

4(3 + 2 + 2)

(6 + 2 2 + 3 2)

4(3 + 2 + 2)
.
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SECTION 15.5 APPLICATIONS OF DOUBLE INTEGRALS ¤ 543

5. =
2

0

3

2
( + ) =

2

0
+ 1

2
2 =3

= 2
=

2

0
3 3

2
+ 1

2
(3 )2 1

8
2

=
2

0
9
8

2 + 9
2

= 9
8

1
3

3 + 9
2

2

0
= 6,

=
2

0

3

2
( 2 + ) =

2

0
2 + 1

2
2 =3

= 2
=

2

0
9
2

9
8

3 = 9
2
,

=
2

0

3

2
( + 2) =

2

0
1
2

2 + 1
3

3 =3

= 2
=

2

0
9 9

2
= 9.

Hence = 6, ( ) = =
3

4

3

2
.

6. Here = {( ) | 0 2 6 2 }.

=
2

0

6 2 2 =
2

0
2 (6 2 ) =

2

0
6 2 3 3 = 2 3 3

4
4 2

0
= 4,

=
2

0

6 2 · 2 =
2

0
3 (6 2 ) =

2

0
6 3 3 4 = 3

2
4 3

5
5 2

0
= 24

5
,

=
2

0

6 2 · 2 =
2

0
2 1

2
(6 2 )2 1

2
2 = 1

2

2

0
3 4 24 3 + 36 2

= 1
2

3
5

5 6 4 + 12 3 2

0
= 48

5
.

Hence = 4, ( ) = 24 5
4

48 5
4

= 6
5

12
5
.

7. =
1

1

1 2

0
=

1

1
1
2

2 =1 2

=0
= 1

2

1

1
(1 2)2 = 1

2

1

1
(1 2 2 + 4)

= 1
2

2
3

3 + 1
5

5 1

1
= 1

2
1 2

3
+ 1

5
+ 1 2

3
+ 1

5
= 8

15
,

=
1

1

1 2

0
=

1

1
1
2

2 =1 2

=0
= 1

2

1

1
(1 2)2 = 1

2

1

1
( 2 3 + 5)

= 1
2

1
2

2 1
2

4 + 1
6

6 1

1
= 1

2
1
2

1
2
+ 1

6
1
2
+ 1

2
1
6
= 0,

=
1

1

1 2

0
2 =

1

1
1
3

3 =1 2

=0
= 1

3

1

1
(1 2)3 = 1

3

1

1
(1 3 2 + 3 4 6)

= 1
3

3 + 3
5

5 1
7

7 1

1
= 1

3
1 1 + 3

5
1
7
+ 1 1 + 3

5
1
7
= 32

105
.

Hence = 8
15
, ( ) = 0 32 105

8 15
= 0 4

7
.

8. The boundary curves intersect when 2 = + 2 2 2 = 0 = 1, = 2. Thus here

= ( ) | 1 2 2 + 2 .

=
2

1

+2
2 =

2

1

= +2

= 2 =
2

1
( 2+2 3) = 1

3
3 + 2 1

4
4 2

1
= 8

3
5
12

= 9
4 ,

=
2

1

+2
2

2 =
2

1
2 = +2

= 2 =
2

1
( 3 + 2 2 4) = 1

4
4 + 2

3
3 1

5
5 2

1
= 63

20
,

=
2

1

+2
2 =

2

1
1
2

2 = +2

= 2 = 1
2

2

1
( 2 + 4 + 4 4)

= 1
2

2

1
( 3 + 4 2 + 4 5) = 1

2
1
4

4 + 4
3

3 + 2 2 1
6

6 2

1
= 45

8
.

Hence = 9
4
, ( ) = 63 20

9 4
45 8
9 4

= 7
5

5
2
.
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544 ¤ CHAPTER 15 MULTIPLE INTEGRALS

9. Note that sin( ) 0 for 0 .

=
0

sin( )

0
=

0
1
2
sin2( ) = 1

2
1
2 4

sin(2 )
0
= 1

4
,

=
0

sin( )

0
· = 1

2 0
sin2( )

integrate by parts with
= = sin2( )

= 1
2
· 1

2 4
sin(2 )

0
1
2 0

1
2 4

sin(2 )

= 1
4

2 1
2

1
4

2 +
2

4 2 cos(2 )
0
= 1

4
2 1

2
1
4

2 +
2

4 2

2

4 2 = 1
8

2

=
0

sin( )

0
· =

0
1
3
sin3( ) = 1

3 0
1 cos2( ) sin( )

[substitute = cos ( )] = sin( )]

= 1
3

cos( ) 1
3 cos

3( )
0
= 3

1 + 1
3 1 + 1

3
= 4

9 .

Hence =
4
, ( ) =

2 8

4

4 (9 )

4
=

2

16

9
.

10. =
1

0 2 =
1

0
( 2)

=
1

0
( 5 2) = 1

2
2 2

7
7 2

1

0
= 3

14
,

=
1

0 2 =
1

0
( 2) =

1

0
( 2 7 2) = 1

3
3 2

9
9 2

1

0
= 1

9
,

=
1

0 2 =
1

0
· 1
2
( 4) = 1

2

1

0
( 3 2 9 2)

= 1
2

2
5

5 2 2
11

11 2
1

0
= 1

2
· 12
55
= 6

55
.

Hence = 3
14
, ( ) = 1 9

3 14
6 55
3 14

= 14
27

28
55
.

11. ( ) = = sin , =
2

0

1

0
2 sin = 1

3

2

0
sin = 1

3
cos

2

0
= 1

3
,

=
2

0

1

0
3 sin cos = 1

4

2

0
sin cos = 1

8
cos 2

2

0
= 1

8
,

=
2

0

1

0
3 sin2 = 1

4

2

0
sin2 = 1

8 + sin 2
2

0
= 16 .

Hence ( ) = 3
8

3
16
.

12. ( ) = ( 2 + 2) = 2, =
2

0

1

0
3 =

8
,

=
2

0

1

0
4 cos = 1

5

2

0
cos = 1

5
sin

2

0
= 1

5
,
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2.1.18 Questions with Solutions on Chapter 15.6



1016 CHAPTER 15 MULTIPLE INTEGRALS

1–12 Find the area of the surface.

1. The part of the plane that lies above the 
rectangle

2. The part of the plane that lies inside the
cylinder

3. The part of the plane that lies in the 
first octant

4. The part of the surface that lies above
the triangle with vertices , , and 

5. The part of the cylinder that lies above the rect-
angle with vertices , , , and 

6. The part of the paraboloid that lies above 
the -plane

7. The part of the hyperbolic paraboloid that lies
between the cylinders and

8. The surface , , 

9. The part of the surface that lies within the cylinder

10. The part of the sphere that lies above the
plane

11. The part of the sphere that lies within the
cylinder and above the -plane

12. The part of the sphere that lies inside the
paraboloid

13–14 Find the area of the surface correct to four decimal places
by expressing the area in terms of a single integral and using
your calculator to estimate the integral.

13. The part of the surface that lies above the disk

14. The part of the surface that lies inside the
cylinder

15. (a) Use the Midpoint Rule for double integrals (see Sec -
tion 15.1) with four squares to estimate the surface area 
of the portion of the paraboloid that lies
above the square .

(b) Use a computer algebra system to approximate the sur-
face area in part (a) to four decimal places. Compare
with the answer to part (a).

z � 2 � 3x � 4y
�0, 5� � �1, 4�

2x � 5y � z � 10
x 2 � y 2 � 9

3x � 2y � z � 6

z � 1 � 3x � 2y 2

�0, 0� �0, 1� �2, 1�

y 2 � z2 � 9
�0, 0� �4, 0� �0, 2� �4, 2�

z � 4 � x 2 � y 2

xy

z � y 2 � x 2

x 2 � y 2 � 1 x 2 � y 2 � 4

z � 2
3 �x 3�2 � y 3�2 � 0 � x � 1 0 � y � 1

z � xy
x 2 � y 2 � 1

x 2 � y 2 � z2 � 4
z � 1

x 2 � y 2 � z2 � a 2

x 2 � y 2 � ax xy

x 2 � y 2 � z2 � 4z
z � x 2 � y 2

z � e�x2�y2

x 2 � y 2 � 4

z � cos�x 2 � y 2�
x 2 � y 2 � 1

z � x 2 � y 2

�0, 1� � �0, 1�
CAS

16. (a) Use the Midpoint Rule for double integrals with
to estimate the area of the surface

, , .
(b) Use a computer algebra system to approximate the sur-

face area in part (a) to four decimal places. Compare
with the answer to part (a).

17. Find the exact area of the surface ,
, .

18. Find the exact area of the surface

Illustrate by graphing the surface.

19. Find, to four decimal places, the area of the part of the sur-
face that lies above the disk .

20. Find, to four decimal places, the area of the part of the 
surface that lies above the square

. Illustrate by graphing this part of the
surface.

21. Show that the area of the part of the plane
that projects onto a region in the -plane with area
is .

22. If you attempt to use Formula 2 to find the area of the top
half of the sphere , you have a slight
problem because the double integral is improper. In fact, the
integrand has an infinite discontinuity at every point of the
boundary circle . However, the integral can 
be computed as the limit of the integral over the disk

as . Use this method to show that the
area of a sphere of radius is .

23. Find the area of the finite part of the paraboloid
cut off by the plane . [Hint: Project the surface onto
the -plane.]

24. The figure shows the surface created when the cylinder
intersects the cylinder . Find the 

area of this surface.

z � 1 � 2x � 3y � 4y 2

1 � x � 4 0 � y � 1

z � 1 � x � y � x 2 �2 � x � 1 �1 � y � 1

z � 1 � x 2 y 2 x 2 � y 2 � 1

z � �1 � x 2 ���1 � y 2 �
� x � � � y � � 1

z � ax � by � c
D xy A�D�

sa 2 � b 2 � 1 A�D�

x 2 � y 2 � z2 � a 2

x 2 � y 2 � a 2

x 2 � y 2 � t 2 t l a �

a 4�a 2

y � x 2 � z 2

y � 25
xz

y 2 � z 2 � 1 x 2 � z 2 � 1

z 

y 

x 

CAS

CAS

CAS

CAS

m � n � 2
z � xy � x 2 � y 2 0 � x � 2 0 � y � 2

CAS

15.6 Exercises
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SECTION 15.6 SURFACE AREA ¤ 553

is again (see the figure). So

=
2

2

20 cos

0

1 1
20

=
2

2

1
2

2 1
60

3 =20 cos

=0

=
2

2
200 cos2 400

3
cos3 = 200

2

2
1
2
+ 1

2
cos 2 2

3
1 sin2 cos

= 200 1
2
+ 1

4
sin 2 2

3
sin + 2

3
· 1
3
sin3

2

2
= 200

4
+ 0 2

3
+ 2

9
+

4
+ 0 2

3
+ 2

9

= 200
2

8
9

136

Therefore the risk of infection is much lower at the edge of the city than in the middle, so it is better to live at the edge.

15.6 Surface Area

1. Here = ( ) = 2 + 3 + 4 and is the rectangle [0 5]× [1 4], so by Formula 2 the area of the surface is

( ) = [ ( )]2 + [ ( )]2 + 1 = 32 + 42 + 1 = 26

= 26 ( ) = 26 (5)(3) = 15 26

2. = ( ) = 10 2 5 and is the disk 2 + 2 9, so by Formula 2

( ) = ( 2)2 + ( 5)2 + 1 = 30 = 30 ( ) = 30 ( · 32) = 9 30

3. = ( ) = 6 3 2 which intersects the -plane in the line 3 + 2 = 6, so is the triangular region given by

( ) 0 2 0 3 3
2

. Thus

( ) = ( 3)2 + ( 2)2 + 1 = 14 = 14 ( ) = 14 1
2
· 2 · 3 = 3 14

4. = ( ) = 1 + 3 + 2 2 with 0 2 , 0 1. Thus by Formula 2,

( ) = 1 + (3)2 + (4 )2 =
1

0

2

0
10 + 16 2 =

1

0
10 + 16 2 =2

=0

=
1

0
2 10 + 16 2 = 2 · 1

32 · 23 (10 + 16 2)3 2
1

0
= 1

24 (26
3 2 103 2)

5. 2 + 2 = 9 = 9 2. = 0, = (9 2) 1 2

( ) =
4

0

2

0

02 + [ (9 2) 1 2]2 + 1 =
4

0

2

0

2

9 2
+ 1

=
4

0

2

0

3

9 2
= 3

4

0

sin 1

3

=2

=0
= 3 sin 1 2

3

4

0
= 12 sin 1 2

3

6. = ( ) = 4 2 2 and is the projection of the paraboloid = 4 2 2 onto the -plane, that is,

= ( ) | 2 + 2 4 . So = 2 , = 2

( ) = ( 2 )2 + ( 2 )2 + 1 = 4( 2 + 2) + 1 =
2

0

2

0
4 2 + 1

=
2

0
1
12 (4

2 + 1)3 2
=2

=0
=

2

0
1
12
17 17 1 = 6

17 17 1
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554 ¤ CHAPTER 15 MULTIPLE INTEGRALS

7. = ( ) = 2 2 with 1 2 + 2 4. Then

( ) = 1 + 4 2 + 4 2 =
2

0

2

1
1 + 4 2 =

2

0

2

1
1 + 4 2

=
2

0
1
12
(1 + 4 2)3 2

2

1
=

6
17 17 5 5

8. = ( ) = 2
3
( 3 2 + 3 2) and = {( ) | 0 1 0 1}. Then = 1 2, = 1 2 and

( ) =
2
+ ( )2 + 1 =

1

0

1

0

+ + 1 =
1

0

2
3
( + + 1)3 2

=1

=0

= 2
3

1

0
( + 2)3 2 ( + 1)3 2 = 2

3
2
5
( + 2)5 2 2

5
( + 1)5 2

1

0

= 4
15
(35 2 25 2 25 2 + 1) = 4

15
(35 2 27 2 + 1)

9. = ( ) = with 2 + 2 1, so = , =

( ) = 2 + 2 + 1 =
2

0

1

0
2 + 1 =

2

0
1
3
( 2 + 1)3 2

=1

=0

=
2

0
1
3
2 2 1 = 2

3
2 2 1

10. Given the sphere 2 + 2 + 2 = 4, when = 1, we get 2 + 2 = 3 so = ( ) | 2 + 2 3 and

= ( ) = 4 2 2. Thus

( ) = [( )(4 2 2) 1 2]2 + [( )(4 2 2) 1 2]2 + 1

=
2

0

3

0

2

4 2
+ 1 =

2

0

3

0

2 + 4 2

4 2

=
2

0

3

0

2

4 2

=
2

0
2(4 2)1 2

= 3

=0
=

2

0
( 2 + 4) = 2

2

0
= 4

11. = 2 2 2, = ( 2 2 2) 1 2, = ( 2 2 2) 1 2,

( ) =
2 + 2

2 2 2
+ 1

=
2

2

cos

0

2

2 2
+ 1

=
2

2

cos

0
2 2

=
2

2

2 2
= cos

=0

=
2

2

2 2 cos2 = 2 2
2

0

1 1 cos2

= 2 2
2

0

2 2
2

0

sin2 = 2 2 2
2

0

sin = 2( 2)
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SECTION 15.7 TRIPLE INTEGRALS 1025

1. Evaluate the integral in Example 1, integrating first with
respect to , then , and then .

2. Evaluate the integral , where

using three different orders of integration.

3–8 Evaluate the iterated integral.

3. 4.

5. 6.

7.

8.

9–18 Evaluate the triple integral.

9. , where

10. , where

11. , where

12. , where lies below the plane and above the
triangular region with vertices , , and 

13. , where lies under the plane 
and above the region in the -plane bounded by the curves

, , and 

14. , where is bounded by the parabolic cylinders
and and the planes and 

15. , where is the solid tetrahedron with vertices
, , , and 

16. , where is the solid tetrahedron with vertices
, , , and 

17. , where is bounded by the paraboloid 
and the plane 

18. , where is bounded by the cylinder 
and the planes , , and in the first octant

y z x

xxx
E

�xy � z 2� dV

E � ��x, y, z� � 0 � x � 2, 0 � y � 1, 0 � z � 3�

y2

0
yz 2

0
yy�z

0
�2x � y� dx dy dz y1

0
y2x

x
yy

0
2xyz dz dy dx

y2

1
y2z

0
yln x

0
xe�y dy dx dz y1

0
y1

0
ys1�z 2

0

z

y � 1
dx dz dy

y��2

0
yy

0
yx

0
cos�x � y � z� dz dx dy

ys�

0
yx

0
yxz

0
x 2 sin y dy dz dx

xxx
E

y dV

E � {�x, y, z� � 0 � x � 3, 0 � y � x, x � y � z � x � y}

xxxE e z�y dV

E � ��x, y, z� � 0 � y � 1, y � x � 1, 0 � z � xy�
xxx

E

z

x 2 � z 2 dV

E � ��x, y, z� � 1 � y � 4, y � z � 4, 0 � x � z�
xxxE sin y dV E z � x

�0, 0, 0� ��, 0, 0� �0, �, 0�

xxx
E

6xy dV E z � 1 � x � y
xy

y � sx y � 0 x � 1

xxx
E

xy dV E
y � x 2 x � y 2 z � 0 z � x � y

xxxT x 2 dV T
�0, 0, 0� �1, 0, 0� �0, 1, 0� �0, 0, 1�

xxxT xyz dV T
�0, 0, 0� �1, 0, 0� �1, 1, 0� �1, 0, 1�

xxx
E

x dV E
x � 4y2 � 4z2 x � 4

xxxE z dV E y 2 � z2 � 9
x � 0 y � 3x z � 0

19–22 Use a triple integral to find the volume of the given solid.

19. The tetrahedron enclosed by the coordinate planes and the
plane

20. The solid enclosed by the paraboloids and

21. The solid enclosed by the cylinder and the planes
and

22. The solid enclosed by the cylinder and the
planes and 

23. (a) Express the volume of the wedge in the first octant that is
cut from the cylinder by the planes
and as a triple integral.

(b) Use either the Table of Integrals (on Reference Pages
6–10) or a computer algebra system to find the exact
value of the triple integral in part (a).

24. (a) In the Midpoint Rule for triple integrals we use a triple
Riemann sum to approximate a triple integral over a box

, where is evaluated at the center 
of the box . Use the Midpoint Rule to estimate 

, where is the cube defined by
, , . Divide into eight

cubes of equal size.
(b) Use a computer algebra system to approximate the inte-

gral in part (a) correct to the nearest integer. Compare
with the answer to part (a).

25–26 Use the Midpoint Rule for triple integrals (Exer cise 24) to
estimate the value of the integral. Divide into eight sub-boxes
of equal size.

25. , where

26. , where

27–28 Sketch the solid whose volume is given by the iterated 
integral.

27. 28.

29–32 Express the integral as an iterated integral
in six different ways, where is the solid bounded by the given
surfaces.

29. ,

2x � y � z � 4

y � x 2 � z 2

y � 8 � x 2 � z 2

y � x 2

z � 0 y � z � 1

x 2 � z 2 � 4
y � �1 y � z � 4

y 2 � z2 � 1 y � x
x � 1

CAS

B f �x, y, z� �xi, yj, zk �
Bijk

xxx
B sx 2 � y 2 � z 2 dV B

0 � x � 4 0 � y � 4 0 � z � 4 B

CAS

B

xxxB cos�xyz� dV

B � ��x, y, z� � 0 � x � 1, 0 � y � 1, 0 � z � 1�

xxxB sx e xyz dV
B � ��x, y, z� � 0 � x � 4, 0 � y � 1, 0 � z � 2�

y1

0
y1�x

0
y2�2z

0
dy dz dx y2

0
y2�y

0
y4�y 2

0
dx dz dy

xxxE f �x, y, z� dV
E

y � 0y � 4 � x 2 � 4z2

15.7 Exercises

Computer algebra system required 1. Homework Hints available at stewartcalculus.comCAS
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SECTION 15.7 TRIPLE INTEGRALS ¤ 559

7. 2

0 0 0
cos( + + ) =

2

0 0
sin( + + )

=

=0

=
2

0 0
[sin(2 + ) sin( + )]

=
2

0
1
2
cos(2 + ) + cos( + )

=

=0

=
2

0
1
2
cos 3 + cos 2 + 1

2
cos cos

= 1
6
sin 3 + 1

2
sin 2 1

2
sin

2

0
= 1

6
1
2
= 1

3

8.
0 0 0

2 sin =
0 0

2 cos
=

=0
=

0 0
( 2 2 cos )

=
0

2 sin
=

=0
=

0
( 3 sin 2)

= 1
4

4 + 1
2
cos 2

0
= 1

4
2 1

2
1
2
= 1

4
2 1

9. =
3

0 0

+
=

3

0 0

= +

=
=

3

0 0
2 2

=
3

0
2
3

3 =

=0
=

3

0
2
3

3 = 1
6

4 3

0
= 81

6
= 27

2

10. =
1

0

1

0
=

1

0

1
=

=0

=
1

0

1
( ) =

1

0

=1

=
=

1

0
+ 2

= 1
2

2 1
2

2 ( 1) + 1
3

3 1

0
[integrate by parts]

= 1
2

1
2
+ 1

3
1 = 1

2
7
6

11.
2 + 2

=
4

1

4

0
2 + 2

=
4

1

4

· 1 tan 1
=

=0

=
4

1

4
tan 1(1) tan 1(0) =

4

1

4

4
0 =

4

4

1

=4

=

=
4

4

1
(4 ) =

4
4 1

2
2 4

1
=

4
16 8 4 + 1

2
= 9

8

12. Here = {( ) | 0 0 0 }, so
sin =

0 0 0
sin =

0 0
sin

=

=0
=

0 0
sin

=
0

cos
=

=0
=

0
[ cos( ) + ]

= sin( ) cos( ) + 1
2

2
0

[integrate by parts]

= 0 1 + 1
2

2 0 1 0 = 1
2

2 2

13. Here = {( ) | 0 1 0 0 1 + + }, so
6 =

1

0 0

1+ +

0
6 =

1

0 0
6

=1+ +

=0

=
1

0 0
6 (1 + + ) =

1

0
3 2 + 3 2 2 + 2 3 =

=0

=
1

0
(3 2 + 3 3 + 2 5 2) = 3 + 3

4
4 + 4

7
7 2

1

0
= 65

28
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560 ¤ CHAPTER 15 MULTIPLE INTEGRALS

14. is the solid above the region shown in the -plane and below the plane = + .

Thus,

=
1

0 2
+

0
=

1

0 2 ( + )

=
1

0 2 ( 2 + 2) =
1

0
1
2

2 2 + 1
3

3 =

= 2

=
1

0
( 1
2

3 + 1
3

5 2 1
2

6 1
3

7)

= 1
8

4 + 2
21

7 2 1
14

7 1
24

8
1

0
= 1

8
+ 2

21
1
14

1
24
= 3

28

15. Here = {( ) | 0 1 0 1 0 1 }, so
2 =

1

0

1

0

1

0
2 =

1

0

1

0
2(1 )

=
1

0

1

0
( 2 3 2 ) =

1

0
2 3 1

2
2 2 =1

=0

=
1

0
2(1 ) 3(1 ) 1

2
2(1 )2

=
1

0
1
2

4 3 + 1
2

2 = 1
10

5 1
4

4 + 1
6

3 1

0

= 1
10

1
4
+ 1

6
= 1

60

16. Here = {( ) | 0 1 0 0 }, so

=
1

0 0 0
=

1

0 0
1
2

2 =

=0

=
1

0 0
1
2

( )2 = 1
2

1

0 0
( 3 2 2 2 + 3)

= 1
2

1

0
1
2

3 2 2
3

2 3 + 1
4

4 =

=0

= 1
2

1

0
1
2

5 2
3

5 + 1
4

5

= 1
2

1

0
1
12

5 = 1
144

6 1

0
= 1

144

17. The projection of on the -plane is the disk 2 + 2 1. Using polar

coordinates = cos and = sin , we get

=
4

4 2 +4 2 = 1
2

42 (4 2 + 4 2)2

= 8
2

0

1

0
(1 4) = 8

2

0

1

0
( 5)

= 8(2 ) 1
2

2 1
6

6 1

0
= 16

3

18.
1

0

3

3

9 2

0
=

1

0

3

3
1
2
(9 2)

=
1

0
9
2

1
6

3 = 3

= 3

=
1

0
9 27

2
+ 9

2
3

= 9 27
4

2 + 9
8

4 1

0
= 27

8
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2.1.20 Questions with Solutions on Chapter 15.8



SECTION 15.8 TRIPLE INTEGRALS IN CYLINDRICAL COORDINATES 1031

1–2 Plot the point whose cylindrical coordinates are given. Then
find the rectangular coordinates of the point.

1. (a) (b)

2. (a) (b)

3–4 Change from rectangular to cylindrical coordinates.

3. (a) (b)

4. (a) (b)

5–6 Describe in words the surface whose equation is given.

5. 6.

7–8 Identify the surface whose equation is given.

7. 8.

9–10 Write the equations in cylindrical coordinates.

9. (a) (b)

10. (a) (b)

11–12 Sketch the solid described by the given inequalities.

11. , ,

12. ,

13. A cylindrical shell is 20 cm long, with inner radius 6 cm and
outer radius 7 cm. Write inequalities that describe the shell 
in an appropriate coordinate system. Explain how you have
positioned the coordinate system with respect to the shell.

; 14. Use a graphing device to draw the solid enclosed by the 
paraboloids and .

15–16 Sketch the solid whose volume is given by the integral 
and evaluate the integral.

15. 16.

17–28 Use cylindrical coordinates.

17. Evaluate , where is the region that lies
inside the cylinder and between the planes

and .

�4, ��3, �2� �2, ���2, 1�

(s2 , 3��4, 2) �1, 1, 1�

��1, 1, 1� (�2, 2s3 , 3)

(2s3, 2, �1) �4, �3, 2�

� � ��4 r � 5

z � 4 � r 2 2r 2 � z2 � 1

x 2 � x � y 2 � z 2 � 1 z � x 2 � y 2

3x � 2y � z � 6 �x 2 � y 2 � z2 � 1

0 � r � 2 ���2 � � � ��2 0 � z � 1

0 � � � ��2 r � z � 2

z � x 2 � y 2 z � 5 � x 2 � y 2

y��2

���2
y2

0
yr2

0
r dz dr d� y2

0
y2�

0
yr

0
r dz d� dr

xxxE sx 2 � y 2 dV E
x 2 � y 2 � 16

z � �5 z � 4

18. Evaluate , where is enclosed by the paraboloid

and the plane .

19. Evaluate , where is the solid in the first
octant that lies under the paraboloid .

20. Evaluate , where is enclosed by the planes 

and and by the cylinders and
.

21. Evaluate , where is the solid that lies within the 

cylinder , above the plane , and below the
cone .

