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ON 2-ABSORBING IDEALS OF COMMUTATIVE RINGS

Ayman Badawi

Suppose that R is a commutative ring with 1 6= 0. In this paper, we introduce the
concept of 2-absorbing ideal which is a generalisation of prime ideal. A nonzero proper
ideal I of R is called a 2-absorbing ideal of R if whenever a, b, c ∈ R and abc ∈ I,
then ab ∈ I or ac ∈ I or bc ∈ I . It is shown that a nonzero proper ideal I of R is
a 2-absorbing ideal if and only if whenever I1I2I3 ⊆ I for some ideals I1, I2, I3 of R,
then I1I2 ⊆ I or I2I3 ⊆ I or I1I3 ⊆ I. It is shown that if I is a 2-absorbing ideal of
R, then either Rad(I) is a prime ideal of R or Rad(I) = P1 ∩P2 where P1, P2 are the
only distinct prime ideals of R that are minimal over I. Rings with the property that
every nonzero proper ideal is a 2-absorbing ideal are characterised. All 2-absorbing
ideals of valuation domains and Prüfer domains are completely described. It is shown
that a Noetherian domain R is a Dedekind domain if and only if a 2-absorbing ideal
of R is either a maximal ideal of R or M2 for some maximal ideal M of R or M1M2

where M1,M2 are some maximal ideals of R. If RM is Noetherian for each maximal
ideal M of R, then it is shown that an integral domain R is an almost Dedekind
domain if and only if a 2-absorbing ideal of R is either a maximal ideal of R or M2

for some maximal ideal M of R or M1M2 where M1,M2 are some maximal ideals of
R.

1. introduction

We assume throughout that all rings are commutative with 1 6= 0. Suppose that

R is a ring. Then T (R) denotes the total quotient ring of R, Nil(R) denotes the set

of nilpotent elements of R , Z(R) denotes the set of zerodivisors of R, and if I is a

proper ideal of R, then Rad(I) denotes the radical ideal of I. We start by recalling some

background material. A nonzero proper ideal I of a ring R is said to be Q-primal if

Z(R/I) = Q/I for some prime ideal Q of R containing I. A prime ideal P of a ring R

is said to be a divided prime ideal if P ⊂ (x) for every x ∈ R \ P ; thus a divided prime

ideal is comparable to every ideal of R. An integral domain R is said to be a divided

domain if every prime ideal of R is a divided prime ideal. An integral domain R is said

to be a valuation domain if x | y (in R) or y | x (in R) for every nonzero x, y ∈ R. It is
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known that a valuation domain is a divided domain. If I is a nonzero ideal of a ring R,

then I−1 =
{
x ∈ T (R) | xI ⊆ R

}
. An integral domain R is called a Prüfer domain if

II−1 = R for every nonzero finitely generated ideal I of R. An integral domain R is said

to be a Dedekind domain if II−1 = R for every nonzero ideal I of R. An integral domain

R is called an almost Dedekind domain if RM is a Dedekind domain for each maximal

ideal M of R.

In this paper, we introduce the concept of 2-absorbing ideal which is a generalisation

of prime ideal. A nonzero proper ideal I of R is called a 2-absorbing ideal of R if whenever

a, b, c ∈ R and abc ∈ I, then ab ∈ I or ac ∈ I or bc ∈ I. A more general concept than

2-absorbing ideals is the concept of k-absorbing ideals. We only state the definition of

k-absorbing ideals. Suppose that k is a positive integer such that k > 2. A nonzero

proper ideal I of R is called a k-absorbing ideal of R if whenever a1, a2, . . . , ak ∈ R and

a1a2 · · · ak ∈ I, then there are (k -1) of the ai’s whose product is in I. It is easily proved

that a nonzero proper ideal I of a principal ideal domain R is a 2-absorbing ideal of R

if and only if I is a prime ideal or I = p2R for some prime element p of R or I = p1p2R

where p1, p2 are distinct prime elements of R. Also, it is easily proved that if P and Q

are some nonzero prime ideals of a ring R, then P ∩ Q is a 2-absorbing ideal of R. For

nontrivial 2-absorbing ideals see Example 2.11, Example 2.12, Example 3.5, and Example

3.11.

Among many results in this paper, it is shown (Theorem 2.13) that a nonzero proper

ideal I of R is a 2-absorbing ideal if and only if whenever I1I2I3 ⊆ I for some ideals

I1, I2, I3 of R, then I1I2 ⊆ I or I2I3 ⊆ I or I1I3 ⊆ I. It is shown (Theorem 2.4) that if I

is a 2-absorbing ideal of R, then either Rad(I) is a prime ideal of R or Rad(I) = P1 ∩P2

where P1, P2 are the only distinct prime ideals of R that are minimal over I. Rings with

the property that every nonzero proper ideal is a 2-absorbing ideal are characterised in

Theorem 3.4. It is shown (Corollary 2.7) that a 2-absorbing ideal of a ring R is a Q-

primal ideal for some prime ideal Q of R. An example of a Q-primal ideal that is not a

2-absorbing ideal is illustrated in Example 3.12. For a valuation domain R, it is shown

(Proposition 3.10) that a nonzero proper ideal I of R is a 2-absorbing ideal if and only

I = P or I = P 2 where P = Rad(I) is a prime ideal of R. For a Prüfer domain R, it is

shown (Theorem 3.14) that a nonzero proper ideal I of R is a 2-absorbing ideal if and

only if I is a prime ideal of R or I = P 2 is a P -primary ideal of R or I = P1 ∩ P2 where

