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Abstract. The purpose of this paper is to introduce two new classes of

rings that are closely related to the classes of Prüfer domains and Bezout

domains. Let H = {R | R is a commutative ring with 1 6= 0 and Nil(R)

is a divided prime ideal of R}. Let R ∈ H, T (R) be the total quotient ring

of R, and set φ : T (R) −→ RNil(R) such that φ(a/b) = a/b for every

a ∈ R and b ∈ R \ Z(R). Then φ is a ring homomorphism from T (R)

into RNil(R), and φ restricted to R is also a ring homomorphism from R

into RNil(R) given by φ(x) = x/1 for every x ∈ R. A nonnil ideal I

of R is said to be φ-invertible if φ(I) is an invertible ideal of φ(R). If

every finitely generated nonnil ideal of R is φ-invertible, then we say that

R is a φ-Prüfer ring. Also, we say that R is a φ-Bezout ring if φ(I) is

a principal ideal of φ(R) for every finitely generated nonnil ideal I of R.

We show that the theories of φ-Prüfer and φ-Bezout rings resemble that of

Prüfer and Bezout domains.

1. Introduction

We assume throughout that all rings are commutative with 1 6= 0. Let R be
a ring. Then T (R) denotes the total quotient ring of R, Nil(R) denotes the set
of nilpotent elements of R, and Z(R) denotes the set of zerodivisors of R. We
start by recalling some background material. Recall that a non-zerodivisor of a
ring R is called a regular element and an ideal of R is said to be regular if it
contains a regular element. A ring R is called a Prüfer ring, in the sense of [13],
if every finitely generated regular ideal of R is invertible, i.e., if I is a finitely
generated regular ideal of R and I−1 = {x ∈ T (R) | xI ⊂ R}, then II−1 = R.
A Prüfer domain is a Prüfer ring and a homomorphic image of a Prüfer domain
is a Prüfer ring. Many characterizations and properties of Prüfer rings are stated
in [13], [8], [9], [1], and [18]. For further study of Prüfer domains and Prüfer
rings, we recommend [16], [12], [17], [14], and [11]. Recall from [9] that a ring R
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is called a pre-Prüfer ring if every proper homomorphic image of R is a Prüfer
ring, i.e., if R/I is a Prüfer ring for each nonzero proper ideal I of R. In [9], it
was shown that the class of Prüfer rings and the class of pre-Prüfer rings are not
comparable under set inclusion. A ring R is called a Bezout ring, in the sense
of [14], if every finitely generated regular ideal of R is principal. A ring R is
said to be a chained ring if for every a, b ∈ R, either a | b or b | a in R.

Recall from [10] and [7] that a prime ideal of R is called a divided prime if
P ⊂ (x) for every x ∈ R \ P ; thus a divided prime ideal is comparable to every
ideal of R. In [2], [3], [4], [5], and [6], the second-named author investigated
the class of rings H = {R | R is a commutative ring and Nil(R) is a divided
prime ideal of R}. In this paper, we give a generalization of Prüfer domains to
the context of rings that are in the class H. An ideal I of a ring R is said to be
a nonnil ideal if I 6⊂ Nil(R). Recall from [2] that for a ring R ∈ H with total
quotient ring T (R), if a ∈ R and b ∈ R \ Z(R), then φ : T (R) −→ RNil(R)

such that φ(a/b) = a/b is a ring homomorphism from T (R) into RNil(R), and
φ restricted to R is also a ring homomorphism from R into RNil(R) given by
φ(x) = x/1 for every x ∈ R. A nonnil ideal I of R is said to be φ-invertible
if φ(I) is an invertible ideal of φ(R). If every finitely generated nonnil ideal
of R is φ-invertible, then we say that R is a φ-Prüfer ring. Also, we say that
R is a φ-Bezout ring if φ(I) is a principal ideal of φ(R) for every finitely
generated nonnil ideal I of R. Recall from [4] that a ring R ∈ H is called a
φ-chained ring (φ-CR) if x−1 ∈ φ(R) for every x ∈ RNil(R) \ φ(R); equivalently,
if for every a, b ∈ R \Nil(R), either a | b or b | a in R. Clearly a chained ring is
also a φ-chained ring. It was shown in [4] that for each integer n ≥ 1, there is a
φ-chained ring with Krull dimension n which is not a chained ring. Among many
results in this paper, we show (Corollary 2.10) that a ring R ∈ H is a φ-Prüfer
ring iff φ(R) is a Prüfer ring, iff RP is a φ-CR for every prime ideal P of R,
iff RM is a φ-CR for every maximal ideal M of R, iff R/Nil(R) is a Prüfer
domain, iff φ(R)/Nil(φ(R)) is a Prüfer domain. Also, we show (Corollary 3.5)
that a ring R ∈ H is a φ-Bezout ring iff φ(R) is a Bezout ring, iff R/Nil(R)
is a Bezout domain, iff φ(R)/Nil(φ(R)) is a Bezout domain, iff every finitely
generated nonnil ideal of R is principal. A φ-Prüfer ring is a Prüfer ring and a
φ-Bezout ring is a Bezout ring. We give an example (Example 2.15) of a Prüfer
ring in H which is not a φ-Prüfer ring, and an example (Example 3.6) of a
Bezout ring in H which is not a φ-Bezout ring.

Observe that if R ∈ H, then φ(R) ∈ H, Ker(φ) ⊂ Nil(R), Nil(T (R)) =
Nil(R), Nil(RNil(R)) = φ(Nil(R)) = Nil(φ(R)) = Z(φ(R)), T (φ(R)) = RNil(R)

is quasilocal with maximal ideal Nil(φ(R)), and RNil(R)/Nil(φ(R)) =
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T (φ(R))/Nil(φ(R)) is the quotient field of φ(R)/Nil(φ(R)). If I is a nonnil ideal
of a ring R ∈ H, then observe that Nil(R) ⊂ I, and if I is a nonnil finitely
generated, then these generators can be chosen to be nonnilpotent elements of
R. Also, if J is a finitely generated regular ideal of φ(R) for some R ∈ H, then
Nil(φ(R)) = Z(φ(R)) ⊂ J and J can be generated by a finite number of regular
elements of J , say, φ(x1), . . . , φ(xn) for some nonnilpotent elements xi of R.

2. φ-Prüfer Rings

We start with the following lemma.

Lemma 2.1. Let R ∈ H and let I be an ideal of R. Then I is a finitely
generated nonnil ideal of R if and only if φ(I) is a finitely generated regular
ideal of φ(R).

Proof. Suppose that I is a finitely generated nonnil ideal of R. Then it is
clear that φ(I) is a finitely generated nonnil ideal of φ(R). Since Nil(φ(R)) =
Z(φ(R)), we conclude that φ(I) is regular. Conversely, assume that φ(I) is
a finitely generated regular ideal of φ(R). Thus φ(I) = (φ(x1), . . . , φ(xn)) for
some nonnilpotent elements x1, . . . , xn of I. Now, let y be a nonnilpotent
element of I. Then φ(y) = φ(c1)φ(x1) + · · ·+ φ(cn)φ(xn) for some elements cj of
R. Since Ker(φ) ⊂ Nil(R), we conclude that y + d = c1x1 + · · · + cnxn in R

for some d ∈ Nil(R). Hence d = wy for some w ∈ Nil(R) since Nil(R) is a
divided prime ideal. Thus y+d = y(1+w) = c1x1+· · ·+cnxn in R. Since 1+w

is a unit of R, we conclude that y ∈ (x1, . . . , xn), and hence I = (x1, . . . , xn)
is a finitely generated nonnil ideal of R. £

The following is a characterization of φ-Prüfer rings in terms of Prüfer rings.

Theorem 2.2. Let R ∈ H. Then R is a φ-Prüfer ring if and only if φ(R) is
a Prüfer ring.

Proof. Suppose that R is a φ-Prüfer ring, and let J be a finitely generated
regular ideal of φ(R). Since J = φ(I) for some ideal I of R and J is
regular, we conclude that I is a nonnil finitely generated ideal of R by Lemma
2.1. Hence J = φ(I) is an invertible ideal of φ(R). Thus φ(R) is a Prüfer ring.
Conversely, suppose that φ(R) is a Prüfer ring, and let I be a finitely generated
nonnil ideal of R. Then φ(I) is a finitely generated regular ideal of φ(R) by
Lemma 2.1. Hence φ(I) is an invertible ideal of φ(R), and thus R is a φ-Prüfer
ring. £
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Before we give our next characterization of φ-Prüfer rings, we need the following
three lemmas.

