A COUNTER EXAMPLE FOR A QUESTION ON PSEUDO-VALUATION RINGS

AYMAN BADAWI

ABSTRACT. In this paper, we give a counter example of the following question which was raised by Anderson, Dobbs, and the author in [3, Question 3.14]: Let G be a strongly prime ideal of a ring D such that $G \subset Z(D)$ and (G : G) = T(D) is a PVR. Then T(D) has maximal ideal $Z(D)_S$, where $S = D \setminus Z(D)$, and Z(D) is a prime ideal of D. Is Z(D) also a strongly prime ideal of D?

1. INTRODUCTION

We assume throughout that all rings are commutative with $1 \neq 0$. The following notation will be used throughout. Let R be a ring. Then T(R) denotes the total quotient ring of R, Nil(R) denotes the set of nilpotent elements of R, Z(R) denotes the set of zerodivisors of R, $S = R \setminus Z(R)$, dim(R) denotes the Krull dimension of R, and if B is an R-module, then Z(B) denotes the set of zerodivisors on B, that is, $Z(B) = \{x \in R \mid xy = 0 \text{ in } B \text{ for some } y \neq 0 \text{ and } y \in B\}$. If I is an ideal of R, then $(I:I) = \{x \in T(R) \mid xI \subset I\}$. We begin by recalling some background material. As in [20], an integral domain R, with quotient field K, is called a *pseudo-valuation* domain (PVD) in case each prime ideal P of R is strongly prime, in the sense that $xy \in P, x \in K, y \in K$ implies that either $x \in P$ or $y \in P$. In [5], Anderson, Dobbs and the author generalized the study of pseudo-valuation domains to the context of arbitrary rings (possibly with nonzero zerodivisors). Recall from [5] that a prime ideal P of R is said to be strongly prime (in R) if aP and bR are comparable (under inclusion) for all $a, b \in R$. A ring R is called a *pseudo-valuation ring* (PVR) if each prime ideal of R is strongly prime. A PVR is necessarily quasilocal [5, Lemma 1(b)]; a chained ring is a PVR [[5], Corollary 4]; and an integral domain is a PVR if and only if it is a PVD (cf. [1, Proposition 3.1], [2, Proposition 4.2], and [12, Proposition 3]). Recall from [13] and [17] that a prime ideal P of R is called *divided* if it is comparable (under inclusion) to every ideal of R. A ring R is called a *divided ring* if every prime ideal of R is divided. In [8], the author gives another generalization of PVDs to the context of arbitrary rings (possibly with nonzero zerodivisors). Recall from [8] that for a ring R with total quotient ring T(R) such that Nil(R) is a divided prime ideal of R, let $\phi : T(R) \longrightarrow K := R_{Ni(R)}$ such that $\phi(a/b) = a/b$ for every $a \in R$ and $b \in R \setminus Z(R)$. Then ϕ is a ring homomorphism from T(R)into K, and ϕ restricted to R is also a ring homomorphism from R into K given by $\phi(x) = x/1$ for every $x \in R$. A prime ideal Q of $\phi(R)$ is called a K-strongly prime if $xy \in Q$, $x \in K$, $y \in K$ implies that either $x \in Q$ or $y \in Q$. If each prime ideal of $\phi(R)$ is K-strongly prime, then $\phi(R)$ is called a K-pseudo-valuation ring (K-PVR). A prime ideal P of R is called a ϕ -strongly prime if $\phi(P)$ is a K-strongly prime ideal of $\phi(R)$. If each prime ideal of R is ϕ -strongly prime, then R is called a ϕ -pseudo-valuation ring (ϕ – PVR). It is shown in [8, Corollary 7(2)] that a ring *R* is a ϕ -PVR if and only if Nil(R) is a divided prime ideal of *R* and for every $a, b \in R \setminus Nil(R)$, either $a \mid b$ in *R* or $b \mid ac$ in *R* for each nonunit $c \in R$. Since a PVR is a ϕ -PVR, it is shown in [9, Theorem 2.6] that for each $n \geq 0$ there is a ϕ -PVR with Krull dimension *n* which is not a PVR. For other related study on ϕ -rings, we recommend [10], [11], [6], [7], [14].

In this paper, we give a counter example of the following question that was raised by Anderson, Dobbs, and the author in [3, Question 3.14]: Let G be a strongly prime ideal of a ring D such that $G \subset Z(D)$ and (G : G) = T(D) is a PVR. Then T(D)has maximal ideal $Z(D)_S$, where $S = D \setminus Z(D)$, and Z(D) is a prime ideal of D. Is Z(D) also a strongly prime ideal of D?

Our counter example relies on the the idealization construction R(+)B arising from a ring R and an R-module B as in Huckaba [21, Chapter VI]. We recall this construction. For a ring R, let B be an R-module. Consider $R(+)B = \{(r, b) : r \in R, \text{ and } b \in B\}$, and let (r, b) and (s, c) be two elements of R(+)B. Define :

- (1) (r, b) = (s, c) if r = s and b = c.
- (2) (r,b) + (s,c) = (r+s,b+c).
- (3) (r,b)(s,c) = (rs, bs + rc).

