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Abstract

Let R be a commutative ring with Nil(R) its ideal of nilpotent elements, Z(R) its set of zero-divisors, and
Reg(R) its set of regular elements. In this paper, we introduce and investigate the total graph of R, denoted
by T (Γ (R)). It is the (undirected) graph with all elements of R as vertices, and for distinct x, y ∈ R, the
vertices x and y are adjacent if and only if x + y ∈ Z(R). We also study the three (induced) subgraphs
Nil(Γ (R)), Z(Γ (R)), and Reg(Γ (R)) of T (Γ (R)), with vertices Nil(R), Z(R), and Reg(R), respectively.
© 2008 Elsevier Inc. All rights reserved.
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1. Introduction

We assume throughout that all rings are commutative with 1 �= 0. Let R be a commutative
ring with T (R) its total quotient ring, Reg(R) its set of regular elements, Z(R) its set of zero-
divisors, and Nil(R) its ideal of nilpotent elements. In [3], Anderson and Livingston introduced
the zero-divisor graph of R, denoted by Γ (R), as the (undirected) graph with vertices Z(R)∗ =
Z(R)\{0}, the set of nonzero zero-divisors of R, and for distinct x, y ∈ Z(R)∗, the vertices x and
y are adjacent if and only if xy = 0. This concept is due to Beck [7], who let all the elements of R

be vertices and was mainly interested in colorings. For some other recent papers on zero-divisor
graphs, see [1,2,4–6,12–14].
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In this paper, we introduce the total graph of R, denoted by T (Γ (R)), as the (undirected)
graph with all elements of R as vertices, and for distinct x, y ∈ R, the vertices x and y are
adjacent if and only if x +y ∈ Z(R). Let Reg(Γ (R)) be the (induced) subgraph of T (Γ (R)) with
vertices Reg(R), let Z(Γ (R)) be the (induced) subgraph of T (Γ (R)) with vertices Z(R), and
let Nil(Γ (R)) be the (induced) subgraph of T (Γ (R)) (and Z(Γ (R))) with vertices Nil(R). Note
that if A is a subring of a commutative ring B , then T (Γ (A)) need not be an induced subgraph
of T (Γ (B)). Although x, y ∈ A are adjacent in T (Γ (B)) if they are adjacent in T (Γ (A)) since
Z(A) ⊆ Z(B), they may be adjacent in T (Γ (B)), but not adjacent in T (Γ (A)). In fact, T (Γ (A))

is an induced subgraph of T (Γ (B)) if and only if Z(B) ∩ A = Z(A).
The study of T (Γ (R)) breaks naturally into two cases depending on whether or not Z(R) is

an ideal of R. In the second section, we handle the case when Z(R) is an ideal of R; in the third
section, we do the case when Z(R) is not an ideal of R. The subgraph Z(Γ (R)) of T (Γ (R))

is always connected, and Z(Γ (R)) is complete if and only if Z(R) is an ideal of R. Moreover,
if Z(R) is an ideal of R, then Z(Γ (R)) and Reg(Γ (R)) are disjoint subgraphs of T (Γ (R)),
and Reg(Γ (R)) is the union of disjoint subgraphs, each of which is either a complete graph or a
complete bipartite graph. However, if Z(R) is not an ideal of R, then the subgraphs Z(Γ (R)) and
Reg(Γ (R)) of T (Γ (R)) are never disjoint, and T (Γ (R)) is connected if and only if (Z(R)) = R.

Let G be a graph. We say that G is connected if there is a path between any two distinct
vertices of G. At the other extreme, we say that G is totally disconnected if no two vertices
of G are adjacent. For vertices x and y of G, we define d(x, y) to be the length of a shortest
path from x to y (d(x, x) = 0 and d(x, y) = ∞ if there is no such path). The diameter of G is
diam(G) = sup{d(x, y) | x and y are vertices of G}. The girth of G, denoted by gr(G), is the
length of a shortest cycle in G (gr(G) = ∞ if G contains no cycles). We denote the complete
graph on n vertices by Kn and the complete bipartite graph on m and n vertices by Km,n (we
allow m and n to be infinite cardinals). We will sometimes call a K1,n a star graph. We say that
two (induced) subgraphs G1 and G2 of G are disjoint if G1 and G2 have no common vertices and
no vertex of G1 (respectively, G2) is adjacent (in G) to any vertex not in G1 (respectively, G2).
A general reference for graph theory is [8].

As usual, Z, Q, Zn, and Fq will denote the integers, rational numbers, integers modulo n, and
the finite field with q elements, respectively. The group of units of a commutative ring R will
be denoted by U(R), the nonzero elements of A ⊆ R will be denoted by A∗, and ⊂ will denote
proper inclusion. We say that R is reduced if Nil(R) = {0}. General references for ring theory
are [10] and [11].

Throughout this paper, we will use the technique of idealization of a module to construct
examples. Recall that for an R-module M , the idealization of M over R is the commutative ring
formed from R × M by defining addition and multiplication as (r,m) + (s, n) = (r + s,m + n)

and (r,m)(s, n) = (rs, rn + sm), respectively. A standard notation for this “idealized ring” is
R(+)M ; see [10] for basic properties of rings resulting from the idealization construction. The
zero-divisor graph Γ (R(+)M) has recently been studied in [4] and [6].

2. The case when Z(R) is an ideal of R

In this section, we study the case when Z(R) is an ideal of R (i.e., when Z(R) is closed
under addition). Note that since Z(R) is a union of prime ideals of R [11, p. 3], we always have
xy ∈ Z(R) for x, y ∈ R ⇒ x ∈ Z(R) or y ∈ Z(R). So if Z(R) is an ideal of R, then Z(R) is
actually a prime ideal of R, and hence R/Z(R) is an integral domain. Moreover, if R is a finite
commutative ring and Z(R) is an ideal of R, then R is local with Z(R) = Nil(R) its unique
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maximal ideal. The main goal of this section is a general structure theorem (Theorem 2.2) for
Reg(Γ (R)) when Z(R) is an ideal of R. But first, we record the trivial observation that if Z(R) is
an ideal of R, then Z(Γ (R)) is a complete subgraph of T (Γ (R)) and is disjoint from Reg(Γ (R)).
Thus we will concentrate on the subgraph Reg(Γ (R)) throughout this section.

Theorem 2.1. Let R be a commutative ring such that Z(R) is an ideal of R. Then Z(Γ (R)) is a
complete (induced) subgraph of T (Γ (R)) and Z(Γ (R)) is disjoint from Reg(Γ (R)).

Proof. This follows directly from the definitions. �
We now give the main result of this section. Since Z(Γ (R)) is a complete subgraph of

T (Γ (R)) and is disjoint from Reg(Γ (R)), our next theorem also gives a complete descrip-
tion of T (Γ (R)). We allow α and β to be infinite cardinals; if β is infinite, then of course
β − 1 = (β − 1)/2 = β .

Theorem 2.2. Let R be a commutative ring such that Z(R) is an ideal of R, and let |Z(R)| = α

and |R/Z(R)| = β .