P1 and P2 are nonzero prime ideals of R. It is shown (Corollary 3.16) that a Noetherian

domain R that is not a field is a Dedekind domain if and only if a 2-absorbing ideal of

R is either a maximal ideal of R or M2 for some maximal ideal M of R or M1M2 where

M1, M2 are some maximal ideals of R. If RM is Noetherian for each maximal ideal M of

an integral domain R, then it is shown (Proposition 3.17) that R is an almost Dedekind

domain if and only if a 2-absorbing ideal of R is either a maximal ideal of R or M2 for

some maximal ideal M of R or M1M2 where M1, M2 are some maximal ideals of R. It is
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shown (Theorem 3.6) that if P is a divided prime ideal of a ring R and I is an ideal of R

such that Rad(I) = P , then I is a 2-absorbing ideal of R if and only if I is a P-primary

ideal of R such that P 2 ⊆ I.

2. Basic properties of 2-absorbing ideals

Theorem 2.1. Suppose that I is a 2-absorbing ideal of a ring R. Then Rad(I)

is a 2-absorbing ideal of R and x2 ∈ I for every x ∈ Rad(I).

Proof: Since I is a 2-absorbing ideal of R, observe that x2 ∈ I for every x ∈ Rad(I).

Let x, y, z ∈ R such that xyz ∈ Rad(I). Then (xyz)2 = x2y2z2 ∈ I. Since I is a 2-

absorbing ideal, we may assume that x2y2 ∈ I. Since (xy)2 = x2y2 ∈ I, xy ∈ Rad(I).

We recall the following lemma.

Lemma 2.2. ([4, Theorem 2.1, p. 2]).

Let I ⊆ P be ideals of a ring R, where P is a prime ideal. Then the following

statements are equivalent:

(1) P is a minimal prime ideal of I;

(2) For each x ∈ P , there is a y ∈ R \P and a nonnegative integer n such that

yxn ∈ I.

Theorem 2.3. Suppose that I is a 2-absorbing ideal of a ring R. Then there

are at most two prime ideals of R that are minimal over I.

Proof: Suppose that J = {Pi | Pi is a prime ideal of R that is minimal over I} and

suppose that J has at least three elements. Let P1, P2 ∈ J be two distinct prime ideals.

Hence there is an x1 ∈ P1 \P2, and there is an x2 ∈ P2 \P1. First we show that x1x2 ∈ I.

By Lemma 2.2, there is a c2 6∈ P1 and a c1 6∈ P2 such that c2x
n
1 ∈ I and c1x

m
2 ∈ I for

some n, m > 1. Since x1, x2 6∈ P1 ∩ P2 and I is a 2-absorbing ideal of R, we conclude

that c2x1 ∈ I and c1x2 ∈ I. Since x1, x2 6∈ P1 ∩ P2 and c2x1, c1x2 ∈ I ⊆ P1 ∩ P2, we

conclude that c2 ∈ P2 \ P1 and c1 ∈ P1 \ P2, and thus c1, c2 6∈ P1 ∩ P2. Since c2x1 ∈ I

and c1x2 ∈ I, we have (c1 + c2)x1x2 ∈ I. Observe that c1 + c2 6∈ P1 and c1 + c2 6∈ P2.

Since (c1 + c2)x1 6∈ P2 and (c1 + c2)x2 6∈ P1, we conclude that neither (c1 + c2)x1 ∈ I

nor (c1 + c2)x2 ∈ I, and hence x1x2 ∈ I. Now suppose there is a P3 ∈ J such that P3

is neither P1 nor P2. Then we can choose y1 ∈ P1 \ (P2 ∪ P3), y2 ∈ P2 \ (P1 ∪ P3), and

y3 ∈ P3 \ (P1 ∪ P2). By the previous argument y1y2 ∈ I. Since I ⊆ P1 ∩ P2 ∩ P3 and

y1y2 ∈ I, we conclude that either y1 ∈ P3 or y2 ∈ P3 which is a contradiction. Hence J

has at most two elements and that completes the proof.

Theorem 2.4. Let I be a 2-absorbing ideal of R. Then one of the following

statements must hold:

(1) Rad(I) = P is a prime ideal of R such that P 2 ⊆ I.
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(2) Rad(I) = P1 ∩ P2, P1P2 ⊆ I, and Rad(I)2 ⊆ I where P1, P2 are the only

distinct prime ideals of R that are minimal over I.

Proof: By Theorem 2.3, we conclude that either Rad(I) = P is a prime ideal of

R or Rad(I) = P1 ∩ P2, where P1 P2 are the only distinct prime ideals of R that are

minimal over I. Suppose that Rad(I) = P is a prime ideal of R. Let x, y ∈ P . By

Theorem 2.1, we have x2, y2 ∈ I. Now x(x + y)y ∈ I. Since I is a 2-absorbing ideal, we

have x(x + y) = x2 + xy ∈ I or (x + y)y = xy + y2 ∈ I or xy ∈ I. It is easily proved that

each case implies that xy ∈ I, and thus P 2 ⊆ I .

Now suppose that Rad(I) = P1 ∩ P2, where P1 P2 are the only distinct prime ideals

of R that are minimal over I. Let x, y ∈ Rad(I). Then xy ∈ I by the same argument

given above, and hence Rad(I)2 ⊆ I. Now we show that P1P2 ⊆ I. First observe that

w2 ∈ I for each w ∈ Rad(I) by Theorem 2.1. Let x1 ∈ P1 \ P2 and x2 ∈ P2 \ P1.