22. Find the volume of the solid that lies within both the cylinder
and the sphere .

23. Find the volume of the solid that is enclosed by the cone
and the sphere .

24. Find the volume of the solid that lies between the paraboloid
and the sphere .

25. (a) Find the volume of the region bounded by the parabo-
loids and .

(b) Find the centroid of (the center of mass in the case
where the density is constant).

26. (a) Find the volume of the solid that the cylinder
cuts out of the sphere of radius centered at the origin.

; (b) Illustrate the solid of part (a) by graphing the sphere and
the cylinder on the same screen.

27. Find the mass and center of mass of the solid bounded by
the paraboloid and the plane if

has constant density .

28. Find the mass of a ball given by if the
density at any point is proportional to its distance from the 
-axis.

29–30 Evaluate the integral by changing to cylindrical coordinates.

29.

30.

xxx
E

�x � y � z� dV E
z � 4 � x 2 � y 2

xxx
E

x dV E z � 0

z � x � y � 5 x 2 � y 2 � 4
x 2 � y 2 � 9

xxx
E

x 2 dV E

x 2 � y 2 � 1 z � 0
z2 � 4x 2 � 4y 2

x 2 � y 2 � 1 x 2 � y 2 � z2 � 4

z � sx 2 � y 2 x 2 � y 2 � z 2 � 2

z � x 2 � y 2 x 2 � y 2 � z 2 � 2

E
z � x 2 � y 2 z � 36 � 3x 2 � 3y 2

E

r � a cos �
a

S
z � 4x 2 � 4y 2 z � a �a � 0�

S K

B x 2 � y 2 � z2 � a 2

z

y2

�2
ys4�y 2

�s4�y 2
y2

sx 2�y 2
xz dz dx dy

y3

�3
ys9�x 2

0
y9�x 2�y 2

0
sx2 � y2 dz dy dx

ExxxE z dV

z � 4z � x 2 � y 2

15.8 Exercises

; Graphing calculator or computer required 1. Homework Hints available at stewartcalculus.com
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SECTION 15.8 TRIPLE INTEGRALS IN CYLINDRICAL COORDINATES ¤ 575

4. By using the substitutions = 2 2 2
1 · · · 2

+ 1 cos and then applying Formulas 1 and 2 from

Problem 3, we can write

=

2 2

2 2

· · ·
2 2 2

1 ··· 2
3

2 2 2
1 ··· 2

3

2 2 2
1 ··· 2

3
2
2

2 2 2
1 ··· 2

3
2
2

1 2 · · · 1

= 2
2

2

cos2 2 2

2

2

cos3 3 3 · · ·
2

2

cos 1
1 1

2

2

cos

=

2 ·
2

2 · 2
1 · 3 ·

1 · 3
2 · 4

2 · 2 · 4
1 · 3 · 5 ·

1 · 3 · 5
2 · 4 · 6 · · · 2 · · · · · ( 2)

1 · · · · · ( 1)
· 1 · · · · · ( 1)

2 · · · · · even

2
2
· 2 · 2
1 · 3

1 · 3
2 · 4 · 2 · 2 · 4

1 · 3 · 5 · · · 1 · · · · · ( 2)

2 · · · · · ( 1)
· 2 · · · · · ( 1)

1 · · · · · odd

By canceling within each set of brackets, we find that

=

2

2
· 2
4
· 2
6
· · · · · 2 =

(2 ) 2

2 · 4 · 6 · · · · · =
2

1
2

!
even

2 · 2
3
· 2
5
· 2
7
· · · · · 2 =

2(2 )( 1) 2

3 · 5 · 7 · · · · · =
2 1

2
( 1) ! ( 1) 2

!
odd

15.8 Triple Integrals in Cylindrical Coordinates

1. (a) From Equations 1, = cos = 4 cos
3
= 4 · 1

2
= 2,

= sin = 4 sin
3
= 4 · 3

2
= 2 3, = 2, so the point is

2 2 3 2 in rectangular coordinates.

(b) = 2cos
2
= 0, = 2 sin

2
= 2,

and = 1, so the point is (0 2 1) in rectangular coordinates.

2. (a) = 2cos
3

4
= 2 2

2
= 1,

= 2 sin
3

4
= 2 2

2
= 1, and = 2,

so the point is ( 1 1 2) in rectangular coordinates.
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576 ¤ CHAPTER 15 MULTIPLE INTEGRALS

(b) = 1cos 1 = cos 1, = 1 sin 1 = sin 1, and = 1,

so the point is (cos 1 sin 1 1) in rectangular coordinates.

3. (a) From Equations 2 we have 2 = ( 1)2 + 12 = 2 so = 2; tan = 1
1 = 1 and the point ( 1 1 ) is in the second

quadrant of the -plane, so = 3
4
+ 2 ; = 1. Thus, one set of cylindrical coordinates is 2 3

4
1 .

(b) 2 = ( 2)2 + (2 3)2 = 16 so = 4; tan = 2 3
2
= 3 and the point 2 2 3 is in the second quadrant of the

-plane, so = 2
3
+ 2 ; = 3. Thus, one set of cylindrical coordinates is 4 2

3
3 .

4. (a) 2 = 2 3
2
+ 22 = 16 so = 4; tan = 2

2 3
= 1

3
and the point 2 3 2 is in the first quadrant of the -plane, so

=
6
+ 2 ; = 1. Thus, one set of cylindrical coordinates is 4

6
1 .

(b) 2 = 42 + ( 3)2 = 25 so = 5; tan = 3
4
and the point (4 3) is in the fourth quadrant of the -plane,

so = tan 1 3
4
+ 2 0 64 + 2 ; = 2. Thus, one set of cylindrical coordinates

is 5 tan 1 3
4
+ 2 2 (5 5 64 2).

5. Since = 4 but and may vary, the surface is a vertical half-plane including the -axis and intersecting the -plane in the

half-line = , 0.

6. Since = 5, 2 + 2 = 25 and the surface is a circular cylinder with radius 5 and axis the -axis.

7. = 4 2 = 4 ( 2 + 2) or 4 2 2, so the surface is a circular paraboloid with vertex (0 0 4), axis the -axis, and

opening downward.

8. Since 2 2 + 2 = 1 and 2 = 2 + 2, we have 2( 2 + 2) + 2 = 1 or 2 2 + 2 2 + 2 = 1, an ellipsoid centered at the

origin with intercepts = ± 1

2
, = ± 1

2
, = ±1.

9. (a) Substituting 2 + 2 = 2 and = cos , the equation 2 + 2 + 2 = 1 becomes 2 cos + 2 = 1 or
2 = 1 + cos 2.

(b) Substituting = cos and = sin , the equation = 2 2 becomes
= ( cos )2 ( sin )2 = 2(cos2 sin2 ) or = 2 cos 2 .

10. (a) Substituting = cos and = sin , the equation 3 + 2 + = 6 becomes 3 cos + 2 sin + = 6 or

= 6 (3 cos + 2 sin ).

(b) The equation 2 2 + 2 = 1 can be written as ( 2 + 2) + 2 = 1 which becomes 2 + 2 = 1 or 2 = 1 + 2

in cylindrical coordinates.
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578 ¤ CHAPTER 15 MULTIPLE INTEGRALS

16. The region of integration is given in cylindrical coordinates by

= {( ) | 0 2 , 0 2, 0 }. This represents the
solid region enclosed by the circular cylinder = 2, bounded above by the

cone = , and bounded below by the -plane.

2

0

2

0 0
=

2

0

2

0

=

=0
=

2

0

2

0
2

=
2

0
2 2

0
= 1

3
3 2

0

2

0
= 8

3
· 2 = 16

3

17. In cylindrical coordinates, is given by {( ) | 0 2 0 4 5 4}. So

2 + 2 =
2

0

4

0

4

5
2 =

2

0

4

0
2 4

5

=
2

0
1
3

3 4

0

4

5
= (2 ) 64

3
(9) = 384

18. The paraboloid = 2 + 2 = 2 intersects the plane = 4 in the circle 2 + 2 = 4 or 2 = 4 = 2, so in

cylindrical coordinates, is given by ( ) 0 2 0 2 2 4 . Thus

=
2

0

2

0

4
2( ) =

2

0

2

0
1
2

2 =4

= 2

=
2

0

2

0
8 1

2
5 =

2

0

2

0
8 1

2
5 = 2 4 2 1

12
6 2

0

= 2 16 16
3
= 64

3

19. The paraboloid = 4 2 2 = 4 2 intersects the -plane in the circle 2 + 2 = 4 or 2 = 4 = 2, so in

cylindrical coordinates, is given by ( ) 0 2 0 2 0 4 2 . Thus

( + + ) =
2

0

2

0

4 2

0
( cos + sin + ) =

2

0

2

0
2(cos + sin ) + 1

2
2 =4 2

=0

=
2

0

2

0
(4 2 4)(cos + sin ) + 1

2
(4 2)2

=
2

0
4
3

3 1
5

5 (cos + sin ) 1
12
(4 2)3

=2

=0

=
2

0
64
15
(cos + sin ) + 16

3
= 64

15
(sin cos ) + 16

3

2

0

= 64
15 (1 0) + 16

3 · 2 64
15 (0 1) 0 = 8

3 + 128
15

20. In cylindrical coordinates is bounded by the planes = 0, = cos + sin + 5 and the cylinders = 2 and = 3, so

is given by {( ) | 0 2 2 3 0 cos + sin + 5}. Thus

=
2

0

3

2

cos + sin +5

0
( cos ) =

2

0

3

2
( 2 cos )[ ] = cos + sin +5

=0

=
2

0

3

2
( 2 cos )( cos + sin + 5) =

2

0

3

2
( 3(cos2 + cos sin ) + 5 2 cos )

=
2

0
1
4

4(cos2 + cos sin ) + 5
3

3 cos
=3

=2

=
2

0
81
4

16
4
(cos2 + cos sin ) + 5

3 (27 8) cos

=
2

0
65
4

1
2
(1 + cos 2 ) + cos sin + 95

3
cos = 65

8
+ 65

16
sin 2 + 65

8
sin2 + 95

3
sin

2

0
= 65

4
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SECTION 15.8 TRIPLE INTEGRALS IN CYLINDRICAL COORDINATES ¤ 579

21. In cylindrical coordinates, is bounded by the cylinder = 1, the plane = 0, and the cone = 2 . So

= {( ) | 0 2 0 1 0 2 } and
2 =

2

0

1

0

2

0
2 cos2 =

2

0

1

0
3 cos2

=2

=0
=

2

0

1

0
2 4 cos2

=
2

0
2
5

5 cos2
=1

=0
= 2

5

2

0
cos2 = 2

5

2

0
1
2
(1 + cos 2 ) = 1

5
+ 1

2
sin 2

2

0
= 2

5

22. In cylindrical coordinates is the solid region within the cylinder = 1 bounded above and below by the sphere 2 + 2 = 4,

so = ( ) | 0 2 0 1 4 2 4 2 . Thus the volume is

=
2

0

1

0

4 2

4 2
=

2

0

1

0
2 4 2

=
2

0

1

0
2 4 2 = 2 2

3 (4
2)3 2

1

0
= 4

3 (8 33 2)

23. In cylindrical coordinates, is bounded below by the cone = and above by the sphere 2 + 2 = 2 or = 2 2. The

cone and the sphere intersect when 2 2 = 2 = 1, so = ( ) | 0 2 0 1 2 2

and the volume is

=
2

0

1

0

2 2

=
2

0

1

0
[ ] = 2 2

= =
2

0

1

0
2 2 2

=
2

0

1

0
2 2 2 = 2 1

3
(2 2)3 2 1

3
3
1

0

= 2 1
3
(1 + 1 23 2) = 2

3
2 2 2 = 4

3
2 1

24. In cylindrical coordinates, is bounded below by the paraboloid = 2 and above by the sphere 2 + 2 = 2 or

= 2 2. The paraboloid and the sphere intersect when 2 + 4 = 2 ( 2 + 2)( 2 1) = 0 = 1, so

= ( ) | 0 2 0 1 2 2 2 and the volume is

=
2

0

1

0

2 2

2 =
2

0

1

0
[ ]

= 2 2

= 2 =
2

0

1

0
2 2 3

=
2

0

1

0
2 2 3 = 2 1

3
(2 2)3 2 1

4
4
1

0

= 2 ( 1
3

1
4
+ 1

3
· 23 2 0) = 2 7

12
+ 2

3
2 = 7

6
+ 4

3
2

25. (a) The paraboloids intersect when 2 + 2 = 36 3 2 3 2 2 + 2 = 9, so the region of integration

is = ( ) | 2 + 2 9 . Then, in cylindrical coordinates,

= ( ) | 2 36 3 2, 0 3, 0 2 and

=
2

0

3

0

36 3 2

2 =
2

0

3

0
36 4 3 =

2

0
18 2 4 =3

=0
=

2

0
81 = 162 .
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SECTION 15.8 TRIPLE INTEGRALS IN CYLINDRICAL COORDINATES ¤ 581

Since the region is homogeneous and symmetric, = = 0 and

=
2

0

2

0 4 2

=
2

0

2

0

1
2

2 8 5

=
2

0

1
4

2 2 4
3

6 = 2

=0
=

2

0

1
24

3 = 1
12

3

Hence ( ) = 0 0 2
3
.

28. Since density is proportional to the distance from the -axis, we can say ( ) = 2 + 2. Then

= 2
2

0 0

2 2

0
2 = 2

2

0 0
2 2 2

= 2
2

0
1
8
(2 2 2) 2 2 + 1

8
4 sin 1( )

=

=0
= 2

2

0
1
8

4
2

= 1
4

4 2

29. The region of integration is the region above the cone = 2 + 2, or = , and below the plane = 2. Also, we have

2 2 with 4 2 4 2 which describes a circle of radius 2 in the -plane centered at (0 0). Thus,

2

2

4 2

4 2

2

2+ 2

=
2

0

2

0

2

( cos ) =
2

0

2

0

2
2 (cos )

=
2

0

2

0
2 (cos ) 1

2
2 =2

=
= 1

2

2

0

2

0
2 (cos ) 4 2

= 1
2

2

0
cos

2

0
4 2 4 = 1

2
[sin ]20

4
3

3 1
5

5 2

0
= 0

30. The region of integration is the region above the plane = 0 and below the paraboloid = 9 2 2. Also, we have

3 3 with 0 9 2 which describes the upper half of a circle of radius 3 in the -plane centered at (0 0).

Thus,
3

3

9 2

0

9 2 2

0

2 + 2 =
0

3

0

9 2

0

2 =
0

3

0

9 2

0

2

=
0

3

0
2 9 2 =

0

3

0
9 2 4

=
0
3 3 1

5
5 3

0
= 81 243

5
= 162

5

31. (a) The mountain comprises a solid conical region . The work done in lifting a small volume of material with density

( ) to a height ( ) above sea level is ( ) ( ) . Summing over the whole mountain we get

= ( ) ( ) .

(b) Here is a solid right circular cone with radius = 62,000 ft, height = 12,400 ft,

and density ( ) = 200 lb ft3 at all points in . We use cylindrical coordinates:

=
2

0 0

(1 )

0
· 200 = 2

0
200 1

2
2 = (1 )

=0

= 400
0

2

2
1

2

= 200 2

0

2 2

+
3

2

= 200 2
2

2

2 3

3
+

4

4 2
0

= 200 2
2

2

2 2

3
+

2

4

= 50
3

2 2 = 50
3 (62,000)2(12,400)2 3 1× 1019 ft-lb

= = 1
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SECTION 15.9 TRIPLE INTEGRALS IN SPHERICAL COORDINATES 1037

1–2 Plot the point whose spherical coordinates are given. Then find
the rectangular coordinates of the point.

1. (a) (b)

2. (a) (b)

3–4 Change from rectangular to spherical coordinates.

3. (a) (b)

4. (a) (b)

5–6 Describe in words the surface whose equation is given.

5. 6.

7–8 Identify the surface whose equation is given.

7. 8.

�6, ��3, ��6� �3, ��2, 3��4�

�2, ��2, ��2� �4, ���4, ��3�

�0, �2, 0� (�1, 1, �s2 )

(1, 0, s3 ) (s3 , �1, 2s3 )

� � ��3 � � 3

� � sin � sin � � 2 �sin2� sin2� � cos2�� � 9

9–10 Write the equation in spherical coordinates.

9. (a) (b)

10. (a) (b)

11–14 Sketch the solid described by the given inequalities.

11. , ,

12. , ,

13. ,

14. ,

15. A solid lies above the cone and below the
sphere . Write a description of the solid in
terms of inequalities involving spherical coordinates.

16. (a) Find inequalities that describe a hollow ball with diameter
30 cm and thickness 0.5 cm. Explain how you have
positioned the coordinate system that you have chosen.

x 2 � 2x � y 2 � z 2 � 0 x � 2y � 3z � 1

2 � � � 4 0 � � � ��3 0 � � � �

1 � � � 2 0 � � � ��2 ��2 � � � 3��2

� � 1 3��4 � � � �

� � 2 � � csc �

z � sx 2 � y 2

x 2 � y 2 � z2 � z

x 2 � z2 � 9z2 � x 2 � y 2

15.9 Exercises

; Graphing calculator or computer required Computer algebra system required 1. Homework Hints available at stewartcalculus.comCAS

Figure 11 shows how E is swept out if we integrate first with respect to , then , and
then . The volume of E is

� �
�

V�E� � yyy
E

dV � y2�

0
y��4

0
ycos �

0
�2 sin � d� d� d�

� y2�

0
d� y��4

0
sin �� �3

3 �
��0

��cos �

d�

�
2�

3 y
��4

0
sin � cos3� d� �

2�

3 ��
cos4�

4 �
0

��4

�
�

8

FIGURE 11
¨ varies from 0 to 2π.

z

yx

z

yx

∏ varies from 0 to cos ˙

while ˙ and ¨  are c onstant.

z

yx

˙ varies from 0 to π/4

 while ¨ is constant.

Visual 15.9 shows an animation of 
Figure 11.
TEC
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1038 CHAPTER 15 MULTIPLE INTEGRALS

(b) Suppose the ball is cut in half. Write inequalities that
describe one of the halves.

17–18 Sketch the solid whose volume is given by the integral 
and evaluate the integral.

17.

18.

19–20 Set up the triple integral of an arbitrary continuous function
in cylindrical or spherical coordinates over the solid

shown.
19. 20.

21–34 Use spherical coordinates.
21. Evaluate , where is the ball with 

center the origin and radius 5.

22. Evaluate , where is the solid
hemisphere , .

23. Evaluate , where lies between the spheres
and .

24. Evaluate , where is the solid hemisphere
, .

25. Evaluate , where is the portion of the unit
ball that lies in the first octant.

26. Evaluate , where lies between the spheres 
and and above the cone .

27. Find the volume of the part of the ball that lies between
the cones and .

28. Find the average distance from a point in a ball of radius to
its center.

29. (a) Find the volume of the solid that lies above the cone
and below the sphere .

(b) Find the centroid of the solid in part (a).

30. Find the volume of the solid that lies within the sphere
, above the -plane, and below the cone

.

31. (a) Find the centroid of the solid in Example 4.
(b) Find the moment of inertia about the -axis for this solid.

y��6

0 y
��2

0 y
3

0
�2 sin � d� d� d�

y2�

0 y
�

��2 y
2

1
�2 sin � d� d� d�

f �x, y, z�

z 

x 
y 

3 

2 

z 

x y 2 
1 

xxxB �x 2 � y 2 � z2 �2 dV B

xxxH �9 � x 2 � y 2 � dV H
x 2 � y 2 � z2 � 9 z 	 0

ExxxE �x 2 � y 2� dV
x 2 � y 2 � z 2 � 9x 2 � y 2 � z 2 � 4

ExxxE y 2 dV
y 	 0x 2 � y 2 � z2 � 9

ExxxE xex2�y2� z2 dV
x 2 � y 2 � z 2 � 1

ExxxE xyz dV
� � ��3� � 4� � 2

� � a
� � ��3� � ��6

a

� � 4 cos �� � ��3

xyx 2 � y 2 � z 2 � 4
z � sx 2 � y 2

z

32. Let be a solid hemisphere of radius whose density at any
point is proportional to its distance from the center of the base.
(a) Find the mass of .
(b) Find the center of mass of .
(c) Find the moment of inertia of about its axis.

33. (a) Find the centroid of a solid homogeneous hemisphere of
radius .

(b) Find the moment of inertia of the solid in part (a) about a
diameter of its base.

34. Find the mass and center of mass of a solid hemisphere of
radius if the density at any point is proportional to its 
distance from the base.

35–38 Use cylindrical or spherical coordinates, whichever seems
more appropriate.
35. Find the volume and centroid of the solid that lies 

above the cone and below the sphere
.

36. Find the volume of the smaller wedge cut from a sphere of
radius by two planes that intersect along a diameter at an
angle of .

37. Evaluate , where lies above the paraboloid 
and below the plane . Use either the

Table of Integrals (on Reference Pages 6–10) or a computer
algebra system to evaluate the integral.

38. (a) Find the volume enclosed by the torus .
(b) Use a computer to draw the torus.

39–41 Evaluate the integral by changing to spherical coordinates.

39.

40.

41.

42. A model for the density of the earth’s atmosphere near its
surface is

where (the distance from the center of the earth) is mea-
sured in meters and is measured in kilograms per cubic
meter. If we take the surface of the earth to be a sphere with
radius 6370 km, then this model is a reasonable one for

. Use this model to estimate
the mass of the atmosphere between the ground and an altitude
of 5 km.

; 43. Use a graphing device to draw a silo consisting of a cylinder
with radius 3 and height 10 surmounted by a hemisphere.

H
H

H

a

a

E
z � sx 2 � y 2

x 2 � y 2 � z2 � 1

a
��6

ExxxE z dVCAS

z � 2yz � x 2 � y 2

CAS � � sin �

y1

0 y
s1�x 2

0 ys2�x 2�y 2

sx 2�y 2
xy dz dy dx

ya
�a y

sa 2�y 2

�sa 2�y 2 ysa 2�x 2�y 2

�sa 2�x 2�y 2 �x 2z � y 2z � z3� dz dx dy

y2

�2 y
s4�x 2

�s4�x 2 y2�s4�x 2�y 2

2�s4�x 2�y 2
�x 2 � y 2 � z 2�3�2 dz dy dx





 � 619.09 � 0.000097�

�



6.370 � 106 � � � 6.375 � 106

aH
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584 ¤ CHAPTER 15 MULTIPLE INTEGRALS

We split the region of integration where the outside boundary changes from the vertical line = 1 to the circle
2 + 2 = 2 or = 1. 1 is a right triangle, so cos = 1 . Thus, the boundary between 1 and 2 is = cos 1 1 in

polar coordinates, or = 2 1 in rectangular coordinates. Using rectangular coordinates for the region 1 and polar

coordinates for 2, we find the total volume of the solid to be

= 16
1

0

2 1

0

1 2 +
4

cos 1(1 ) 0

1 2 cos2

If 2, the cylinder 2 + 2 = 1 completely encloses the intersection of the other two cylinders, so the solid of

intersection of the three cylinders coincides with the intersection of 2 + 2 = 1 and 2 + 2 = 1 as illustrated in

Exercise 15.6.24. Its volume is = 16
1

0 0
1 2 .

15.9 Triple Integrals in Spherical Coordinates

1. (a) From Equations 1, = sin cos = 6 sin
6
cos

3
= 6 · 1

2
· 1
2
= 3

2
,

= sin sin = 6 sin
6
sin

3
= 6 · 1

2
· 3
2
= 3 3

2
, and

= cos = 6 cos
6
= 6 · 3

2
= 3 3, so the point is 3

2
3 3
2

3 3 in

rectangular coordinates.

(b) = 3 sin 3
4
cos

2
= 3 · 2

2
· 0 = 0,

= 3 sin 3
4
sin

2
= 3 · 2

2
· 1 = 3 2

2
, and

= 3 cos 3
4
= 3 2

2
= 3 2

2
, so the point is 0 3 2

2
3 2
2

in

rectangular coordinates.

2. (a) = 2 sin
2
cos

2
= 2 · 1 · 0 = 0, = 2 sin

2
sin

2
= 2 · 1 · 1 = 2,

= 2 cos
2
= 2 · 0 = 0 so the point is (0 2 0) in rectangular coordinates.

(b) = 4 sin
3
cos

4
= 4 · 3

2
· 2
2
= 6,

= 4 sin
3
sin

4
= 4 3

2
2
2

= 6,

= 4cos 3 = 4 · 12 = 2 so the point is 6 6 2 in rectangular

coordinates.
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SECTION 15.9 TRIPLE INTEGRALS IN SPHERICAL COORDINATES ¤ 585

3. (a) From Equations 1 and 2, = 2 + 2 + 2 = 02 + ( 2)2 + 02 = 2, cos = =
0

2
= 0 =

2
, and

cos =
sin

=
0

2 sin( 2)
= 0 =

3

2
[since 0]. Thus spherical coordinates are 2

3

2 2
.

(b) = 1 + 1 + 2 = 2, cos = =
2

2
=
3

4
, and

cos =
sin

=
1

2 sin(3 4)
=

1

2 2 2
=

1

2
=
3

4
[since 0]. Thus spherical coordinates

are 2
3

4

3

4
.

4. (a) = 2 + 2 + 2 = 1 + 0 + 3 = 2, cos = =
3

2
=
6
, and cos =

sin
=

1

2 sin( 6)
= 1

= 0. Thus spherical coordinates are 2 0
6
.

(b) = 3 + 1 + 12 = 4, cos = =
2 3

4
=

3

2
=
6
, and cos =

sin
=

3

4 sin( 6)
=

3

2

=
11

6
[since 0]. Thus spherical coordinates are 4

11

6 6
.

5. Since =
3
, the surface is the top half of the right circular cone with vertex at the origin and axis the positive -axis.

6. Since = 3, 2 + 2 + 2 = 9 and the surface is a sphere with center the origin and radius 3.

7. = sin sin 2 = sin sin 2 + 2 + 2 = 2 + 2 + 1
4
+ 2 = 1

4

2 + ( 1
2
)2 + 2 = 1

4
. Therefore, the surface is a sphere of radius 1

2
centered at 0 1

2
0 .

8. 2 sin2 sin2 + cos2 = 9 ( sin sin )2 + ( cos )2 = 9 2 + 2 = 9. Thus the surface is a circular

cylinder of radius 3 with axis the -axis.

9. (a) = sin cos , = sin sin , and = cos , so the equation 2 = 2 + 2 becomes

( cos )2 = ( sin cos )2 + ( sin sin )2 or 2 cos2 = 2 sin2 . If 6= 0, this becomes cos2 = sin2 . ( = 0

corresponds to the origin which is included in the surface.) There are many equivalent equations in spherical coordinates,

such as tan2 = 1, 2 cos2 = 1, cos 2 = 0, or even =
4
, = 3

4
.