(1) If 2 ∈ Z(R), then Reg(Γ (R)) is the union of β − 1 disjoint Kα’s.
(2) If 2 /∈ Z(R), then Reg(Γ (R)) is the union of (β − 1)/2 disjoint Kα,α’s.

Proof. (1) Assume that 2 ∈ Z(R), and let x ∈ Reg(R). Then each coset x + Z(R) is a complete
subgraph of Reg(Γ (R)) since (x + z1) + (x + z2) = 2x + z1 + z2 ∈ Z(R) for all z1, z2 ∈ Z(R)

since 2 ∈ Z(R) and Z(R) is an ideal of R. Note that distinct cosets form disjoint subgraphs of
Reg(Γ (R)) since if y + z1 and x + z2 are adjacent for some y ∈ Reg(R) and z1, z2 ∈ Z(R),
then x + y = (x + z1) + (y + z2) − (z1 + z2) ∈ Z(R), and hence x − y = (x + y) − 2y ∈ Z(R)

since Z(R) is an ideal of R and 2 ∈ Z(R). But then x + Z(R) = y + Z(R). Thus Reg(Γ (R))

is the union of β − 1 disjoint (induced) subgraphs x + Z(R), each of which is a Kα , where
α = |Z(R)| = |x + Z(R)|.

(2) Next assume that 2 /∈ Z(R), and let x ∈ Reg(R). Then no two distinct elements in x+Z(R)

are adjacent since (x + z1) + (x + z2) ∈ Z(R) for z1, z2 ∈ Z(R) implies that 2x ∈ Z(R), and
hence 2 ∈ Z(R), a contradiction. Also, the two cosets x + Z(R) and −x + Z(R) are disjoint,
and each element of x + Z(R) is adjacent to each element of −x + Z(R). Thus (x + Z(R)) ∪
(−x + Z(R)) is a complete bipartite (induced) subgraph of Reg(Γ (R)). Furthermore, if y + z1
is adjacent to x + z2 for some y ∈ Reg(R) and z1, z2 ∈ Z(R), then x + y ∈ Z(R), and hence
y +Z(R) = −x +Z(R). Thus Reg(Γ (R)) is the union of (β −1)/2 disjoint (induced) subgraphs
(x + Z(R)) ∪ (−x + Z(R)), each of which is a Kα,α , where α = |Z(R)| = |x + Z(R)|. �
Remark 2.3. Note that if Z(R) = {0} (i.e., if R is an integral domain), then 2 ∈ Z(R) if and only
if charR = 2. This need not hold if R is not an integral domain; for example, consider R = Z4.
If R is an integral domain with charR = 2, then Reg(Γ (R)) is the union of β − 1 disjoint K1’s.
If R is an integral domain with charR �= 2, then Reg(Γ (R)) is the union of (β − 1)/2 disjoint
K1,1’s (= K2’s).

From the above theorem, we can easily deduce when Reg(Γ (R)) is complete or connected,
and we can explicitly compute its diameter and girth. We first determine when Reg(Γ (R)) is
either complete or connected.
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Theorem 2.4. Let R be a commutative ring such that Z(R) is an ideal of R. Then

(1) Reg(Γ (R)) is complete if and only if either R/Z(R) ∼= Z2 or R ∼= Z3.
(2) Reg(Γ (R)) is connected if and only if either R/Z(R) ∼= Z2 or R/Z(R) ∼= Z3.
(3) Reg(Γ (R)) (and hence Z(Γ (R)) and T (Γ (R))) is totally disconnected if and only if R is

an integral domain with charR = 2.

Proof. Let |Z(R)| = α and |R/Z(R)| = β .
(1) By Theorem 2.2, Reg(Γ (R)) is complete if and only if Reg(Γ (R)) is a single Kα or K1,1.

If 2 ∈ Z(R), then β − 1 = 1. Thus β = 2, and hence R/Z(R) ∼= Z2. If 2 /∈ Z(R), then α = 1 and
(β − 1)/2 = 1. Thus Z(R) = {0} and β = 3; so R ∼= R/Z(R) ∼= Z3.

(2) By Theorem 2.2, Reg(Γ (R)) is connected if and only if Reg(Γ (R)) is a single Kα or Kα,α .
Thus either β − 1 = 1 if 2 ∈ Z(R) or (β − 1)/2 = 1 if 2 /∈ Z(R); so β = 2 or β = 3, respectively.
Thus R/Z(R) ∼= Z2 or R/Z(R) ∼= Z3, respectively.

(3) Reg(Γ (R)) is totally disconnected if and only if it is a disjoint union of K1’s. So by
Theorem 2.2, R must be an integral domain with 2 ∈ Z(R), i.e., charR = 2. �

It is also easy to compute the diameter and girth of Reg(Γ (R)) using Theorem 2.2.

Theorem 2.5. Let R be a commutative ring such that Z(R) is an ideal of R. Then

(1) diam(Reg(Γ (R))) = 0,1,2, or ∞. In particular, diam(Reg(Γ (R))) � 2 if Reg(Γ (R)) is
connected.

(2) gr(Reg(Γ (R))) = 3,4, or ∞. In particular, gr(Reg(Γ (R))) � 4 if Reg(Γ (R)) contains a
cycle.

Proof. (1) Suppose that Reg(Γ (R)) is connected. Then Reg(Γ (R)) is a singleton, a complete
graph, or a complete bipartite graph by Theorem 2.2. Thus diam(Reg(Γ (R))) � 2.

(2) Suppose that Reg(Γ (R)) contains a cycle. Since Reg(Γ (R)) is a disjoint union of either
complete or complete bipartite graphs by Theorem 2.2, it must contain either a 3-cycle or a
4-cycle. Thus gr(Reg(Γ (R))) � 4. �

The next theorem gives a more explicit description of the diameter and girth of Reg(Γ (R)).

Theorem 2.6. Let R be a commutative ring such that Z(R) is an ideal of R.

(1) (a) diam(Reg(Γ (R))) = 0 if and only if R ∼= Z2.
(b) diam(Reg(Γ (R))) = 1 if and only if either R/Z(R) ∼= Z2 and R �∼= Z2 (i.e., R/Z(R) ∼=

Z2 and |Z(R)| � 2), or R ∼= Z3.
(c) diam(Reg(Γ (R))) = 2 if and only if R/Z(R) ∼= Z3 and R �∼= Z3 (i.e., R/Z(R) ∼= Z3 and

|Z(R)| � 2).
(d) Otherwise, diam(Reg(Γ (R))) = ∞.

(2) (a) gr(Reg(Γ (R))) = 3 if and only if 2 ∈ Z(R) and |Z(R)| � 3.
(b) gr(Reg(Γ (R))) = 4 if and only if 2 /∈ Z(R) and |Z(R)| � 2.
(c) Otherwise, gr(Reg(Γ (R))) = ∞.

(3) (a) gr(T (Γ (R))) = 3 if and only if |Z(R)| � 3.
(b) gr(T (Γ (R))) = 4 if and only if 2 /∈ Z(R) and |Z(R)| = 2.
(c) Otherwise, gr(T (Γ (R))) = ∞.
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Proof. These results all follow directly from Theorems 2.1 and 2.2. �
The following examples illustrate the previous theorems.