Then x1x2 ∈ I by the proof of Theorem 2.3. Let z1 ∈ Rad(I) and z2 ∈ P2 \ P1. Pick

y1 ∈ P1 \ P2. Then y1z2 ∈ I by the proof of Theorem 2.3 and z1 + y1 ∈ P1 \ P2. Thus

z1z2 + y1z2 = (z1 + y1)z2 ∈ I, and hence z1z2 ∈ I. A similar argument will show that if

z1 ∈ Rad(I) and z2 ∈ P1 \ P2, then z1z2 ∈ I. Hence P1P2 ⊆ I.

Theorem 2.5. Let I be a 2-absorbing ideal of R such that Rad(I) = P is a

prime ideal of R and suppose that I 6= P . For each x ∈ P \ I let Bx = {y ∈ R | yx ∈ I}.
Then Bx is a prime ideal of R containing P . Furthermore, either By ⊆ Bx or Bx ⊆ By

for every x, y ∈ P \ I.

Proof: Let x ∈ P \ I. Since P 2 ⊆ I (by Theorem 2.4), we conclude that P ⊆ Bx.

Suppose that P 6= Bx and yz ∈ Bx for some y, z ∈ R. Since P ⊂ Bx, we may assume

that y 6∈ P and z 6∈ P , and thus yz 6∈ I. Since yz ∈ Bx, we have yzx ∈ I. Since I is a

2-absorbing ideal of R and yz 6∈ I, we conclude that either yx ∈ I or zx ∈ I, and thus

either y ∈ Bx or z ∈ Bx. Hence Bx is a prime ideal of R containing P .

Let x, y ∈ P \ I and suppose that z ∈ Bx \By. Since P ⊆ By, z ∈ Bx \ P . We show

that By ⊂ Bx. Let w ∈ By. Since P ⊆ Bx, we may assume that w ∈ By \P . Since z 6∈ P

and w 6∈ P , we conclude that zw 6∈ I. Since z(x + y)w ∈ I and zw, zy 6∈ I, we conclude

that (x + y)w ∈ I. Hence wx ∈ I since (x + y)w ∈ I and wy ∈ I. Thus w ∈ By ⊆ Bx.

Theorem 2.6. Let I be a 2-absorbing ideal of R such that I 6= Rad(I) = P1∩P2

where P1 and P2 are the only nonzero distinct prime ideals of R that are minimal over

I. Then for each x ∈ Rad(I) \ I, Bx = {y ∈ R | xy ∈ I} is a prime ideal of R containing

P1 and P2. Furthermore, either By ⊆ Bx or Bx ⊆ By for every x, y ∈ Rad(I) \ I.

Proof: Let x ∈ Rad(I) \ I. Since P1P2 ⊆ I by Theorem 2.4, we conclude that

xP1 ⊆ I and xP2 ⊆ I. Thus P1 ⊂ Bx and P2 ⊂ Bx. Suppose yz ∈ Bx for some y, z ∈ R.

Since P1 ⊂ Bx and P2 ⊂ Bx, we may assume that y, z 6∈ P1 and y, z 6∈ P2, and thus

yz 6∈ I. Since yz ∈ Bx, we have yzx ∈ I. Since I is a 2-absorbing ideal of R and yz 6∈ I,

we conclude that either yx ∈ I or zx ∈ I, and thus either y ∈ Bx or z ∈ Bx. Hence Bx
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is a prime ideal of R. By using an argument similar to that in the proof of Theorem 2.5,

one can easily complete the proof.

Recall that a nonzero proper ideal I of a ring R is said to be Q-primal if Z(R/I)

= Q/I for some prime ideal Q of R containing I.

Corollary 2.7. Suppose that I is a 2-absorbing ideal of R such that I 6=
Rad(I). Then I is a Q-primal ideal of R where Q = ∪x∈Rad(I)\IBx (recall that Bx = {y ∈
R | yx ∈ I}).

Proof: Let a, b ∈ R \ I such that ab ∈ I. We show that a, b ∈ Bf for some

f ∈ Rad(I) \ I. By Theorem 2.3, we conclude that either Rad(I) = P is a prime ideal

of R or Rad(I) = P1 ∩ P2, where P1, P2 are the only distinct prime ideals of R that

are minimal over I. Suppose that Rad(I) = P is a prime ideal of R. Hence either

a ∈ P \ I or b ∈ P \ I, and thus either a, b ∈ Ba or a, b ∈ Bb. Since I 6= Rad(I),

D =
{
Bx | x ∈ Rad(I) \ I

}
is a set of linearly ordered (prime) ideals of R by Theorem

2.5. Thus Z(R/I) = ∪Bx∈D(Bx/I) is an ideal of R/I.

Now suppose that Rad(I) = P1 ∩P2, where P1, P2 are the only distinct prime ideals

of R that are minimal over I. Since ab ∈ Rad(I), without loss of generality we may

conclude that either a ∈ Rad(I) \ I or a ∈ P1 \ P2 and b ∈ P2 \ P1. If a ∈ Rad(I) \ I,

then a, b ∈ Ba. Suppose that a ∈ P1 \ P2 and b ∈ P2 \ P1. Since I 6= Rad(I), there is a

d ∈ Rad(I) \ I. Since P1 ⊂ Bd and P2 ⊂ Bd by Theorem 2.6, we have a, b ∈ Bd. Again,

since I 6= Rad(I), D =
{
Bx | x ∈ Rad(I) \ I

}
is a set of linearly ordered (prime) ideals

of R by Theorem 2.6. Thus Z(R/I) = ∪Bx∈D(Bx/I) is an ideal of R/I.