(b) 2 + 2 = 9 ( sin cos )2 + ( cos )2 = 9 2 sin2 cos2 + 2 cos2 = 9 or

2 sin2 cos2 + cos2 = 9.

10. (a) 2 2 + 2 + 2 = 0 ( 2 + 2 + 2) 2 = 0 2 2 ( sin cos ) = 0 or = 2 sin cos .

(b) + 2 + 3 = 1 sin cos + 2 sin sin + 3 cos = 1 or = 1 (sin cos + 2 sin sin + 3 cos ).
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586 ¤ CHAPTER 15 MULTIPLE INTEGRALS

11. 2 4 represents the solid region between and including the spheres of

radii 2 and 4, centered at the origin. 0
3
restricts the solid to that

portion on or above the cone =
3
, and 0 further restricts the

solid to that portion on or to the right of the -plane.

12. 1 2 represents the solid region between and including the spheres of

radii 1 and 2, centered at the origin. 0 2 restricts the solid to that

portion on or above the -plane, and
2

3
2
further restricts the solid

to that portion on or behind the -plane.

13. 1 represents the solid sphere of radius 1 centered at the origin.

3
4

restricts the solid to that portion on or below the cone = 3
4
.

14. 2 represents the solid sphere of radius 2 centered at the origin. Notice

that 2 + 2 = ( sin cos )2 + ( sin sin )2 = 2 sin2 . Then

= csc sin = 1 2 sin2 = 2 + 2 = 1, so csc

restricts the solid to that portion on or inside the circular cylinder

2 + 2 = 1.

15. 2 + 2 because the solid lies above the cone. Squaring both sides of this inequality gives 2 2 + 2

2 2 2 + 2 + 2 = 2 2 = 2 cos2 1
2

2 cos2 1
2
. The cone opens upward so that the inequality is

cos 1

2
, or equivalently 0

4
. In spherical coordinates the sphere = 2 + 2 + 2 is cos = 2

= cos . 0 cos because the solid lies below the sphere. The solid can therefore be described as the region in

spherical coordinates satisfying 0 cos , 0 4 .
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SECTION 15.9 TRIPLE INTEGRALS IN SPHERICAL COORDINATES ¤ 587

16. (a) The hollow ball is a spherical shell with outer radius 15 cm and inner radius 14.5 cm. If we center the ball at the origin of

the coordinate system and use centimeters as the unit of measurement, then spherical coordinates conveniently describe the

hollow ball as 14 5 15, 0 2 , 0 .

(b) If we position the ball as in part (a), one possibility is to take the half of the ball that is above the -plane which is

described by 14 5 15, 0 2 , 0 2.

17. The region of integration is given in spherical coordinates by

= {( ) | 0 3 0 2 0 6}. This represents the solid
region in the first octant bounded above by the sphere = 3 and below by the cone

= 6.

6

0

2

0

3

0
2 sin =

6

0
sin

2

0

3

0
2

= cos
6

0

2

0
1
3

3 3

0

= 1
3

2 2
(9) =

9

4
2 3

18. The region of integration is given in spherical coordinates by

= {( ) | 1 2 0 2 2 }. This represents the solid
region between the spheres = 1 and = 2 and below the -plane.

2

0 2

2

1
2 sin =

2

0 2
sin

2

1
2

=
2

0
cos

2
1
3

3 2

1

= 2 (1) 7
3
= 14

3

19. The solid is most conveniently described if we use cylindrical coordinates:

= ( ) | 0
2
0 3 0 2 . Then

( ) =
2

0

3

0

2

0
( cos sin ) .

20. The solid is most conveniently described if we use spherical coordinates:

= ( ) | 1 2
2

2 0
2
. Then

( ) =
2

0

2

2

2

1
( sin cos sin sin cos ) 2 sin .

21. In spherical coordinates, is represented by {( ) | 0 5 0 2 0 }. Thus

( 2 + 2 + 2)2 =
0

2

0

5

0
( 2)2 2 sin =

0
sin

2

0

5

0
6

= cos
0

2

0
1
7

7 5

0
= (2)(2 ) 78,125

7

= 312,500
7

140,249 7
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588 ¤ CHAPTER 15 MULTIPLE INTEGRALS

22. In spherical coordinates, is represented by ( ) 0 3 0 2 0
2
. Thus

(9 2 2) =
2

0

2

0

3

0
9 ( 2 sin2 cos2 + 2 sin2 sin2 ) 2 sin

=
2

0

2

0

3

0
(9 2 sin2 ) 2 sin

=
2

0

2

0
3 3 1

5
5 sin2

=3

=0
sin

=
2

0

2

0
81 sin 243

5
sin3

=
2

0

2

0
81 sin 243

5
(1 cos2 ) sin

= 2 81 cos 243
5

1
3
cos3 cos

2

0

= 2 0 + 81 + 243
5

2
3

= 486
5

23. In spherical coordinates, is represented by {( ) | 2 3 0 2 0 } and
2 + 2 = 2 sin2 cos2 + 2 sin2 sin2 = 2 sin2 cos2 + sin2 = 2 sin2 . Thus

( 2 + 2) =
0

2

0

3

2
( 2 sin2 ) 2 sin =

0
sin3

2

0

3

2
4

=
0
(1 cos2 ) sin

2

0
1
5

5 3

2
= cos + 1

3
cos3

0
(2 ) · 1

5
(243 32)

= 1 1
3
+ 1 1

3
(2 ) 211

5
= 1688

15

24. In spherical coordinates, is represented by {( ) | 0 3 0 0 }. Thus
2 =

0 0

3

0
( sin sin )2 2 sin =

0
sin3

0
sin2

3

0
4

=
0
(1 cos2 ) sin

0
1
2
(1 cos 2 )

3

0
4

= cos + 1
3
cos3

0
1
2

1
2
sin 2

0
1
5

5 3

0

= 2
3
+ 2

3
1
2

1
5
(243) = 4

3 2
243
5

= 162
5

25. In spherical coordinates, is represented by ( ) 0 1 0
2
0

2
. Thus

2+ 2+ 2
=

2

0

2

0

1

0
( sin cos )

2 2 sin =
2

0
sin2

2

0
cos

1

0
3 2

=
2

0
1
2
(1 cos 2 )

2

0
cos 1

2
2 2 1

0

1

0

2

integrate by parts with = 2, =
2

= 1
2

1
4
sin 2

2

0
[sin ] 2

0
1
2

2 2 1
2

2 1

0
=

4
0 (1 0) 0 + 1

2
=

8

26. =
3

0

2

0

4

2
( sin cos )( sin sin )( cos ) 2 sin

=
3

0
sin3 cos

2

0
sin cos

4

2
5 = 1

4
sin4

3

0
1
2
sin2

2

0
1
6

6 4

2
= 0
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SECTION 15.9 TRIPLE INTEGRALS IN SPHERICAL COORDINATES ¤ 589

27. The solid region is given by = ( ) | 0 0 2
6 3

and its volume is

= =
3

6

2

0 0
2 sin =

3

6
sin

2

0 0
2

= [ cos ]
3
6 [ ]

2
0

1
3

3
0
= 1

2
+ 3

2
(2 ) 1

3
3 = 3 1

3
3

28. If we center the ball at the origin, then the ball is given by

= {( ) | 0 0 2 0 } and the distance from any point ( ) in the ball to the

center (0 0 0) is 2 + 2 + 2 = . Thus the average distance is

1

( )
=

1
4
3

3
0

2

0 0

· 2 sin =
3

4 3
0

sin
2

0 0

3

=
3

4 3
cos

0

2

0
1
4

4
0
=

3

4 3
(2)(2 ) 1

4
4 = 3

4

29. (a) Since = 4cos implies 2 = 4 cos , the equation is that of a sphere of radius 2 with center at (0 0 2). Thus

=
2

0

3

0

4 cos

0
2 sin =

2

0

3

0
1
3

3 =4 cos

=0
sin =

2

0

3

0
64
3
cos3 sin

=
2

0
16
3
cos4

= 3

=0
=

2

0
16
3

1
16

1 = 5
2

0
= 10

(b) By the symmetry of the problem = = 0. Then

=
2

0

3

0

4 cos

0
3 cos sin =

2

0

3

0
cos sin 64 cos4

=
2

0
64 1

6
cos6

= 3

=0
=

2

0
21
2

= 21

Hence ( ) = (0 0 2 1).

30. In spherical coordinates, the sphere 2 + 2 + 2 = 4 is equivalent to = 2 and the cone = 2 + 2 is represented

by =
4
. Thus, the solid is given by ( ) 0 2 0 2

4 2
and

=
2

4

2

0

2

0
2 sin =

2

4
sin

2

0

2

0
2

= cos
2

4

2

0
1
3

3 2

0
= 2

2
(2 ) 8

3
= 8 2

3

31. (a) By the symmetry of the region, = 0 and = 0. Assuming constant density ,

= = = 8 (from Example 4). Then

= =
2

0

4

0

cos

0
( cos ) 2 sin =

2

0

4

0
sin cos 1

4
4 =cos

=0

= 1
4

2

0

4

0
sin cos cos4 = 1

4

2

0

4

0
cos5 sin

= 1
4

2

0
1
6
cos6

4

0
= 1

4
(2 ) 1

6
2
2

6

1 =
12

7
8
= 7

96

Thus the centroid is ( ) = = 0 0
7 96

8
= 0 0 7

12
.
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2.1.22 Questions with Solutions on Chapter 16.2



1072 CHAPTER 16 VECTOR CALCULUS

; Graphing calculator or computer required Computer algebra system required 1. Homework Hints available at stewartcalculus.comCAS

1–16 Evaluate the line integral, where is the given curve.

1. ,

2. ,

3. ,  is the right half of the circle 

4. ,  is the line segment from to 

5. ,
is the arc of the curve from to 

6. ,
C is the arc of the curve from to 

7. ,  consists of line segments from
to and from to 

8. ,  consists of the arc of the circle 
from to followed by the line segment

from to 

C

xC y 3 ds C: x � t 3, y � t, 0 � t � 2

x
C

xy ds C: x � t 2, y � 2t, 0 � t � 1

xC xy 4 ds C x 2 � y 2 � 16

xC x sin y ds C �0, 3� �4, 6�

x
C

(x 2y 3 � sx ) dy
C y � sx �1, 1� �4, 2�

xC e x dx
x � y 3 ��1, �1� �1, 1�

x
C

�x � 2y� dx � x 2 dy C
�0, 0� �2, 1� �2, 1� �3, 0�

xC x 2 dx � y 2 dy C

x 2 � y 2 � 4 �2, 0� �0, 2�
�0, 2� �4, 3�

9. ,

10. ,
is the line segment from to 

11. ,
is the line segment from (0, 0, 0) to (1, 2, 3)

12. ,
: , , , 

13. ,  : , , , 

14. ,
: , , , 

15. ,  is the line segment from
to 

16. ,  consists of line
segments from to and from to

x
C

xyz ds
C: x � 2 sin t, y � t, z � �2 cos t, 0 � t � �

xC xyz2 ds
C ��1, 5, 0� �1, 6, 4�

xC xe yz ds
C

xC �x 2 � y 2 � z2� ds
C x � t y � cos 2t z � sin 2t 0 � t � 2�

x
C

xye yz dy C x � t y � t 2 z � t 3 0 � t � 1

xC y dx � z dy � x dz
C x � st y � t z � t 2 1 � t � 4

xC z2 dx � x 2 dy � y 2 dz C �1, 0, 0�
�4, 1, 2�

xC �y � z� dx � �x � z� dy � �x � y� dz C
�0, 0, 0� �1, 0, 1� �1, 0, 1�

�0, 1, 2�

16.2 Exercises

Thus

Finally, we note the connection between line integrals of vector fields and line integrals
of scalar fields. Suppose the vector field on is given in component form by the equa-
tion . We use Definition 13 to compute its line integral along :

But this last integral is precisely the line integral in . Therefore we have

For example, the integral in Example 6 could be expressed as
where

y
C

F � dr � y1

0
F�r�t�� � r��t� dt

� y1

0
�t 3 � 5t 6 � dt �

t 4

4
�

5t 7

7 �0

1

�
27

28

F � 3

F � P i � Q j � R k C

y
C

F � dr � yb
a

F�r�t�� � r��t� dt

� yb
a

�P i � Q j � R k� � (x��t� i � y��t� j � z��t� k) dt

� yb
a

[P(x�t�, y�t�, z�t�) x��t� � Q(x�t�, y�t�, z�t�) y��t� � R(x�t�, y�t�, z�t�) z��t�] dt

y
C

F � dr � y
C

P dx � Q dy � R dz where F � P i � Q j � R k

x
C

y dx � z dy � x dz
x

C
F � dr

F�x, y, z� � y i � z j � x k

10
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SECTION 16.2 LINE INTEGRALS 1073

17. Let be the vector field shown in the figure.
(a) If is the vertical line segment from to ,

determine whether is positive, negative, or zero.
(b) If is the counterclockwise-oriented circle with radius 3

and center the origin, determine whether is posi-
tive, negative, or zero.

18. The figure shows a vector field and two curves and .
Are the line integrals of over and positive, negative, 
or zero? Explain.

19–22 Evaluate the line integral , where is given by the
vector function .
19. ,

,
20. ,

,
21. ,

,
22. ,

,

23–26 Use a calculator or CAS to evaluate the line integral correct
to four decimal places.
23. , where and

,

F
C1 ��3, �3� ��3, 3�

xC1
F � dr

C2

xC2
F � dr

y

x0
1

1

2 3

2

3

_3 _2 _1

_3

_2

_1

F C1 C2

F C1 C2

y

x

C¡

C™

xC F � dr C
r�t�

F�x, y� � xy i � 3y 2 j
r�t� � 11t 4 i � t 3 j 0 � t � 1
F�x, y, z� � �x � y� i � �y � z� j � z2 k
r�t� � t 2 i � t 3 j � t 2 k 0 � t � 1
F�x, y, z� � sin x i � cos y j � xz k
r�t� � t 3 i � t 2 j � t k 0 � t � 1
F�x, y, z� � x i � y j � xy k
r�t� � cos t i � sin t j � t k 0 � t � �

F�x, y� � xy i � sin y jxC F � dr
1 � t � 2r�t� � e t i � e�t2

j

24. , where 
and ,

25. , where has parametric equations ,
, , 

26. , where has parametric equations , ,
,

27–28 Use a graph of the vector field F and the curve C to guess
whether the line integral of F over C is positive, negative, or zero.
Then evaluate the line integral.
27. ,

is the arc of the circle traversed counter clock-
wise from (2, 0) to 

28. ,

is the parabola from to (1, 2)

29. (a) Evaluate the line integral , where
and is given by 

, .
; (b) Illustrate part (a) by using a graphing calculator or com-

puter to graph and the vectors from the vector field
corresponding to , , and 1 (as in Figure 13).

30. (a) Evaluate the line integral , where
and is given by

, .
; (b) Illustrate part (a) by using a computer to graph and

the vectors from the vector field corresponding to
and (as in Figure 13).

31. Find the exact value of , where is the curve with
parametric equations , , ,

.

32. (a) Find the work done by the force field
on a particle that moves once around the circle

oriented in the counter-clockwise direction.
(b) Use a computer algebra system to graph the force field and

circle on the same screen. Use the graph to explain your
answer to part (a).

33. A thin wire is bent into the shape of a semicircle ,
. If the linear density is a constant , find the mass and

center of mass of the wire.

34. A thin wire has the shape of the first-quadrant part of the
circle with center the origin and radius . If the density 
function is , find the mass and center of mass 
of the wire.

35. (a) Write the formulas similar to Equations 4 for the center of
mass of a thin wire in the shape of a space curve
if the wire has density function .

xC F � dr F�x, y, z� � y sin z i � z sin x j � x sin y k
r�t� � cos t i � sin t j � sin 5t k 0 � t � �

xC x sin�y � z� ds C x � t 2

y � t 3 z � t 4 0 � t � 5

xC ze�xy ds C x � t y � t 2

z � e�t 0 � t � 1

CAS

F�x, y� � �x � y� i � xy j
C x 2 � y 2 � 4

�0, �2�

F�x, y� �
x

sx 2 � y 2
i �

y
sx 2 � y 2

j

C y � 1 � x 2 ��1, 2�

xC F � dr
F�x, y� � e x�1 i � xy j C
r�t� � t 2 i � t 3 j 0 � t � 1

C
t � 0 1�s2

xC F � dr
F�x, y, z� � x i � z j � y k C
r�t� � 2t i � 3t j � t 2 k �1 � t � 1

C

t � �1 �
1
2

CAS xC x 3y 2z ds C
x � e�t cos 4 t y � e�t sin 4 t z � e�t

0 � t � 2�

F�x, y� � x 2 i � xy j

x 2 � y 2 � 4
CAS

x 2 � y 2 � 4
x � 0 k

a
	�x, y� � kxy

�x, y, z � C
	�x, y, z�
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628 ¤ CHAPTER 16 VECTOR CALCULUS

= = ln | | = + = ± + = for some constant . Therefore

= = = constant. If the flow line passes through (1 1) then (1) (1) = constant = 1 = 1

= 1 , 0.

36. (a) We sketch the vector field F( ) = i+ j along with

several approximate flow lines. The flow lines appear to

be parabolas.

(b) If = ( ) and = ( ) are parametric equations of a flow line, then the velocity vector of the flow line at the

point ( ) is 0( ) i+ 0( ) j. Since the velocity vectors coincide with the vectors in the vector field, we have

0( ) i+ 0( ) j = i+ j = 1, = . Thus = =
1
= .

(c) From part (b), = . Integrating, we have = 1
2

2 + . Since the particle starts at the origin, we know (0 0) is on

the curve, so 0 = 0 + = 0 and the path the particle follows is = 1
2

2.

16.2 Line Integrals

1. = 3 and = , 0 2, so by Formula 3

3 =
2

0

3
2

+
2

=
2

0

3 (3 2)2 + (1)2 =
2

0

3 9 4 + 1

= 1
36
· 2
3
9 4 + 1

3 2 2

0
= 1

54
(1453 2 1) or 1

54
145 145 1

2. =
1

0
( 2)(2 ) (2 )2 + (2)2 =

1

0
2 3 4 2 + 4 =

1

0
4 3 2 + 1

Substitute = 2 + 1
2 = 1, = 2

=
2

1
2( 1) = 2

2

1
( 3 2 1 2) = 2 2

5
5 2 2

3
3 2

2

1

= 2 8
5
2 4

3
2 2

5
+ 2

3
= 8

15
2 + 1

3. Parametric equations for are = 4cos , = 4 sin ,
2 2

. Then

4 =
2

2
(4 cos )(4 sin )4 ( 4 sin )2 + (4 cos )2 =

2

2
45 cos sin4 16(sin2 + cos2 )

= 45
2

2
(sin4 cos )(4) = (4)6 1

5
sin5

2

2
= 2 · 46

5
= 1638 4

4. Parametric equations for are = 4 , = 3 + 3 , 0 1. Then

sin =
1

0
(4 ) sin(3 + 3 ) 42 + 32 = 20

1

0
sin(3 + 3 )
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SECTION 16.2 LINE INTEGRALS ¤ 629

Integrating by parts with = = , = sin(3 + 3 ) = 1
3
cos(3 + 3 ) gives

sin = 20 1
3
cos(3 + 3 ) + 1

9
sin(3 + 3 )

1

0
= 20 1

3
cos 6 + 1

9
sin 6 + 0 1

9
sin 3

= 20
9 (sin 6 3 cos 6 sin 3)

5. If we choose as the parameter, parametric equations for are = , = for 1 4 and

2 3 =
4

1
2 · ( )3

1

2
= 1

2

4

1
3 1

= 1
2

1
4

4 4

1
= 1

2
64 4 1

4
+ 1 = 243

8

6. Choosing as the parameter, we have = 3, = , 1 1. Then

=
1

1

3 · 3 2 =
3 1

1
= 1 1 = 1 .

7. = 1 + 2

On 1: = , = 1
2

= 1
2

, 0 2.

On 2: = , = 3 = , 2 3.

Then

( + 2 ) + 2 =
1
( + 2 ) + 2 +

2
( + 2 ) + 2

=
2

0
+ 2 1

2
+ 2 1

2
+

3

2
+ 2(3 ) + 2( 1)

=
2

0
2 + 1

2
2 +

3

2
6 2

= 2 + 1
6

3 2

0
+ 6 1

2
2 1

3
3 3

2
= 16

3
0 + 9

2
22
3
= 5

2

8. = 1 + 2

On 1: = 2 cos = 2 sin , = 2 sin

= 2 cos , 0
2
.

On 2: = 4 = 4 , = 2+

= , 0 1.

Then
2 + 2 =

1

2 + 2 +
2

2 + 2

=
2

0
(2 cos )2( 2 sin ) + (2 sin )2(2 cos ) +

1

0
(4 )2(4 ) + (2 + )2

= 8
2

0
( cos2 sin + sin2 cos ) +

1

0
(65 2 + 4 + 4)

= 8 1
3
cos3 + 1

3
sin3

2

0
+ 65

3
3 + 2 2 + 4

1

0
= 8 1

3
1
3
+ 65

3
+ 2 + 4 = 83

3
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630 ¤ CHAPTER 16 VECTOR CALCULUS

9. = 2 sin , = , = 2 cos , 0 . Then by Formula 9,

=
0
(2 sin )( )( 2 cos )

2
+

2
+

2

=
0

4 sin cos (2 cos )2 + (1)2 + (2 sin )2 =
0

2 sin 2 4(cos2 + sin2 ) + 1

= 2 5
0
sin 2 = 2 5 1

2
cos 2 + 1

4
sin 2

0

integrate by parts with
= , = sin 2

= 2 5
2

0 = 5

10. Parametric equations for are = 1 + 2 , = 5 + , = 4 , 0 1. Then

2 =
1

0
( 1 + 2 )(5 + )(4 )2 22 + 12 + 42 = 21

1

0
(32 4 + 144 3 80 2)

= 21 32 ·
5

5
+ 144 ·

4

4
80 ·

3

3

1

0

= 21 32
5
+ 36 80

3
= 236

15
21

11. Parametric equations for are = , = 2 , = 3 , 0 1. Then

=
1

0
(2 )(3 ) 12 + 22 + 32 = 14

1

0
6 2

= 14 1
12

6 2 1

0
= 14

12
( 6 1).

12. ( )2 + ( )2 + ( )2 = 12 + ( 2 sin 2 )2 + (2 cos 2 )2 = 1 + 4(sin2 2 + cos2 2 ) = 5. Then

( 2 + 2 + 2) =
2

0
( 2 + cos2 2 + sin2 2 ) 5 = 5

2

0
( 2 + 1)

= 5 1
3
3 +

2

0
= 5 1

3
(8 3) + 2 ) = 5 8

3
3 + 2

13. =
1

0
( )( 2) ( 2)( 3) · 2 =

1

0
2 4 5

= 2
5

5 1

0
= 2

5 (
1 0) = 2

5 ( 1)

14. + + =
4

1
· 1
2

1 2 + 2 · + · 2 =
4

1
1
2
1 2 + 2 + 2 3 2

= 1
3
3 2 + 1

3
3 + 4

5
5 2

4

1
= 8

3
+ 64

3
+ 128

5
1
3

1
3

4
5
= 722

15

15. Parametric equations for are = 1 + 3 , = , = 2 , 0 1. Then

2 + 2 + 2 =
1

0
(2 )2 · 3 + (1 + 3 )2 + 2 · 2 =

1

0
23 2 + 6 + 1

= 23
3

3 + 3 2 +
1

0
= 23

3
+ 3 + 1 = 35

3

16. On 1: = = = 0

= 0 = = 0 1.

On 2: = 1 = =

= = 1 + = 0 1.
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SECTION 16.2 LINE INTEGRALS ¤ 631

Then

( + ) + ( + ) + ( + )

=
1
( + ) + ( + ) + ( + ) +

2
( + ) + ( + ) + ( + )

=
1

0
(0 + ) + ( + ) · 0 + ( + 0) +

1

0
( + 1 + )( ) + (1 + 1 + ) + (1 + )

=
1

0
2 +

1

0
( 2 + 2) = 2 1

0
+ 2 + 2

1

0
= 1 + 1 = 2

17. (a) Along the line = 3, the vectors of F have positive -components, so since the path goes upward, the integrand F ·T is
always positive. Therefore

1
F · r =

1
F ·T is positive.

(b) All of the (nonzero) field vectors along the circle with radius 3 are pointed in the clockwise direction, that is, opposite the

direction to the path. So F ·T is negative, and therefore
2
F · r =

2
F ·T is negative.

18. Vectors starting on 1 point in roughly the same direction as 1, so the tangential component F ·T is positive. Then

1
F · r =

1
F ·T is positive. On the other hand, no vectors starting on 2 point in the same direction as 2, while

some vectors point in roughly the opposite direction, so we would expect
2
F · r =

2
F ·T to be negative.

19. r( ) = 11 4 i+ 3 j, so F(r( )) = (11 4)( 3) i+ 3( 3)2 j = 11 7 i+ 3 6 j and r0( ) = 44 3 i+ 3 2 j. Then

F · r = 1

0
F(r( )) · r0( ) =

1

0
(11 7 · 44 3 + 3 6 · 3 2) =

1

0
(484 10 + 9 8) = 44 11 + 9 1

0
= 45.

20. F(r( )) = ( 2 + 3) i+ ( 3 2) j+ ( 2)2k = ( 2 + 3) i+ ( 3 2) j+ 4 k, r0( ) = 2 i+ 3 2 j+ 2 k. Then

F · r= 1

0
F(r( )) · r0( ) =

1

0
(2 3 + 2 4 + 3 5 3 4 + 2 5) =

1

0
(5 5 4 + 2 3)

= 5
6
6 1

5
5 + 1

2
4 1

0
= 5

6
1
5
+ 1

2
= 17

15

21. F · r = 1

0
sin 3 cos( 2) 4 · 3 2 2 1

=
1

0
(3 2 sin 3 2 cos 2 + 4) = cos 3 sin 2 + 1

5
5 1

0
= 6

5 cos 1 sin 1

22. F · r =
0
hcos sin cos sin i · h sin cos 1i =

0
sin cos = 1

2
sin2

0
= 0

23. F(r( )) = ( )
2

i+ sin
2

j =
2
i+ sin

2

j, r0( ) = i 2
2
j. Then

F · r=
2

1

F(r( )) · r0( ) =
2

1

2

+ sin
2 · 2

2

=
2

1

2 2

2
2

sin
2

1 9633

24. F(r( )) = (sin ) sin(sin 5 ) i+ (sin 5 ) sin(cos ) j+ (cos ) sin(sin )k, r0( ) = sin i+ cos j+ 5 cos 5 k.

Then
F · r=

0
F(r( )) · r0( )

=
0
[ sin2 sin(sin 5 ) + cos sin 5 sin(cos ) + 5 cos cos 5 sin(sin )] 0 1363
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SECTION 16.2 LINE INTEGRALS ¤ 633

29. (a) F · r = 1

0

2 1 5 · 2 3 2 =
1

0
2

2 1 + 3 7 =
2 1 + 3

8
8
1

0
= 11

8
1

(b) r(0) = 0, F(r(0)) = 1 0 ;

r 1

2
= 1

2
1

2 2
, F r 1

2
= 1 2 1

4 2
;

r(1) = h1 1i, F(r(1)) = h1 1i.
In order to generate the graph with Maple, we use the line command in

the plottools package to define each of the vectors. For example,

v1:=line([0,0],[exp(-1),0]):

generates the vector from the vector field at the point (0 0) (but without an arrowhead) and gives it the name v1. To show

everything on the same screen, we use the display command. In Mathematica, we use ListPlot (with the

PlotJoined - True option) to generate the vectors, and then Show to show everything on the same screen.