Example 2.7. (a) Let m � 2 be an integer. Then Z(Zm) is an ideal of Zm if and only if m = pn for
some prime p and integer n � 1. So suppose that Z(Zm) is an ideal of Zm. Thus Reg(Γ (Zm)) is
connected if and only if either m = 2n or m = 3n for some integer n � 1. Moreover, Reg(Γ (Zm))

is complete if and only if either m = 2n for some integer n � 1 or m = 3. An analogous result
holds for any PID.

(b) Let K be a field with |K| = α, n � 2 an integer, and R = K[X]/(Xn). Then R is lo-
cal with maximal ideal Z(R) = Nil(R) = (X)/(Xn), R/Z(R) ∼= K , |R| = αn, |Z(R)| = αn−1,
|Reg(R)| = αn−1(α − 1), and |R/Z(R)| = α. If charK = 2, then Reg(Γ (R)) is the union of
α − 1 disjoint complete graphs Km, where m = αn−1. If charK �= 2, then Reg(Γ (R)) is the
union of (α − 1)/2 disjoint complete bipartite graphs Km,m, where m = αn−1. Thus Reg(Γ (R))

is connected if and only if K ∼= Z2 or K ∼= Z3, and Reg(Γ (R)) is complete if and only if K ∼= Z2.
For the special case when K = Fpk , we have that Reg(Γ (R)) is the union of 2k − 1 dis-

joint Km’s, where m = 2k(n−1), when p = 2; and Reg(Γ (R)) is the union of (pk − 1)/2 dis-
joint Km,m’s, where m = pk(n−1), when p �= 2.

(c) Let m � 2 be an integer and R = Z(+)Zm. Then Z(R) is an ideal of R if and only if
m = pn for some prime p and integer n � 1. Moreover, Z(R) = pZ(+)Zpn and R/Z(R) ∼= Zp

when m = pn and n � 1. So in this case, Reg(Γ (R)) is connected if and only if p = 2 or 3, and
Reg(Γ (R)) is complete if and only if p = 2. For any 0 �= a ∈ Zm, the 3-cycle (1,0) − (−1,0) −
(1, a) − (1,0) shows that gr(Reg(Γ (R))) = 3 when m = 2n; and the 4-cycle (1,0) − (−1,0) −
(1 − p,0) − (p − 1,0) − (1,0) shows that gr(Reg(Γ (R))) = 4 when m = pn and p �= 2.

Specifically, let R1 = Z(+)Z2 and R2 = Z(+)Z3. Then Reg(Γ (R1)) is complete with
diam(Reg(Γ (R1))) = 1 and gr(Reg(Γ (R1))) = 3, and Reg(Γ (R2)) is connected (but not com-
plete) with diam(Reg(Γ (R1))) = 2 and gr(Reg(Γ (R2))) = 4. (See Theorem 3.21 for the case
when Z(R) is not an ideal of R.)

Many of the earlier results of this section can also be easily proved directly without recourse
to Theorem 2.2. We give two such cases.

Theorem 2.8. Let R be a commutative ring such that Z(R) is an ideal of R.

(1) Let G be an induced subgraph of Reg(Γ (R)), and let x and y be distinct vertices of G that
are connected by a path in G. Then there is a path in G of length at most 2 between x and y.
In particular, if Reg(Γ (R)) is connected, then diam(Reg(Γ (R))) � 2.

(2) Let x and y be distinct regular elements of R that are connected by a path. If x + y /∈ Z(R)

(i.e., if x and y are not adjacent), then x − (−x) − y and x − (−y) − y are paths of length
2 between x and y in Reg(Γ (R)).

Proof. (1) It suffices to show that if x1, x2, x3, and x4 are distinct vertices of G and there is a path
x1 −x2 −x3 −x4 from x1 to x4, then x1 and x4 are adjacent. Now x1 +x2, x2 +x3, x3 +x4 ∈ Z(R)

implies x1 + x4 = (x1 + x2) − (x2 + x3) + (x3 + x4) ∈ Z(R) since Z(R) is an ideal of R. Thus
x1 and x4 are adjacent.

(2) Suppose that x + y /∈ Z(R). Then there is a z ∈ Reg(R) such that x − z − y is a path of
length 2 by part (1) above (note that necessarily z ∈ Reg(R) since x, y ∈ Reg(R)). Thus x + z,



D.F. Anderson, A. Badawi / Journal of Algebra 320 (2008) 2706–2719 2711
z + y ∈ Z(R), and hence x − y = (x + z) − (z + y) ∈ Z(R) since Z(R) is an ideal of R. Also,
x �= −x and y �= −x since x + y /∈ Z(R). Thus x − (−x) − y and x − (−y) − y are paths of
length 2 between x and y in Reg(Γ (R)). �

We have already observed that Z(Γ (R)) is always connected and T (Γ (R)) is never connected
when Z(R) is an ideal of R. We next give several new criteria for when Reg(Γ (R)) is connected.

Theorem 2.9. Let R be a commutative ring such that Z(R) is an ideal of R. Then the following
statements are equivalent.

(1) Reg(Γ (R)) is connected.
(2) Either x + y ∈ Z(R) or x − y ∈ Z(R) for all x, y ∈ Reg(R).
(3) Either x +y ∈ Z(R) or x +2y ∈ Z(R) for all x, y ∈ Reg(R). In particular, either 2x ∈ Z(R)

or 3x ∈ Z(R) (but not both) for all x ∈ Reg(R).
(4) Either R/Z(R) ∼= Z2 or R/Z(R) ∼= Z3.

Proof. (1) ⇒ (2) Suppose that Reg(Γ (R)) is connected, and let x, y ∈ Reg(R). If x = y, then
x − y ∈ Z(R). Hence assume that x �= y. If x + y /∈ Z(R), then x − (−y) − (y) is a path from x

to y by Theorem 2.8(2), and thus x − y ∈ Z(R).
(2) ⇒ (3) Let x, y ∈ Reg(R), and suppose that x + y /∈ Z(R). Since (x + y) − y = x /∈

Z(R), thus x + 2y = (x + y) + y ∈ Z(R) by hypothesis. In particular, if x ∈ Reg(R), then either
2x ∈ Z(R) or 3x ∈ Z(R). Both 2x and 3x cannot be in Z(R) since then x = 3x − 2x ∈ Z(R),
a contradiction.

(3) ⇒ (1) Let x, y ∈ Reg(R) be distinct elements of R such that x + y /∈ Z(R). Then x +
2y ∈ Z(R) by hypothesis. Since Z(R) is an ideal of R and x + 2y ∈ Z(R), we conclude that
2y /∈ Z(R). Thus 3y ∈ Z(R) by hypothesis. Since x + y /∈ Z(R) and 3y ∈ Z(R), we conclude
that x �= 2y, and hence x − 2y − y is a path from x to y in Reg(Γ (R)). Thus Reg(Γ (R)) is
connected.