Lemma 2.3. Let R ∈ H with Nil(R) = Z(R), and let I be an ideal of R.
Then I is an invertible ideal of R if and only if I/Nil(R) is an invertible
ideal of R/Nil(R).

Proof. Suppose that I is an invertible ideal of R. Then I is a regular ideal
of R, and thus Nil(R) ⊂ I since Nil(R) is a divided prime ideal of R. Hence
x1i1 + · · ·+xnin = 1 in R for some xj ∈ I−1 and ij ∈ I. Since Z(R) = Nil(R)
is a divided prime ideal of R, T (R)/Nil(R) is the quotient field of R/Nil(R).
Thus x1 + Nil(R), . . . , xn + Nil(R) ∈ (I/Nil(R))−1 ⊂ T (R)/Nil(R), and
(x1i1 + · · ·+ xnin) + Nil(R) = 1 + Nil(R) in R/Nil(R). Hence I/Nil(R) is an
invertible ideal of R/Nil(R). Conversely, suppose that I/Nil(R) is an invertible
ideal of R/Nil(R). (Note that if I ⊂ Nil(R), then (I + Nil(R))/Nil(R) = 0,
and hence I is not invertible.) Once again, since T (R)/Nil(R) is the quotient
field of R/Nil(R), it is easy to see that (x1i1 + · · ·+xnin)+Nil(R) = 1+Nil(R)
in R/Nil(R) for some xj ∈ I−1 and ij ∈ I. Thus x1i1 + · · ·+ xnin = 1 + w in
R for some w ∈ Nil(R). Since 1 + w is a unit of R, we conclude that I is
an invertible ideal of R. £

Lemma 2.4. Let R ∈ H and let I be an ideal of R. Then I is a finitely
generated nonnil ideal of R if and only if I/Nil(R) is a finitely generated
nonzero ideal of R/Nil(R).

Proof. Suppose that I is a finitely generated nonnil ideal of R. Then Nil(R) ⊂
I since I is nonnil, and hence I/Nil(R) is a finitely generated nonzero ideal of
R/Nil(R). Conversely, assume that I/Nil(R) = (x1 + Nil(R), . . . , xn + Nil(R))
is a finitely generated nonzero ideal of R/Nil(R) for some nonnilpotent elements
x1, . . . , xn of I. Let y be a nonnilpotent element of I. Then y + Nil(R) =
(c1x1 + · · · + cnxn) + Nil(R) in R/Nil(R) for some cj ∈ R. Thus y + d =
c1x1 + · · · + cnxn in R for some d ∈ Nil(R). Hence d = wy for some
w ∈ Nil(R), and thus y + d = y(1 + w) = c1x1 + · · ·+ cnxn in R. Since 1 + w

is a unit of R, we conclude that y ∈ (x1, . . . , xn), and hence I = (x1, . . . , xn)
is a finitely generated nonnil ideal of R. £

Lemma 2.5. Let R ∈ H and let P be a prime ideal of R. Then R/P is
ring-isomorphic to φ(R)/φ(P ).

Proof. Let α : R −→ φ(R)/φ(P ) such that α(x) = φ(x) + φ(P ). Then α is
a ring homomorphism from R onto φ(R)/φ(P ) with Ker(α) = φ−1(φ(P )) = P

since Ker(φ) ⊂ Nil(R) ⊂ P . Thus R/P is ring-isomorphic to φ(R)/φ(P ). £
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We next state the first main result of this paper.

Theorem 2.6. Let R ∈ H. Then R is a φ-Prüfer ring if and only if R/Nil(R)
is a Prüfer domain.

Proof. Suppose that R is a φ-Prüfer ring, and let J be a finitely generated
nonzero ideal of φ(R)/Nil(φ(R)). Then J = φ(I)/Nil(φ(R)) for some finitely
generated nonnil ideal I of R by Lemma 2.4. Since φ(I) is an invertible ideal
of φ(R) ∈ H and Nil(φ(R)) = Z(φ(R)) is a divided prime ideal of φ(R), we
conclude that J = φ(I)/Nil(φ(R)) is an invertible ideal of φ(R)/Nil(φ(R)) by
Lemma 2.3. Hence φ(R)/Nil(φ(R)) is a Prüfer domain. Since R/Nil(R) is
ring-isomorphic to φ(R)/Nil(φ(R)) by Lemma 2.5, we conclude that R/Nil(R)
is a Prüfer domain. Conversely, suppose that R/Nil(R) is a Prüfer domain.
Hence φ(R)/Nil(φ(R)) is a Prüfer domain by Lemma 2.5. Let I be a finitely
generated nonnil ideal of R. Then φ(I) is a finitely generated regular ideal of
φ(R) by Lemma 2.1. Since Nil(φ(R)) = Z(φ(R)) is a divided prime ideal of
φ(R) and φ(I)/Nil(φ(R)) is an invertible ideal of φ(R)/Nil(φ(R)) by Lemma
2.4, we conclude that φ(I) is an invertible ideal of φ(R) ∈ H by Lemma 2.3,
and thus R is a φ-Prüfer ring. £

Recall from [4] that a ring R ∈ H is called a φ-chained ring (φ-CR) if
for every x ∈ RNil(R) \ φ(R), we have x−1 ∈ φ(R); equivalently, if for every
a, b ∈ R \Nil(R), either a | b or b | a in R. The following is a characterization
of φ-CR’s in terms of valuation domains.

Theorem 2.7. Let R ∈ H. Then R is a φ-CR if and only if R/Nil(R) is a
valuation domain.

Proof. Set D = R/Nil(R). Suppose that R is a φ-CR. Let x = a + Nil(R),
y = b + Nil(R) ∈ D, where a, b ∈ R \Nil(R). Since either a | b or b | a in R,
we conclude that either x | y or y | x in D. Hence D is a valuation domain.
Conversely, suppose that D is a valuation domain, and let a, b ∈ R \ Nil(R).
Then x = a + Nil(R), y = b + Nil(R) are nonzero elements of D. Hence x | y
or y | x in D; we may assume that x | y in D. Thus b = ad + w in R for
some d ∈ R and w ∈ Nil(R). Since Nil(R) ⊂ (a), we have w = as for some
s ∈ Nil(R). Thus b = ad + w = a(d + s) in R, and hence a | b in R. Thus R

is a φ-CR. £

Corollary 2.8. Let R ∈ H be a φ-CR. Then R is a φ-Prüfer ring.

Proof. By Theorem 2.7, we have that R/Nil(R) is a valuation domain, and
hence is a Prüfer domain. Thus R is a φ-Prüfer ring by Theorem 2.6. £
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It is well-known [16, Theorem 64] that an integral domain R is a Prüfer domain
iff RP is a valuation domain for each prime ideal P of R, iff RM is a
valuation domain for each maximal ideal M of R. The following is the analogous
characterization of φ-Prüfer rings in terms of φ-CR’s.

Theorem 2.9. Let R ∈ H. Then the following statements are equivalent:

(1) R is a φ-Prüfer ring;
(2) RP is a φ-CR for each prime ideal P of R;
(3) RM is a φ-CR for each maximal ideal M of R.

Proof. Set D = R/Nil(R). (1) =⇒ (2). Since D is a Prüfer domain by
Theorem 2.6, we conclude that DP/Nil(R) is a valuation domain for each prime
ideal P of R by [16, Theorem 64]. Since DP/Nil(R) is ring-isomorphic to
RP /Nil(R)RP = RP /Nil(RP ) and RP ∈ H, we conclude that RP is a φ-CR by
Theorem 2.7. (2) =⇒ (3). Clear. (3) =⇒ (1). Since RM ∈ H for each maximal
ideal M of R, we conclude that RM/Nil(RM ) is evaluation domain for each
maximal ideal M of R by Theorem 2.7. Hence DM/Nil(R) is a valuation
domain for each maximal ideal M of R. Thus R/Nil(R) is a Prüfer domain
by [16, Theorem 64], and hence R is a φ-Prüfer ring by Theorem 2.6. £

Combining Theorem 2.2, Lemma 2.5, and Theorems 2.6, 2.7, and 2.9, we arrive
at the following corollary.