30. (a) F · r = 1

1
2 2 3 · h2 3 2 i =

1

1
(4 + 3 2 6 2) = 2 2 3 1

1
= 2

(b) Now F(r( )) = 2 2 3 , so F(r( 1)) = h 2 1 3i, F r 1
2

= 1 1
4

3
2
, F r 1

2
= 1 1

4
3
2
,

and F(r(1)) = h2 1 3i.

31. = cos 4 , = sin 4 , = , 0 2 .

Then = ( sin 4 )(4) cos 4 = (4 sin 4 + cos 4 ),

= (cos 4 )(4) sin 4 = ( 4 cos 4 + sin 4 ), and = , so

2

+
2

+
2

= ( )2[(4 sin 4 + cos 4 )2 + ( 4 cos 4 + sin 4 )2 + 1]

= 16(sin2 4 + cos2 4 ) + sin2 4 + cos2 4 + 1 = 3 2

Therefore 3 2 =
2

0
( cos 4 )3( sin 4 )2( ) (3 2 )

=
2

0
3 2 7 cos3 4 sin2 4 = 172,704

5,632,705 2 (1 14 )

32. (a) We parametrize the circle as r( ) = 2 cos i+ 2 sin j, 0 2 . So F(r( )) = 4 cos2 4 cos sin ,

r0( ) = h 2 sin 2 cos i, and = F · r = 2

0
( 8 cos2 sin + 8 cos2 sin ) = 0.
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1082 CHAPTER 16 VECTOR CALCULUS

Computer algebra system required 1. Homework Hints available at stewartcalculus.comCAS

1. The figure shows a curve and a contour map of a function
whose gradient is continuous. Find .

2. A table of values of a function with continuous gradient is
given. Find , where has parametric equations

3–10 Determine whether or not is a conservative vector field. 
If it is, find a function such that .

3.

4.

5.

6.

7.

8. ,

C f
x

C
� f � dr

y

x0

10

20

30
40
50
60

C

f
x

C
� f � dr C

x � t 2 � 1 y � t 3 � t 0 � t � 1

1

3

8

6

5

2

4

7

9

x
y

0

1

2

0 1 2

F
f F � � f

F�x, y� � �2x � 3y� i � ��3x � 4y � 8� j

F�x, y� � e x sin y i � e x cos y j

F�x, y� � e x cos y i � e x sin y j

F�x, y� � �3x 2 � 2y 2� i � �4xy � 3� j

F�x, y� � �ye x � sin y� i � �e x � x cos y� j

F�x, y� � �2xy � y�2� i � �x 2 � 2xy�3� j y � 0

9.

10.

11. The figure shows the vector field and
three curves that start at (1, 2) and end at (3, 2).
(a) Explain why has the same value for all three

curves.
(b) What is this common value?

12–18 (a) Find a function such that and (b) use 
part (a) to evaluate along the given curve .

12. ,
is the arc of the parabola from to 

13. ,

: ,  

14. ,
,

15. ,
is the line segment from to 

F�x, y� � �ln y � 2xy 3� i � �3x 2y 2 � x�y� j

F�x, y� � �xy cosh xy � sinh xy� i � �x 2 cosh xy � j

F�x, y� � �2xy, x 2 �

x
C

F � dr

y

x0 3

3

2

1

21

f F � ∇ f
xC F � dr C

F�x, y� � x 2 i � y 2 j
C y � 2x 2 ��1, 2� �2, 8�

F�x, y� � xy 2 i � x 2y j

C r�t� � � t � sin 1
2� t, t � cos 1

2� t � 0 � t � 1

F�x, y� � �1 � xy�e xy i � x 2e xy j
C: r�t� � cos t i � 2 sin t j 0 � t � ��2

F�x, y, z� � yz i � xz j � �xy � 2z� k
C �1, 0, �2� �4, 6, 3�

16.3 Exercises

Comparing this equation with Equation 16, we see that

which says that if an object moves from one point to another point under the influence
of a conservative force field, then the sum of its potential energy and its kinetic energy
remains constant. This is called the Law of Conservation of Energy and it is the reason
the vector field is called conservative.

P�A� � K�A� � P�B� � K�B�

A B
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SECTION 16.3 THE FUNDAMENTAL THEOREM FOR LINE INTEGRALS 1083

16. ,
: , , ,  

17. ,
: ,  

18. ,
: ,  

19–20 Show that the line integral is independent of path and eval-
uate the integral.
19. ,

is any path from to 

20. ,
is any path from to 

21. Suppose you’re asked to determine the curve that requires the
least work for a force field to move a particle from one
point to another point. You decide to check first whether is
conservative, and indeed it turns out that it is. How would
you reply to the request?

22. Suppose an experiment determines that the amount of work
required for a force field to move a particle from the point

to the point along a curve is 1.2 J and the
work done by in moving the particle along another curve 

between the same two points is 1.4 J. What can you say
about ? Why?

23–24 Find the work done by the force field in moving an
object from to .
23. ;  , 

24. ;  , 

25–26 Is the vector field shown in the figure conservative?
Explain.
25. 26.

27. If , use a plot to guess
whether is conservative. Then determine whether your
guess is correct.

C r�t� � �t 2 � 1� i � �t 2 � 1� j � �t 2 � 2t� k 0 � t � 2

F�x, y, z� � sin y i � �x cos y � cos z� j � y sin z k
C r�t� � sin t i � t j � 2t k 0 � t � ��2

F�x, y, z� � �y2z � 2xz2� i � 2xyz j � �xy 2 � 2x 2z� k
C x � st y � t � 1 z � t 2 0 � t � 1

F�x, y, z� � yze xz i � e xz j � xye xz k

xC 2xe�y dx � �2y � x 2e�y� dy
�2, 1��1, 0�C

xC sin y dx � �x cos y � sin y� dy
�1, ���2, 0�C

F
F

F
C1�5, �3��1, 2�

F
C2

F

F
QP

Q�2, 4�P�1, 1�F�x, y� � 2y 3�2 i � 3xsy j

Q�2, 0�P�0, 1�F�x, y� � e�y i � xe�y j

y

x

y

x

F�x, y� � sin y i � �1 � x cos y� jCAS

F

28. Let , where . Find curves
and that are not closed and satisfy the equation.

(a) (b)

29. Show that if the vector field is conser-
vative and , , have continuous first-order partial deriva-
tives, then

30. Use Exercise 29 to show that the line integral
is not independent of path.

31–34 Determine whether or not the given set is (a) open, 
(b) connected, and (c) simply-connected.
31. 32.

33.

34.

35. Let .

(a) Show that .
(b) Show that is not independent of path. 

[Hint: Compute and , where 
and are the upper and lower halves of the circle

from to .] Does this contradict
Theorem 6?

36. (a) Suppose that is an inverse square force field, that is,

for some constant , where . Find the
work done by in moving an object from a point
along a path to a point in terms of the distances and

from these points to the origin.
(b) An example of an inverse square field is the gravita-

 tional field discussed in Example 4
in Section 16.1. Use part (a) to find the work done by 
the gravitational field when the earth moves from 
aphelion (at a maximum distance of km 
from the sun) to perihelion (at a minimum distance of

km). (Use the values kg,
kg, and 

(c) Another example of an inverse square field is the elec tric
force field discussed in Example 5 in
Section 16.1. Suppose that an electron with a charge of

C is located at the origin. A positive unit
charge is positioned a distance m from the elec tron
and moves to a position half that distance from the elec-
tron. Use part (a) to find the work done by the electric
force field. (Use the value .)

F � � f f �x, y� � sin�x � 2y� C1

C2

yC1

F � dr � 0 yC2

F � dr � 1

F � P i � Q j � R k
P Q R

�P
�y �

�Q
�x

�P
�z

�
�R
�x

�Q
�z

�
�R
�y

xC y dx � x dy � xyz dz

��x, y� � 0 	 y 	 3	 ��x, y� � 1 	 � x � 	 2	

��x, y� � 1 � x 2 � y 2 � 4, y 
 0	

��x, y� � �x, y� � �2, 3�	

F�x, y� �
�y i � x j

x 2 � y 2

�P��y � �Q��x
xC F � dr
xC1

F � dr xC2
F � dr C1

C2

x 2 � y 2 � 1 �1, 0� ��1, 0�

F

F�r� �
cr

� r �3

c r � x i � y j � z k
F P1

P2 d1

d2

F � ��mMG �r�� r �3

1.52 � 108

1.47 � 108 m � 5.97 � 1024

M � 1.99 � 1030 G � 6.67 � 10�11 N�m2�kg2.�

F � qQr�� r �3

�1.6 � 10�19

10�12

 � 8.985 � 10 9
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SECTION 16.3 THE FUNDAMENTAL THEOREM FOR LINE INTEGRALS ¤ 637

49. Let r( ) = h ( ) ( ) ( )i and v = h 1 2 3i. Then

v · r = h 1 2 3i · h 0( ) 0( ) 0( )i = [ 1
0( ) + 2

0( ) + 3
0( )]

= 1 ( ) + 2 ( ) + 3 ( ) = [ 1 ( ) + 2 ( ) + 3 ( )] [ 1 ( ) + 2 ( ) + 3 ( )]

= 1 [ ( ) ( )] + 2 [ ( ) ( )] + 3 [ ( ) ( )]

= h 1 2 3i · h ( ) ( ) ( ) ( ) ( ) ( )i
= h 1 2 3i · [h ( ) ( ) ( )i h ( ) ( ) ( )i] = v · [r( ) r( )]

50. If r( ) = h ( ) ( ) ( )i then

r · r = h ( ) ( ) ( )i · h 0( ) 0( ) 0( )i = [ ( ) 0( ) + ( ) 0( ) + ( ) 0( )]

= 1
2
[ ( )]2 + 1

2
[ ( )]2 + 1

2
[ ( )]2

= 1
2

[ ( )]2 + [ ( )]2 + [ ( )]2 [ ( )]2 + [ ( )]2 + [ ( )]2

= 1
2
|r( )|2 |r( )|2

51. The work done in moving the object is F · r = F ·T . We can approximate this integral by dividing into

7 segments of equal length = 2 and approximating F ·T, that is, the tangential component of force, at a point ( ) on

each segment. Since is composed of straight line segments, F ·T is the scalar projection of each force vector onto .

If we choose ( ) to be the point on the segment closest to the origin, then the work done is

F ·T
7

=1

[F( ) ·T( )] = [2 + 2 + 2 + 2 + 1 + 1 + 1](2) = 22. Thus, we estimate the work done to

be approximately 22 J.

52. Use the orientation pictured in the figure. Then sinceB is tangent to any circle that lies in the plane perpendicular to the wire,

B = |B|T where T is the unit tangent to the circle : = cos , = sin . ThusB = |B| h sin cos i. Then

B · r = 2

0
|B| h sin cos i · h sin cos i =

2

0
|B| = 2 |B|. (Note that |B| here is the magnitude

of the field at a distance from the wire’s center.) But by Ampere’s Law B · r = 0 . Hence |B| = 0 (2 ).

16.3 The Fundamental Theorem for Line Integrals

1. appears to be a smooth curve, and since is continuous, we know is differentiable. Then Theorem 2 says that the value

of · r is simply the difference of the values of at the terminal and initial points of . From the graph, this is

50 10 = 40.

2. is represented by the vector function r( ) = ( 2 + 1) i+ ( 3 + ) j, 0 1, so r0( ) = 2 i+ (3 2 + 1) j. Since

3 2 + 1 6= 0, we have r0( ) 6= 0, thus is a smooth curve. is continuous, and hence is differentiable, so by Theorem 2

we have · r = (r(1)) (r(0)) = (2 2) (1 0) = 9 3 = 6.
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638 ¤ CHAPTER 16 VECTOR CALCULUS

3. (2 3 ) = 3 = ( 3 + 4 8) and the domain of F is R2 which is open and simply-connected, so by

Theorem 6 F is conservative. Thus, there exists a function such that = F, that is, ( ) = 2 3 and

( ) = 3 + 4 8. But ( ) = 2 3 implies ( ) = 2 3 + ( ) and differentiating both sides of this

equation with respect to gives ( ) = 3 + 0( ). Thus 3 + 4 8 = 3 + 0( ) so 0( ) = 4 8 and

( ) = 2 2 8 + where is a constant. Hence ( ) = 2 3 + 2 2 8 + is a potential function for F.

4. ( sin ) = cos = ( cos ) and the domain of F is R2. Hence F is conservative so there exists a function

such that = F. Then ( ) = sin implies ( ) = sin + ( ) and ( ) = cos + 0( ). But

( ) = cos so 0( ) = 0 ( ) = . Then ( ) = sin + is a potential function for F.

5. ( cos ) = sin , ( sin ) = sin . Since these are not equal, F is not conservative.

6. (3 2 2 2) = 4 , (4 + 3) = 4 . Since these are not equal, F is not conservative.

7. ( + sin ) = + cos = ( + cos ) and the domain of F is R2. Hence F is conservative so there

exists a function such that = F. Then ( ) = + sin implies ( ) = + sin + ( ) and

( ) = + cos + 0( ). But ( ) = + cos so ( ) = and ( ) = + sin + is a potential

function for F.

8. (2 + 2) = 2 2 3 = ( 2 2 3) and the domain of F is {( ) | 0} which is open and
simply-connected. Hence F is conservative, so there exists a function such that = F. Then ( ) = 2 + 2

implies ( ) = 2 + 2 + ( ) and ( ) = 2 2 3 + 0( ). But ( ) = 2 2 3 so
0( ) = 0 ( ) = . Then ( ) = 2 + 2 + is a potential function for F.

9. (ln + 2 3) = 1 + 6 2 = (3 2 2 + ) and the domain of F is {( ) | 0} which is open and simply
connected. Hence F is conservative so there exists a function such that = F. Then ( ) = ln + 2 3 implies

( ) = ln + 2 3 + ( ) and ( ) = + 3 2 2 + 0( ). But ( ) = 3 2 2 + so 0( ) = 0

( ) = and ( ) = ln + 2 3 + is a potential function for F.

10. ( cosh + sinh )
= 2 sinh + cosh + cosh = 2 sinh + 2 cosh =

( 2 cosh )

and the domain of F is R2. Thus F is conservative, so there exists a function such that = F. Then

( ) = cosh + sinh implies ( ) = sinh + ( ) ( ) = 2 cosh + 0( ). But

( ) = 2 cosh so ( ) = and ( ) = sinh + is a potential function for F.

11. (a) F has continuous first-order partial derivatives and 2 = 2 = ( 2) on R2, which is open and simply-connected.

Thus, F is conservative by Theorem 6. Then we know that the line integral of F is independent of path; in particular, the

value of F · r depends only on the endpoints of . Since all three curves have the same initial and terminal points,

F · r will have the same value for each curve.
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SECTION 16.3 THE FUNDAMENTAL THEOREM FOR LINE INTEGRALS ¤ 639

(b) We first find a potential function , so that = F. We know ( ) = 2 and ( ) = 2. Integrating

( ) with respect to , we have ( ) = 2 + ( ). Differentiating both sides with respect to gives

( ) = 2 + 0( ), so we must have 2 + 0( ) = 2 0( ) = 0 ( ) = , a constant.

Thus ( ) = 2 + . All three curves start at (1 2) and end at (3 2), so by Theorem 2,

F · r = (3 2) (1 2) = 18 2 = 16 for each curve.

12. (a) ( ) = 2 implies ( ) = 1
3

3 + ( ) and ( ) = 0 + 0( ). But ( ) = 2 so

0( ) = 2 ( ) = 1
3

3 + . We can take = 0, so ( ) = 1
3

3 + 1
3

3.

(b) F · r = (2 8) ( 1 2) = 8
3
+ 512

3
1
3
+ 8

3
= 171.

13. (a) ( ) = 2 implies ( ) = 1
2

2 2 + ( ) and ( ) = 2 + 0( ). But ( ) = 2 so 0( ) = 0

( ) = , a constant. We can take = 0, so ( ) = 1
2

2 2.

(b) The initial point of is r(0) = (0 1) and the terminal point is r(1) = (2 1), so

F · r = (2 1) (0 1) = 2 0 = 2.

14. (a) ( ) = 2 implies ( ) = + ( ) ( ) = + + 0( ) = (1 + ) + 0( ). But

( ) = (1 + ) so 0( ) = 0 ( ) = . We can take = 0, so ( ) = .

(b) The initial point of is r(0) = (1 0) and the terminal point is r( 2) = (0 2), so

F · r = (0 2) (1 0) = 0 0 = 1.

15. (a) ( ) = implies ( ) = + ( ) and so ( ) = + ( ). But ( ) = so

( ) = 0 ( ) = ( ). Thus ( ) = + ( ) and ( ) = + 0( ). But

( ) = + 2 , so 0( ) = 2 ( ) = 2 + . Hence ( ) = + 2 (taking = 0).

(b) F · r = (4 6 3) (1 0 2) = 81 4 = 77.

16. (a) ( ) = 2 + 2 2 implies ( ) = 2 + 2 2 + ( ) and so ( ) = 2 + ( ). But

( ) = 2 so ( ) = 0 ( ) = ( ). Thus ( ) = 2 + 2 2 + ( ) and

( ) = 2 + 2 2 + 0( ). But ( ) = 2 + 2 2 , so 0( ) = 0 ( ) = . Hence

( ) = 2 + 2 2 (taking = 0).

(b) = 0 corresponds to the point (0 1 0) and = 1 corresponds to (1 2 1), so

F · r = (1 2 1) (0 1 0) = 5 0 = 5.

17. (a) ( ) = implies ( ) = + ( ) and so ( ) = + ( ). But ( ) = so

( ) = 0 ( ) = ( ). Thus ( ) = + ( ) and ( ) = + 0( ). But

( ) = , so 0( ) = 0 ( ) = . Hence ( ) = (taking = 0).

(b) r(0) = h1 1 0i, r(2) = h5 3 0i so F · r = (5 3 0) (1 1 0) = 3 0 + 0 = 4.

c° 2012 Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part.

NOT FOR SALE

°°cc 2012 Cengage Learning. All Rights Reserved. May not be scanned, copied, or2012 Cengage Learning. All Rights Reserved. May not be scanned, copied, duplicated, or posted to a publicly accessible website, in whole or in part.licated, or posted to a publicly accessible website, in whole or in par

679



640 ¤ CHAPTER 16 VECTOR CALCULUS

18. (a) ( ) = sin implies ( ) = sin + ( ) and so ( ) = cos + ( ). But

( ) = cos + cos so ( ) = cos ( ) = cos + ( ). Thus

( ) = sin + cos + ( ) and ( ) = sin + 0( ). But ( ) = sin , so 0( ) = 0

( ) = . Hence ( ) = sin + cos (taking = 0).

(b) r(0) = h0 0 0i, r( 2) = h1 2 i so F · r = (1 2 ) (0 0 0) = 1
2

0 = 1
2
.

19. The functions 2 and 2 2 have continuous first-order derivatives on R2 and

2 = 2 = 2 2 , so F( ) = 2 i+ 2 2 j is a conservative vector field by

Theorem 6 and hence the line integral is independent of path. Thus a potential function exists, and ( ) = 2

implies ( ) = 2 + ( ) and ( ) = 2 + 0( ). But ( ) = 2 2 so
0( ) = 2 ( ) = 2 + . We can take = 0, so ( ) = 2 + 2. Then

2 + (2 2 ) = (2 1) (1 0) = 4 1 + 1 1 = 4 .

20. The functions sin and cos sin have continuous first-order derivatives on R2 and

(sin ) = cos = ( cos sin ), so F( ) = sin i+ ( cos sin ) j is a conservative vector field by

Theorem 6 and hence the line integral is independent of path. Thus a potential function exists, and ( ) = sin implies

( ) = sin + ( ) and ( ) = cos + 0( ). But ( ) = cos sin so
0( ) = sin ( ) = cos + . We can take = 0, so ( ) = sin + cos . Then

sin + ( cos sin ) = (1 ) (2 0) = 1 1 = 2.

21. If F is conservative, then F · r is independent of path. This means that the work done along all piecewise-smooth curves
that have the described initial and terminal points is the same. Your reply: It doesn’t matter which curve is chosen.

22. The curves 1 and 2 connect the same two points but
1
F · r 6=

2
F · r. Thus F is not independent of path, and

therefore is not conservative.

23. F( ) = 2 3 2 i+ 3 j, = F · r. Since (2 3 2) = 3 = (3 ) , there exists a function

such that = F. In fact, ( ) = 2 3 2 ( ) = 2 3 2 + ( ) ( ) = 3 1 2 + 0( ). But

( ) = 3 so 0( ) = 0 or ( ) = . We can take = 0 ( ) = 2 3 2. Thus

= F · r = (2 4) (1 1) = 2(2)(8) 2(1) = 30.

24. F( ) = i j, = F · r. Since = = , there exists a function such that

= F. In fact, = ( ) = + ( ) = + 0( ) 0( ) = 0, so we can take

( ) = as a potential function for F. Thus = F · r = (2 0) (0 1) = 2 0 = 2.
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SECTION 16.4 GREEN’S THEOREM 1089

with center the origin and radius , where is chosen to be small enough that lies
inside . (See Figure 11.) Let be the region bounded by and . Then its positively
oriented boundary is and so the general version of Green’s Theorem gives

Therefore

that is,

We now easily compute this last integral using the parametrization given by
, . Thus

We end this section by using Green’s Theorem to discuss a result that was stated in the
preceding section.

SKETCH OF PROOF OF THEOREM 16.3.6 We’re assuming that is a vector field
on an open simply-connected region , that and have continuous first-order partial
derivatives, and that

If is any simple closed path in and is the region that encloses, then Green’s The-
o   rem gives

A curve that is not simple crosses itself at one or more points and can be broken up 
into a number of simple curves. We have shown that the line integrals of around these 
simple curves are all 0 and, adding these integrals, we see that for any
closed curve . Therefore is independent of path in by Theo rem 16.3.3. It fol-
lows that is a conservative vector field.

C D C C�
C � ��C��

y
C

P dx � Q dy � y
�C�

P dx � Q dy � yy
D

� �Q

�x
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� yy
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� y 2 � x 2

�x 2 � y 2 �2 �
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y
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C�
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y
C

F � dr � y
C�

F � dr
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y
C

F � dr � y
C�

F � dr � y2�

0
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� y2�

0
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0
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F � P i � Q j
D P Q

�P

�y
�

�Q

�x
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C D R C

�y
C
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C
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�P
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R
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F
xC F � dr � 0
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FIGURE 11

y

x
D

C

Cª

1–4 Evaluate the line integral by two methods: (a) directly and 
(b) using Green’s Theorem.

1. ,
is the circle with center the origin and radius 2

�xC �x � y� dx � �x � y� dy
C

2. ,
is the rectangle with vertices , , , and 

3. ,
is the triangle with vertices , (1, 0), and (1, 2)

�xC xy dx � x 2 dy
C �0, 0� �3, 0� �3, 1� �0, 1�

�xC xy dx � x 2 y 3 dy
C �0, 0�

16.4 Exercises

; Graphing calculator or computer required Computer algebra system required 1. Homework Hints available at stewartcalculus.comCAS
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1090 CHAPTER 16 VECTOR CALCULUS

4. ,  consists of the arc of the parabola
from to and the line segments from

to and from to 

5–10 Use Green’s Theorem to evaluate the line integral along
the given positively oriented curve.

5. ,
is the triangle with vertices , , and 

6. ,
is the rectangle with vertices , , , and 

7. ,
is the boundary of the region enclosed by the parabolas

and

8. ,  is the ellipse 

9. ,  is the circle 

10. ,  is the boundary of the
region between the circles and

11–14 Use Green’s Theorem to evaluate . (Check the 
orientation of the curve before applying the theorem.)
11.  ,

is the triangle from to to to 

12. ,
consists of the arc of the curve from

to and the line segment from to 

13. ,
is the circle oriented clockwise

14. , is the triangle from
to to to 

15–16 Verify Green’s Theorem by using a computer algebra sys-
tem to evaluate both the line integral and the double integral.
15. , ,

consists of the line segment from to
followed by the arc of the parabola from
to 

16. , ,
is the ellipse 

17. Use Green’s Theorem to find the work done by the force
in moving a particle from the 

origin along the -axis to , then along the line segment 
to , and then back to the origin along the -axis.

18. A particle starts at the point , moves along the -axis
to , and then along the semicircle to the
starting point. Use Green’s Theorem to find the work done
on this particle by the force field .

�xC x 2y 2 dx � xy dy C
�0, 0� �1, 1� �1, 1�

�0, 1�

xC xy 2 dx � 2x 2y dy
C �0, 0� �2, 2� �2, 4�

xC cos y dx � x 2 sin y dy
C �0, 0� �5, 0� �5, 2� �0, 2�

xC (y � esx ) dx � �2x � cos y 2 � dy
C
y � x 2 x � y 2

xC y 4 dx � 2xy 3 dy C

xC y 3 dx � x 3 dy C x 2 � y 2 � 4

xC �1 � y 3� dx � �x 3 � e y2
� dy C

y � x 2

�0, 1� �0, 0�

x 2 � 2y 2 � 2

x 2 � y 2 � 4 x 2 � y 2 � 9

xC F � dr

F�x, y� � �y cos x � xy sin x, xy � x cos x 	
C

F�x, y� � �e�x � y 2, e�y � x 2 	
C

F�x, y� � �y � cos y, x sin y	
�x � 3�2 � �y � 4�2 � 4C

CF�x, y� � �sx 2 � 1, tan�1 x 	

�0, 0� �0, 4� �2, 0� �0, 0�

y � cos x ���
2, 0�
��
2, 0� ��
2, 0� ���
2, 0�

�0, 0�
�1, 1� �0, 1� �0, 0�

CAS

Q�x, y� � x 2e yP�x, y� � y 2e x

�1, 1���1, 1�C

��1, 1�
�1, 1�y � 2 � x 2

Q�x, y� � x 3y 8P�x, y� � 2x � x 3y 5

4x 2 � y 2 � 4C

F�x, y� � x�x � y� i � xy 2 j
�1, 0�x

y�0, 1�

x��2, 0�
y � s4 � x 2�2, 0�

F�x, y� � �x, x 3 � 3xy 2 	

19. Use one of the formulas in to find the area under one
arch of the cycloid .

; 20. If a circle with radius 1 rolls along the outside of the 
circle , a fixed point on traces out a 
curve called an epicycloid, with parametric equations

, . Graph the epi-
cycloid and use to find the area it encloses.

21. (a) If is the line segment connecting the point to
the point , show that 

(b) If the vertices of a polygon, in counterclockwise order,
are , , show that the area of
the polygon is

(c) Find the area of the pentagon with vertices , ,
, , and .

22. Let be a region bounded by a simple closed path in the 
-plane. Use Green’s Theorem to prove that the coordi nates

of the centroid of are

where is the area of .

23. Use Exercise 22 to find the centroid of a quarter-circular
region of radius .

24. Use Exercise 22 to find the centroid of the triangle with 
vertices , , and , where and .

25. A plane lamina with constant density occupies a
region in the -plane bounded by a simple closed path .
Show that its moments of inertia about the axes are

26. Use Exercise 25 to find the moment of inertia of a circular
disk of radius with constant density about a diameter.
(Compare with Example 4 in Section 15.5.)

27. Use the method of Example 5 to calculate , where

and is any positively oriented simple closed curve that
encloses the origin.

28. Calculate , where and
is the positively oriented boundary curve of a region

that has area 6.

29. If is the vector field of Example 5, show that
for every simple closed path that does not pass through or
enclose the origin.

C
x 2 � y 2 � 16 P C

x � 5 cos t � cos 5t y � 5 sin t � sin 5t

C �x1, y1�
�x2, y2�

yC x dy � y dx � x1 y2 � x2 y1

�x1, y1 � �x2, y2 �, . . . , �xn , yn �

A � 1
2 ��x1 y2 � x2 y1 � � �x2 y3 � x3 y2 � � � � �

A � � �xn�1 yn � xnyn�1 � � �xny1 � x1 yn ��

�0, 0� �2, 1�
�1, 3� �0, 2� ��1, 1�

D C
xy

�x, y � D

x �
1

2A
�yC x 2 dy y � �

1
2A

�yC y 2 dx

A D

a

�0, 0� �a, 0� �a, b� a 	 0 b 	 0


�x, y� � 

xy C

Ix � �



3
�yC y 3 dx Iy �




3
�yC x 3 dy

a 


xC F � dr

F�x, y� �
2xy i � �y 2 � x 2� j

�x 2 � y 2�2

C

xC F � dr F�x, y� � �x 2 � y, 3x � y 2 	
C D

F xC F � dr � 0

x � t � sin t, y � 1 � cos t
5

5
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SECTION 16.4 GREEN’S THEOREM ¤ 643

36. (a) Here F(r) = r |r|3 and r = i+ j+ k. Then (r) = |r| is a potential function for F, that is, = F.

(See the discussion of gradient fields in Section 16.1.) Hence F is conservative and its line integral is independent of path.

Let 1 = ( 1 1 1) and 2 = ( 2 2 2).

= F · r = ( 2) ( 1) =
( 2
2 +

2
2 +

2
2)
1 2

+
( 2
1 +

2
1 +

2
1)
1 2

=
1

1

1

2
.

(b) In this case, = ( )

=
1

1 52× 1011
1

1 47× 1011

= (5 97× 1024)(1 99× 1030)(6 67× 10 11)( 2 2377× 10 13) 1 77× 1032 J

(c) In this case, =

=
1

10 12

1

5× 10 13
= 8 985× 109 (1) 1 6× 10 19 1012 1400 J.

16.4 Green's Theorem

1. (a) Parametric equations for are = 2cos , = 2 sin , 0 2 . Then

( ) + ( + ) =
2

0
[(2 cos 2 sin )( 2 sin ) + (2 cos + 2 sin )(2 cos )]

=
2

0
(4 sin2 + 4cos2 ) =

2

0
4 = 4

2

0
= 8

(b) Note that as given in part (a) is a positively oriented, smooth, simple closed curve. Then by Green’s Theorem,

( ) + ( + ) = ( + ) ( ) = [1 ( 1)] = 2

= 2 ( ) = 2 (2)2 = 8

2. (a) 1: = = = 0 = 0 0 3.

2: = 3 = 0 = = 0 1.

3: = 3 = = 1 = 0 0 3.

4: = 0 = 0 = 1 = 0 1

Thus + 2 =
1 + 2 + 3 + 4

+ 2 =
3

0
0 +

1

0
9 +

3

0
(3 )( 1) +

1

0
0

= 9
1

0
+ 1

2
2 3

3

0
= 9 + 9

2 9 = 9
2

(b) + 2 = ( 2) ( ) =
3

0

1

0
(2 ) =

3

0

1

0
= 1

2
2 3

0
· 1 = 9

2

3. (a) 1: = = , = 0 = 0 , 0 1.

2: = 1 = 0 , = = , 0 2.

3: = 1 = , = 2 2 = 2 , 0 1.
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644 ¤ CHAPTER 16 VECTOR CALCULUS

Thus
+ 2 3 =

1 + 2 + 3

+ 2 3

=
1

0
0 +

2

0
3 +

1

0
(1 )(2 2 ) 2(1 )2(2 2 )3

= 0 + 1
4
4 2

0
+ 2

3
(1 )3 + 8

3
(1 )6

1

0
= 4 10

3
= 2

3

(b) + 2 3 = ( 2 3) ( ) =
1

0

2

0
(2 3 )

=
1

0
1
2

4 =2

=0
=

1

0
(8 5 2 2) = 4

3
2
3
= 2

3

4. (a) 1: = = , = 2 = 2 , 0 1

2: = 1 = , = 1 = 0 , 0 1

3: = 0 = 0 , = 1 = , 0 1

Thus
2 2 + =

1+ 2+ 3

2 2 +

=
1

0
2( 2)2 + ( 2)(2 ) +

1

0
(1 )2(1)2( ) + (1 )(1)(0 )

+
1

0
(0)2(1 )2(0 ) + (0)(1 )( )

=
1

0
6 + 2 4 +

1

0
1 + 2 2 +

1

0
0

= 1
7
7 + 2

5
5 1

0
+ + 2 1

3
3 1

0
+ 0 = 1

7
+ 2

5
+ 1 + 1 1

3
= 22

105

(b) 2 2 + = ( ) ( 2 2) =
1

0

1

2

( 2 2 )

=
1

0
1
2

2 2 2 =1

= 2 =
1

0
1
2

2 1
2

4 + 6

= 1
2

1
3

3 1
10

5 + 1
7

7 1

0
= 1

2
1
3

1
10
+ 1

7
= 22

105

5. The region enclosed by is given by {( ) | 0 2 2 }, so
2 + 2 2 = (2 2 ) ( 2)

=
2

0

2
(4 2 )

=
2

0
2 =2

=

=
2

0
3 3 = 3

4
4 2

0
= 12

6. The region enclosed by is [0 5]× [0 2], so

cos + 2 sin = ( 2 sin ) (cos ) =
5

0

2

0
[2 sin ( sin )]

=
5

0
(2 + 1)

2

0
sin = 2 +

5

0
cos

2

0
= 30(1 cos 2)
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SECTION 16.4 GREEN’S THEOREM ¤ 645

7. + + (2 + cos 2) = (2 + cos 2) +

=
1

0 2 (2 1) =
1

0
( 1 2 2) = 1

3

8. 4 + 2 3 = (2 3) ( 4) = (2 3 4 3)

= 2 3 = 0

because ( ) = 3 is an odd function with respect to and is symmetric about the -axis.

9. 3 3 = ( 3) ( 3) = ( 3 2 3 2) =
2

0

2

0
( 3 2)

= 3
2

0

2

0
3 = 3(2 )(4) = 24

10. (1 3) + ( 3 +
2
) = ( 3 +

2
) (1 3) = (3 2 + 3 2)

=
2

0

3

2
(3 2) = 3

2

0

3

2
3

= 3
2

0
1
4

4 3

2
= 3(2 ) · 1

4
(81 16) = 195

2

11. F( ) = h cos sin + cos i and the region enclosed by is given by

{( ) | 0 2 0 4 2 }. is traversed clockwise, so gives the positive orientation.

F · r = ( cos sin ) + ( + cos ) = ( + cos ) ( cos sin )

= ( sin + cos cos + sin ) =
2

0

4 2

0

=
2

0
1
2

2 =4 2

=0
=

2

0
1
2
(4 2 )2 =

2

0
(8 8 + 2 2) = 8 4 2 + 2

3
3 2

0

= 16 16 + 16
3

0 = 16
3

12. F( ) = + 2 + 2 and the region enclosed by is given by {( ) | 2 2 0 cos }.
is traversed clockwise, so gives the positive orientation.

F · r = + 2 + + 2 = + 2 + 2

=
2

2

cos

0
(2 2 ) =

2

2
2 2 =cos

=0

=
2

2
(2 cos cos2 ) =

2

2
2 cos 1

2 (1 + cos 2 )

= 2 sin + 2 cos 1
2

+ 1
2
sin 2

2

2
[integrate by parts in the first term]

= 1
4

1
4

= 1
2

13. F( ) = h cos sin i and the region enclosed by is the disk with radius 2 centered at (3 4).

is traversed clockwise, so gives the positive orientation.

F · r = ( cos ) + ( sin ) = ( sin ) ( cos )

= (sin 1 sin ) = = area of = (2)2 = 4
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646 ¤ CHAPTER 16 VECTOR CALCULUS

14. F( ) = 2 + 1 tan 1 and the region enclosed by is given by {( ) | 0 1 1}.
is oriented positively, so

F · r = 2 + 1 + tan 1 = tan 1 ( 2 + 1)

=
1

0

1 1

1 + 2
0 =

1

0

1

1 + 2
[ ] =1= =

1

0

1

1 + 2
(1 )

=
1

0

1

1 + 2 1 + 2
= tan 1 1

2
ln(1 + 2)

1

0

=
4

1

2
ln 2

15. Here = 1 + 2 where

1 can be parametrized as = , = 1, 1 1, and

2 is given by = , = 2 2, 1 1.

Then the line integral is

1+ 2

2 + 2 =
1

1
[1 · + 2 · 0]
+

1

1
[(2 2)2 ( 1) + ( )2 2 2

( 2 )]

=
1

1
[ (2 2)2 2 3 2 2

] = 8 + 48 1

according to a CAS. The double integral is

=
1

1

2 2

1

(2 2 ) = 8 + 48 1, verifying Green’s Theorem in this case.

16. We can parametrize as = cos , = 2 sin , 0 2 . Then the line integral is

+ =
2

0
2 cos (cos )3(2 sin )5 ( sin ) +

2

0
(cos )3(2 sin )8 · 2 cos

=
2

0
[ 2 cos sin + 32 cos3 sin6 + 512 cos4 sin8 ] = 7 ,

according to a CAS. The double integral is =
1

1

4 4 2

4 4 2

(3 2 8 + 5 3 4) = 7 .

17. By Green’s Theorem, = F · r = ( + ) + 2 = ( 2 ) where is the path described in the

question and is the triangle bounded by . So

=
1

0

1

0
( 2 ) =

1

0
1
3

3 =1

=0
=

1

0
1
3
(1 )3 (1 )

= 1
12
(1 )4 1

2
2 + 1

3
3 1

0
= 1

2
+ 1

3
1
12

= 1
12

18. By Green’s Theorem, = F · r = + ( 3 + 3 2) = (3 2 + 3 2 0) , where is the semicircular

region bounded by . Converting to polar coordinates, we have = 3
2

0 0
2 · = 3 1

4
4 2

0
= 12 .

19. Let 1 be the arch of the cycloid from (0 0) to (2 0), which corresponds to 0 2 , and let 2 be the segment from

(2 0) to (0 0), so 2 is given by = 2 , = 0, 0 2 . Then = 1 2 is traversed clockwise, so is
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2.1.25 Questions with Solutions on Chapter 16.6



SECTION 16.6 PARAMETRIC SURFACES AND THEIR AREAS 1109

26. The part of the plane that lies inside the cylinder

27–28 Use a computer algebra system to produce a graph that
looks like the given one.

27. 28.

; 29. Find parametric equations for the surface obtained by 
rotating the curve , , about the -axis and
use them to graph the surface.

; 30. Find parametric equations for the surface obtained by 
rotating the curve , , about the 
-axis and use them to graph the surface.

; 31. (a) What happens to the spiral tube in Example 2 (see Fig-
 ure 5) if we replace by and by ?

(b) What happens if we replace by and 
by ?

; 32. The surface with parametric equations

where and , is called a Möbius
strip. Graph this surface with several viewpoints. What is
unusual about it?

33–36 Find an equation of the tangent plane to the given
parametric surface at the specified point.

33. ,  ,  ;  

34. ,  ,  ;  

35. ;  , 

36. ;
,

37–38 Find an equation of the tangent plane to the given
parametric surface at the specified point. Graph the surface and
the tangent plane.

37. ;  , 

z � x � 3
x 2 � y 2 � 1

CAS

3

0

_3
_3

0

0 5

z

y
x

0

_1
_1

1

0
1

0

_1

z

y x

y � e �x 0 � x � 3 x

x � 4y 2 � y 4 �2 � y � 2
y

cos usin usin ucos u
sin ucos 2ucos u

sin 2u

x � 2 cos � � r cos���2�

y � 2 sin � � r cos���2�

z � r sin���2�

0 � � � 2��
1
2 � r �

1
2

�2, 3, 0�z � u � vy � 3u2x � u � v

�5, 2, 3�z � u � vy � v 3 � 1x � u2 � 1

v � ��3u � 1r�u, v� � u cos v i � u sin v j � v k

r�u, v� � sin u i � cos u sin v j � sin v k
v � ��6u � ��6

CAS

v � 0u � 1r�u, v� � u 2 i � 2u sin v j � u cos v k

38. ;

39–50 Find the area of the surface.

39. The part of the plane that lies in the 
first octant

40. The part of the plane with vector equation
that is given by

41. The part of the plane that lies inside the 
cylinder

42. The part of the cone that lies between the
plane and the cylinder 

43. The surface , , 

44. The part of the surface that lies above the
triangle with vertices , , and 

45. The part of the surface that lies within the 
cylinder

46. The part of the paraboloid that lies inside the
cylinder

47. The part of the surface that lies between the
planes , , , and 

48. The helicoid (or spiral ramp) with vector equation
, , 

49. The surface with parametric equations , ,
, , 

50. The part of the sphere that lies inside the
cylinder , where 

51. If the equation of a surface is , where
, and you know that and ,

what can you say about ?

52–53 Find the area of the surface correct to four decimal places
by expressing the area in terms of a single integral and using
your calculator to estimate the integral.

52. The part of the surface that lies inside the
cylinder

53. The part of the surface that lies above the 
disk

54. Find, to four decimal places, the area of the part of the sur-
face that lies above the square

. Illustrate by graphing this part of the
surface.

55. (a) Use the Midpoint Rule for double integrals (see Sec -
tion 15.1) with six squares to estimate the area of the 
surface , , .

r�u, v� � �1 � u 2 � v 2� i � v j � u k ��1, �1, �1�

3x � 2y � z � 6

r�u, v� � �u � v, 2 � 3u, 1 � u � v �
0 � u � 2, �1 � v � 1

x � 2y � 3z � 1
x 2 � y2 � 3

z � sx 2 � y2

y � x y � x 2

z � 2
3 �x 3�2 � y 3�2 � 0 � x � 1 0 � y � 1

z � 1 � 3x � 2y 2

z � xy
x 2 � y 2 � 1

x � y 2 � z2

y 2 � z2 � 9

y � 4x � z2

x � 0 x � 1 z � 0 z � 1

r�u, v� � u cos v i � u sin v j � v k 0 � u � 1 0 � v � �

x � u2 y � uv
z � 1

2v 2 0 � u � 1 0 � v � 2

x 2 � y2 � z 2 � b2

x 2 � y 2 � a 2 0 � a � b

S z � f �x, y�
x 2 � y 2 � R 2 � fx � � 1 � fy � � 1

A�S�

z � cos�x 2 � y 2�
x 2 � y 2 � 1

z � e�x2�y2

x 2 � y 2 � 4

�0, 0� �0, 1� �2, 1�

CAS

z � �1 � x 2 ���1 � y 2 �
� x � � � y � � 1

0 � y � 40 � x � 6z � 1��1 � x 2 � y 2�
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SECTION 16.6 PARAMETRIC SURFACES AND THEIR AREAS ¤ 665

31. (a) Replacing cos by sin and sin by cos gives parametric equations

= (2 + sin ) sin , = (2 + sin ) cos , = + cos . From the graph, it

appears that the direction of the spiral is reversed. We can verify this observation by

noting that the projection of the spiral grid curves onto the -plane, given by

= (2 + sin ) sin , = (2 + sin ) cos , = 0, draws a circle in the clockwise

direction for each value of . The original equations, on the other hand, give circular

projections drawn in the counterclockwise direction. The equation for is identical in

both surfaces, so as increases, these grid curves spiral up in opposite directions for

the two surfaces.

(b) Replacing cos by cos 2 and sin by sin 2 gives parametric equations

= (2 + sin ) cos 2 , = (2 + sin ) sin 2 , = + cos . From the graph, it

appears that the number of coils in the surface doubles within the same parametric

domain. We can verify this observation by noting that the projection of the spiral grid

curves onto the -plane, given by = (2 + sin ) cos 2 , = (2 + sin ) sin 2 ,

= 0 (where is constant), complete circular revolutions for 0 while the

original surface requires 0 2 for a complete revolution. Thus, the new

surface winds around twice as fast as the original surface, and since the equation for

is identical in both surfaces, we observe twice as many circular coils in the same

-interval.

32. First we graph the surface as viewed from the front, then from two additional viewpoints.

The surface appears as a twisted sheet, and is unusual because it has only one side. (The Möbius strip is discussed in more

detail in Section 16.7.)

33. r( ) = ( + ) i+ 3 2 j+ ( )k.

r = i+ 6 j+ k and r = i k, so r × r = 6 i+ 2 j 6 k. Since the point (2 3 0) corresponds to = 1, = 1, a

normal vector to the surface at (2 3 0) is 6 i+ 2 j 6k, and an equation of the tangent plane is 6 + 2 6 = 6 or

3 + 3 = 3.

34. r( ) = ( 2 + 1) i+ ( 3 + 1) j+ ( + )k.

r = 2 i+ k and r = 3 2 j+ k, so r × r = 3 2 i 2 j+ 6 2 k. Since the point (5 2 3) corresponds to = 2,

= 1, a normal vector to the surface at (5 2 3) is 3 i 4 j+ 12k, and an equation of the tangent plane is

3( 5) 4( 2) + 12( 3) = 0 or 3 + 4 12 = 13.
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666 ¤ CHAPTER 16 VECTOR CALCULUS

35. r( ) = cos i+ sin j+ k r 1
3
= 1

2
3
2 3

.

r = cos i+ sin j and r = sin i+ cos j+ k, so a normal vector to the surface at the point 1
2

3
2 3

is

r 1
3
× r 1

3
= 1

2
i+ 3

2
j × 3

2
i+ 1

2
j+ k = 3

2
i 1

2
j+ k. Thus an equation of the tangent plane at

1
2

3
2 3

is 3
2

1
2

1
2

3
2

+ 1
3
= 0 or 3

2
1
2
+ =

3
.

36. r( ) = sin i+ cos sin j+ sin k r 6 6
= 1

2
3
4

1
2
.

r = cos i sin sin j and r = cos cos j+ cos k, so a normal vector to the surface at the point 1
2

3
4

1
2
is

r
6 6

× r
6 6

= 3
2
i 1

4
j × 3

4
j+ 3

2
k = 3

8
i 3

4
j+ 3 3

8
k.

Thus an equation of the tangent plane at 1
2

3
4

1
2
is 3

8
1
2

3
4

3
4

+ 3 3
8

1
2
= 0 or

3 + 6 3 3 = 3
2
or 2 + 4 3 6 = 1.

37. r( ) = 2 i+ 2 sin j+ cos k r(1 0) = (1 0 1).

r = 2 i+ 2 sin j+ cos k and r = 2 cos j sin k,

so a normal vector to the surface at the point (1 0 1) is

r (1 0)× r (1 0) = (2 i+ k)× (2 j) = 2 i+ 4k.

Thus an equation of the tangent plane at (1 0 1) is

2( 1) + 0( 0) + 4( 1) = 0 or + 2 = 1.

38. r( ) = (1 2 2) i j k.

r = 2 i k and r = 2 i j. Since the point ( 1 1 1)

corresponds to = 1, = 1, a normal vector to the surface at

( 1 1 1) is

r (1 1)× r (1 1) = ( 2 i k)× ( 2 i j) = i+ 2 j+ 2k.

Thus an equation of the tangent plane is 1( + 1) + 2( + 1) + 2( + 1) = 0 or + 2 + 2 = 3.

39. The surface is given by = ( ) = 6 3 2 which intersects the -plane in the line 3 + 2 = 6, so is the

triangular region given by ( ) 0 2 0 3 3
2 . By Formula 9, the surface area of is

( ) = 1 +
2

+
2

= 1 + ( 3)2 + ( 2)2 = 14 = 14 ( ) = 14 1
2 · 2 · 3 = 3 14
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SECTION 16.6 PARAMETRIC SURFACES AND THEIR AREAS ¤ 667

40. r = h1 3 1i, r = h1 0 1i, and r × r = h3 2 3i. Then by Definition 6,

( ) = | r × r | =
2

0

1

1
| h3 2 3i | = 22

2

0

1

1
= 22 (2)(2) = 4 22

41. Here we can write = ( ) = 1
3

1
3

2
3
and is the disk 2 + 2 3, so by Formula 9 the area of the surface is

( ) = 1 +
2

+
2

= 1 + 1
3

2
+ 2

3

2
= 14

3

= 14
3

( ) = 14
3
· 3

2
= 14

42. = ( ) = 2 + 2 =
1

2
2 + 2 1 2 · 2 =

2 + 2
, =

2 + 2
, and

1 +
2

+
2

= 1 +
2

2 + 2
+

2

2 + 2
= 1 +

2 + 2

2 + 2
= 2

Here is given by ( ) 0 1 2 , so by Formula 9, the surface area of is

( ) = 2 =
1

0 2 2 = 2
1

0
2 = 2 1

2
2 1

3
3 1

0
= 2 1

2
1
3
= 2

6

43. = ( ) = 2
3
( 3 2 + 3 2) and = {( ) | 0 1 0 1}. Then = 1 2, = 1 2 and

( ) = 1 + ( )
2
+

2
=

1

0

1

0
1 + +

=
1

0
2
3
( + + 1)3 2

=1

=0
= 2

3

1

0
( + 2)3 2 ( + 1)3 2

= 2
3

2
5
( + 2)5 2 2

5
( + 1)5 2

1

0
= 4

15
(35 2 25 2 25 2 + 1) = 4

15
(35 2 27 2 + 1)

44. = ( ) = 1 + 3 + 2 2 with 0 2 , 0 1. Thus, by Formula 9,

( ) = 1 + 32 + (4 )2 =
1

0

2

0
10 + 16 2 =

1

0
2 10 + 16 2

= 1
16
· 2
3
(10 + 16 2)3 2

1

0
= 1

24
(263 2 103 2)

45. = ( ) = with 2 + 2 1, so = , =

( ) = 1 + 2 + 2 =
2

0

1

0
2 + 1 =

2

0
1
3
( 2 + 1)3 2

=1

=0

=
2

0
1
3
2 2 1 = 2

3
2 2 1

46. A parametric representation of the surface is = 2 + 2, = , = with 0 2 + 2 9.

Hence r × r = (2 i+ j)× (2 i+ k) = i 2 j 2 k.

Note: In general, if = ( ) then r × r = i j k, and ( ) = 1 +
2

+
2

. Then

( ) =
0 2 + 2 9

1 + 4 2 + 4 2 =
2

0

3

0
1 + 4 2

=
2

0

3

0
1 + 4 2 = 2 1

12
(1 + 4 2)3 2

3

0
=

6
37 37 1
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SECTION 16.7 SURFACE INTEGRALS 1121

6. ,
is the cone with parametric equations , 

, , , 

7. , is the helicoid with vector equation
, , 

8. ,
is the surface with vector equation

,

9. ,
is the part of the plane that lies above the

rectangle

10. ,
is the part of the plane that lies in the first

octant

11. ,
is the triangular region with vertices , , 

and

12. ,
is the surface , , 

13. ,
is the part of the cone that lies between the

planes and 

14. ,
is the surface , , 

15. ,
is the part of the paraboloid that lies inside the

cylinder

16. ,
is the part of the sphere that lies 

inside the cylinder and above the -plane

17. ,
is the hemisphere ,

18. ,
is the boundary of the region enclosed by the cylinder

and the planes and 

19. ,
is the part of the cylinder that lies between the

planes and in the first octant

20. ,
is the part of the cylinder between the planes

and , together with its top and bottom disks

21–32 Evaluate the surface integral for the given vector
field and the oriented surface . In other words, find the flux of
across . For closed surfaces, use the positive (outward) orientation.

21. ,
is the parallelogram of Exercise 5 with upward orientation

xx
S
xyz dS

S x � u cos v
y � u sin v z � u 0 � u � 1 0 � v � ��2

xx
S
y dS S

r�u, v� � �u cos v, u sin v, v � 0 � u � 1 0 � v � �

xxS �x 2 � y 2� dS
S
r�u, v� � �2uv, u 2 � v2, u 2 � v2 � u 2 � v2 � 1

xxS x 2yz dS
S z � 1 � 2x � 3y

�0, 3� � �0, 2�

xx
S
xz dS

S

xx
S
x dS

S

2x � 2y � z � 4

�1, 0, 0� �0, �2, 0�
�0, 0, 4�

xxS y dS

0 � y � 10 � x � 1z � 2
3 �x 3�2 � y 3�2 �S

xxS x 2z2 dS
z2 � x 2 � y 2S

z � 3z � 1

xxS z dS
0 � z � 10 � y � 1x � y � 2z 2S

xxS y dS
y � x 2 � z2S

x 2 � z2 � 4

xx
S

y2 dS
x 2 � y2 � z2 � 4S

xyx 2 � y2 � 1

xx
S

�x 2z � y 2z� dS
z � 0x 2 � y 2 � z2 � 4S

xxS xz dS
S

x � y � 5x � 0y2 � z2 � 9

xxS �z � x 2 y� dS
y2 � z2 � 1S

x � 3x � 0

xxS �x 2 � y 2 � z2 � dS
x 2 � y2 � 9S

z � 2z � 0

xxS F � dS
FSF

S

S
F�x, y, z� � ze xy i � 3ze xy j � xy k

22. ,
is the helicoid of Exercise 7 with upward orientation

23. ,  is the part of the 
para boloid that lies above the square

, and has upward orientation

24. ,
is the part of the cone between the planes

and with downward orientation

25. ,
is the part of the sphere in the first octant,

with orientation toward the origin

26. ,
is the hemisphere , , oriented in the

direction of the positive -axis

27. ,
consists of the paraboloid , , 

and the disk , 

28. ,  is the surface ,
, , with upward orientation

29. ,
is the cube with vertices 

30. ,  is the boundary of the region
enclosed by the cylinder and the planes 
and

31. ,  is the boundary of the solid
half-cylinder , 

32. ,
is the surface of the tetrahedron with vertices ,

, , and 

33. Evaluate correct to four decimal places,
where is the surface , , .

34. Find the exact value of , where is the surface
, , .

35. Find the value of correct to four decimal places,
where is the part of the paraboloid that
lies above the -plane.

36. Find the flux of 

across the part of the cylinder that lies above 
the -plane and between the planes and with
upward orientation. Illustrate by using a computer algebra sys-
tem to draw the cylinder and the vector field on the same
screen.