(2) ⇒ (4) Let x ∈ Reg(R). Then either x − 1 ∈ Z(R) or x + 1 ∈ Z(R) by hypothesis, and
thus either x + Z(R) = 1 + Z(R) or x + Z(R) = −1 + Z(R). If 2 ∈ Z(R), then R/Z(R) ∼= Z2;
otherwise, R/Z(R) ∼= Z3.

(4) ⇒ (2) This is clear. �
One can also can consider the two (induced) subgraphs Nil(Γ (R)) and U(Γ (R)) of T (Γ (R))

(and Z(Γ (R)) and Reg(Γ (R)), respectively) with vertices Nil(R) ⊆ Z(R) and U(R) ⊆ Reg(R),
respectively. The basic properties of Nil(Γ (R)) are given below and show that Nil(Γ (R)) has a
very simple structure, independent of whether or not Z(R) is an ideal of R (cf. Theorems 2.1
and 3.1). Basic properties of U(Γ (R)) are left to the reader.

Theorem 2.10. Let R be a commutative ring.

(1) Nil(Γ (R)) is a complete (induced) subgraph of Z(Γ (R)).
(2) Each vertex of Nil(Γ (R)) is adjacent to each distinct vertex of Z(Γ (R)).
(3) Nil(Γ (R)) is disjoint from Reg(Γ (R)).
(4) If {0} �= Nil(R) ⊂ Z(R), then gr(Z(Γ (R))) = 3.
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Proof. Part (1) follows since Nil(R) ⊆ Z(R) is an ideal of R. Parts (2) and (3) follow from the
facts that Nil(R) + Z(R) ⊆ Z(R) and Nil(R) + Reg(R) ⊆ Reg(R) for any commutative ring R,
respectively.

(4) Let x ∈ Nil(R)∗ and y ∈ Z(R) \ Nil(R). Then 0 − x − y − 0 is a 3-cycle in Z(Γ (R)) by
part (2) above; so gr(Z(Γ (R))) = 3. �
3. The case when Z(R) is not an ideal of R

In this section, we consider the remaining case when Z(R) is not an ideal of R. Since Z(R)

is always closed under multiplication by elements of R, this just means that there are distinct
x, y ∈ Z(R)∗ such that x + y ∈ Reg(R). In this case, Z(Γ (R)) is always connected (but never
complete), Z(Γ (R)) and Reg(Γ (R)) are never disjoint subgraphs of T (Γ (R)), and |Z(R)| � 3.
We first show that T (Γ (R)) is connected when Reg(Γ (R)) is connected. However, we give an
example to show that the converse fails.

Theorem 3.1. Let R be a commutative ring such that Z(R) is not an ideal of R.

(1) Z(Γ (R)) is connected with diam(Z(Γ (R))) = 2.
(2) Some vertex of Z(Γ (R)) is adjacent to a vertex of Reg(Γ (R)). In particular, the subgraphs

Z(Γ (R)) and Reg(Γ (R)) of T (Γ (R)) are not disjoint.
(3) If Reg(Γ (R)) is connected, then T (Γ (R)) is connected.

Proof. (1) Each x ∈ Z(R)∗ is adjacent to 0. Thus x − 0 − y is a path in Z(Γ (R)) of length
two between any two distinct x, y ∈ Z(R)∗. Moreover, there are nonadjacent x, y ∈ Z(R)∗ since
Z(R) is not an ideal of R; so diam(Z(Γ (R))) = 2.

(2) Since Z(R) is not an ideal of R, there are distinct x, y ∈ Z(R)∗ such that x + y ∈ Reg(R).
Then −x ∈ Z(R) and x + y ∈ Reg(R) are adjacent vertices in T (Γ (R)) since −x + (x + y) =
y ∈ Z(R). The “in particular” statement is clear.

(3) Suppose that Reg(Γ (R)) is connected. Since Z(Γ (R)) is also connected by part (1) above,
it is sufficient to show that there is a path from x to y in T (Γ (R)) for any x ∈ Z(R) and y ∈
Reg(R). By part (2) above, there are adjacent vertices z and w in Z(Γ (R)) and Reg(Γ (R)),
respectively. Since Z(Γ (R)) is connected, there is a path from x to z in Z(Γ (R)); and since
Reg(Γ (R)) is connected, there is a path from w to y in Reg(Γ (R)). As z and w are adjacent in
T (Γ (R)), there is a path from x to y in T (Γ (R)). Thus T (Γ (R)) is connected. �
Example 3.2. Let R = Q[X](+)(Q(X)/Q[X]). Then one can easily show that Z(R) =
(Q[X] \Q∗)(+)(Q(X)/Q[X]) is not an ideal of R and Reg(R) = U(R) = Q∗(+)(Q(X)/Q[X]).
Thus T (Γ (R)) is connected with diam(T (Γ (R))) = 2 (by Theorems 3.3 and 3.4 below) since
R = ((X,0), (X + 1,0)) with (X,0), (X + 1,0) ∈ Z(R). However, Reg(Γ (R)) is not connected
since there is no path from (1,0) to (2,0) in Reg(Γ (R)). We have already observed that Z(Γ (R))

is connected with diam(Z(Γ (R))) = 2.

We next determine when T (Γ (R)) is connected and compute diam(T (Γ (R))). In particular,
T (Γ (R)) is connected if and only if diam(T (Γ (R))) < ∞.

Theorem 3.3. Let R be a commutative ring such that Z(R) is not an ideal of R. Then T (Γ (R))

is connected if and only if (Z(R)) = R (i.e., R = (z1, . . . , zn) for some z1, . . . , zn ∈ Z(R)). In
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particular, if R is a finite commutative ring and Z(R) is not an ideal of R, then T (Γ (R)) is
connected.

Proof. Suppose that T (Γ (R)) is connected. Then there is a path 0 − b1 − b2 − · · · − bn − 1
from 0 to 1 in T (Γ (R)). Thus b1, b1 + b2, . . . , bn−1 + bn, bn + 1 ∈ Z(R). Hence 1 ∈ (b1, b1 +
b2, . . . , bn−1 + bn, bn + 1) ⊆ (Z(R)); so R = (Z(R)).

Conversely, suppose that (Z(R)) = R. We first show that there is a path from 0 to x

in T (Γ (R)) for any 0 �= x ∈ R. By hypothesis, x = a1 + · · · + an for some a1, . . . , an ∈
Z(R). Let b0 = 0 and bk = (−1)n+k(a1 + · · · + ak) for each integer k with 1 � k � n.
Then bk + bk+1 = (−1)n+k+1ak+1 ∈ Z(R) for each integer k with 0 � k � n − 1, and thus
0 − b1 − b2 − · · · − bn−1 − bn = x is a path from 0 to x in T (Γ (R)) of length at most n. Now
let 0 �= z,w ∈ R. Then by the preceding argument, there are paths from z to 0 and 0 to w in
T (Γ (R)). Hence there is a path from z to w in T (Γ (R)); so T (Γ (R)) is connected.

