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ON 2-ABSORBING IDEALS OF COMMUTATIVE RINGS

AYMAN BADAWI

Suppose that R is a commutative ring with 1 # 0. In this paper, we introduce the
concept of 2-absorbing ideal which is a generalisation of prime ideal. A nonzero proper
ideal I of R is called a 2-absorbing ideal of R if whenever a,b,c € R and abc € I,
then ab € I or ac € I or bec € I . It is shown that a nonzero proper ideal I of R is
a 2-absorbing ideal if and only if whenever 112135 C I for some ideals I, I, I3 of R,
then I1ls C I or Isl3 C I or 1115 C I. It is shown that if I is a 2-absorbing ideal of
R, then either Rad([) is a prime ideal of R or Rad(I) = P, N P, where Py, P, are the
only distinct prime ideals of R that are minimal over I. Rings with the property that
every nonzero proper ideal is a 2-absorbing ideal are characterised. All 2-absorbing
ideals of valuation domains and Priifer domains are completely described. It is shown
that a Noetherian domain R is a Dedekind domain if and only if a 2-absorbing ideal
of R is either a maximal ideal of R or M? for some maximal ideal M of R or M; M,
where M, My are some maximal ideals of R. If Rj; is Noetherian for each maximal
ideal M of R, then it is shown that an integral domain R is an almost Dedekind
domain if and only if a 2-absorbing ideal of R is either a maximal ideal of R or M?
for some maximal ideal M of R or MM, where My, My are some maximal ideals of
R.

1. INTRODUCTION

We assume throughout that all rings are commutative with 1 # 0. Suppose that
R is a ring. Then T'(R) denotes the total quotient ring of R, Nil(R) denotes the set
of nilpotent elements of R , Z(R) denotes the set of zerodivisors of R, and if I is a
proper ideal of R, then Rad(I) denotes the radical ideal of I. We start by recalling some
background material. A nonzero proper ideal I of a ring R is said to be Q-primal if
Z(R/I) = Q/I for some prime ideal @) of R containing I. A prime ideal P of a ring R
is said to be a divided prime ideal if P C (z) for every x € R\ P; thus a divided prime
ideal is comparable to every ideal of R. An integral domain R is said to be a divided
domain if every prime ideal of R is a divided prime ideal. An integral domain R is said

to be a valuation domain if z | y (in R) or y | « (in R) for every nonzero z,y € R. It is
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known that a valuation domain is a divided domain. If I is a nonzero ideal of a ring R,
then /=' = {# € T(R) | I C R} . An integral domain R is called a Prifer domain if
II~! = R for every nonzero finitely generated ideal I of R. An integral domain R is said
to be a Dedekind domain if II™! = R for every nonzero ideal I of R. An integral domain
R is called an almost Dedekind domain if R;; is a Dedekind domain for each maximal
ideal M of R.

In this paper, we introduce the concept of 2-absorbing ideal which is a generalisation
of prime ideal. A nonzero proper ideal I of R is called a 2-absorbing ideal of R if whenever
a,b,c € R and abc € I, then ab € I or ac € I or bc € I. A more general concept than
2-absorbing ideals is the concept of k-absorbing ideals. We only state the definition of
k-absorbing ideals. Suppose that k is a positive integer such that £ > 2. A nonzero
proper ideal I of R is called a k-absorbing ideal of R if whenever ay,as,...,a; € R and
ajas -+ -ag € I, then there are (k -1) of the a;’s whose product is in I. It is easily proved
that a nonzero proper ideal I of a principal ideal domain R is a 2-absorbing ideal of R
if and only if I is a prime ideal or I = p?R for some prime element p of R or I = p1poR
where pq, py are distinct prime elements of R. Also, it is easily proved that if P and @)
are some nonzero prime ideals of a ring R, then P N () is a 2-absorbing ideal of R. For
nontrivial 2-absorbing ideals see Example 2.11, Example 2.12, Example 3.5, and Example
3.11.