37. Find a formula for similar to Formula 10 for the case
where is given by and is the unit normal that
points toward the left.

S
F�x, y, z� � z i � y j � x k

F�x, y, z� � xy i � yz j � zx k S
z � 4 � x 2 � y 2

0 � x � 1, 0 � y � 1

F�x, y, z� � �x i � y j � z 3 k
S z � sx 2 � y 2

z � 1

F�x, y, z� � x i � z j � y k
S x 2 � y 2 � z 2 � 4

F�x, y, z� � xz i � x j � y k
S x 2 � y 2 � z 2 � 25 y � 0

y

F�x, y, z� � y j � z k
S y � x 2 � z2 0 � y � 1

x 2 � z2 � 1 y � 1

F�x, y, z� � xy i � 4x 2 j � yz k S z � xe y

0 � x � 1 0 � y � 1

F�x, y, z� � x i � 2y j � 3z k
S ��1, �1, �1�

F�x, y, z� � x i � y j � 5 k S
x 2 � z2 � 1 y � 0

x � y � 2

F�x, y, z� � x 2 i � y 2 j � z2 k S
0 � z � s1 � y 2 0 � x � 2

F�x, y, z� � y i � �z � y� j � x k
S �0, 0, 0�
�1, 0, 0� �0, 1, 0� �0, 0, 1�

CAS xxS �x 2 � y 2 � z2� dS
S z � xe y 0 � x � 1 0 � y � 1

CAS xxS x 2 yz dS S
z � xy 0 � x � 1 0 � y � 1

CAS xxS x 2 y 2z2 dS
S z � 3 � 2x 2 � y 2

xy

CAS

F�x, y, z� � sin�xyz� i � x 2 y j � z2e x�5 k

4y 2 � z2 � 4
xy x � �2 x � 2

z � 3

xxS F � dS
ny � h�x, z�S
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674 ¤ CHAPTER 16 VECTOR CALCULUS

2. Each quarter-cylinder has surface area 1
4
[2 (1)(2)] = and the top and bottom disks have surface area (1)2 = . We can

take (0 0 1) as a sample point in the top disk, (0 0 1) in the bottom disk, and (±1 0 0), (0 ±1 0) in the four

quarter-cylinders. Then ( ) can be approximated by the Riemann sum

(1 0 0)( ) + ( 1 0 0)( ) + (0 1 0) ( ) + (0 1 0)( ) + (0 0 1)( ) + (0 0 1)( )

= (2 + 2 + 3 + 3 + 4 + 4) = 18 56 5.

3. We can use the - and -planes to divide into four patches of equal size, each with surface area equal to 1
8

the surface

area of a sphere with radius 50, so = 1
8
(4) 50

2
= 25 . Then (±3 ±4 5) are sample points in the four patches,

and using a Riemann sum as in Definition 1, we have

( ) (3 4 5) + (3 4 5) + ( 3 4 5) + ( 3 4 5)

= (7 + 8 + 9 + 12)(25 ) = 900 2827

4. On the surface, ( ) = 2 + 2 + 2 = (2) = 5. So since the area of a sphere is 4 2,

( ) = (2) = 5 = 5[4 (2)2] = 80 .

5. r( ) = ( + ) i + ( ) j + (1 + 2 + )k, 0 2, 0 1 and

r × r = (i+ j+ 2k)× (i j+ k) = 3 i+ j 2k |r × r | = 32 + 12 + ( 2)2 = 14. Then by Formula 2,

( + + ) = ( + + + 1 + 2 + ) |r × r | =
1

0

2

0
(4 + + 1) · 14

= 14
1

0
2 2 + +

=2

=0
= 14

1

0
(2 + 10) = 14 2 + 10

1

0
= 11 14

6. r( ) = cos i + sin j + k, 0 1, 0 2 and

r × r = (cos i+ sin j+ k)× ( sin i+ cos j) = cos i sin j+ k

|r × r | = 2 cos2 + 2 sin2 + 2 = 2 2 = 2 [since 0]. Then by Formula 2,

= ( cos )( sin )( ) |r × r | =
1

0

2

0
( 3 sin cos ) · 2

= 2
1

0
4 2

0
sin cos = 2 1

5
5 1

0
1
2
sin2

2

0
= 2 · 1

5
· 1
2
= 1

10
2

7. r( ) = h cos sin i, 0 1, 0 and

r × r = hcos sin 0i × h sin cos 1i = hsin cos i

|r × r | = sin2 + cos2 + 2 = 2 + 1. Then

= ( sin ) |r × r | =
1

0 0
( sin ) · 2 + 1 =

1

0
2 + 1

0
sin

= 1
3
( 2 + 1)3 2

1

0
[ cos ]0 =

1
3
(23 2 1) · 2 = 2

3
(2 2 1)

8. r( ) = 2 2 2 2 + 2 , 2 + 2 1 and

r × r = h2 2 2 i × h2 2 2 i = 8 4 2 4 2 4 2 4 2 , so

|r × r |= (8 )2 + (4 2 4 2)2 + ( 4 2 4 2)2 = 64 2 2 + 32 4 + 32 4

= 32( 2 + 2)2 = 4 2( 2 + 2)
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SECTION 16.7 SURFACE INTEGRALS ¤ 675

Then

( 2 + 2) = (2 )2 + ( 2 2)2 |r × r | = (4 2 2 + 4 2 2 2 + 4) · 4 2( 2 + 2)

= 4 2 ( 4 + 2 2 2 + 4) ( 2 + 2) = 4 2 ( 2 + 2)3 = 4 2
2

0

1

0
( 2)3

= 4 2
2

0

1

0
7 = 4 2 [ ]20

1
8

8 1

0
= 4 2 · 2 · 18 = 2

9. = 1 + 2 + 3 so = 2 and = 3. Then by Formula 4,

2 = 2
2

+
2

+ 1 =
3

0

2

0
2 (1 + 2 + 3 ) 4 + 9 + 1

= 14
3

0

2

0
( 2 + 2 3 + 3 2 2) = 14

3

0
1
2

2 2 + 3 2 + 2 3 =2

=0

= 14
3

0
(10 2 + 4 3) = 14 10

3
3 + 4 3

0
= 171 14

10. is the part of the plane = 4 2 2 over the region = {( ) | 0 2 0 2 }. Thus

= (4 2 2 ) ( 2)2 + ( 2)2 + 1 = 3
2

0

2

0
4 2 2 2

= 3
2

0
4 2 2 2 =2

=0
= 3

2

0
4 (2 ) 2 2(2 ) (2 )2

= 3
2

0
3 4 2 + 4 = 3 1

4
4 4

3
3 + 2 2 2

0
= 3 4 32

3
+ 8 = 4

11. An equation of the plane through the points (1 0 0), (0 2 0), and (0 0 4) is 4 2 + = 4, so is the region in the

plane = 4 4 + 2 over = {( ) | 0 1 2 2 0}. Thus by Formula 4,

= ( 4)2 + (2)2 + 1 = 21
1

0

0

2 2
= 21

1

0
[ ] =0=2 2

= 21
1

0
( 2 2 + 2 ) = 21 2

3
3 + 2 1

0
= 21 2

3
+ 1 = 21

3

12. = 2
3 (

3 2 + 3 2) and

= ( )
2
+

2
+ 1 =

1

0

1

0
+ + 1

=
1

0
2
3 ( + + 1)3 2

=1

=0
=

1

0
2
3 ( + 2)3 2 ( + 1)3 2

Substituting = + 2 in the first term and = + 1 in the second, we have

= 2
3

3

2
( 2) 3 2 2

3

2

1
( 1) 3 2 = 2

3
2
7

7 2 4
5

5 2
3

2

2
3

2
7
7 2 2

5
5 2

2

1

= 2
3

2
7
(37 2 27 2) 4

5
(35 2 25 2) 2

7
(27 2 1) + 2

5
(25 2 1)

= 2
3

18
35

3 + 8
35

2 4
35

= 4
105

9 3 + 4 2 2

13. is the portion of the cone 2 = 2 + 2 for 1 3, or equivalently, is the part of the surface = 2 + 2 over the

region = ( ) | 1 2 + 2 9 . Thus
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676 ¤ CHAPTER 16 VECTOR CALCULUS

2 2 = 2( 2 + 2)
2 + 2

2

+
2 + 2

2

+ 1

= 2( 2 + 2)
2 + 2

2 + 2
+ 1 = 2 2( 2 + 2) = 2

2

0

3

1

( cos )2( 2)

= 2
2

0
cos2

3

1
5 = 2 1

2
+ 1

4
sin 2

2

0
1
6

6 3

1
= 2 ( ) · 1

6
(36 1) =

364 2

3

14. Using and as parameters, we have r( ) = ( + 2 2) i+ j+ k, 0 1, 0 1.

Then r × r = (i+ j)× (4 i+ k) = i j 4 k and |r × r | = 2 + 16 2. Thus

=
1

0

1

0
2 + 16 2 =

1

0
2 + 16 2 = 1

32
· 2
3
(2 + 16 2)3 2

1

0
= 1

48
(183 2 23 2) = 13

12
2.

15. Using and as parameters, we have r( ) = i+ ( 2 + 2) j+ k, 2 + 2 4. Then

r × r = (i+ 2 j)× (2 j+ k) = 2 i j+ 2 k and |r × r | = 4 2 + 1 + 4 2 = 1 + 4( 2 + 2). Thus

=
2+ 2 4

( 2 + 2) 1 + 4( 2 + 2) =
2

0

2

0
2 1 + 4 2 =

2

0

2

0
2 1 + 4 2

= 2
2

0
2 1 + 4 2 let = 1 + 4 2 2 = 1

4
( 1) and 1

8
=

= 2
17

1
1
4
( 1) · 1

8
= 1

16

17

1
( 3 2 1 2)

= 1
16

2
5

5 2 2
3

3 2
17

1
= 1

16
2
5
(17)5 2 2

3
(17)3 2 2

5
+ 2

3
=
60

391 17 + 1

16. The sphere intersects the cylinder in the circle 2 + 2 = 1, = 3, so is the portion of the sphere where 3.

Using spherical coordinates to parametrize the sphere we have r( ) = 2 sin cos i+ 2 sin sin j+ 2cos k, and

|r × r | = 4 sin (see Example 16.6.10). The portion where 3 corresponds to 0
6

, 0 2 so

2 =
2

0

6

0
(2 sin sin )2(4 sin ) = 16

2

0
sin2

6

0
sin3

= 16 1
2

1
4
sin 2

2

0
1
3
cos3 cos

6

0
= 16( ) 3

8
3
2

1
3
+ 1 = 32

3
6 3

17. Using spherical coordinates and Example 16.6.10 we have r( ) = 2 sin cos i+ 2 sin sin j+ 2cos k and

|r × r | = 4 sin . Then ( 2 + 2 ) =
2

0

2

0
(4 sin2 )(2 cos )(4 sin ) = 16 sin4

2

0
= 16 .

18. Here consists of three surfaces: 1, the lateral surface of the cylinder; 2, the front formed by the plane + = 5;

and the back, 3, in the plane = 0.

On 1: the surface is given by r( ) = i+ 3 cos j+ 3 sin k, 0 2 , and 0 5

0 5 3 cos . Then r × r = 3cos j 3 sin k and |r × r | = 9cos2 + 9 sin2 = 3, so

1
=

2

0

5 3 cos

0
(3 sin )(3) = 9

2

0
1
2

2 =5 3 cos

=0
sin

= 9
2

2

0
(5 3 cos )2 sin = 9

2
1
9
(5 3 cos )3

2

0
= 0
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SECTION 16.7 SURFACE INTEGRALS ¤ 677

On 2: r( ) = (5 ) i+ j+ k and |r × r | = |i+ j| = 2, where 2 + 2 9 and

2
=

2 + 2 9

(5 ) 2 = 2
2

0

3

0
(5 cos )( sin )

= 2
2

0

3

0
(5 2 3 cos )(sin ) = 2

2

0
5
3

3 1
4

4 cos
=3

=0
sin

= 2
2

0
45 81

4
cos sin = 2 4

81
· 1
2
45 81

4
cos

2 2

0
= 0

On 3: = 0 so
3

= 0. Hence = 0 + 0 + 0 = 0.

19. is given by r( ) = i + cos j + sin k, 0 3, 0 2. Then

r × r = i× ( sin j+ cos k) = cos j sin k and |r × r | = cos2 + sin2 = 1, so

( + 2 ) =
2

0

3

0
(sin + 2 cos )(1) =

2

0
(3 sin + 9 cos )

= [ 3 cos + 9 sin ] 2
0 = 0 + 9 + 3 0 = 12

20. Let 1 be the lateral surface, 2 the top disk, and 3 the bottom disk.

On 1: r( ) = 3 cos i+ 3 sin j+ k, 0 2 , 0 2, |r × r | = 3,

1
( 2 + 2 + 2) =

2

0

2

0
(9 + 2) 3 = 2 (54 + 8) = 124 .

On 2: r( ) = cos i+ sin j+ 2k, 0 3, 0 2 , |r × r | = ,

2
( 2 + 2 + 2) =

2

0

3

0
( 2 + 4) = 2 81

4
+ 18 = 153

2
.

On 3: r( ) = cos i+ sin j, 0 3, 0 2 , |r × r | = ,

3
( 2 + 2 + 2) =

2

0

3

0
( 2 + 0) = 2 81

4
= 81

2
.

Hence 2 + 2 + 2 = 124 + 153
2

+ 81
2

= 241 .

21. From Exercise 5, r( ) = ( + ) i+ ( ) j+ (1 + 2 + )k, 0 2, 0 1, and r × r = 3 i+ j 2k.

Then

F(r( )) = (1 + 2 + ) ( + )( ) i 3(1 + 2 + ) ( + )( ) j+ ( + )( )k

= (1 + 2 + )
2 2

i 3(1 + 2 + )
2 2

j+ ( 2 2)k

Because the -component of r × r is negative we use (r × r ) in Formula 9 for the upward orientation:

F · S = F · ( (r × r )) =
1

0

2

0
3(1 + 2 + )

2 2
+ 3(1 + 2 + )

2 2
+ 2( 2 2)

=
1

0

2

0
2( 2 2) = 2

1

0
1
3

3 2 =2

=0
= 2

1

0
8
3 2 2

= 2 8
3

2
3

3 1

0
= 2 8

3
2
3
= 4

22. r( ) = h cos sin i, 0 1, 0 and

r × r = hcos sin 0i × h sin cos 1i = hsin cos i. Here F(r( )) = i+ sin j+ cos k and,
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678 ¤ CHAPTER 16 VECTOR CALCULUS

by Formula 9,

F · S= F · (r × r ) =
1

0 0
( sin sin cos + 2 cos )

=
1

0
sin cos 1

2
sin2 + 2 sin

=

=0
=

1

0
= ]10 =

23. F( ) = i+ j+ k, = ( ) = 4 2 2, and is the square [0 1]× [0 1], so by Equation 10

F · S= [ ( 2 ) ( 2 ) + ] =
1

0

1

0
[2 2 + 2 2(4 2 2) + (4 2 2)]

=
1

0
1
3

2 + 11
3

3 + 34
15

= 713
180

24. F( ) = i j+ 3 k, = ( ) = 2 + 2, and is the annular region ( ) | 1 2 + 2 9 . Since

has downward orientation, we have

F · S= ( )
2 + 2

( )
2 + 2

+ 3

=
2 + 2

2 + 2
+ 2 + 2

3

=
2

0

3

1

2

+ 3

=
2

0

3

1
( 2 + 4) = [ ]20

1
3

3 + 1
5

5 3

1

= 2 9 + 243
5

1
3

1
5
= 1712

15

25. F( ) = i j + k, = ( ) = 4 2 2 and is the quarter disk

( ) 0 2 0 4 2 . has downward orientation, so by Formula 10,

F · S = · 1
2
(4 2 2) 1 2( 2 ) ( ) · 1

2
(4 2 2) 1 2( 2 ) +

=
2

4 2 2
4 2 2 ·

4 2 2
+

= 2(4 ( 2 + 2)) 1 2 =
2

0

2

0
( cos )2(4 2) 1 2

=
2

0
cos2

2

0
3(4 2) 1 2 let = 4 2 2 = 4 and 1

2
=

=
2

0
1
2 +

1
2 cos 2

0

4
1
2 (4 )( ) 1 2

= 1
2
+ 1

4
sin 2

2

0
1
2
8 2

3
3 2

0

4
=

4
1
2

16 + 16
3
= 4

3

26. F( ) = i+ j+ k

Using spherical coordinates, is given by = 5 sin cos , = 5 sin sin , = 5 cos , 0 ,

0 . F(r( )) = (5 sin cos )(5 cos ) i + (5 sin cos ) j+ (5 sin sin )k and

r × r = 25 sin2 cos i+ 25 sin2 sin j+ 25 cos sin k, so

F(r( )) · (r × r ) = 625 sin3 cos cos2 + 125 sin3 cos sin + 125 sin2 cos sin
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SECTION 16.7 SURFACE INTEGRALS ¤ 679

Then
F · S = [F(r( )) · (r × r )]

=
0 0

(625 sin3 cos cos2 + 125 sin3 cos sin + 125 sin2 cos sin )

= 125
0
5 sin3 cos 1

2
+ 1

4
sin 2 + sin3 1

2
sin2 + sin2 cos ( cos )

=

=0

= 125
0

5
2
sin3 cos + 2 sin2 cos = 125 5

2
· 1
4
sin4 + 2 · 1

3
sin3

0
= 0

27. Let 1 be the paraboloid = 2 + 2, 0 1 and 2 the disk 2 + 2 1, = 1. Since is a closed

surface, we use the outward orientation.

On 1: F(r( )) = ( 2 + 2) j k and r × r = 2 i j+ 2 k (since the j-component must be negative on 1). Then

1
F · S=

2 + 2 1

[ ( 2 + 2) 2 2] =
2

0

1

0
( 2 + 2 2 sin2 )

=
2

0

1

0
3(1 + 2 sin2 ) =

2

0
(1 + 1 cos 2 )

1

0
3

= 2 1
2
sin 2

2

0
1
4

4 1

0
= 4 · 1

4
=

On 2: F(r( )) = j k and r × r = j. Then
2
F · S =

2 + 2 1

(1) = .

Hence F · S = + = 0.

28. F( ) = i+ 4 2 j+ k, = ( ) = , and is the square [0 1]× [0 1], so by Equation 10

F · S= [ ( ) 4 2( ) + ] =
1

0

1

0
( 4 3 + )

=
1

0
4 3 =1

=0
= ( 1)

1

0
( 4 3) = 1

29. Here consists of the six faces of the cube as labeled in the figure. On 1:

F = i+ 2 j+ 3 k, r × r = i and
1
F · S = 1

1

1

1
= 4;

2: F = i+ 2 j+ 3 k, r × r = j and
2
F · S = 1

1

1

1
2 = 8;

3: F = i+ 2 j+ 3k, r × r = k and
3
F · S = 1

1

1

1
3 = 12;

4: F = i+ 2 j+ 3 k, r × r = i and
4
F · S = 4;

5: F = i 2 j+ 3 k, r × r = j and
5
F · S = 8;

6: F = i + 2 j 3k, r × r = k and
6
F · S = 1

1

1

1
3 = 12.

Hence F · S =
6

=1

F · S = 48.

30. Here consists of three surfaces: 1, the lateral surface of the cylinder; 2, the front formed by the plane + = 2; and the

back, 3, in the plane = 0.

On 1: F(r( )) = sin i+ j+ 5k and r × r = sin i+ cos k

1
F · S= 2

0

2 sin

0
(sin2 + 5cos )

=
2

0
(2 sin2 + 10 cos sin3 5 sin cos ) = 2
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680 ¤ CHAPTER 16 VECTOR CALCULUS

On 2: F(r( )) = i+ (2 ) j+ 5k and r × r = i+ j.

2
F · S =

2 + 2 1

[ + (2 )] = 2

On 3: F(r( )) = i+ 5k and r × r = j so
3
F · S = 0. Hence F · S = 4 .

31. Here consists of four surfaces: 1, the top surface (a portion of the circular cylinder 2 + 2 = 1); 2, the bottom surface

(a portion of the -plane); 3, the front half-disk in the plane = 2, and 4, the back half-disk in the plane = 0.

On 1: The surface is = 1 2 for 0 2, 1 1 with upward orientation, so

1

F · S=
2

0

1

1

2 (0) 2

1 2
+ 2 =

2

0

1

1

3

1 2
+ 1 2

=
2

0
1 2 + 1

3
(1 2)3 2 + 1

3
3

=1

= 1
=

2

0
4
3

= 8
3

On 2: The surface is = 0 with downward orientation, so

2
F · S = 2

0

1

1
2 =

2

0

1

1
(0) = 0

On 3: The surface is = 2 for 1 1, 0 1 2, oriented in the positive -direction. Regarding and as

parameters, we have r × r = i and

3
F · S = 1

1

1 2

0
2 =

1

1

1 2

0
4 = 4 ( 3) = 2

On 4: The surface is = 0 for 1 1, 0 1 2, oriented in the negative -direction. Regarding and as

parameters, we use (r × r ) = i and

4
F · S = 1

1

1 2

0
2 =

1

1

1 2

0
(0) = 0

Thus F · S = 8
3
+ 0 + 2 + 0 = 2 + 8

3
.

32. Here consists of four surfaces: 1, the triangular face with vertices (1 0 0), (0 1 0), and (0 0 1); 2, the face of the

tetrahedron in the -plane; 3, the face in the -plane; and 4, the face in the -plane.

On 1: The face is the portion of the plane = 1 for 0 1, 0 1 with upward orientation, so

1
F · S= 1

0

1

0
[ ( 1) ( ) ( 1) + ] =

1

0

1

0
( + ) =

1

0

1

0
(1 )

=
1

0
1
2

2 =1

=0
= 1

2

1

0
1 2 = 1

2
1
3

3 1

0
= 1

3

On 2: The surface is = 0 with downward orientation, so

2
F · S = 1

0

1

0
( ) =

1

0
(1 ) = 1

2
2 1

3
3 1

0
= 1

6

On 3: The surface is = 0 for 0 1, 0 1 , oriented in the negative -direction. Regarding and as

parameters, we have r × r = j and

3
F · S= 1

0

1

0
( ) =

1

0

1

0
=

1

0
1
2

2 =1

=0

= 1
2

1

0
(1 )2 = 1

6
(1 )3

1

0
= 1

6

c° 2012 Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part.

NOT FOR SALE

°°cc 2012 Cengage Learning. All Rights Reserved. May not be scanned, copied, or2012 Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part.duplicated, or posted to a publicly accessible website, in whole or in part.

701



702 TABLE OF CONTENTS

2.1.27 Questions with Solutions on Chapter 16.5, 16.8, and
16.9



SECTION 16.5 CURL AND DIVERGENCE 1097

1–8 Find (a) the curl and (b) the divergence of the vector field.

1.

2.

3.

4.

5.

6.

7.

8.

9–11 The vector field F is shown in the xy-plane and looks the
same in all other horizontal planes. (In other words, F is inde pen d-
ent of and its -component is 0.)
(a) Is div F positive, negative, or zero? Explain.
(b) Determine whether curl . If not, in which direction does

curl F point?

9. 10.

11.

F�x, y, z� � �x � yz� i � �y � xz� j � �z � xy� k

F�x, y, z� � xy 2z3 i � x 3yz2 j � x 2y 3z k

F�x, y, z� � xye z i � yze x k

F�x, y, z� � sin yz i � sin zx j � sin xy k

F�x, y, z� �
1

sx 2 � y 2 � z2
�x i � y j � z k�

F�x, y, z� � e xy sin z j � y tan�1�x�z� k

F�x, y, z� � �e x sin y, e y sin z , e z sin x�

F�x, y, z� � � x

y
,

y

z
,

z

x�

zz

F � 0

y

x0

y

x0

y

x0

12. Let be a scalar field and a vector field. State whether 
each expression is meaningful. If not, explain why. If so, state
whether it is a scalar field or a vector field.

(a) (b)

(c) (d)

(e) (f )

(g) (h)

(i) ( j)

(k) ( l)

13–18 Determine whether or not the vector field is conservative. 
If it is conservative, find a function such that .

13.

14.

15.

16.

17.

18.

19. Is there a vector field on such that
? Explain.

20. Is there a vector field on such that
? Explain.

21. Show that any vector field of the form

where , , are differentiable functions, is irrotational.

22. Show that any vector field of the form

is incompressible.

Ff

grad fcurl f

curl�grad f �div F

grad�div F�grad F

grad�div f �div�grad f �
div�div F�curl�curl F�
div�curl�grad f ���grad f � � �div F�

F � ∇ ff

F�x, y, z� � y 2z3 i � 2xyz3 j � 3xy 2z2 k

F�x, y, z� � xyz 2 i � x 2yz2 j � x 2y 2z k

F�x, y, z� � 3xy 2z2 i � 2x 2yz3 j � 3x 2y 2z2 k

F�x, y, z� � i � sin z j � y cos z k

F�x, y, z� � e yz i � xze yz j � xye yz k

F�x, y, z� � e x sin yz i � ze x cos yz j � ye x cos yz k

� 3G
curl G � �x sin y, cos y, z � xy �

� 3G
curl G � �xyz, �y 2z, yz2 �

F�x, y, z� � f �x� i � t�y� j � h�z� k

htf

F�x, y, z� � f �y, z� i � t�x, z� j � h�x, y� k

16.5 Exercises

1. Homework Hints available at stewartcalculus.com

by Green’s Theorem. But the integrand in this double integral is just the divergence of .
So we have a second vector form of Green’s Theorem.

This version says that the line integral of the normal component of along is equal to
the double integral of the divergence of over the region enclosed by .

F

13 �y
C

F � n ds � yy
D

div F�x, y� dA

F C
F D C
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SECTION 16.8 STOKES’  THEOREM 1127

1. A hemisphere and a portion of a paraboloid are shown.
Suppose is a vector field on whose components have con-
tinuous partial derivatives. Explain why

2–6 Use Stokes’ Theorem to evaluate .

2. ,
is the hemisphere , , oriented 

upward

3. ,
is the part of the paraboloid that lies inside the

cylinder , oriented upward

4. ,
is the cone , , oriented in the direc-

tion of the positive -axis

5. ,
consists of the top and the four sides (but not the bottom) 

of the cube with vertices , oriented outward

6. ,
is the half of the ellipsoid that lies to

the right of the -plane, oriented in the direction of the
positive -axis

7–10 Use Stokes’ Theorem to evaluate . In each case is
oriented counterclockwise as viewed from above.

7. ,
is the triangle with vertices (1, 0, 0), (0, 1, 0), and (0, 0, 1)

8. ,
is the boundary of the part of the plane 

in the first octant

9. ,
is the circle 

H P
F �3

yy
H

curl F � dS � yy
P

curl F � dS

H

4

z

x y22

P

4

z

x y22

xx
S

curl F � dS

F�x, y, z� � 2y cos z i � e x sin z j � xe y k
S x 2 � y 2 � z2 � 9 z � 0

F�x, y, z� � x 2z2 i � y2z2 j � xyz k
S z � x 2 � y2

x 2 � y2 � 4

F�x, y, z� � tan�1�x 2 yz2� i � x 2y j � x 2z2 k
S x � sy 2 � z2 0 � x � 2

x

F�x, y, z� � xyz i � xy j � x 2 yz k
S

��1, �1, �1�

F�x, y, z� � e xy i � e xz j � x 2z k
S 4x 2 � y 2 � 4z 2 � 4

xz

xC F � dr C

F�x, y, z� � �x � y 2 � i � �y � z2 � j � �z � x 2 � k
C

F�x, y, z� � i � �x � yz� j � (xy � sz ) k
C 3x � 2y � z � 1

F�x, y, z� � yz i � 2xz j � e xy k
C x 2 � y 2 � 16, z � 5

y

10. ,  is the curve of intersec-
tion of the plane and the cylinder 

11. (a) Use Stokes’ Theorem to evaluate , where

and is the curve of intersection of the plane
and the cylinder oriented

counterclockwise as viewed from above.

; (b) Graph both the plane and the cylinder with domains 
chosen so that you can see the curve and the surface 
that you used in part (a).

; (c) Find parametric equations for and use them to graph .

12. (a) Use Stokes’ Theorem to evaluate , where
and is the curve of

intersection of the hyperbolic paraboloid and
the cylinder oriented counterclockwise as
viewed from above.

; (b) Graph both the hyperbolic paraboloid and the cylinder
with domains chosen so that you can see the curve and
the surface that you used in part (a).

; (c) Find parametric equations for and use them to graph .

13–15 Verify that Stokes’ Theorem is true for the given vector 
field and surface .

13. ,
is the cone , , oriented downward

14. ,
is the part of the paraboloid that lies

above the plane , oriented upward

15. ,
is the hemisphere , , oriented in the

direction of the positive -axis

16. Let be a simple closed smooth curve that lies in the plane
. Show that the line integral

depends only on the area of the region enclosed by and not
on the shape of or its location in the plane.

17. A particle moves along line segments from the origin to the
points , , , and back to the origin
under the influence of the force field 

Find the work done.

F�x, y, z� � xy i � 2z j � 3y k C
x � z � 5 x 2 � y 2 � 9

xC F � dr

F�x, y, z� � x 2z i � xy 2 j � z2 k

C
x 2 � y 2 � 9x � y � z � 1

C

CC

xC F � dr
CF�x, y, z� � x 2 y i �

1
3 x 3 j � xy k

z � y 2 � x 2

x 2 � y 2 � 1

C

CC

SF

F�x, y, z� � �y i � x j � 2 k
0 � z � 4z 2 � x 2 � y2S

F�x, y, z� � �2yz i � y j � 3x k
z � 5 � x 2 � y 2S

z � 1

F�x, y, z� � y i � z j � x k
y � 0x 2 � y 2 � z 2 � 1S

y

C
x � y � z � 1

xC z dx � 2x dy � 3y dz

C
C

�0, 2, 1��1, 2, 1��1, 0, 0�

F�x, y, z� � z 2 i � 2xy j � 4y 2 k

16.8 Exercises

; Graphing calculator or computer required 1. Homework Hints available at stewartcalculus.com
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SECTION 16.9 THE DIVERGENCE THEOREM 1133

Another application of the Divergence Theorem occurs in fluid flow. Let be
the velocity field of a fluid with constant density . Then is the rate of flow per
unit area. If is a point in the fluid and is a ball with center and very small
radius , then for all points in since is continuous. We approx-
imate the flux over the boundary sphere as follows:

This approximation becomes better as and suggests that

Equation 8 says that is the net rate of outward flux per unit volume at . (This
is the reason for the name divergence.) If , the net flow is outward near and

is called a source. If , the net flow is inward near and is called a sink.
For the vector field in Figure 4, it appears that the vectors that end near are shorter

than the vectors that start near Thus the net flow is outward near so
and is a source. Near on the other hand, the incoming arrows are longer than the 
outgoing arrows. Here the net flow is inward, so and is a sink. We 
can use the formula for F to confirm this impression. Since , we have

, which is positive when . So the points above the line 
are sources and those below are sinks.

yy
Sa

F � dS � yyy
Ba

div F dV � yyy
Ba

div F�P0 � dV � div F�P0 �V�Ba �

al 0

8 div F�P0 � � lim
al 0

1

V�Ba � yy
Sa

F � dS

div F�P0 � P0

div F�P� � 0 P
P div F�P� � 0 P P

P1

P1. P1, div F�P1� � 0
P1 P2,

div F�P2 � � 0 P2

F � x 2 i � y 2 j
div F � 2x � 2y y � �x y � �x

Sa

� F � �v
P0�x0, y0, z0 � Ba P0

a div F�P� � div F�P0 � Ba div F

v�x, y, z�

1–4 Verify that the Divergence Theorem is true for the vector field
on the region .

1. ,
is the cube bounded by the planes , , ,

, , and 

2. ,
is the solid bounded by the paraboloid 

and the -plane

3. ,
is the solid ball 

4. ,
is the solid cylinder , 

5–15 Use the Divergence Theorem to calculate the surface integral
; that is, calculate the flux of across .

5. ,
is the surface of the box bounded by the coordinate planes

and the planes , , and 

6. ,
is the surface of the box enclosed by the planes , 

, , , , and , where , , and are
positive numbers

F E

F�x, y, z� � 3x i � xy j � 2xz k
E x � 0 x � 1 y � 0
y � 1 z � 0 z � 1

F�x, y, z� � x 2 i � xy j � z k
E z � 4 � x 2 � y 2

xy

F�x, y, z� � �z, y, x �
E x 2 � y 2 � z 2 � 16

F�x, y, z� � �x 2, �y, z�
E y 2 � z2 � 9 0 � x � 2

SFxxS F � dS

F�x, y, z� � xyez i � xy 2z3 j � yez k
S

z � 1y � 2x � 3

F�x, y, z� � x 2yz i � xy 2z j � xyz2 k
x � 0S

cbaz � cz � 0y � by � 0x � a

7. ,
is the surface of the solid bounded by the cylinder

and the planes and 

8. ,
is the sphere with center the origin and radius 2

9. ,
is the “fat sphere” 

10. ,
is the surface of the tetrahedron enclosed by the coordinate

planes and the plane

where , , and are positive numbers

11. ,
is the surface of the solid bounded by the paraboloid

and the plane 

12. ,
is the surface of the solid bounded by the cylinder

and the planes and 

13. , where ,
consists of the hemisphere and the disk

in the -plane

F�x, y, z� � 3xy 2 i � xe z j � z3 k
S
y 2 � z2 � 1 x � �1 x � 2

F�x, y, z� � �x 3 � y 3� i � �y 3 � z3� j � �z3 � x 3� k
S

F�x, y, z� � x 2sin y i � x cos y j � xz sin y k
S x 8 � y 8 � z8 � 8

F�x, y, z� � z i � y j � zx k
S

x

a
�

y

b
�

z

c
� 1

a b c

F�x, y, z� � �cos z � xy 2� i � xe�z j � �sin y � x 2z� k
S
z � x 2 � y 2 z � 4

F�x, y, z� � x 4 i � x 3z 2 j � 4xy 2z k
S
x 2 � y 2 � 1 z � x � 2 z � 0

F � � r � r r � x i � y j � z k
S z � s1 � x 2 � y 2

x 2 � y 2 � 1 xy

16.9 Exercises

Computer algebra system required 1. Homework Hints available at stewartcalculus.comCAS

FIGURE 4
The vector field F=≈ i+¥ j

P¡

P™

y

x
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650 ¤ CHAPTER 16 VECTOR CALCULUS

16.5 Curl and Divergence

1. (a) curlF = ×F =
i j k

+ + +

= ( + ) ( + ) i ( + ) ( + ) j+ ( + ) ( + ) k

= ( ) i ( ) j+ ( )k = 0

(b) divF = · F = ( + ) + ( + ) + ( + ) = 1 + 1 + 1 = 3

2. (a) curlF = ×F =
i j k

2 3 3 2 2 3

= (3 2 2 2 3 ) i (2 3 3 2 2) j+ (3 2 2 2 3)k

= 2 (3 2 ) i+ 2 (3 2 ) j+ 2(3 2 )k

(b) divF = · F = ( 2 3) + ( 3 2) + ( 2 3 ) = 2 3 + 3 2 + 2 3

3. (a) curlF = ×F =
i j k

0

= ( 0) i ( ) j+ (0 )k

= i+ ( ) j k

(b) divF = · F = ( ) + (0) + ( ) = + 0 + = ( + )

4. (a) curlF = ×F =
i j k

sin sin sin

= ( cos cos ) i ( cos cos ) j+ ( cos cos )k

= (cos cos ) i+ (cos cos ) j+ (cos cos )k

(b) divF = · F = (sin ) + (sin ) + (sin ) = 0 + 0 + 0 = 0

5. (a) curlF= ×F =

i j k

2 + 2 + 2 2 + 2 + 2 2 + 2 + 2

=
1

( 2 + 2 + 2)3 2
[( + ) i ( + ) j+ ( + )k] = 0

(b) divF= · F =
2 + 2 + 2

+
2 + 2 + 2

+
2 + 2 + 2

=
2 + 2 + 2 2

( 2 + 2 + 2)3 2
+

2 + 2 + 2 2

( 2 + 2 + 2)3 2
+

2 + 2 + 2 2

( 2 + 2 + 2)3 2
=
2 2 + 2 2 + 2 2

( 2 + 2 + 2)3 2
=

2
2 + 2 + 2
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SECTION 16.5 CURL AND DIVERGENCE ¤ 651

6. (a) curlF= ×F =
i j k

0 sin tan 1( )

= tan 1( ) cos i · 1

1 + ( )2
· 1 0 j+ ( sin 0)k

= tan 1( ) cos i
2 + 2

j+ sin k

(b) divF= · F = (0) + ( sin ) + [ tan 1( )]

= 0 + sin + · 1

1 + ( )2 2
= sin

2 + 2

7. (a) curlF = ×F =
i j k

sin sin sin

= (0 cos ) i ( cos 0) j+ (0 cos )k

= h cos cos cos i

(b) divF = · F = ( sin ) + ( sin ) + ( sin ) = sin + sin + sin

8. (a) curlF = ×F =
i j k

1 1 1

= (0 + 2) i ( 2 0) j+ (0 + 2)k

= 2 2 2

(b) divF = · F = + + =
1
+
1
+
1

9. If the vector field is F = i+ j+ k, then we know = 0. In addition, the -component of each vector of F is 0, so

= 0, hence = = = = = = 0. decreases as increases, so 0, but doesn’t change

in the - or -directions, so = = 0.

(a) divF = + + = 0 + + 0 0

(b) curlF = i+ j+ k = (0 0) i+ (0 0) j+ (0 0)k = 0

10. If the vector field is F = i+ j+ k, then we know = 0. In addition, and don’t vary in the -direction, so

= = = = = 0. As increases, the -component of each vector of F increases while the -component

remains constant, so 0 and = 0. Similarly, as increases, the -component of each vector increases while the

-component remains constant, so 0 and = 0.

(a) divF = + + = + + 0 0
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652 ¤ CHAPTER 16 VECTOR CALCULUS

(b) curlF = i+ j+ k = (0 0) i+ (0 0) j+ (0 0)k = 0

11. If the vector field is F = i+ j+ k, then we know = 0. In addition, the -component of each vector of F is 0, so

= 0, hence = = = = = = 0. increases as increases, so 0, but doesn’t change in

the - or -directions, so = = 0.

(a) divF = + + = 0 + 0 + 0 = 0

(b) curlF = i+ j+ k = (0 0) i+ (0 0) j+ 0 k = k

Since 0, k is a vector pointing in the negative -direction.

12. (a) curl = × is meaningless because is a scalar field.

(b) grad is a vector field.

(c) divF is a scalar field.

(d) curl (grad ) is a vector field.

(e) gradF is meaningless because F is not a scalar field.

(f ) grad(divF) is a vector field.

(g) div(grad ) is a scalar field.

(h) grad(div ) is meaningless because is a scalar field.

(i) curl(curlF) is a vector field.

(j) div(divF) is meaningless because div F is a scalar field.

(k) (grad )× (divF) is meaningless because divF is a scalar field.

(l) div(curl(grad )) is a scalar field.

13. curlF = ×F =
i j k

2 3 2 3 3 2 2

= (6 2 6 2) i (3 2 2 3 2 2) j+ (2 3 2 3)k = 0

and F is defined on all of R3 with component functions which have continuous partial derivatives, so by Theorem 4,

F is conservative. Thus, there exists a function such that F = . Then ( ) = 2 3 implies

( ) = 2 3 + ( ) and ( ) = 2 3 + ( ). But ( ) = 2 3, so ( ) = ( ) and

( ) = 2 3 + ( ). Thus ( ) = 3 2 2 + 0( ) but ( ) = 3 2 2 so ( ) = , a constant.

Hence a potential function for F is ( ) = 2 3 + .
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SECTION 16.5 CURL AND DIVERGENCE ¤ 653

14. curlF = ×F =
i j k

2 2 2 2 2

= (2 2 2 2 ) i (2 2 2 ) j+ (2 2 2)k 6= 0,

so F is not conservative.

15. curlF = ×F =
i j k

3 2 2 2 2 3 3 2 2 2

= (6 2 2 6 2 2) i (6 2 2 6 2 ) j+ (4 3 6 2)k

= 6 2 (1 ) j+ 2 2(2 3)k 6= 0
so F is not conservative.

16. curlF = ×F =
i j k

1 sin cos

= (cos cos ) i (0 0) j+ (0 0)k = 0, F is defined on all of R3,

and the partial derivatives of the component functions are continuous, soF is conservative. Thus there exists a function

such that = F. Then ( ) = 1 implies ( ) = + ( ) and ( ) = ( ). But

( ) = sin , so ( ) = sin + ( ) and ( ) = + sin + ( ). Thus ( ) = cos + 0( ) but

( ) = cos so ( ) = and ( ) = + sin + .

17. curlF = ×F =
i j k

= [ + ( + )] i ( ) j+ ( )k = 0

F is defined on all of R3, and the partial derivatives of the component functions are continuous, so F is conservative. Thus

there exists a function such that = F. Then ( ) = implies ( ) = + ( )

( ) = + ( ). But ( ) = , so ( ) = ( ) and ( ) = + ( ).

Thus ( ) = + 0( ) but ( ) = so ( ) = and a potential function for F is

( ) = + .

18. curlF = ×F =
i j k

sin cos cos

= [ sin + cos ( sin + cos )] i ( cos cos ) j

+( cos cos )k = 0

F is defined on all of R3, and the partial derivatives of the component functions are continuous, so F is conservative. Thus

there exists a function such that = F. Then ( ) = sin implies ( ) = sin + ( )
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684 ¤ CHAPTER 16 VECTOR CALCULUS

48. ( ) = 2 + 2 + 2,

F= =
( 2 + 2 + 2)3 2

i
( 2 + 2 + 2)3 2

j
( 2 + 2 + 2)3 2

k

=
( 2 + 2 + 2)3 2

( i+ j+ k)

and the outward unit normal is n = 1
( i+ j+ k).

Thus F · n =
( 2 + 2 + 2)3 2

( 2 + 2 + 2), but on , 2 + 2 + 2 = 2 so F · n =
2
. Hence the rate of heat flow

across is F · S =
2

=
2
(4 2) = 4 .

49. Let be a sphere of radius centered at the origin. Then |r| = and F(r) = r |r|3 = 3 ( i+ j+ k). A

parametric representation for is r( ) = sin cos i+ sin sin j+ cos k, 0 , 0 2 . Then

r = cos cos i+ cos sin j sin k, r = sin sin i+ sin cos j, and the outward orientation is given

by r × r = 2 sin2 cos i+ 2 sin2 sin j+ 2 sin cos k. The flux of F across is

F · S=
0

2

0 3
( sin cos i+ sin sin j+ cos k)

· 2 sin2 cos i+ 2 sin2 sin j+ 2 sin cos k

=
3 0

2

0
3 sin3 + sin cos2 =

0

2

0
sin = 4

Thus the flux does not depend on the radius .

16.8 Stokes' Theorem

1. Both and are oriented piecewise-smooth surfaces that are bounded by the simple, closed, smooth curve 2 + 2 = 4,

= 0 (which we can take to be oriented positively for both surfaces). Then and satisfy the hypotheses of Stokes’

Theorem, so by (3) we know curlF · S = F · r = curlF · S (where is the boundary curve).

2. The boundary curve is the circle 2 + 2 = 9, = 0 oriented in the counterclockwise direction when viewed from above.

A vector equation of is r( ) = 3 cos i+ 3 sin j, 0 2 , so r0( ) = 3 sin i+ 3 cos j and

F(r( )) = 2(3 sin )(cos 0) i+ 3 cos (sin 0) j+ (3 cos ) 3 sin k = 6 sin i+ (3 cos ) 3 sin k. Then, by Stokes’ Theorem,

curlF · S = F · r = 2

0
F(r( )) · r0( ) =

2

0
( 18 sin2 + 0 + 0) = 18 1

2
1
4
sin 2

2

0
= 18 .

3. The paraboloid = 2 + 2 intersects the cylinder 2 + 2 = 4 in the circle 2 + 2 = 4, = 4. This boundary curve

should be oriented in the counterclockwise direction when viewed from above, so a vector equation of is

r( ) = 2 cos i+ 2 sin j+ 4k, 0 2 . Then r0( ) = 2 sin i+ 2 cos j,

F(r( )) = (4 cos2 )(16) i+ (4 sin2 )(16) j+ (2 cos )(2 sin )(4)k = 64 cos2 i+ 64 sin2 j+ 16 sin cos k
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SECTION 16.8 STOKES’ THEOREM ¤ 685

and by Stokes’ Theorem,

curlF · S= F · r = 2

0
F(r( )) · r0( ) =

2

0
( 128 cos2 sin + 128 sin2 cos + 0)

= 128 1
3
cos3 + 1

3
sin3

2

0
= 0

4. The boundary curve is the circle 2 + 2 = 4, = 2 which should be oriented in the counterclockwise direction when

viewed from the front, so a vector equation of is r( ) = 2 i+ 2 cos j+ 2 sin k, 0 2 . Then

F(r( )) = tan 1(32 cos sin2 ) i + 8cos j+ 16 sin2 k, r0( ) = 2 sin j+ 2 cos k, and

F(r( )) · r0( ) = 16 sin cos + 32 sin2 cos . Thus

curlF · S = F · r = 2

0
F(r( )) · r0( ) =

2

0
( 16 sin cos + 32 sin2 cos )

= 8 sin2 + 32
3
sin3

2

0
= 0

5. is the square in the plane = 1. Rather than evaluating a line integral around we can use Equation 3:

1
curlF · S = F · r =

2
curlF · S where 1 is the original cube without the bottom and 2 is the bottom face

of the cube. curlF = 2 i+ ( 2 ) j+ ( )k. For 2, we choose n = k so that has the same orientation for

both surfaces. Then curlF · n = = + on 2, where = 1. Thus
2
curlF · S = 1

1

1

1
( + ) = 0

so
1
curlF · S = 0.

6. The boundary curve is the circle 2 + 2 = 1, = 0 which should be oriented in the counterclockwise direction when

viewed from the right, so a vector equation of is r( ) = cos( ) i+ sin( )k = cos i sin k, 0 2 . Then

F(r( )) = i+ cos sin j cos2 sin k, r0( ) = sin i cos k, and F(r( )) · r0( ) = sin + cos3 sin . Thus

curlF · S = F · r = 2

0
F(r( )) · r0( ) =

2

0
( sin + cos3 sin )

= cos 1
4
cos4

2

0
= 0

7. curl F = 2 i 2 j 2 k and we take the surface to be the planar region enclosed by , so is the portion of the plane

+ + = 1 over = {( ) | 0 1, 0 1 }. Since is oriented counterclockwise, we orient upward.

Using Equation 16.7.10, we have = ( ) = 1 , = 2 , = 2 , = 2 , and

F · r= curlF · S = [ ( 2 )( 1) ( 2 )( 1) + ( 2 )]

=
1

0

1

0
( 2) = 2

1

0
(1 ) = 1

8. curlF = ( ) i j + k and is the portion of the plane 3 + 2 + = 1 over

= ( ) | 0 1
3
0 1

2
(1 3 ) . We orient upward and use Equation 16.7.10 with

= ( ) = 1 3 2 :

F · r= curlF · S = [ ( )( 3) ( )( 2) + 1] =
1 3

0

(1 3 ) 2

0
(1 + 3 5 )

=
1 3

0
(1 + 3 ) 5

2
2 =(1 3 ) 2

=0
=

1 3

0
1
2
(1 + 3 )(1 3 ) 5

2
· 1
4
(1 3 )2

=
1 3

0
81
8

2 + 15
4

1
8

= 27
8

3 + 15
8

2 1
8

1 3

0
= 1

8
+ 5

24
1
24
= 1

24
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16.9 The Divergence Theorem

1. divF = 3 + + 2 = 3 + 3 , so

divF =
1

0

1

0

1

0
(3 + 3) = 9

2
(notice the triple integral is

three times the volume of the cube plus three times ).

To compute F · S, on

1: n = i, F = 3 i+ j+ 2 k, and
1
F · S =

1
3 = 3;

2: F = 3 i+ j+ 2 k, n = j and
2
F · S =

2
= 1

2
;

3: F = 3 i+ j+ 2 k, n = k and
3
F · S =

3
2 = 1;

4: F = 0,
4
F · S = 0; 5: F = 3 i+ 2 k, n = j and

5
F · S =

5
0 = 0;

6: F = 3 i+ j, n = k and
6
F · S =

6
0 = 0. Thus F · S = 9

2
.

2. divF = 2 + + 1 = 3 + 1 so

divF = (3 + 1) =
2

0

2

0

4 2

0
(3 cos + 1)

=
2

0

2

0
(3 cos + 1)(4 2)

=
2

0
(4 2) 3 sin +

=2

=0

= 2
2

0
(4 3) = 2 2 2 1

4
4 2

0

= 2 (8 4) = 8

On 1: The surface is = 4 2 2 2 + 2 4, with upward orientation, and F = 2 i+ j+ (4 2 2)k. Then

1
F · S= [ ( 2)( 2 ) ( )( 2 ) + (4 2 2)]

= 2 ( 2 + 2) + 4 ( 2 + 2) =
2

0

2

0
(2 cos · 2 + 4 2)

=
2

0
2
5

5 cos + 2 2 1
4

4 =2

=0
=

2

0
64
5
cos + 4 = 64

5
sin + 4

2

0
= 8

On 2: The surface is = 0 with downward orientation, so F = 2 i+ j, n = k and
2
F · n =

2
0 = 0.

Thus F · S =
1
F · S+

2
F · S = 8 .

3. divF = 0 + 1 + 0 = 1, so divF = 1 = ( ) = 4
3 · 43 = 256

3 . is a sphere of radius 4 centered at

the origin which can be parametrized by r( ) = h4 sin cos 4 sin sin 4 cos i, 0 , 0 2 (similar to

Example 16.6.10). Then

r × r = h4 cos cos 4 cos sin 4 sin i × h 4 sin sin 4 sin cos 0i
= 16 sin2 cos 16 sin2 sin 16 cos sin

and F(r( )) = h4 cos 4 sin sin 4 sin cos i. Thus
F · (r × r ) = 64 cos sin2 cos + 64 sin3 sin2 + 64 cos sin2 cos = 128 cos sin2 cos + 64 sin3 sin2

and
F · S = F · (r × r ) =

2

0 0
(128 cos sin2 cos + 64 sin3 sin2 )

=
2

0
128
3
sin3 cos + 64 1

3
(2 + sin2 ) cos sin2

=

=0

=
2

0
256
3
sin2 = 256

3
1
2

1
4
sin 2

2

0
= 256

3
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690 ¤ CHAPTER 16 VECTOR CALCULUS

4. divF = 2 1 + 1 = 2 , so

divF =

2+ 2 9

2

0

2 =

2+ 2 9

4 = 4(area of circle) = 4( · 32) = 36

Let 1 be the front of the cylinder (in the plane = 2), 2 the back (in the -plane), and 3 the lateral surface of the cylinder.

1 is the disk = 2, 2 + 2 9. A unit normal vector is n = h1 0 0i and F = h4 i on 1, so

1
F · S =

1
F · n =

1
4 = 4(surface area of 1) = 4( · 32) = 36 . 2 is the disk = 0, 2 + 2 9.

Here n = h 1 0 0i and F = h0 i, so
2
F · S =

2
F · n =

2
0 = 0.

3 can be parametrized by r( ) = h 3 cos 3 sin i, 0 2, 0 2 . Then

r × r = h1 0 0i × h0 3 sin 3 cos i = h0 3 cos 3 sin i. For the outward (positive) orientation we use

(r × r ) and F(r( )) = 2 3 cos 3 sin , so

3
F · S = F · ( (r × r )) =

2

0

2

0
(0 9 cos2 + 9 sin2 )

= 9
2

0

2

0
cos 2 = 9 (2) 1

2
sin 2

2

0
= 0

Thus F · S = 36 + 0 + 0 = 36 .