Under these definitions R(+)B becomes a commutative ring with identity. In the following proposition, we state some basic properties of R(+)B.

PROPOSITION 1.1. Let R be a ring, B be an R-module, and Z(B) be the set of zerodivisors on B. Then:

- (1) The ideal J of R(+)B is prime (maximal) if and only if J = P(+)B, where P is a prime (maximal) ideal of R. Hence $\dim(R) = \dim(R(+)B)$ [21, Theorem 25.1].
- (2) $(r,b) \in Z(R(+)B)$ if and only if $r \in Z(R) \cup Z(B)$ [21, Theorem 25.3].
- (3) If P is a prime ideal of R, then $(R(+)B)_{P(+)B}$ is ring-isomorphic to $R_P(+)B_P$ [21, Corollary 25.5(2)].

2. Counter example

Recall that if B is an R-module, then $Z(B) = \{x \in R \mid xy = 0 \text{ in } B \text{ for some } y \neq 0 \text{ and } y \in B\}$. Also, recall that if R is an integral domain and B is an R-module, then B is said to be *divisible* if r is a nonzero element of R and $b \in B$, then there exists $f \in B$ such that rf = b. We start this section with the following lemma.

LEMMA 2.1. Let R be an integral domain with quotient field F, P be a prime ideal of R, and $N = R \setminus P$. Then $B = F/P_N$ is a divisible R-module and Z(B) = P.

Proof. It is clear that B is an R-module and $P \subset Z(B)$. Now, suppose that $x(y + F/P_N) = 0$ in B for some $x \in R \setminus P$. Hence $xy = p/n \in P_N$ for some $p \in P$ and $n \in N$. Thus $y = p/nx \in P_N$. Hence $y + F/P_N = 0$ in B. Thus $x \notin Z(B)$. Hence Z(B) = P. Next, we show that B is divisible. Let r be a nonzero element of R and $b = x + F/P_N \in B$. Then choose $f = x/r + F/P_N$. Hence rf = b, and thus B is divisible.

The following three propositions are needed.

PROPOSITION 2.2. Let V be a valuation domain of the form F + M, where F is a field and M is the maximal ideal of V, and let R = D + M for some subring D of F.

A COUNTER EXAMPLE FOR A QUESTION ON PSEUDO-VALUATION RINGS

- (1) ([16].) If P is a prime ideal of D, then $R_{P+M} = D_P + M$.
- (2) ([18, Proposition 4.9(i)].) R is a PVD if and only if either D is a PVD with quotient field F or D is a field.

PROPOSITION 2.3. ([15, Theorem 3.1].) Let R be a ring and B be an R-module. Set D = R(+)B. Then:

- (1) If D is a PVR, then R is a PVR.
- (2) If R is a PVD and B is a divisible R-module, then D = R(+)B is a PVR.

Recall that an integral domain is called a *valuation* domain if for every $a, b \in R$, either $a \mid b$ in R or $b \mid a$ in R.

PROPOSITION 2.4. (1) A valuation domain is a PVD ([20, Proposition 1.1]).

- (2) A PVR is quasilocal ([5, Lemma 1(b)]).
- (3) Let R be a ring. Then R is a PVR if and only if a maximal ideal of R is a strongly prime ideal ([5, Theorem 2]).

Now, we state our example

EXAMPLE 2.5. Let Z be the ring of integers with quotient field Q. Let R = Z + XQ[[X]], F be the quotient field of R, P = 3Z + XQ[[X]] is a maximal ideal of R, $N = R \setminus P$, $B = F/P_N$ is an R-module, and set D = R(+)B. Then Z(D) = P(+)B is a maximal ideal of D which is not a strongly prime ideal and G = XQ[[X]](+)B is a strongly prime ideal of D such that $G \subset Z(D)$ and (G : G) = T(D) is a PVR.

Proof. By Lemma 2.1 and Proposition 1.1(2), we conclude that Z(D) = P(+)B. By Proposition 1.1(1), Z(D) = P(+)B is a maximal ideal of D. Since D is not quasilocal and Z(D) is a maximal ideal of D, Z(R) is not a strongly prime ideal of D by Proposition 2.4(2 and 3) . Now, T(D) is ring-isomorphic to $R_P(+)B_P$ by Proposition 1.1(3). Since $R_P = Z_{3Z} + XQ[[X]]$ by Proposition 2.2(1) and $B_P = B$ by the construction of B, we conclude that T(D) is ring-isomorphic to $Z_{3Z} + XQ[[X]](+)B$. Since it is well-known that $Z_{3Z} + XQ[[X]]$ is a valuation domain and hence is a PVD by Proposition 3.4(1) and B is divisible by Lemma 2.1, we conclude that $Z_{3Z} + XQ[[X]](+)B$ is a PVR by Proposition 2.3(2). Hence, T(D) is a PVR and G = XQ[[X]](+)B is a strongly prime ideal of D. It is clear that $G \subset Z(D)$. Since $yXQ[[X]] \subset XQ[[X]]$ for every $y \in Z_{3Z} + XQ[[X]]$, we have (G:G) = T(D) is a PVR.