The “in particular” statement is clear. �
Theorem 3.4. Let R be a commutative ring such that Z(R) is not an ideal of R and (Z(R)) = R

(i.e., T (Γ (R)) is connected). Let n � 2 be the least integer such that R = (z1, . . . , zn) for some
z1, . . . , zn ∈ Z(R). Then diam(T (Γ (R))) = n. In particular, if R is a finite commutative ring and
Z(R) is not an ideal of R, then diam(T (Γ (R))) = 2.

Proof. We first show that any path from 0 to 1 in T (Γ (R)) has length � n. Suppose that 0−b1 −
b2 − · · ·− bm−1 − 1 is a path from 0 to 1 in T (Γ (R)) of length m. Thus b1, b1 + b2, . . . , bm−2 +
bm−1, bm−1 + 1 ∈ Z(R), and hence 1 ∈ (b1, b1 + b2, . . . , bm−2 + bm−1, bm−1 + 1) ⊆ (Z(R)).
Thus m � n.

Now, let x and y be distinct elements in R. We show that there is a path from x to y in
T (Γ (R)) with length � n. Let 1 = z1 + · · · + zn for some z1, . . . , zn ∈ Z(R), and let z = y +
(−1)n+1x. Define d0 = x and dk = (−1)n+kz(z1 + · · · + zk) + (−1)kx for each integer k with
1 � k � n. Then dk + dk+1 = (−1)n+k+1zzk+1 ∈ Z(R) for each integer k with 0 � k � n − 1
and dn = z + (−1)nx = y. Thus x − d1 − · · · − dn−1 − y is a path from x to y in T (Γ (R)) with
length at most n. In particular, we conclude that a shortest path between 0 and 1 in T (Γ (R)) has
length n, and thus diam(T (Γ (R))) = n.

For the “in particular” statement, suppose that R is finite and Z(R) is not an ideal of R. Then
x + y ∈ Reg(Γ (R)) for some x, y ∈ Z(R). Since every regular element of a finite commutative
ring is a unit, we conclude that R = (x, y), and thus diam(T (Γ (R))) = 2. �
Corollary 3.5. Let R be a commutative ring such that Z(R) is not an ideal of R, and suppose
that T (Γ (R)) is connected.

(1) diam(T (Γ (R))) = d(0,1).
(2) If diam(T (Γ (R))) = n, then diam(Reg(Γ (R))) � n − 2.

Proof. (1) This is clear from the proof of Theorem 3.4.
(2) Since n = diam(T (Γ (R))) = d(0,1) by part (1) above, let 0 − s1 − · · · − sn−1 − 1 be

a shortest path from 0 to 1 in T (Γ (R)). Clearly s1 ∈ Z(R). If si ∈ Z(R) for some integer i

with 2 � i � n − 1, then we can construct the path 0 − si − · · · − sn−1 − 1 from 0 to 1 which
has length less than n, a contradiction. Thus si ∈ Reg(R) for each integer i with 2 � i � n − 1.
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Hence s2 − · · · − sn−1 − 1 is a shortest path from s2 to 1 in Reg(Γ (R)), and it has length n − 2.
Thus diam(Reg(Γ (R))) � n − 2. �
Corollary 3.6. Let R be a commutative ring. If R has a nontrivial idempotent, then T (Γ (R)) is
connected with diam(T (Γ (R))) = 2.

Proof. Let e ∈ R \ {0,1} be idempotent. Then R = (e,1 − e) with e,1 − e ∈ Z(R); so the claim
is clear by Theorems 3.3 and 3.4, respectively. �
Corollary 3.7. Let {Rα}α∈Λ be a family of commutative rings with |Λ| � 2, and let R =∏

α∈Λ Rα . Then T (Γ (R)) is connected with diam(T (Γ (R))) = 2.

Proof. This follows directly from Corollary 3.6 since in this case R has a nontrivial idempo-
tent. �

If Z(R) is not an ideal of R, then diam(Z(Γ (R))) = 2. Moreover, we have 2 �
diam(T (Γ (R))) < ∞ when T (Γ (R)) is connected. In the following example, for each integer
n � 2, we construct a commutative ring Rn such that Z(Rn) is not an ideal of Rn and T (Γ (Rn))

is connected with diam(T (Γ (Rn))) = n.

Example 3.8. Let n � 2 be an integer, D = Z[X1,X2, . . . ,Xn−1], K be the quotient field
of D, P0 = (X1 + X2 + · · · + Xn−1), Pi = (Xi) for each integer i with 1 � i � n − 2, and
Pn−1 = (Xn−1 + 1). Then P0,P1, . . . ,Pn−1 are distinct prime ideals of D. Let F = P0 ∪ P1 ∪
· · · ∪ Pn−1; then S = D \ F is a multiplicative subset of D. Set Rn = D(+)(K/DS). Then
Z(Rn) = F(+)(K/DS). Since (1,0) = (−X1 − X2 − · · · − Xn−1,0) + (X1,0) + (X2,0) +
(X3,0) + · · · + (Xn−1 + 1,0) is the sum of n zero-divisors of Rn, by construction we con-
clude that n is the least integer m � 2 such that Rn is generated by m zero-divisors of Rn. Hence
T (Γ (Rn)) is connected with diam(T (Γ (Rn))) = n by Theorems 3.3 and 3.4, respectively.

Example 3.2 shows that we may have diam(T (Γ (R))) < ∞ and diam(Reg(Γ (R))) = ∞.
The next example shows that we may also have either diam(T (Γ (R))) = diam(Reg(Γ (R))) or
diam(T (Γ (R))) > diam(Reg(Γ (R))) when Z(R) is not an ideal of R.

Example 3.9. (a) Let R = Z5 ×Z5. Then diam(T (Γ (R))) = 2 by Theorem 3.4 (or Corollary 3.7),
and it is easy to check that diam(Reg(Γ (R))) = 2. Thus diam(T (Γ (R))) = diam(Reg(Γ (R))).

(b) Let R = Z2 × Z3. Then diam(T (Γ (R))) = 2 by Theorem 3.4 (or Corollary 3.7), and it is
easy to check that diam(Reg(Γ (R))) = 1. Thus diam(T (Γ (R))) > diam(Reg(Γ (R))).

We next briefly discuss the diameter of Reg(Γ (R × S)) for commutative rings R and S.
Note that Reg(R × S) = Reg(R) × Reg(S). So for distinct (a, b), (c, d) ∈ Reg(R × S), (a, b) −
(−a,−d) − (c, d) is a path of length at most two in Reg(Γ (R × S)). Thus Reg(Γ (R × S))

is connected with diam(Reg(Γ (R × S))) � 2. In particular, if Z(Zm) is not an ideal of Zm,
then Reg(Γ (Zm)) is always connected (cf. Example 2.7(a)). For example, Reg(Γ (Z2 × Z2)),
Reg(Γ (Z2 × Z3)), and Reg(Γ (Z5 × Z5)) have diameters 0, 1, and 2, respectively.