Corollary 2.10. Let R ∈ H. Then the following statements are equivalent:

(1) R is a φ-Prüfer ring;
(2) φ(R) is a Prüfer ring;
(3) R/Nil(R) is a Prüfer domain;
(4) φ(R)/Nil(φ(R)) is a Prüfer domain;
(5) RP is a φ-CR for each prime ideal P of R;
(6) RP /Nil(RP ) is a valuation domain for each prime ideal P of R;
(7) RM/Nil(RM ) is a valuation domain for each maximal ideal M of R;
(8) RM is a φ-CR for each maximal ideal M of R. 2

It is well-known ([16, Theorem 65]) that a valuation overring of a Prüfer domain
R is of the form RP for some prime ideal P of R. We have a similar result
for φ-Prüfer rings. Recall that an overring of a ring R is a ring between R and
T (R).

Theorem 2.11. Let R ∈ H be a φ-Prüfer ring and let S be an a φ-chained
overring of R. Then S = RP for some prime ideal P of R containing Z(R).
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Proof. Since Nil(R) = Nil(S), S ∈ H. Since S is quasilocal by [4], let
M be the maximal ideal of S. Then M ∩ R = P is a prime ideal of R.
Since S is quasilocal, P must contain Z(R). Now, we may consider S/Nil(R)
as an overring of D = R/Nil(R). Since D is a Prüfer domain by Theorem
2.6 and S/Nil(R) is a valuation domain by Theorem 2.7, we have S/Nil(R) =
DP/Nil(R) = RP /Nil(R) by [16, the proof of Theorem 65], and hence S =
RP . £

It is well-known ([16, Exercise 13, page 42]) that a finitely generated nonzero
prime ideal of a Prüfer domain R is maximal. We have a similar result for
φ-Prüfer rings.

Theorem 2.12. Let R ∈ H be a φ-Prüfer ring. If P is a finitely generated
nonnil prime ideal of R, then P is a maximal ideal of R.

Proof. Set D = R/Nil(R). Then D is a Prüfer domain by Theorem 2.6. Since
P/Nil(R) is a finitely generated nonzero ideal of D, we have that P/Nil(R) is
a maximal ideal of D by [16, Exercise 13, page 42], and hence P is a maximal
ideal of R. £

Recall ([15] or [17, Exercise 18, page 150]) that a ring R is called an arithmetical
ring if RM is a chained ring for every maximal ideal M of R. Since a chained
ring is a φ-chained ring, we conclude that if R ∈ H is an arithmetical ring,
then R is a φ-Prüfer ring by Theorem 2.9. Since a φ-chained ring need not be
a chained ring by [4], a φ-chained ring is quasilocal by [4], and a φ-chained ring
is a φ-Prüfer ring by Corollary 2.8, we conclude that a φ-Prüfer ring need not be
an arithmetical ring.

We will next prove that a φ-Prüfer ring is a Prüfer ring; but first we need a
lemma.

Lemma 2.13. Let R ∈ H and x ∈ T (R). If φ(x) ∈ φ(R), then x ∈ R.
In particular, if φ(R) is integrally closed in T (φ(R)) = RNil(R), then R is
integrally closed in T (R).

Proof. Suppose that φ(x) ∈ φ(R). We may assume that x 6∈ Nil(R). Hence
φ(x) = φ(s) for some nonnilpotent s ∈ R. Thus w = x− s ∈ Ker(φ) ⊂ Nil(R),
and hence x = s + w ∈ R. Suppose that φ(R) is integrally closed in T (φ(R))
and x ∈ T (R) is integral over R. Once again, we may assume that x 6∈ Nil(R).
Since φ(x) ∈ T (φ(R)), it is easy to see that φ(x) is integral over φ(R). Thus
φ(x) ∈ φ(R), and hence x ∈ R. Thus R is integrally closed in T (R). £
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Theorem 2.14. Let R ∈ H. If R is a φ-Prüfer ring, then R is a Prüfer
ring.