In Section 3, we give an example (see Example 3.12) of a Q-primal ideal I of R such

that Rad(I) = P is a prime ideal of R and P 2 ⊂ I, but I is not a 2-absorbing ideal of R.

Theorem 2.8. Suppose that I is an ideal of R such that I 6= Rad(I) and Rad(I)

is a prime ideal of R. Then the following statements are equivalent:

(1) I is a 2-absorbing ideal of R;

(2) Bx = {y ∈ R | yx ∈ I} is a prime ideal of R for each x ∈ Rad(I) \ I.

Proof: (1) ⇒ (2). This is clear by Theorem 2.5.

(2) ⇒ (1). Suppose that xyz ∈ I for some x, y, z ∈ R. Since Rad(I) is a prime ideal

of R, we may assume that x ∈ Rad(I). If x ∈ I, then xy ∈ I and we are done. Hence

assume that x ∈ Rad(I) \ I. Thus yz ∈ Bx. Since Bx is a prime ideal of R by Theorem

2.5, we conclude that either yx ∈ I or zx ∈ I. Thus I is a 2-absorbing ideal of R.

Theorem 2.9. Let I be an ideal of R such that I 6= Rad(I) = P1∩P2 where P1

and P2 are nonzero distinct prime ideals of R that are minimal over I. Then the following

statement are equivalent:

(1) I is a 2-absorbing ideal of R;

(2) P1P2 ⊆ I and Bx = {y ∈ R | yx ∈ I} is a prime ideal of R for each

x ∈ Rad(I) \ I.
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(3) Bx = {y ∈ R | yx ∈ I} is a prime ideal of R for each x ∈ (P1 ∪ P2) \ I.

Proof: (1) ⇒ (2). This is clear by Theorems 2.4 and 2.6.

(2) ⇒ (3). Let x ∈ P1 \ P2. It is clear that yx ∈ I if and only if y ∈ P2. Since

P1P2 ⊆ I, we conclude that Bx = P2 is a prime ideal of R. Let z ∈ P2 \ P1. By a similar

argument as before we conclude that Bz = P1 is a prime of R. Since Bd is a prime ideal

of R for each d ∈ Rad(I) \ I, we are done.

(3) ⇒ (1). Let xyz ∈ I. We may assume that x ∈ (P1 ∪ P2) \ I. Thus yz ∈ Bx.

Since Bx is a prime ideal of R by Theorem 2.6, we conclude that either yx ∈ I or zx ∈ I,

and hence I is a 2-absorbing ideal of R.

Theorem 2.10. Let I be a 2-absorbing ideal of a ring R such that I 6= Rad(I).

For each x ∈ Rad(I) \ I, let Bx = {y ∈ R | yx ∈ I}. Then :

(1) If x ∈ Rad(I) \ I and y ∈ R such that yx 6∈ I, then Byx = Bx.

(2) If x, y ∈ Rad(I) \ I and Bx is properly contained in By, then Bfx+dy = Bx

for every f, d ∈ R such that fd 6∈ Bx. In particular, if x, y ∈ Rad(I) \ I

and Bx is properly contained in By, then Bx+y = Bx.

Proof: (1) Let x, y ∈ Rad(I) \ I. Since Bx ⊂ By, it is clear that Bx ⊆ Byx. Let

c ∈ Byx. Since cyx ∈ I, we conclude that cy ∈ Bx. Since Bx is a prime ideal of R by

Theorems 2.5, 2.6 and y 6∈ Bx because yx 6∈ I, we have cx ∈ I. Hence c ∈ Bx, and thus

Bx = Byx.

(2) Let x, y ∈ Rad(I) \ I. Since Bx ⊂ By, it is clear that Bx ⊆ Bfx+dy. Suppose

that Bx 6= Bfx+dy. Since Bx, Bfx+dy, By are linearly ordered by Theorems 2.5, 2.6 and

Bx is properly contained in By, there is a z ∈ By∩Bfx+dy such that z 6∈ Bx. Since zy ∈ I

and z(fx + dy) ∈ I, we conclude that zfx ∈ I. Hence zf ∈ Bx, a contradiction since

neither z ∈ Bx nor f ∈ Bx. Thus Bx = Bfx+dy.

Example 2.11. Suppose that R = Z[x, y] where Z is the ring of integers and x, y are

indeterminates, P1 = (x, 2)R,P2 = (y, 2)R are prime ideals of R, and let I = P1P2 =

(4, 2x, 2y, xy)R. Then Rad(I) = P1 ∩ P2 = (2, xy)R. Since B2 = {z ∈ R | 2z ∈
I} = (2, x, y)R is a (maximal) prime ideal of R, it is easy to see that Bd = B2 for each

d ∈ Rad(I) \ I. Hence I is a 2-absorbing ideal of R by Theorem 2.9.

Example 2.12. Suppose that R = Z[x, y, z] where x, y, z are indeterminates,

P = (2, x)R is a prime ideal of R, and I = (4, 2x, 2y, xy, xz, x2)R. Then P 2 ⊂ I and

Rad(I) = P . Now B2 = (2, x, y)R is a prime ideal of R, Bx = (2, x, y, z)R is a (prime)

maximal ideal of R, and B2+x = B2. It is easy to see that if d ∈ P \ I, then either

Bd = B2 or Bd = Bx. Thus I is a 2-absorbing ideal of R by Theorem 2.8. Observe that

I is not a primary ideal.