Among many results in this paper, it is shown (Theorem 2.13) that a nonzero proper
ideal I of R is a 2-absorbing ideal if and only if whenever I;1sI3 C [ for some ideals
I, 15, I3 of R, then I1Iy C I or I1l3 C I or I113 C I. It is shown (Theorem 2.4) that if [
is a 2-absorbing ideal of R, then either Rad (/) is a prime ideal of R or Rad(l) = P, N P,
where Py, P, are the only distinct prime ideals of R that are minimal over /. Rings with
the property that every nonzero proper ideal is a 2-absorbing ideal are characterised in
Theorem 3.4. It is shown (Corollary 2.7) that a 2-absorbing ideal of a ring R is a Q-
primal ideal for some prime ideal ) of R. An example of a ()-primal ideal that is not a
2-absorbing ideal is illustrated in Example 3.12. For a valuation domain R, it is shown
(Proposition 3.10) that a nonzero proper ideal I of R is a 2-absorbing ideal if and only
I =P or I =P?where P =Rad(I) is a prime ideal of R. For a Priifer domain R, it is
shown (Theorem 3.14) that a nonzero proper ideal I of R is a 2-absorbing ideal if and
only if I is a prime ideal of R or I = P? is a P-primary ideal of R or I = P, N P, where
P, and P, are nonzero prime ideals of R. It is shown (Corollary 3.16) that a Noetherian
domain R that is not a field is a Dedekind domain if and only if a 2-absorbing ideal of
R is either a maximal ideal of R or M? for some maximal ideal M of R or M; M, where
M, My are some maximal ideals of R. If R,; is Noetherian for each maximal ideal M of
an integral domain R, then it is shown (Proposition 3.17) that R is an almost Dedekind
domain if and only if a 2-absorbing ideal of R is either a maximal ideal of R or M? for

some maximal ideal M of R or M;Ms where My, My are some maximal ideals of R. It is
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shown (Theorem 3.6) that if P is a divided prime ideal of a ring R and I is an ideal of R
such that Rad(l) = P, then I is a 2-absorbing ideal of R if and only if I is a P-primary
ideal of R such that P2 C I.

2. BASIC PROPERTIES OF 2-ABSORBING IDEALS

THEOREM 2.1. Suppose that I is a 2-absorbing ideal of a ring R. Then Rad([)
is a 2-absorbing ideal of R and x? € I for every x € Rad(I).

PROOF: Since [ is a 2-absorbing ideal of R, observe that 2 € [ for every x € Rad([).
Let z,y,2 € R such that zyz € Rad(I). Then (xyz)* = z%y?2? € I. Since [ is a 2-
absorbing ideal, we may assume that z2y? € I. Since (zy)? = 2%y € I, zy € Rad(I). [

We recall the following lemma.

LEMMA 2.2. ([4, Theorem 2.1, p. 2]).
Let I C P be ideals of a ring R, where P is a prime ideal. Then the following
statements are equivalent:

(1) P is a minimal prime ideal of I;
(2) Foreachz € P, thereis ay € R\ P and a nonnegative integer n such that
yx" € I.

THEOREM 2.3. Suppose that I is a 2-absorbing ideal of a ring R. Then there

are at most two prime ideals of R that are minimal over I.

PROOF: Suppose that J = {P; | P, is a prime ideal of R that is minimal over I} and
suppose that J has at least three elements. Let Py, P, € J be two distinct prime ideals.
Hence there is an z1 € P, \ P, and there is an zo € P\ P;. First we show that x;29 € 1.
By Lemma 2.2, there is a c; € P, and a ¢; € P, such that cox] € I and ;25" € [ for
some n,m > 1. Since 1,22 € P, N P, and [ is a 2-absorbing ideal of R, we conclude
that coxy € I and cyz9 € I. Since x1,29 € P N Py, and coxy,cixe € I C PN Py, we
conclude that ¢o € P, \ P, and ¢; € P, \ P, and thus ¢;,co € Py N Py, Since coxy € 1
and cixo € I, we have (¢ + co)z122 € I. Observe that ¢; + ¢y € Py and ¢ + ¢o € Ps.
Since (c1 + co)xq € Py and (¢1 + co)xy € Py, we conclude that neither (¢; + ¢o)x; € T
nor (c; + co)xy € I, and hence z125 € I. Now suppose there is a P3 € J such that P
is neither P, nor P,. Then we can choose y; € P, \ (P U P3), y2 € P>\ (P, U P3), and
ys € P3\ (P, U P,). By the previous argument 3y, € . Since I C P, N P, N P3 and
y1y2 € I, we conclude that either y; € P or y5 € P3 which is a contradiction. Hence J
has at most two elements and that completes the proof. a

THEOREM 2.4. Let I be a 2-absorbing ideal of R. Then one of the following
statements must hold:

(1) Rad(I) = P is a prime ideal of R such that P?> C I.
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(2) Rad(l) = PN P, PLP, C I, and Rad(I)*> C I where P,, P, are the only
distinct prime ideals of R that are minimal over I.

PrOOF: By Theorem 2.3, we conclude that either Rad(/) = P is a prime ideal of
R or Rad(I) = P, N P,, where P, P, are the only distinct prime ideals of R that are
minimal over I. Suppose that Rad(I) = P is a prime ideal of R. Let =,y € P. By
Theorem 2.1, we have 2%,y*> € I. