PROBLEM SET 1

HAMID SAGBAN

Exercise 1. Let S be a set with binary operation *, such that

- (1) (S, *) is a semigroup.
- (2) There is an $e \in S$ such that x * e = x for every $x \in S$
- (3) For every $x \in S$, there is a $y \in S$ such that x * y = e

Prove that (S, *) is a group.

Proof. We can rewrite (3) as for every $x \in S$, there is an element $x^{-1} \in S$ such that $x * x^{-1} = e$. Since $x^{-1} \in S$, then by (3), there is an element $(x^{-1})^{-1} \in S$ such that $x^{-1} * (x^{-1})^{-1} = e$. We then have,

$$\begin{aligned} x^{-1} * x &= x^{-1} * x * e = x^{-1} * x * (x^{-1} * (x^{-1})^{-1}) = \\ x^{-1} * (x * x^{-1}) * (x^{-1})^{-1} = x^{-1} * e * (x^{-1})^{-1} = x^{-1} * (x^{-1})^{-1} = e. \end{aligned}$$

Also, $e * x = (x * x^{-1}) * x = x * (x^{-1} * x) = x * e = x$ by the above. Therefore, (S, *) is a group.

Exercise 2. Let $X = \{1, 2, 3\}$. Find all invertible elements of X^X .

We have 3! = 6 such functions. Let $f_n : X \longrightarrow X$, for $n \in \{1, 2, \dots, 6\}$. Then,

$$f_1(1) = 1, f_1(2) = 2, f_1(3) = 3$$

$$f_2(1) = 1, f_2(2) = 3, f_2(3) = 2$$

$$f_3(1) = 2, f_3(2) = 1, f_3(3) = 3$$

$$f_4(1) = 2, f_4(2) = 3, f_4(3) = 1$$

$$f_5(1) = 3, f_5(2) = 1, f_5(3) = 2$$

$$f_6(1) = 3, f_6(2) = 2, f_6(3) = 1$$