Part of this paper was presented at a commutative ring conference in Cortona, Italy

(June, 2004). During the conference, Bruce Olberding asked the author the following
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question: Let I be a 2-absorbing ideal of a ring R and suppose that I1I2I3 ⊆ I for some

ideals I1, I2, I3 of R, does it follow that I1I2 ⊆ I or I2I3 ⊆ I or I1I3 ⊆ I? The answer to

the question is yes as in the following result.

Theorem 2.13. Suppose that I is a nonzero proper ideal of a ring R. The

following statements are equivalent:

(1) I is a 2-absorbing ideal of R;

(2) If I1I2I3 ⊆ I for some ideals I1, I2, I3 of R, then I1I2 ⊆ I or I2I3 ⊆ I or

I1I3 ⊆ I.

Proof: Since (2) ⇒ (1) is trivial, we only need to show that (1) ⇒ (2). Suppose

that I1I2I3 ⊆ I for some ideals I1, I2, I3 of R. By Theorem 2.4, we conclude that Rad(I)

is a prime ideal of R or Rad(I) = P1 ∩ P2 where P1 and P2 are nonzero distinct prime

ideals of R that are minimal over I. If I = Rad(I), then it is easily proved that I1I2 ⊆ I

or I2I3 ⊆ I or I1I3 ⊆ I. Hence assume that I 6= Rad(I). We consider two cases.

Case I. Suppose that Rad(I) is a prime ideal of R. Then we may assume that

I1 ⊆ Rad(I) and I1 6⊆ I. Let x ∈ I1 \ I. Since xI2I3 ⊆ I, we conclude that I2I3 ⊆ Bx.

Since Bx is a prime ideal of R by Theorem 2.8, we conclude that either I2 ⊆ Bx or

I3 ⊆ Bx. If I2 ⊆ Bd and I3 ⊆ Bd for each d ∈ I1 \ I, then I1I2 ⊆ I (and I1I3 ⊆ I) and

we are done. Hence assume that that I2 ⊆ By and I3 6⊆ By for some y ∈ I1 \ I. Since

{Bw | w ∈ I1 \ I} is a set of prime ideals of R that are linearly ordered by Theorem

2.5 and I2 ⊆ By and I3 6⊆ By, we conclude that I2 ⊆ Bz for each z ∈ I1 \ I, and thus

I1I2 ⊆ I.

Case II. Suppose that Rad(I) = P1∩P2 where P1 and P2 are nonzero distinct prime

ideals of R that are minimal over I. We may assume that I1 ⊆ P1. If either I2 ⊆ P2

or I3 ⊆ P2, then either I1I2 ⊆ I or I1I3 ⊆ I because P1P2 ⊆ I by Theorem 2.4. Hence

assume that I1 ⊆ Rad(I) and I1 6⊆ I. By an argument similar to that one given in case

I and Theorem 2.5, we are done.

3. On 2-absorbing ideals in particular classes of rings

Theorem 3.1. Suppose that I is a P -primary ideal of a ring R. Then I is a

2-absorbing ideal of R if and only if P 2 ⊆ I. In particular, M2 is a 2-absorbing ideal of

R for each maximal ideal M of R.

Proof: Suppose that I is a 2-absorbing ideal of a ring R. Then P 2 ⊆ I by Theorem

2.4(1). Conversely, suppose that P 2 ⊆ I and xyz ∈ I. If either x ∈ I or yz ∈ I, then

there is nothing to prove. Hence assume that neither x ∈ I nor yz ∈ I. Since I is a

P -primary ideal of R, we conclude that x ∈ P and yz ∈ P . Thus x, y ∈ P or x, z ∈ P .

Since P 2 ⊆ I, we conclude that xy ∈ I or xz ∈ I.

Corollary 3.2. Suppose that P is a nonzero prime ideal of R. Then

P (2) = P 2RP ∩R is a 2-absorbing ideal of R.
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Proof: It is well-known that P (2) is a P -Primary ideal of R. Since P 2 ⊆ P (2), P (2)

is a 2-absorbing ideal of R by Theorem 3.1.

The following lemma is useful in the proof of our next result.

Lemma 3.3. Suppose that R is a zero-dimensional ring with exactly two distinct

maximal ideals such that Nil(R) 6= {0}, Nil(R)2 = {0} and Nil(R) = wR for each nonzero

w ∈ Nil(R). Then R is ring-isomorphic to R/M2
1 ⊕ R/M2 where M1 is a maximal ideal

of R such that M2
1 6= M1 and M2 is a maximal of R such that M2

2 = M2. Furthermore,

each nonzero proper ideal of R is a 2-absorbing ideal of R.

Proof: Let M1, M2 be the two distinct maximal ideals of R. Since Nil(R) = M1M2

and Nil(R)2 = {0}, we conclude that M2
1 M2

2 = {0}. Since M2
1 , M2

2 are co-maximal, R is

ring-isomorphic to D = R/M2
1 ⊕ R/M2

2 . Since Nil(R) 6= {0}, we conclude that at least

one of the maximal ideals of R is a non-idempotent ideal. Hence we may assume that

M2
1 6= M1, and thus there is an element m1 ∈ M1 such that m1 6∈ M2

1 . Now suppose

that M2
2 6= M2. Then there is an element m2 ∈ M2 such that m2 6∈ M2

2 . Since (0, m2

+M2
2 ), (m1 +M2

1 , 0) are nonzero nilpotent elements of D, (0, m2 +M2
2 ) ∈ (m1 +M2

1 , 0)D

by hypothesis, which is impossible. Thus M2
2 = M2. Hence Nil(D) = {0} ⊕ (M1/M

2
1 ).