Proof. Suppose that R is a φ-Prüfer ring. Then φ(R) is a Prüfer ring by
Theorem 2.2. Hence every overring of φ(R) is integrally closed in T (φ(R)) =
RNil(R) by [14, Theorem 6.2]. Let S be an overring of R. Then Nil(R) =
Nil(S), and therefore S ∈ H. Since φ(S) is an overring of φ(R), φ(S) is
integrally closed in T (φ(S)), and hence S is integrally closed in T (S) by
Lemma 2.13. Thus R is a Prüfer ring by [14, Theorem 6.2]. £

If R is a Prüfer ring and R 6∈ H, then R is not a φ-Prüfer ring by definition.
The following example shows that for each integer n ≥ 1, there is a Prüfer ring
R ∈ H with Krull dimension n which is not a φ-Prüfer ring. Our example relies
on the idealization construction as in [14, Chapter VI, page 161].

Example 2.15. Let n ≥ 1 be an integer and let D be a non-integrally closed
domain with Krull dimension n and quotient field L. Set R = D(+)(L/D).
Then R ∈ H is a Prüfer ring with Krull dimension n which is not a φ-Prüfer
ring.

Proof. By [14, Theorem 25.1(3)], R has Krull dimension n. Now, Nil(R) =
{0}(+)(L/D) is a divided prime ideal of R. For let (0, y + D) ∈ Nil(R) and
(a, x + D) ∈ R \Nil(R); then (0, y + D) = (a, x + D)(0, y/a + D). Thus R ∈ H.
Since every nonunit of R is a zerodivisor, we conclude that R is a Prüfer ring.
Since D is a non-integrally closed domain and R/Nil(R) is ring-isomorphic to
D, we conclude that R/Nil(R) is not a Prüfer domain, and hence R is not a
φ-Prüfer ring by Theorem 2.6. £

In view of Theorem 2.14 and Example 2.15, we have the following result.

Theorem 2.16. Let R ∈ H with Nil(R) = Z(R). Then R is a Prüfer ring if
and only if R is a φ-Prüfer ring.

Proof. Suppose that R is a Prüfer ring. Then φ(R) = R is a Prüfer ring, and
hence R is a φ-Prüfer ring by Theorem 2.2. The converse is clear by Theorem
2.14. £

Observe that if every overring of R ∈ H is integrally closed, then R need
not be a φ-Prüfer ring by Example 2.15. However, we have the following result.

Theorem 2.17. Suppose that R ∈ H. Then R is a φ-Prüfer ring if and only
if every overring of φ(R) is integrally closed.
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Proof. Since R is a φ-Prüfer ring iff φ(R) is a Prüfer ring by Theorem 2.2
and φ(R) is a Prüfer ring iff every overring of φ(R) is integrally closed by [14,
Theorem 6.2], the claim is now clear. £

In the following example, we will show that for each integer n ≥ 1, there is a
(non-domain) φ-Prüfer ring with Krull dimension n.

Example 2.18. Let n ≥ 1 be an integer and let D be a Prüfer domain
with Krull dimension n and quotient field L. Then R = D(+)L ∈ H is a
(non-domain) φ-Prüfer ring with Krull dimension n.

Proof. Once again, by [14, Theorem 25.1(3)] R has Krull dimension n. Also,
Nil(R) = {0}(+)L is a divided prime ideal of R. For let (0, x) ∈ Nil(R) and
(a, y) ∈ R \Nil(R); then (0, x) = (a, y)(0, x/a). Hence R ∈ H. Since R/Nil(R)
is ring-isomorphic to D and D is a Prüfer domain, we conclude that R is a
φ-Prüfer ring by Theorem 2.6. £

Recall from [9] that a ring R is called a pre-Prüfer ring if every proper
homomorphic image of R is a Prüfer ring, i.e., if R/I is a Prüfer ring for every
nonzero proper ideal I of R.

Theorem 2.19. Let R ∈ H with Nil(R) 6= {0}. Then R is a pre-Prüfer ring
if and only if R is a φ-Prüfer ring.