5. divF = ( ) + ( 2 3) + ( ) = + 2 3 = 2 3, so by the Divergence Theorem,

F · S= divF =
3

0

2

0

1

0
2 3 = 2

3

0

2

0

1

0
3

= 2 1
2

2 3

0
1
2

2 2

0
1
4

4 1

0
= 2 9

2
(2) 1

4
= 9

2

6. divF = ( 2 ) + ( 2 ) + ( 2) = 2 + 2 + 2 = 6 , so by the Divergence Theorem,

F · S= divF =
0 0 0

6 = 6
0 0 0

= 6 1
2

2
0

1
2

2
0

1
2

2
0
= 6 1

2
2 1

2
2 1

2
2 = 3

4
2 2 2

7. divF = 3 2 + 0 + 3 2, so using cylindrical coordinates with = cos , = sin , = we have

F · S= (3 2 + 3 2) =
2

0

1

0

2

1
(3 2 cos2 + 3 2 sin2 )

= 3
2

0

1

0
3 2

1
= 3(2 ) 1

4
(3) = 9

2

8. divF = 3 2 + 3 2 + 3 2, so by the Divergence Theorem,

F · S= 3( 2 + 2 + 2) =
0

2

0

2

0
3 2 · 2 sin = 3

0
sin

2

0

2

0
4

= 3 [ cos ]0 [ ]
2
0

1
5

5 2

0
= 3 (2) (2 ) 32

5
= 384

5

9. divF = 2 sin sin sin = 0, so by the Divergence Theorem, F · S = 0 = 0.
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SECTION 16.9 THE DIVERGENCE THEOREM ¤ 691

10. The tetrahedron has vertices (0 0 0), ( 0 0), (0 0), (0 0 ) and is described by

= ( ) | 0 , 0 1 , 0 1 . Here we have divF = 0 + 1 + = + 1, so

F · S = ( + 1) =
0

(1 )
0

(1 )
0 ( + 1)

=
0

(1 )
0 ( + 1) 1 =

0
( + 1) 1 1

2
2 = (1 )

=0

=
0
( + 1) 1 · 1 1

2
· 2 1

2
= 1

2 0
( + 1) 1

2

= 1
2 0

1
2

3 + 1
2

2 2 2 + 2 + 1

= 1
2

1
4 2

4 + 1
3 2

3 2
3

3 + 1
2

2 1 2 +
0

= 1
2

1
4

2 + 1
3

2
3

2 + 1
2

2 + = 1
2

1
12

2 + 1
3

= 1
24

( + 4)

11. div F = 2 + 0 + 2 = 2 + 2 so

F · S = ( 2 + 2) =
2

0

2

0

4
2

2 · =
2

0

2

0
3(4 2)

=
2

0

2

0
(4 3 5) = 2 4 1

6
6 2

0
= 32

3

12. div F = 4 3 + 4 2 so

F · S = 4 ( 2 + 2) =
2

0

1

0

cos +2

0
(4 3 cos )

=
2

0

1

0
(4 5 cos2 + 8 4 cos ) =

2

0
2
3
cos2 + 8

5
cos = 2

3

13. F( ) = 2 + 2 + 2 i+ 2 + 2 + 2 j+ 2 + 2 + 2 k, so

divF= · 1
2
( 2 + 2 + 2) 1 2(2 ) + ( 2 + 2 + 2)1 2 + · 1

2
( 2 + 2 + 2) 1 2(2 ) + ( 2 + 2 + 2)1 2

+ · 1
2
( 2 + 2 + 2) 1 2(2 ) + ( 2 + 2 + 2)1 2

= ( 2 + 2 + 2) 1 2 2 + ( 2 + 2 + 2) + 2 + ( 2 + 2 + 2) + 2 + ( 2 + 2 + 2)

=
4( 2 + 2 + 2)

2 + 2 + 2
= 4 2 + 2 + 2.

Then
F · S = 4 2 + 2 + 2 =

2

0

2

0

1

0

4 2 · 2 sin

=
2

0
sin

2

0

1

0
4 3 = [ cos ] 2

0 [ ]20
4 1

0
= (1) (2 ) (1) = 2

14. F( ) = ( 2 + 2 + 2) i+ ( 2 + 2 + 2) j+ ( 2 + 2 + 2)k, so

divF = · 2 + ( 2 + 2 + 2) + · 2 + ( 2 + 2 + 2) + · 2 + ( 2 + 2 + 2) = 5( 2 + 2 + 2). Then

F · S = 5( 2 + 2 + 2) =
0

2

0 0

5 2 · 2 sin

= 5
0
sin

2

0 0
4 = 5 [ cos ]0 [ ]

2
0

1
5

5
0
= 5 (2) (2 ) 1

5
5 = 4 5

15. F · S = 3 2 =
1

1

1

1

2 4 4

0
3 2 = 341

60
2 + 81

20
sin 1 3

3
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2.2.5 Solution for Quiz VI (HW-ONE)



Name—————————————–, ID ———————–

MTH 203 Calculus III 2020, 1–1 © copyright Ayman Badawi 2020

Homework One MTH 203 , Spring 2020

Ayman Badawi

QUESTION 1. Let z = f(x, y) = x2e(3y) + 2xy + y3 � x3. Then

(i) Find fx(x, y)

(ii) Find fxx(x, y)

(iii) Find fy(x, y)

(iv) Find fyx(x, y)

QUESTION 2. (i) Find the equation of the tangent plane to z = f(x, y) = 3x2y3 � xy + y2 at (2, 1, 11).

(ii) Use (i) to approximate the z value at (1.7, 0.9)

QUESTION 3. Let z = f(x, y) = ey + 3xy + x2, x = sin(t) + 2t, y = 3t2 + 7.
Find dz

dt .
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2.2.6 Solution for Quiz VII (HW-TWO)



Name—————————————–, ID ———————–

MTH 203 Calculus III 2020, 1–1 © copyright Ayman Badawi 2020

Homework Two MTH 203 , Spring 2020

Ayman Badawi

QUESTION 1. Let z = f(x, y) = x2 − xy + y2 − 2y + 3 . Find all local min, local max of f(x, y). Show the work.
(note that you can use a calculator to do the calculations, and if x = 5/3, you may write x = 1.66 (nearest two decimals))

fx(x, y) = 2x− y, fxx(x, y) = 2, fxy = −1, fy(x, y) = −x+ 2y, fyy(x, y) = 2
We set fx = 0 and fy = 0. Hence 2x - y = 0 and -x + 2y = 2. By solving for x, y, we get x = 2/3, y = 4/3
Thus (2/3, 4/3) is a critical point.
Now fxx(2/3, 4/3) = 2, fyy(2/3, 4/3) = 2, fxy(2/3, 4/3) = −1.
D = fxx(2/3, 4/3)fyy(2/3, 4/3)− [fxy(2/3, 4/3)]2 = (2)(2)− (−1)2 = 3 > 0
Since D > 0 and fxx(2/3, 4/3) = 2 > 0, we conclude that Z has a local min at (2/3, 4/3).
Hence Z = f(2/3, 4/3) = (by calculator ) = 5/3 = 1.67 is a local min and it occurs at (2/3, 4/3).

QUESTION 2. Let z = f(x, y) = x2−xy+y2−2y+3 (same function as in question 1) defined on the closed triangular
region with vertices (0, 0), (3, 0), and(3, 3). Find the absolute Min and the absolute Max of f(x, y).

Note the boundaries are y = 0, y = x, and x = 3.
Note that every point in the region satisfies y ≤ x. Hence (2/3, 4/3) from Question 1 is not in the region.
As I explained in the lecture, we must consider the end points.
(**) f(0, 0) = 3, f(3, 3) = 5, and f(3, 0) = 12.
Case 1. y = 0. Hence f(x, y = 0) = x2 + 3, 0 ≤ x ≤ 3. Thus f ′(x) = 2x = 0. We get (0, 0), f(0, 0) = 3
Case 2. y = x. Hence f(x, y = x) = x2 − 2x+ 3, 0 ≤ x ≤ 3. Thus f ′(x) = 2x− 2 = 0. We get (1, 1), f(1, 1) = 2.
Case 3. x = 3. Hence f(x = 3, y) = 9 − 3y + y2 − 2y + 3 = y2 − 5y + 12, 0 ≤ y ≤ 3. Hence f ′(y) = 2y − 5 = 0,

y = 5/2. Thus we get (3, 2.5). Hence f(3, 2.5) = 5.75 (by calculator)
Now staring at (**), Case 1, Case 2, and Case 3, we conclude that 2 is the absolute min value of Z and it occurs at

(1, 1), and 12 is the absolute maximum value of Z and it occurs at (3, 0).

Faculty information
Ayman Badawi, Department of Mathematics & Statistics, American University of Sharjah, P.O. Box 26666, Sharjah, United Arab Emirates.
E-mail: abadawi@aus.edu, www.ayman-badawi.com
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2.2.7 Solution for Quiz VIII (HW-THREE)



, ID  Name  

Mffl 203 Calculus m 2020, 1-2 © copyright Ayman Badawi 2020 

Homework Three MTH 203 , Spring 2020 

Ayman Badawi 

QUESTION 1. Consider the curve C given by y = 4 - x2 in the first quadrant of the xy-plane (see picture). Find the 
area of the region bounded by f(x,y) = 8xand the curve C (i.e., fc f(x,y) ds)
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2.2.8 Solution for Quiz IX
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2.2.9 Solution for the MIDTERM EXAM
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2.2.10 Solution for the Final Exam
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3.1 QUIZZES
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3.1.1 Quiz II



MTH 203 Calculus Ill 2020, 1-1 

Quiz Two, MTH 203, Spring 2020 

p-... 

Ayman Badawi 

rJ 

© copyright Ayman Badawi 2020 

QUESTION 1. Are the points (1, -2,4), (5,6, 10), (9, 14, 15) colinear? SHOW THE WORK 

QUESTION 2. Find the area of the triangle that has the vertices: A= (2, 8), B = (4, -6), C = (-4, 2). 

Faculty information

Ayman Badawi. Depanment of Mathematics & Statistics. American University of Sharjah, P.O. Box 26666. Sharjah, United Arab Emirates. 
E-mail: abadawi!Daus. edu, wvw. ayman-badawi. com
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3.1.2 Quiz III



Name—————————————–, ID ———————–

MTH 203 Calculus III 2020, 1–2 © copyright Ayman Badawi 2020

QUIZ III MTH 203 , Spring 2020

Ayman Badawi

QUESTION 1. Can we draw the vectors v1 =< −1,−2, 3 >, v2 =< 3, 2,−5 >, and v3 =< −4,−3, 7 > in a plane?
(i.e., are v1, v2, v3 coplanar?)

QUESTION 2. Let P1 : 3x+ 2y − 2z = 7 and P2 : −3x− 2y + 4z = 12.

(i) Find the acute angle between P1 and P2.

(ii) Find a parametric equations of the intersection-line.

768



2 Ayman Badawi

QUESTION 3. Find the distance between the point Q = (5, 6, 6) and the line L : x = 2t+3, y = −t+7, z = 5t−8(t ∈
R)

QUESTION 4. Find the equation of the plane that passes through (1, 1, 1), (4, 4, 4), and (3, 6,−2).

Faculty information
Ayman Badawi, Department of Mathematics & Statistics, American University of Sharjah, P.O. Box 26666, Sharjah, United Arab Emirates.
E-mail: abadawi@aus.edu, www.ayman-badawi.com
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3.1.3 Quiz IV



Name—————————————–, ID ———————–

MTH 203 Calculus III 2020, 1–1 © copyright Ayman Badawi 2020

QUIZ IV MTH 203 , Spring 2020

Ayman Badawi

QUESTION 1. Does the line L : x = 2t+1, y = −t+3, z = 4t+3 lie entirely inside the plane −4x+4y+3z = 17?Show
the work

QUESTION 2. 4x2 + 9y2 = 36 intersects the plane z = 2x+ 5y in a curve. Find the vector function of the curve.

QUESTION 3. Find the distance between the point Q = (1, 1, 1) and the plane −2x+ 2y + z = 31

QUESTION 4. Given L : x = 2t+ 1, y = t, z = at+ 4 intersects the plane x+ 2y + z = 11 in a point Q = (7, b, c) .
Find the values of a, b, c.

QUESTION 5. Can we draw the vector v = 3i+ 7j − 5k inside the plane 2x− 3y − 3z = 22?

Faculty information
Ayman Badawi, Department of Mathematics & Statistics, American University of Sharjah, P.O. Box 26666, Sharjah, United Arab Emirates.
E-mail: abadawi@aus.edu, www.ayman-badawi.com
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3.1.4 Quiz V



Name—————————————–, ID ———————–

MTH 203 Calculus III 2020, 1–1 © copyright Ayman Badawi 2020

QUIZ V MTH 203 , Spring 2020

Ayman Badawi

QUESTION 1. (a) Let r(t) =<
√
t+ 5, 1

t+3 ,
1

t−5 >. For what values of t is r(t) continuous?

(b) Find Limt→1 < e(t−1)−1
t2−1 , cos(tπ), sin(3t−3)

5t−5 >

QUESTION 2. Let r(t) =< cos(2t), sin(2t)− 4, t+ 3 >

(i) Find the equation of tangent line to the curve at t = 0

(ii) Find a normal vector to curve at t = 0.

(iii) Find an equation of the normal plane to the curve at t = 0

(iv) Find an equation of the osculating plane to the curve at t = 0.
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3.1.5 Quiz VI (HW-One)



Name—————————————–, ID ———————–

MTH 203 Calculus III 2020, 1–1 © copyright Ayman Badawi 2020

Homework One MTH 203 , Spring 2020

Ayman Badawi

QUESTION 1. Let z = f(x, y) = x2e(3y) + 2xy + y3 − x3. Then

(i) Find fx(x, y)

(ii) Find fxx(x, y)

(iii) Find fy(x, y)

(iv) Find fyx(x, y)

QUESTION 2. (i) Find the equation of the tangent plane to z = f(x, y) = 3x2y3 − xy + y2 at (2, 1, 11).

(ii) Use (i) to approximate the z value at (1.7, 0.9)

QUESTION 3. Let z = f(x, y) = ey + 3xy + x2, x = sin(t) + 2t, y = 3t2 + 7.
Find dz

dt .
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3.1.6 Quiz VII (HW-Two)



Name—————————————–, ID ———————–

MTH 203 Calculus III 2020, 1–1 © copyright Ayman Badawi 2020

Homework Two MTH 203 , Spring 2020

Ayman Badawi

QUESTION 1. Let z = f(x, y) = x2 − xy + y2 − 2y + 3 . Find all local min, local max of f(x, y). Show the work.
(note that you can use a calculator to do the calculations, and if x = 5/3, you may write x = 1.66 (nearest two decimals))

QUESTION 2. Let z = f(x, y) = x2−xy+y2−2y+3 (same function as in question 1) defined on the closed triangular
region with vertices (0, 0), (3, 0), and(3, 3). Find the absolute Min and the absolute Max of f(x, y).
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3.1.7 Quiz VIII (HW-Three)



Name—————————————–, ID ———————–

MTH 203 Calculus III 2020, 1–2 © copyright Ayman Badawi 2020

Homework Three MTH 203 , Spring 2020

Ayman Badawi

QUESTION 1. Consider the curve C given by y = 4 − x2 in the first quadrant of the xy-plane (see picture). Find the
area of the region bounded by f(x, y) = 8x and the curve C (i.e.,

∫
C

f(x, y) ds)
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2 Ayman Badawi

QUESTION 2. Consider the vector field function F (x, y) =< y + 2x, 1 + x+ 2y >
(a) Is F (x, y) conservative? if yes find a function f(x, y) such that ∇f(x, y) = F (x, y)

(b) Find the Work done by the force F (x, y) when an object is moved from the point (0,−4) to the point (2, 4) along
the curve C, i.e.,

∫
C
F (x, y) · dr (see picture, note that C consists of three curves : C1 is y = x2− 4, C2 is y = x− 4 and

C3 is y = 6− x)
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3.1.8 Quiz IX (HW-Four)



Name—————————————–, ID ———————–

MTH 203 Calculus III 2020, 1–1 © copyright Ayman Badawi 2020

Homework FOUR MTH 203 , Spring 2020

Ayman Badawi

QUESTION 1. Find the volume of the object in 3D that is over the region D in the third quadrant of the xy-plane, where
D is bounded by the circle x2 + y2 = 25, x-axis and y-axis (see pic), such that the height of such object at every point
(x, y) in the region D is determined by the function f(x, y) = 2xy. SHOW the work.

QUESTION 2. Find the surface area of the object in 3D that is over the region D in the xy-plane, where D is bounded
by the circle x2 + y2 = 16, and y-axis (see pic), such that the height of such object at every point (x, y) in the region D
is determined by the function f(x, y) = 1 + 2x2 + 2y2. SHOW the work.
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3.2 Exams
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3.2.1 Midterm-Exam



Name—————————————–, ID ———————–

MTH 203 Calculus III 2020, 1–5 © copyright Ayman Badawi 2020

Midterm Exam MTH 203 , Spring 2020

Ayman Badawi

QUESTION 1. (i) Find a vector of length 9 and in the direction of the vector v =< −1,−2, 2 >

(ii) Find the directional angles of the vector v =< −2,−4, 4 >

(iii) Draw the projection of V over W (i.e., draw projVW ).
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2 Ayman Badawi

QUESTION 2. Find parametric equations and symmetric equations for the line of the intersection of the planes
x+ 2y + 3z = 1 and 2x− 2y + 2z = −4.

QUESTION 3. Find an equation of the plane that passes through the point (4, 2, -1) and perpendicular to the line
x = 4t, y = 4 + 3t, z = 6− 6t (t ∈ R)

QUESTION 4. Symmetric equations of L1 : x− 2 = y−3
−2 = z−1

−3 and symmetric equations of L2 : x− 3 = y+4
3 = z−2

−7 .
Is L1 parallel to L2? explain. If not, then does L1 intersect L2 ? if yes, find the intersection point.
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Midterm Exam MTH 203 , Spring 2020 3

QUESTION 5. Find parametric equations of the tangent line to the vector function r(t) =< 7t − 10,
√
t+ 2, t2 − 6 >

at t = 2.

QUESTION 6. Let C be the curve of intersection of 2y = x2 and 3z = xy. Find parametric equations of C (i.e., find
r(t)). Then find the length of C from the origin to the point (6, 18, 36). [Hint: note that (1 + x+ 1

4x
2) = (1 + 1

2x)
2]

QUESTION 7. Given 3z2xy + xy2 − 2e3z + zy + y2 + 8z + 2x− 44 = 0. Find dz/dx (i.e., Find the partial derivative
of z with respect to x)
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4 Ayman Badawi

QUESTION 8. Let f(x, y) = x2y + 2x + y2. Find Du(−2, 1) in the direction of the vector v =< −4,−3 >. What is
the maximum value of Du(−2, 1)? and in the direction of which vector does the maximum value occur?

QUESTION 9. Let f(x, y) = x2 − 6x+ 2y2 − 4y + 6.

(i) Find all local min, local max values of f(x, y)

(ii) Suppose that f(x, y) is defined on the region that is bounded by the circle y2 + x2 − 6x = 11 [Hint: note that
f(x, y) = x2 − 6x + y2 + y2 − 4y + 6, also note that the curve of the circle is included in the region]. Find the
absolute Max and the absolute min. of f(x, y).
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QUESTION 10. Find the equation of the plane that is tangent to f(x, y) = 2xe(y−1) + x2 − 3y at the point (2, 1).

QUESTION 11. Let f(x, y) = 1
9(x

2 + 2y2)xy be defined on the curve C : x2

18 + y2

9 = 1 (see picture, and note that the
angle t is between 0 and π/2]. Find the area of the region that is bounded by f(x, y) and C (i.e., find

∫
C
f(x, y)ds)

QUESTION 12. Find the work done by the force F (x, y) =< 2xey + 3x2 − 2x, x2ey + 3y2 − 4y > when moving an
object from the point (−1, 0) to the point (2, 3) along the curve C : y = x2 − 1.

Faculty information
Ayman Badawi, Department of Mathematics & Statistics, American University of Sharjah, P.O. Box 26666, Sharjah, United Arab Emirates.
E-mail: abadawi@aus.edu, www.ayman-badawi.com

789



790 TABLE OF CONTENTS

3.2.2 Final Exam



Name—————————————–, ID ———————–

MTH 203 Calculus III 2020, 1–7 © copyright Ayman Badawi 2020

Final Exam MTH 203 , Spring 2020

Ayman Badawi

58
QUESTION 1. Imagine that f(x, y, z) = 2√xyz is the density function of the mass of an object that has a circular-base
in the xy-plane (see picture, the base is the region x2 + y2 ≤ 9, x, y ≥ 0) and the height of the object is determined by
the function z = xy.

(i) (4 points) Set up the integral that will determine the total mass of such object[Hint:
∫ ∫

S
f(x, y, z)dS (capital S)].

(ii) (2 points) Evaluate the above integral (show the work)
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2 Ayman Badawi

QUESTION 2. (6 points) Use the concept of cylindrical coordinate in order to find the volume of the object that has the
region (see picture, the region is bounded by the circle x2 + y2 ≤ 16, y ≥ x and y ≥ −x) as the base in the xy-plane and
the height of such object is determined by f(x, y) = 4. Show the WORK (do the calculations for all integrals)

QUESTION 3. (1)(4 points) Use the concept of spherical coordinates to find the volume of the solid object that has the
region (see picture, the region is all points inside the circle x2 + y2 = 4 EXCEPT the points in the fourth coordinates))
as the base in the xy-plane and the height is determined by z =

√
16− (x2 + y2) −

√
4− (x2 + y2). SET UP THE

INTEGRALS BUT DO NOT EVALUATE THE INTEGRALS.
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QUESTION 4. (6 points) Let F (x, y) =<
√
x+ 1−y , 2yx >. Let C be the closed simple curve (positively oriented,i.e.,

counterclockwise) that consists of three curves (see picture) : C1: given by y = −x, C2: given by x = 1, and C3: given
by y = 3x, where 0 ≤ x ≤ 1. Find

∫
C
F (x, y) . dr [Hint: use Green’s Theorem]. DO ALL CALCULATIONS]

QUESTION 5. (4 points) Let F (x, y, z) =< x2, xy, z >. Use Divergence Theorem to evaluate
∫ ∫

S
F . dS, where S

is the surface of the solid object determined by z = f(x, y) = 4 − x2 − y2 defined over the region x2 + y2 ≤ 4 in the
xy-plane. SET UP THE INTEGRALS in cylindrical coordinates but do not evaluate the integrals [Hint: must use Triple
integrals !]
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4 Ayman Badawi

QUESTION 6. (i) (3 points) Given that a point P has the spherical coordinates (3, π/6, 3π/4). What is the cylindrical
coordinates of P ?

(ii) (3 points) Let K(x, y, z) =< 3x, 4y, 5z >. Is there a vector function F (x, y, z) such that Curl(F (x, y, z)) =
K(x, y, z)? If yes, then find such F (x, y, z). If not, then BRIEFLY explain why not?

(iii) (2 points) Find lim(x,y)→(1,2)

4−x2y2

(2−xy) (given, the limit does exist)
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QUESTION 7. Let F (x, y, z) =< xy, 2z, 3y >

(i) (2 points)Find Curl(F (x, y, z))

(ii) (4 points) Use Stoke’s Theorem to evaluate
∫
C
F . dr, where, C is the curve in 3D (positively oriented), determined

by the function z = f(x, y) = 5−x defined over the curve x2+y2 = 9 (positively oriented) in the xy-plane. [HINT:
you must use

∫ ∫
S

(something!) . dS]
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6 Ayman Badawi

QUESTION 8. (6 points) Given r(t, u) =< 2t, 4u, t2 + u2 + tu > is the vector function of an object in 3D. Find the
equation of the tangent plane to the surface of the object when t = 1 and u = 2.

QUESTION 9. (4 points)

(i) Given P1 : 4x+ 7y + 10z = 10 is parallel to the plane P2 : ax+ by + 5z = d (i.e., P1 does not intersect P2). Find
all possible values of a, b, and d.
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(ii) (2 points) Can we draw the vector < 2,−2, 3 > inside the plane x + 2y + 4z = 10? If yes, then explain. If not,
then tell me why not?

QUESTION 10. (6 points) Let C be the curve in 3D determined by z = f(z, y) = x + 3y defined over the curve
y = x2−1 in the xy-plane. Find the work done by the force F (x, y, z) =< y+2xz, x+2y−2, x2 +2 > when we move
an object from the point (1, 0, 1) to the point (2, 3, 11) along the curve C. [Hint: Find

∫
C
. dr

Faculty information
Ayman Badawi, Department of Mathematics & Statistics, American University of Sharjah, P.O. Box 26666, Sharjah, United Arab Emirates.
E-mail: abadawi@aus.edu, www.ayman-badawi.com

797



798 TABLE OF CONTENTS

Faculty information
Ayman Badawi, American University of Sharjah, UAE.
E-mail: abadawi@aus.edu


	Table of contents
	Section 1: Course Syllabus
	PRE-COVID-19 Course Syllabus
	COVID-19 Course Syllabus

	Section 2: Instructor Teaching Material
	HANDOUTS
	Questions with Solutions on Chapter 12.2
	Questions with Solutions on Chapter 12.3
	Questions with Solutions on Chapter 12.4
	Questions with Solutions on Chapter 12.5
	Questions with Solutions on Chapter 13.1
	Questions with Solutions on Chapter 13.2
	Questions with Solutions on Chapter 13.3
	Questions with Solutions on Chapter 14.1
	Questions with Solutions on Chapter 14.1
	Questions with Solutions on Chapter 14.2
	Questions with Solutions on Chapter 14.3
	Questions with Solutions on Chapter 14.4
	Questions with Solutions on Chapter 14.6
	Questions with Solutions on Chapter 14.7
	Questions with Solutions on Chapter 15.3
	Questions with Solutions on Chapter 15.4
	Questions with Solutions on Chapter 15.5
	Questions with Solutions on Chapter 15.6
	Questions with Solutions on Chapter 15.7
	Questions with Solutions on Chapter 15.8
	Questions with Solutions on Chapter 15.9
	Questions with Solutions on Chapter 16.2
	Questions with Solutions on Chapter 16.3
	Questions with Solutions on Chapter 16.4
	Questions with Solutions on Chapter 16.6
	Questions with Solutions on Chapter 16.7
	Questions with Solutions on Chapter 16.5, 16.8, and 16.9

	Worked out Solutions for all Assessment Tools
	Solution for Quiz II
	Solution for Quiz III
	Solution for Quiz IV
	Solution for Quiz V
	Solution for Quiz VI (HW-ONE)
	Solution for Quiz VII (HW-TWO)
	Solution for Quiz VIII (HW-THREE)
	Solution for Quiz IX
	Solution for the MIDTERM EXAM
	Solution for the Final Exam


	Section 5: Assessment Tools (unanswered)
	QUIZZES
	Quiz II
	Quiz III
	Quiz IV
	Quiz V
	Quiz VI (HW-One)
	Quiz VII (HW-Two)
	Quiz VIII (HW-Three)
	Quiz IX (HW-Four)

	Exams
	Midterm-Exam
	Final Exam