Since wD = Nil(D) for each nonzero w ∈ Nil(D), we conclude that Nil(D) is the only

proper non-maximal ideal of D. Thus every nonzero proper ideal of D is a 2-absorbing

ideal of D, and hence every nonzero proper ideal of R is a 2-absorbing ideal of R.

Recall that an element x ∈ R is said to be a π-regular element of R if there is a

positive integer n and an element y ∈ R such that x2ny = xn. If every element of R is

a π-regular element, then R is called a π-regular ring. It is well-known [4, Theorem 3.1]

that a ring R is a π-regular ring if and only if R is a zero-dimensional ring.

Theorem 3.4. Every nonzero proper ideal of a ring R is a 2-absorbing ideal of

R if and only if R is zero-dimensional (that is, R is a π-regular ring) and one of the

following statements hold:

(1) R is quasi-local with maximal ideal M = Nil(R) 6= {0} such that M2 ⊆ xR

for each nonzero x ∈ M .

(2) R has exactly two distinct maximal ideals such that either R is ring-

isomorphic to F1 ⊕ F2 where F1 and F2 are fields or Nil(R)2 = {0} and

Nil(R) = wR for each nonzero w ∈ Nil(R).

(3) R is ring-isomorphic to F1 ⊕ F2 ⊕ F3 where F1, F2, F3 are fields.

Proof: Suppose that R is quasi-local with maximal ideal M = Nil(R) 6= {0} such

that M2 ⊆ xR for each nonzero x ∈ M . Since every nonzero proper ideal I of R is an

M -primary ideal of R and M2 ⊆ I, we conclude that every nonzero proper ideal of R

is a 2-absorbing ideal of R by Theorem 3.1. Suppose that R is zero-dimensional and

the second condition holds. If Nil(R) = {0}, then it is easily proved that every nonzero

proper ideal of R is a 2-absorbing ideal of R. If Nil(R) 6= {0}, then every nonzero proper
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ideal of R is a 2-absorbing ideal of R by Lemma 3.3. Suppose that R is ring-isomorphic

to D = F1 ⊕ F2 ⊕ F3 where F1, F2, F3 are fields. Since every nonzero proper ideal of D

is either a maximal ideal of D or a product(intersection) of two distinct maximal ideals

of D, we conclude that every nonzero proper ideal of D is a 2-absorbing ideal of D, and

hence every nonzero proper ideal of R is a 2-absorbing ideal of R.

Conversely, suppose that every nonzero proper ideal of R is a 2-absorbing ideal of

R. We show that R is a zero-dimensional ring. Let w ∈ R. If w is a unit of R or a

nilpotent of R, then w is a π-regular element of R. Hence assume that w is a nonunit

non-nilpotent element of R. Then w4R is a nonzero proper ideal of R, and hence it is a

2-absorbing ideal of R. Since w4 ∈ w4R, we conclude that w2 ∈ w4R, and thus w is a

π-regular element of R. Hence R is a π-regular ring, and thus R is a zero-dimensional

ring.

Next we show that R has at most three distinct maximal ideals. Suppose that

M1, M2, M3 are distinct maximal ideals of R. Then I = M1M2M3 = M1∩M2∩M3 = {0},
for if I 6= {0}, then I = Rad(I) is a 2-absorbing ideal of R which is impossible by Theorem

2.4. Since M1M2M3 = {0}, R has at most three distinct maximal ideals.

Now suppose that R has exactly three distinct maximal ideal M1, M2, M3. Since

M1M2M3 = {0}, we conclude that R is ring-isomorphic to R/M1 ⊕ R/M2 ⊕ R/M3, and

thus the third condition holds.

Suppose that R has exactly two distinct maximal ideals M1, M2. If Nil(R)

= M1M2 = {0}, then R is ring-isomorphic to R/M1 ⊕ R/M2. Hence assume that

Nil(R) = M1M2 6= {0}. Suppose that Nil(R)2 6= {0}. Then there are nonzero ele-

ments w1, w2 ∈ Nil(R) such that w1w2 6= 0. Since w1w2R is a 2-absorbing ideal of R, we

conclude that w1 ∈ M1M2 = Nil(R) ⊆ w1w2R by Theorem 2.4. Hence w1 = w1w2k for

some nonzero k ∈ R, and thus w1(1−w2k) = 0. Hence w1 = 0 since 1−w2k is a unit of

R, a contradiction. Thus Nil(R)2 = {0}. Suppose that w is a nonzero nilpotent element

of R. Since wR is a 2-absorbing ideal of R, we conclude that Nil(R) = M1M2 ⊆ wR by

Theorem 2.4, and hence the second condition holds.

Finally suppose that R is a quasi-local ring with maximal ideal Nil(R) 6= {0}. Sup-

pose that w is a nonzero element of Nil(R). Since wR is a 2-absorbing ideal of R, we

conclude that Nil(R)2 ⊆ wR by Theorem 2.4. Thus the first condition holds.

Example 3.5.

(a) Let Z be the ring of integers, R = Z8, and D = Zp2 ⊕ F where p is a

prime number of Z and F is a field. Then every nonzero proper ideal of R

is a 2-absorbing ideal and every nonzero proper ideal of D is a 2-absorbing

ideal.

(b) Let R be the ring of all real numbers and X, Y be indeterminates. Set

R = R
[
[X, Y ]

]
/(XY,X2 − Y 2, X3, Y 3). Then every nonzero proper ideal

of R is a 2-absorbing ideal.
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Recall that a prime ideal of R is called a divided prime if P ⊂ (x) for every x ∈ R\P .