Theorem 3.10. Let R be a commutative ring such that Z(R) is not an ideal of R. Then
T (Γ (T (R))) is connected with diam(T (Γ (T (R)))) = 2. In particular, if R is a finite commuta-
tive ring and Z(R) is not an ideal of R, then T (Γ (R)) is connected with diam(T (Γ (R))) = 2.
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Proof. Let T = T (R). Since Z(R) is not an ideal of R, there are z1, z2 ∈ Z(R) such that s = z1 +
z2 ∈ Reg(R). Thus z1/s +z2/s = 1 in T ; so Z(T ) is not an ideal of T . Hence T = (z1/s, z2/s)T ,
and thus T (Γ (T )) is connected with diam(T (Γ (R))) = 2 by Theorems 3.3 and 3.4, respectively.
The “in particular” statement is clear (and has already been observed in Theorem 3.4) since
T (R) = R when R is finite. �

The following result is related to the previous theorem.

Theorem 3.11. Let P1 and P2 be prime ideals of a commutative ring R such that xy = 0 for
some x ∈ P1 \ P2 and y ∈ P2 \ P1, and let S = R \ (P1 ∪ P2). Then T (Γ (RS)) is connected with
diam(T (Γ (RS))) = 2.

Proof. Since x /∈ P2, y /∈ P1, and s /∈ P1 ∪ P2 for all s ∈ S, we have sx �= 0 and sy �= 0 for all
s ∈ S. Thus x/s and y/s are nonzero zero-divisors in RS for all s ∈ S. Note that t = x + y ∈ S,
and hence is a unit in RS , since t /∈ P1 ∪ P2. Thus RS = (x/t, y/t)RS , and hence T (Γ (RS)) is
connected with diam(T (Γ (RS))) = 2 by Theorems 3.3 and 3.4, respectively. �

The following is an example of a commutative ring R such that neither Reg(Γ (R)) nor
T (Γ (R)) is connected, but T (Γ (RS)) is connected for some multiplicative subset S of R with
S �= R \ Z(R).

Example 3.12. Let R = Z[X1,X2,X3]/(X1X2X3) = Z[x1, x2, x3], let P1 = (x1) and P2 = (x2)

be prime ideals of R, and let x = x1 and y = x2x3. Then xy = 0 and x ∈ P1 \P2 and y ∈ P2 \P1.
Let S = R \ (P1 ∪ P2) ⊃ R \ Z(R). Then T (Γ (RS)) is connected with diam(T (Γ (RS))) = 2 by
Theorem 3.11. By Theorem 3.3, T (Γ (R)) is not connected since (Z(R)) ⊂ R and Z(R) is not
an ideal of R, and Reg(Γ (R)) is not connected since there is no path from 1 to 2 in Reg(Γ (R))

(or use Theorem 3.1(3)).

We next investigate the girth of Z(Γ (R)), Reg(Γ (R)), and T (Γ (R)) when Z(R) is not an
ideal of R. Recall that |Z(R)| � 3 if Z(R) is not an ideal of R. We start with a lemma.

Lemma 3.13. Let R be a commutative ring such that Z(R) is not an ideal of R. Then charR = 2
if and only if 2Z(R) = {0}.

Proof. If charR = 2, then clearly 2Z(R) = {0}. Conversely, suppose that 2z = 0 for all z ∈
Z(R). Since Z(R) is not an ideal of R, there are distinct x, y ∈ Z(R) such that z = x + y ∈
Reg(R). Then 2z = 2x + 2y = 0; so 2 = 0 since z ∈ Reg(R), i.e., charR = 2. �
Theorem 3.14. Let R be a commutative ring such that Z(R) is not an ideal of R.

(1) Either gr(Z(Γ (R))) = 3 or gr(Z(Γ (R))) = ∞. Moreover, if gr(Z(Γ (R))) = ∞, then R ∼=
Z2 × Z2; so Z(Γ (R)) is a K1,2 star graph with center 0.

(2) gr(T (Γ (R))) = 3 if and only if gr(Z(Γ (R))) = 3 (if and only if R �∼= Z2 × Z2).
(3) gr(T (Γ (R))) = 4 if and only if gr(Z(Γ (R))) = ∞ (if and only if R ∼= Z2 × Z2).
(4) If charR = 2, then gr(Reg(Γ (R))) = 3 or ∞. In particular, gr(Reg(Γ (R))) = 3 if charR = 2

and Reg(Γ (R)) contains a cycle.
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(5) gr(Reg(Γ (R))) = 3,4, or ∞. In particular, gr(Reg(Γ (R))) � 4 if Reg(Γ (R)) contains a
cycle.

Proof. (1) If x + y ∈ Z(R) for some distinct x, y ∈ Z(R)∗, then 0 − x − y − 0 is a 3-cycle in
Z(Γ (R)); so gr(Z(Γ (R))) = 3. Otherwise, x + y ∈ Reg(R) for all distinct x, y ∈ Z(R)∗. So in
this case, each x ∈ Z(R)∗ is adjacent to 0, and no two distinct x, y ∈ Z(R)∗ are adjacent. Thus
Z(Γ (R)) is a star graph with center 0; so gr(Z(Γ (R))) = ∞.

Let Z(R) = ⋃
α∈Λ Pα , where each Pα is a prime ideal of R [11, p. 3]. Then |Λ| � 2 since

Z(R) is not an ideal of R. Assume that gr(Z(Γ (R))) = ∞. Then x + y ∈ Reg(R) for all distinct
x, y ∈ Z(R)∗, and thus each |Pα| = 2. Hence the intersection of any two distinct Pα’s is {0},
and thus |Λ| = 2. So let Z(R) = P1 ∪ P2 for prime ideals P1, P2 of R with P1 ∩ P2 = {0}
and |P1| = |P2| = 2. Hence |Z(R)| = 3, and thus R is also finite [9, Theorem 1]. So P1 and
P2 are the only prime (maximal) ideals of R. By the Chinese Remainder Theorem, we have
R ∼= R/P1 × R/P2 ∼= Z2 × Z2.

(2) We need only show that gr(Z(Γ (R))) = 3 when gr(T (Γ (R))) = 3. If 2z �= 0 for some
z ∈ Z(R)∗, then 0 − z − (−z) − 0 is a 3-cycle in Z(Γ (R)). Thus we may assume that 2z = 0 for
all z ∈ Z(R), and hence charR = 2 by Lemma 3.13. Let a − b − c − a be a 3-cycle in T (Γ (R)).
Then z = a+b,w = a+c, b+c ∈ Z(R)∗. Moreover, z+w = (a+b)+ (a+c) = 2a+ (b+c) =
b + c ∈ Z(R). Thus 0 − z − w − 0 is a 3-cycle in Z(Γ (R)); so gr(Z(Γ (R))) = 3.

(3) Suppose that gr(Z(Γ (R))) = ∞. Then R ∼= Z2 × Z2 by part (1) above; so
gr(T (Γ (R))) = 4. Conversely, suppose that gr(T (Γ (R))) = 4. Then gr(Z(Γ (R))) = ∞ by parts
(1) and (2) above.