Proof. Suppose that R is a pre-Prüfer ring. Since Nil(R) 6= {0}, R/Nil(R) is
a Prüfer ring (domain). Hence R is a φ-Prüfer ring by Theorem 2.6. Conversely,
suppose that R is a φ-Prüfer ring, and let I be a nonzero proper ideal of R.
Then either I ⊂ Nil(R) or Nil(R) ⊂ I. Suppose that I ⊂ Nil(R). Set
D = R/I. Since Nil(D) = Nil(R)/I is a divided prime ideal of D, D ∈ H.
Since D/Nil(D) is ring-isomorphic to R/Nil(R) and R/Nil(R) is a Prüfer
domain, we conclude that D is a φ-Prüfer ring by Theorem 2.6. Hence D is a
Prüfer ring by Theorem 2.14. Now, assume that Nil(R) ⊂ I. Let J = I/Nil(R).
Since S = R/Nil(R) is a Prüfer domain by Theorem 2.6 and a homomorphic
image of a Prüfer domain is a Prüfer ring, we conclude that S/J is Prüfer ring.
Since S/J is ring-isomorphic to R/I, we conclude that R/I is a Prüfer ring,
and hence R is a pre-Prüfer ring. £

Observe that if R ∈ H and Nil(R) = {0}, then R is an integral domain. The
following example shows that the hypothesis Nil(R) 6= {0} in Theorem 2.19 is
crucial.
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Example 2.20. ([18, Example 2.9]) Let D be a Prüfer domain with quotient
field F . For indeterminates X and Y , let K = F (Y ) and let V be the
valuation domain K + XK[[X]]. Then V is one-dimensional with maximal ideal
M = XK[[X]]. The ring R = D + M is a pre-Prüfer ring (domain) which is not
a Prüfer ring(domain). Hence R is not a φ-Prüfer ring. 2

3. φ-Bezou Rings

Once again, throughout this section H = {R | R is a commutative ring and
Nil(R) is a divided prime ideal of R}. Recall that a ring R is called a Bezout
ring if every finitely generated regular ideal of R is principal. We say that
R ∈ H is a φ-Bezout ring if φ(I) is a principal ideal of φ(R) for every finitely
generated nonnil ideal I of R; equivalently, if φ(I) is a principal ideal of φ(R)
for every 2-generated nonnil ideal I of R. It is clear that a φ-Bezout ring is a
φ-Prüfer ring. Since a Prüfer domain need not be a Bezout domain, a φ-Prüfer
ring need not be a φ-Bezout ring. We start with the following lemma.

Lemma 3.1. Let R ∈ H and let I be an ideal of R. Then I is a principal
nonnil ideal of R if and only if I/Nil(R) is a nonzero principal ideal of
R/Nil(R).

Proof. The proof is similar to the proof of Lemma 2.4, and hence we leave the
proof to the reader. £

Theorem 3.2. Let R ∈ H. Then R is a φ-Bezout ring if and only if every
finitely generated nonnil ideal of R is principal. In particular, if R is a φ-Bezout
ring, then R is a Bezout ring.

Proof. Suppose that R is a φ-Bezout ring, and let I be a finitely generated
nonnil ideal of R. Hence φ(I) is principal. Since φ(R) ∈ H, φ(I)/Nil(φ(R))
is a principal ideal of φ(R)/Nil(φ(R). Since R/Nil(R) is ring-isomorphic to
φ(R)/Nil(φ(R), I/Nil(R) is a principal ideal of R/Nil(R), and thus I is
principal by Lemma 3.1. Conversely, suppose that every finitely generated nonnil
ideal of R is principal, and let I be a finitely generated nonnil ideal of R.
Then φ(I) is a principal ideal of φ(R), and hence R is a φ-Bezout ring. The
“in particular” statement is clear. £

In the following result, we give a characterization of φ-Bezout rings in terms
of Bezout domains.