Theorem 3.6. Suppose that P is a nonzero divided prime ideal of R and I is

an ideal of R such that Rad(I) = P . Then the following statements are equivalent:

(1) I is a 2-absorbing ideal of R;

(2) I is a P -primary ideal of R such that P 2 ⊆ I.

Proof: (1) ⇒ (2). Suppose that I is a 2-absorbing ideal of R. Since Rad(I) = P is

a nonzero prime ideal of R, P 2 ⊆ I by Theorem 2.4(1). Now let xy ∈ I for some x, y ∈ R

and suppose that y 6∈ P . Since x ∈ P and P is a divided ideal of R, we conclude that

x = yk for some k ∈ R. Hence xy = y2k ∈ I. Since y2 6∈ I and I is a 2-absorbing ideal

of R, we conclude that yk = x ∈ I. Thus I is a P -primary ideal of R.

(2) ⇒(1). This is clear by Theorem 3.1.

Theorem 3.7. Suppose that Nil(R) and P are divided prime ideals of a ring R

such that P 6= Nil(R). Then P 2 is a 2-absorbing ideal of R.

Proof: First we observe that Nil(R) ⊂ P 2 since P 6= Nil(R) and Nil(R) is divided.

By Theorem 3.6 it suffices to show that P 2 is a P -primary ideal of R. Suppose that

xy = p1q1 + · · ·+ pnqn ∈ P 2 where the pi’s and the qi’s are in P , and suppose that y 6∈ P .

Since P is a divided ideal of R, we conclude that xy = yc1q1 + · · ·+ycnqn ∈ P 2 where the

ci’s are in P . Hence y(x−c1q1−· · ·−cnqn) = 0 ∈ Nil(R). Since y 6∈ Nil(R) (because y 6∈ P )

and Nil(R) is a prime ideal of R, we conclude that x − c1q1 − · · · − cnqn = w ∈ Nil(R).

Since Nil(R) ⊂ P 2, we conclude that x = c1q1 + · · · cnqn + w ∈ P 2, and thus P 2 is a

P -primary ideal of R.

If R is an integral domain, then Nil(R) = {0} is a divided prime ideal of R. Hence

we have the following corollary.

Corollary 3.8. Suppose that P is a a nonzero divided prime ideal of an in-

tegral domain R. Then P 2 is a 2-absorbing ideal of R.

The following is an example of a prime ideal P of an integral domain R such that

P 2 is not a 2-absorbing ideal of R.

Example 3.9. Suppose that R = Z + 6xZ[x] and P = 6xZ[x] (where Z is the ring of

integers and x is an indeterminate). Then P is a prime ideal of R. Since 6x2 ∈ P \ P 2

and B6x2 = {y ∈ R | 6x2y ∈ P 2} = 6Z + 6xZ[x] is not a prime ideal of R, P 2 is not a

2-absorbing ideal of R by Theorem 2.8.

Proposition 3.10. Suppose that R is a valuation domain and I is a nonzero

proper ideal of R. Then the following statements are equivalent:

(1) I is a 2-absorbing ideal of R;

(2) I is a a P -primary ideal of R such that P 2 ⊆ I;

(3) I = P or I = P 2 where P = Rad(I) is a prime ideal of R.
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Proof: (1) ⇒ (2). Suppose that I is a 2-absorbing ideal of R. Then Rad(I) = P

is a prime ideal of R. Since R is a divided domain, I is a P -primary ideal of R such that

P 2 ⊆ I by Theorem 3.6.

(2) ⇒ (3). Suppose that I is a P -primary ideal of R such that P 2 ⊆ I. Since R is a

valuation domain, we conclude that either I = P or I = P 2 by [5, Theorem 5.11, p. 106].

(3) ⇒ (1). Suppose that either I = P or I = P 2 where P = Rad(I) is a prime ideal

of R. If I = P , then I is a 2-absorbing ideal of R. If I = P 2, then I is a 2-absorbing

ideal of R by Corollary 3.8.

The following is an example of a prime ideal P of an integral domain R such that

P 2 is a 2-absorbing ideal of R, but P 2 is not a P -primary ideal of R.

Example 3.11. Suppose that R = Z + 3xZ[x] (where Z is the ring of integers and x

is an indeterminate) and let P = 3xZ[x] be a prime ideal of R. Since 3(3x2) ∈ P 2, we

conclude that P 2 is not a P -primary ideal of R. It is easy to verify that if d ∈ P \ P 2,

then either Bd = {y ∈ R | yd ∈ I} = P or Bd = 3Z + 3xZ[x] is a prime ideal of R.

Hence P 2 is a 2-absorbing ideal by Theorem 2.8.

Next we show that for each n > 2, there is a valuation domain R with maximal

ideal M and Krull dimension n that admits an M -primal ideal I such that Rad(I) = P

is a prime ideal of R , P 2 ⊂ I, and the Krull dimension of R/I is n − 1, but I is not a

2-absorbing ideal of R.

Example 3.12. Suppose that n > 2 and D be a valuation domain with quotient field

K and Krull dimension n − 1. Let X be an indeterminate and set R = D + XK
[
[X]

]
.