(4) Suppose that charR = 2 and Reg(Γ (R)) contains a cycle C. Then C contains two distinct
vertices x, y ∈ Reg(R) such that x �= 1, y �= 1, and x + y ∈ Z(R). Suppose that R contains
a 0 �= w ∈ Nil(R). If w = wx = wy, then x + 1 and y + 1 are nonzero zero-divisors of R,
and thus 1 − x − y − 1 is a 3-cycle in Reg(Γ (R)). If either wx �= w or wy �= w, then either
1 − (w + 1) − (wx + 1) − 1 or 1 − (w + 1) − (wy + 1) − 1 is a 3-cycle in Reg(Γ (R)). If R is
reduced, then x2 + y2 = (x + y)2 �= 0. Hence x2 �= y2, and thus x2 − xy − y2 − x2 is a 3-cycle
in Reg(Γ (R)). Hence gr(Reg(Γ (R))) = 3.

(5) By part (4) above, we may assume that charR �= 2. Suppose that Reg(Γ (R)) contains a
cycle C. Then C contains two distinct vertices x, y ∈ Reg(R) such that y �= −x and x + y ∈
Z(R). Thus x − y − (−y) − (−x) − x is a 4-cycle in Reg(Γ (R)); so gr(Reg(Γ (R))) � 4. �

The next example shows that the 3 possibilities for gr(Reg(Γ (R))) when Z(R) is not an ideal
of R from Theorem 3.14(5) above may occur when gr(Z(Γ (R))) = gr(T (Γ (R))) = 3. However,
if gr(Z(Γ (R))) = ∞ and Z(R) is not an ideal of R, then R ∼= Z2 × Z2 by Theorem 3.14(1), and
thus gr(Reg(Γ (R))) = ∞ and gr(T (Γ (R))) = 4. In particular, gr(Z(Γ (R))) = 3 when R is not
reduced and Z(R) is not an ideal of R (this observation also follows from Theorem 2.10(4)).

Example 3.15. (a) Let R = Z2 ×Z3. Then it is easy to check that gr(Z(Γ (R))) = gr(T (Γ (R))) =
3 and gr(Reg(Γ (R))) = ∞.

(b) Let R = Z3 × Z4. Then it is easy to check that gr(Reg(Γ (R))) = gr(Z(Γ (R))) =
gr(T (Γ (R))) = 3.

(c) Let R = Z3 × F4. Then it is easy to check that Reg(Γ (R)) is a K3,3. Thus Reg(Γ (R))

(and hence T (Γ (R))) is connected with gr(Reg(Γ (R))) = 4. It is also easy to check that
gr(T (Γ (R))) = gr(Z(Γ (R))) = 3.
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Let M be an R-module. We conclude this paper with some results about the graphs of the
idealization R(+)M . In the first result, we assume that Z(R)(+)M = Z(R(+)M). Note that
Z(R)(+)M ⊆ Z(R(+)M) always holds, but the inclusion may be proper since Z(Z(+)Z2) =
2Z(+)Z2. However, equality holds if either M is an ideal of R or R is an integral domain and M

is torsionfree.

Theorem 3.16. Let R be a commutative ring such that Z(R) is not an ideal of R, and let M be
an R-module such that Z(R(+)M) = Z(R)(+)M .

(1) T (Γ (R(+)M)) is connected if and only if T (Γ (R)) is connected.
(2) diam(T (Γ (R(+)M))) = diam(T (Γ (R))).

Proof. (1) Suppose that T (Γ (R(+)M)) is connected. Let x, y ∈ R be distinct. Then (x,0),

(y,0) ∈ R(+)M ; so there is a path (x,0) − (s1, t1) − · · · − (sn, tn) − (y,0) from (x,0) to (y,0)

in T (Γ (R(+)M)). Since Z(R(+)M) = Z(R)(+)M , we conclude that x − s1 − · · · − sn − y

is a path from x to y in T (Γ (R)). Thus T (Γ (R)) is connected and diam(T (Γ (R(+)M))) �
diam(T (Γ (R))).

Conversely, suppose that T (Γ (R)) is connected (so diam(T (Γ (R))) � 2 by Theorem 3.4).
Let (x, a), (y, b) ∈ R(+)M be distinct. Then there is a path x − s1 − · · · − sn − y from x to y in
T (Γ (R)). Since Z(R)(+)M ⊆ Z(R(+)M), we have that (x, a)− (s1,0)− · · ·− (sn,0)− (y, b)

is a path from (x, a) to (y, b) in T (Γ (R(+)M)) (if x = y, then use the path (x, a) − (−x,0) −
(y, b)). Thus T (Γ (R(+)M)) is connected and diam(T (Γ (R(+)M))) � diam(T (Γ (R))). (Ob-
serve that the hypothesis that Z(R(+)M) = Z(R)(+)M is not needed in this direction.)

(2) This follows directly from the proof of part (1) above. �
In view of the (proof of the) above theorem, we have the following corollary.

Corollary 3.17. Let R be a commutative ring such that Z(R) is not an ideal of R, and
let M be an R-module. If T (Γ (R)) is connected, then T (Γ (R(+)M)) is connected with
diam(T (Γ (R(+)M))) � diam(T (Γ (R))).

The following is an example of a commutative ring R such that Z(R) is not an ideal of R, both
T (Γ (R)) and T (Γ (R(+)M)) are connected, but diam(T (Γ (R))) < diam(T (R(+)M)). Thus
the hypothesis that Z(R(+)M) = Z(R)(+)M is needed in Theorem 3.16(2) and the inequality
in Corollary 3.17 may be strict.

Example 3.18. Let R = R3 be the ring constructed in Example 3.8, and let M = T (R)/R.
Since (X2,0), (X2 + 1,0) ∈ Z(R(+)M), we have R(+)M = ((X2,0), (X2 + 1,0)), and hence
diam(T (Γ (R(+)M))) = 2 by Theorem 3.4. However, diam(T (Γ (R))) = 3 as in Example 3.8,
and thus diam(T (Γ (R(+)M))) < diam(T (Γ (R))).

We next investigate the girth of T (Γ (R(+)M)) and its subgraphs Z(Γ (R(+)M)) and
Reg(Γ (R(+)M)). Note that in Theorem 3.19 we do not assume that Z(R) is not an ideal of R.
In fact, Z(R) is an ideal of R in parts of Example 3.20.

Theorem 3.19. Let R be a commutative ring, and let M be a nonzero R-module.

(1) gr(Reg(Γ (R(+)M))) = 3,4, or ∞. In particular, gr(Reg(Γ (R(+)M))) � 4 if
Reg(Γ (R(+)M)) contains a cycle.
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(2) If |M| � 3, then gr(Z(Γ (R(+)M))) = gr(T (Γ (R(+)M))) = 3 and gr(Reg(Γ (R(+)M))) �
4.

(3) If |M| = |R| = 2 (i.e., if R and M are both isomorphic to Z2), then gr(Z(Γ (R(+)M))) =
gr(Reg(Γ (R(+)M))) = gr(T (Γ (R(+)M))) = ∞.

