PROBLEM SET 1

HAMID SAGBAN

Exercise 1. Let S be a set with binary operation *, such that
(1) $(S, *)$ is a semigroup.
(2) There is an $e \in S$ such that $x * e=x$ for every $x \in S$
(3) For every $x \in S$, there is a $y \in S$ such that $x * y=e$

Prove that $(S, *)$ is a group.

Proof. We can rewrite (3) as for every $x \in S$, there is an element $x^{-1} \in S$ such that $x * x^{-1}=e$. Since $x^{-1} \in S$, then by (3), there is an element $\left(x^{-1}\right)^{-1} \in S$ such that $x^{-1} *\left(x^{-1}\right)^{-1}=e$. We then have,

$$
\begin{aligned}
x^{-1} * x=x^{-1} * x * e=x^{-1} * x * & \left(x^{-1} *\left(x^{-1}\right)^{-1}\right)= \\
& x^{-1} *\left(x * x^{-1}\right) *\left(x^{-1}\right)^{-1}=x^{-1} * e *\left(x^{-1}\right)^{-1}=x^{-1} *\left(x^{-1}\right)^{-1}=e .
\end{aligned}
$$

Also, $e * x=\left(x * x^{-1}\right) * x=x *\left(x^{-1} * x\right)=x * e=x$ by the above. Therefore, $(S, *)$ is a group.

Exercise 2. Let $X=\{1,2,3\}$. Find all invertible elements of X^{X}.

We have $3!=6$ such functions. Let $f_{n}: X \longrightarrow X$, for $n \in\{1,2, \ldots, 6\}$. Then,

$$
\begin{aligned}
& f_{1}(1)=1, f_{1}(2)=2, f_{1}(3)=3 \\
& f_{2}(1)=1, f_{2}(2)=3, f_{2}(3)=2 \\
& f_{3}(1)=2, f_{3}(2)=1, f_{3}(3)=3 \\
& f_{4}(1)=2, f_{4}(2)=3, f_{4}(3)=1 \\
& f_{5}(1)=3, f_{5}(2)=1, f_{5}(3)=2 \\
& f_{6}(1)=3, f_{6}(2)=2, f_{6}(3)=1
\end{aligned}
$$