Theorem 3.3. Let R ∈ H. Then R is a φ-Bezout ring if and only if R/Nil(R)
is a Bezout domain.
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Proof. Set D = R/Nil(R). Suppose that R is a φ-Bezout ring, and let J be
a finitely generated nonzero ideal of D. Then J = I/Nil(R) for some finitely
generated nonnil ideal I of R by Lemma 2.4. Since I is principal, we conclude
that J is principal by Lemma 3.1, and thus D is a Bezout domain. Conversely,
suppose that D is a Bezout domain, and let I be a finitely generated nonnil
ideal of R. Hence I/Nil(R) is a nonzero principal ideal of D, and thus I is
a principal ideal of R by Lemma 3.1. Hence R is a φ-Bezout ring by Theorem
3.2. £

The following theorem is a characterization of φ-Bezout rings in terms of Bezout
rings.

Theorem 3.4. Let R ∈ H. Then R is a φ-Bezout ring if and only if φ(R) is
a Bezout ring.

Proof. Suppose that R is a φ-Bezout ring. Then R/Nil(R) is a Bezout
domain by Theorem 3.3. Let J be a finitely generated regular ideal of φ(R).
Since R/Nil(R) is ring-isomorphic to φ(R)/Nil(φ(R)) by Lemma 2.5, we
conclude that J/Nil(φ(R)) is a nonzero principal ideal of φ(R)/Nil(φ(R)), and
hence J is a principal ideal of φ(R) by Lemma 3.1. Thus φ(R) is a Bezout
ring. Conversely, suppose that φ(R) is a Bezout ring, and let I be a finitely
generated nonnil ideal of R. Then φ(I) is a finitely generated regular ideal of
φ(R), and thus φ(I) is principal. Hence R is a φ-Bezout ring. £

Combining Theorems 3.2, 3.3, and 3.4, we arrive at the following corollary.

Corollary 3.5. Let R ∈ H. Then the following statements are equivalent:

(1) R is a φ-Bezout ring;
(2) φ(R) is a Bezout ring;
(3) φ(R)/Nil(φ(R)) is a Bezout domain;
(4) R/Nil(R) is a Bezout domain;
(5) Every finitely generated nonnil ideal of R is principal. 2

It is clear by Theorem 3.2 that if R is a φ-Bezout ring, then R is a Bezout
ring. The following is an example of a Bezout ring R ∈ H which is not a
φ-Bezout ring.

Example 3.6. Let n ≥ 1 be an integer and let D be a non-Bezout domain with
Krull dimension n and quotient field L. Then by a similar proof as in Example
2.15, R = D(+)(L/D) ∈ H is a Bezout ring with Krull dimension n which is
not a φ-Bezout ring. 2



342 DAVID F. ANDERSON AND AYMAN BADAWI

In view of Example 3.6, we have the following result.

Proposition 3.7. Let R ∈ H with Nil(R) = Z(R). Then R is a φ-Bezout
ring if and only if R is a Bezout ring.

Proof. Just observe that in this case, we have φ(R) = R. £

Example 3.8. Let n ≥ 1 be an integer and let D be a Bezout domain with Krull
dimension n and quotient field L. Then R = D(+)L ∈ H is a (non-domain)
φ-Bezout ring with Krull dimension n.

Proof. By a similar argument as in the proof of Example 2.18, R ∈ H has
Krull dimension n. Since R/Nil(R) is ring-isomorphic to D, R/Nil(R) is a
Bezout domain, and hence R is a φ-Bezout ring by Theorem 3.3. £

It is well-known ([16, Theorem 63]) that a quasilocal domain is a valuation
domain iff it is a Bezout domain. We have a similar result for φ-Bezout rings.

Theorem 3.9. Let R ∈ H be a quasilocal ring. Then R is a φ-chained ring if
and only if R is a φ-Bezout ring.

Proof. Suppose that R is a φ-chained ring. Then R is a φ-Bezout ring
by Theorem 3.2. Conversely, suppose that R is a φ-Bezout ring. Then D =
R/Nil(R) is a Bezout domain by Theorem 3.3. Since D is a quasilocal Bezout
domain, D is a valuation domain by [16, Theorem 63], and hence R is a
φ-chained ring by Theorem 2.7. £
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ON φ-PRÜFER RINGS AND φ-BEZOUT RINGS 343

[11] M. Fontana, J. Huckaba, and I. Papick, Prüfer Domains, Marcel Dekker, New York/Basel,
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