(4) If 2 = |M| < |R| (i.e., if R �∼= Z2 and M ∼= Z2), then gr(Z(Γ (R(+)M))) =
gr(T (Γ (R(+)M))) = 3 and gr(Reg(Γ (R(+)M))) = 3 or ∞. In particular,
gr(Reg(Γ (R(+)M))) = 3 if Reg(Γ (R(+)M)) contains a cycle.

Proof. (1) This follows directly from Theorems 2.5 and 3.14(4).
(2) Let a and b be distinct nonzero elements of M . Then the 3-cycle (0,0)− (0, a)− (0, b)−

(0,0) shows that gr(Z(Γ (R(+)M))) = gr(T (Γ (R(+)M))) = 3. If charR = 2, then (1,0) −
(1, a) − (1, b) − (1,0) is a 3-cycle; so gr(Reg(Γ (R(+)M))) = 3. If charR �= 2, then (1,0) −
(−1,0) − (1, a) − (−1, a) − (1,0) is a 4-cycle; so gr(Reg(Γ (R))) � 4.

(3) This is easy to check.
(4) Let M = {0,m} and I = annR(m). Then R/I ∼= M ∼= Z2. Note that I is a maximal ideal

of R and I (+)M ⊆ Z(R(+)M). Let 0 �= r ∈ I . Then the 3-cycle (0,0) − (r,0) − (0,m) −
(0,0) shows that gr(Z(Γ (R(+)M))) = gr(T (Γ (R(+)M))) = 3. Suppose that Reg(Γ (R(+)M))

contains a cycle C. Then C contains three distinct vertices x = (r1, a), y = (r2, b), z = (r3, c) ∈
Reg(R(+)M). Since r1, r2, r3 /∈ I , we have r1 +I = r2 +I = r3 +I = 1+I , and thus r1 +r2, r2 +
r3, r3 + r1 ∈ I ⊆ Z(R). Hence x + y, y + z, z+ x ∈ Z(R)(+)M ⊆ Z(R(+)M); so x − y − z− x

is a 3-cycle in Reg(Γ (R(+)M)). Thus gr(Reg(Γ (R(+)M))) = 3. �
The following example shows that, unlike the case for the diameter in Theorem 3.16, we

can have both T (Γ (R)) and T (Γ (R(+)M)) connected and Z(R(+)M) = Z(R)(+)M , but
gr(T (Γ (R))) �= gr(T (Γ (R(+)M))) (the inequality gr(T (Γ (R))) � gr(T (Γ (R(+)M))) always
holds). We also give examples to illustrate the possible values for gr(Reg(Γ (R(+)M))) in
parts (2) and (4) of Theorem 3.19.

Example 3.20. (a) Let R = M = Z2 × Z2. Then Z(R) is not an ideal of R, T (Γ (R)) and
T (Γ (R(+)M)) are both connected, and Z(R(+)M) = Z(R)(+)M . However, gr(T (Γ (R))) �=
gr(T (Γ (R(+)M))) since gr(T (Γ (R(+)M))) = 3 by Theorem 3.19(2) and gr(T (Γ (R))) = 4.

(b) It is clear that gr(Z(Γ (R(+)M))) � gr(Z(Γ (R))) and gr(Reg(Γ (R(+)M))) �
gr(Reg(Γ (R))). However, both inequalities may be strict, even if Z(R(+)M) = Z(R)(+)M . For
example, let R = M = Z3; then gr(Z(Γ (R))) = gr(Reg(Γ (R))) = ∞, gr(Z(Γ (R(+)M))) = 3,
and gr(Reg(Γ (R(+)M))) = 4.

(c) If |M| � 3, then gr(Reg(Γ (R(+)M))) = 3 or 4 by Theorem 3.19(2). Both values are
possible. For example, we have gr(Reg(Γ (Z3(+)Z3))) = 4 and gr(Reg(Γ (Z2(+)F4))) = 3.

(d) If 2 = |M| < |R|, then gr(Reg(Γ (T (+)M))) = 3 or ∞ by Theorem 3.19(4). Both values
are possible. For example, we have gr(Reg(Γ ((Z2 × Z2)(+)Z2))) = ∞ and
gr(Reg(Γ (Z4(+)Z2))) = 3.

Let D be a PID and m ∈ D a nonzero nonunit, and let R = D(+)(D/mD). Then Z(R) is not
an ideal of R if and only if m = q

m1
1 · · ·qmn

n , where the qi ’s are distinct nonassociate primes of
D, n � 2, and each mi � 1 (cf. Example 2.7(c)).

Theorem 3.21. Let D be a PID (e.g., Z) and m = q
m1
1 · · ·qmn

n , where the qi ’s are distinct nonas-
sociate primes of D, n � 2, and each mi � 1, and let R = D(+)/(D/mD).
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(1) Z(R) = ((q1) ∪ · · · ∪ (qn))(+)(D/mD) is not an ideal of R.
(2) Reg(Γ (R)) is connected with diam(Reg(Γ (R))) = 2 and gr(Reg(Γ (R))) = 3.
(3) Z(Γ (R)) is connected with diam(Z(Γ (R))) = 2 and gr(Z(Γ (R))) = 3.
(4) T (Γ (R)) is connected with diam(T (Γ (R))) = 2 and gr(T (Γ (R))) = 3.

Proof. (1) This is clear.
(2) Let x = (r1, a), y = (r2, b) ∈ Reg(R) such that x + y /∈ Z(R). Then r1, r2 /∈ (qi) for each

integer i with 1 � i � n by part (1) above. By the Chinese Remainder Theorem, there is a z ∈ D

such that z+ r1 ∈ (q1), z+ r2 ∈ (q2), . . . , z+ r2 ∈ (qn). By construction, z /∈ (qi) for each integer
i with 1 � i � n, and hence (z, a) ∈ Reg(R) by part (1) above. Thus x − (z, a) − y is a path
from x to y in Reg(Γ (R)) of length 2; so diam(Reg(Γ (R))) = 2. Now, let d = (m + 1,0), c =
(−1,0) ∈ R. Clearly d, c ∈ Reg(R) and c + d ∈ Z(R) by part (1) above. Again, by the Chinese
Remainder Theorem, there is a w ∈ D such that w + (m + 1) ∈ (q1),w − 1 ∈ (q2), . . . ,w − 1 ∈
(qn). By construction w /∈ (qi) for each integer i with 1 � i � n. Thus (w,0) ∈ Reg(R) by part
(1) above, and hence d − (w,0) − c − d is a 3-cycle in Reg(Γ (R)); so gr(Reg(Γ (R))) = 3.

(3) Z(Γ (R)) is connected with diam(Z(Γ (R))) = 2 by Theorem 3.1(1), and gr(Z(Γ (R))) =
3 by Theorem 3.19(2) since |D/mD| � 3.

(4) Since (q1,0), (q2,0) ∈ Z(R) and R = ((q1,0), (q2,0)), we have that T (Γ (R)) is con-
nected with diam(T (Γ (R))) = 2 by Theorems 3.3 and 3.4, respectively. Also, gr(T (Γ (R))) = 3
since gr(Z(Γ (R))) = 3 by part (3) above. �
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