Let R be a ring. Observe that if Z(R) is a strongly prime ideal of R, then (Z(R) : Z(R)) = T(R) is a PVR with maximal ideal Z(R) by [3, Theorem 3.11(b)]. However, if G is a strongly prime ideal of R which is properly contained in Z(R), then (G : G) = T(R) need not be a PVR as in the following example.

EXAMPLE 2.6. Let Z be the ring of integers and let C be the field of complex numbers. Let R = Z + XC[[X]], F be the quotient field of R, P = 3Z + XC[[X]] is a maximal ideal of R, $N = R \setminus P$, $B = F/P_N$ is an R-module, and set D = R(+)B. Then Z(D) = P(+)B is a maximal ideal of D which is not a strongly prime ideal and G = XC[[X]](+)B is a strongly prime ideal of D such that $G \subset Z(D)$ and (G:G) = T(D) is not a PVR.

Proof. By an argument similar to that one just given in the proof of the above Example, we conclude that $Z(D) = P(+)X\mathcal{C}[[X]]$ and T(D) is ring-isomorphic to

 $L = \mathcal{Z}_{3\mathcal{Z}} + \mathcal{XC}[[X]](+)B$. Since $\mathcal{Z}_{3\mathcal{Z}} + \mathcal{XC}[[X]]$ is not a PVD by Proposition 2.2(2), we conclude that L is not a PVR by Proposition 2.3(1). Thus T(D) is not a PVR. Now, since T(D) is ring-isomorphic to L and $\mathcal{XC}[[X]]$ is a strongly prime ideal of R, G is a strongly prime ideal of D.

References

- D. F. Anderson, Comparability of ideals and valuation overrings, Houston J. Math. 5(1979), 451-463.
- [2] D. F. Anderson, When the dual of an ideal is a ring, Houston J. Math. 9(1983), 325-332.
- [3] D. F. Anderson, A. Badawi, D. E. Dobbs, *Pseudo-valuation rings*, II, Boll. Un. Mat. Ital. B(7)8(2000), 535-545.
- [4] D. F. Anderson and D. E. Dobbs, Pairs of rings with the same prime ideals, Can. J. Math. 32(1980), 362-384.
- [5] A. Badawi, D. F. Anderson, D. E. Dobbs, *Pseudo-valuation rings*, Lecture Notes Pure Appl. Math. Vol. 185(1997), 57-67, Marcel Dekker, New York/Basel.
- [6] D. F. Anderson and A. Badawi, On φ-Prüfer rings and φ-Bezout rings, Houston J. Math. 30 (2004), 331-343.
- [7] D. F. Anderson and A. Badawi, On ϕ -Dedekind rings and ϕ -Krull rings, preprint.
- [8] A. Badawi, On φ-pseudo-valuation rings, Lecture Notes Pure Appl. Math. Vol.205(1999), 101-110, Marcel Dekker, New York/Basel.
- [9] A. Badawi, On ϕ -pseudo-valuation rings, II, Houston J. Math. 26(2000), 473-480.
- [10] A. Badawi, On φ-chained rings and φ-pseudo-valuation rings, Houston J. Math. 27(2001), 725-736.
- [11] A. Badawi, On divided rings and φ-pseudo-valuation rings, International J. of Commutative Rings(IJCR), 1(2002), 51-60. Nova Science/New York.
- [12] A. Badawi, On domains which have prime ideals that are linearly ordered, Comm. Algebra 23(1995), 4365-4373.
- [13] A. Badawi, On divided commutative rings, Comm. Algebra 27(1999), 1465-1474.
- [14] A. Badawi and T. Lucas, On ϕ -Mori rings, preprint.
- [15] A. Badawi and D. E. Dobbs, Some examples of locally divided rings, Lecture Notes Pure Appl. Math. Vol. 220(2001), 73-84, Marcel Dekker, New York/Basel.
- [16] E. Bastida and R. Gilmer, Overrings and divisorial ideals of rings of the form D + M, Michigan Math. J. 20(1973), 79-95.
- [17] D. E. Dobbs, Divided rings and going-down, Pacific J. Math. 67(1976), 353-363.
- [18] D. E. Dobbs, Coherence, ascent of going-down, and pseudo-valuation domains, Houston J. Math. 4(1978), 551-567.
- [19] R. W. Gilmer, *Multiplicative Ideal Theory*, Queens Papers on Pure and Applied Mathematics, No. 12. Queens University Press, Kingston Ontario, 1968.
- [20] J. R. Hedstrom and E. G. Houston, Pseudo-valuation domains, Pacific J. Math. 4(1978), 551-567.
- [21] J. Huckaba, Commutative Rings with Zero Divisors, Marcel Dekker, New York/Basel, 1988.
- [22] I. Kaplansky, Commutative Rings, rev. ed., Univ. Chicago Press, Chicago, 1974.

DEPARTMENT OF MATHEMATICS & STATISTICS, AMERICAN UNIVERSITY OF SHARJAH, P.O. BOX 26666, SHARJAH, UNITED ARAB EMIRATES.

E-mail address: abadawi@aus.ac.ae