Then R is a valuation domain with Krull dimension n. Let P = XK
[
[X]

]
be a prime

ideal of R and let Q be a nonzero prime ideal of R such that Q 6= P . Then it is clear that

P ⊂ Q. Set I = XRQ. Then I is an ideal of R such that Rad(I) = P and Z(R/I) = Q/I

by [1, Proposition 2.1]. Hence I is not a primary ideal of R. Since R is a valuation

domain and X ∈ P \ P 2, we have P 2 ⊂ I and I is not a 2-absorbing ideal of R by

Proposition 3.10. By construction it is clear that the Krull dimension of R/I is n− 1.

Before we state our next theorem, the following lemma is needed.

Lemma 3.13. Suppose that I is a 2-absorbing ideal of a ring R and let S be a

multiplicatively closed subset of R. If IRS 6= {0}, then IRS is a 2-absorbing ideal of RS.

Proof: Suppose that xyz ∈ IRS for some x, y, z ∈ RS. Then there are elements

s ∈ S, and x1, x2, x3 ∈ R such that xyz = (x1/s)(x2/s)(x3/s) = x1x2x3/s
3 ∈ IRS. Thus,

x1x2x3 ∈ I. Since I is a 2-absorbing ideal of R, we have x1x2 ∈ I or x1x3 ∈ I or x2x3 ∈ I,

and thus xy ∈ IRS or xz ∈ IRS or yz ∈ IRS.

Theorem 3.14. Suppose that R is a Prüfer domain and I is a nonzero ideal of

R. Then the following statements are equivalent:

(1) I is a 2-absorbing ideal of R;
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(2) I is a prime ideal of R or I = P 2 is a P -primary ideal of R or I = P1 ∩ P2

where P1 and P2 are nonzero prime ideals of R.

Proof: Suppose that I is a nonzero 2-absorbing ideal of R. Then either Rad(I) = P

is a prime ideal of R or Rad(I) = P1 ∩P2 where P1, P2 are the only minimal prime ideals

of R over I by Theorem 2.4. Suppose that Rad(I) = P is a prime ideal of R and

I 6= P . Then I is a Q-primal ideal of R by Corollary 2.7, and P ⊆ Q because P 2 ⊆ I

by Theorem 2.4. Since IRQ is a 2-absorbing ideal of RQ by Lemma 3.13 and RQ is a

valuation domain, we conclude that IRQ is a PRQ-primary ideal of RQ by Proposition

3.10. Hence IRQ ∩ R is a P -primary ideal of R by [5, Corollary 3.10, p. 68]. It is easy

to verify that IRQ ∩ R = I (for a proof see [2, Lemma 1.3]). Hence I = IRQ ∩ R is a

P -primary ideal of R. Since P 2 ⊆ I by Theorem 2.4 and I 6= P , we conclude that I = P 2

by [5, Proposition 6.9(4), p. 132].

Next suppose that Rad(I) = P1 ∩P2 where P1, P2 are the only minimal prime ideals

of R over I. Assume that I 6= Rad(I). Then I is a Q-primal ideal of R by Corollary

2.7. Since P1 ⊂ Q and P2 ⊂ Q and RQ is a valuation domain, either P1RQ ⊂ P2RQ or

P2RQ ⊂ P1RQ, which is impossible. Thus I = Rad(I) = P1 ∩ P2.

For the converse, just observe that if I = P 2 is a P -primary ideal of R, then I is a

2-absorbing ideal of R by Theorem 3.1.

Recall that an integral domain R is said to be a Dedekind domain if every nonzero

ideal of R is invertible.

Theorem 3.15. Let R be a Noetherian domain that is not a field. The following

statements are equivalent:

(1) R is a Dedekind domain;

(2) If I is a 2-absorbing ideal of R, then I is a maximal ideal of R or I = M2

for some maximal ideal M of R or I = M1M2 where M1, M2 are some

maximal ideals of R;

(3) If I is a 2-absorbing ideal of R, then I is a prime ideal of R or I = P 2 for

some prime ideal P of R or I = P1∩P2 where P1, P2 are some prime ideals

of R.

Proof: (1) ⇒ (2). Since R is a one-dimensional ring, every nonzero prime ideal of

R is maximal. Suppose that I is a 2-absorbing ideal of R. Then either Rad(I) = M is

a a maximal ideal of R or Rad(I) = M1 ∩M2 = M1M2 for some distinct maximal ideals

M1, M2 of R by Theorem 2.4.

(2) ⇒ (3). This is obvious.

(3) ⇒ (1). Let M be a maximal ideal of R. Since every ideal between M2 and M is

an M -Primary ideal and hence a 2-absorbing ideal of R by Theorem 3.1, the hypothesis in

(3) implies that there are no ideals properly between M2 and M . Hence R is a Dedekind

domain by [3, Theorem 39.2, p. 470].
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Recall that an integral domain R is said to be an almost Dedekind domain if RM

is a Dedekind domain for each maximal ideal M of R (that is, RM is a Noetherian

valuation domain for each maximal ideal M of R and hence R is a one-dimensional ring.)

The following result is a characterisation of an almost Dedekind domain in terms of 2-

absorbing ideals. The proof of the following result is similar to the proof of Theorem

3.15, and hence it is left to the reader.

Proposition 3.16. Let R be an integral domain that is not a field and sup-

pose that RM is Noetherian for each maximal ideal M of R. The following statements

are equivalent:

(1) R is an almost Dedekind domain;

(2) If I is a 2-absorbing ideal of R, then I is a maximal ideal of R or I = M2

for some maximal ideal M of R or I = M1M2 where M1, M2 are some

maximal ideals of R;

(3) If I is a 2-absorbing ideal of R, then I is a prime ideal of R or I = P 2 for

some prime ideal P of R or I = P1∩P2 where P1, P2 are some prime ideals

of R.
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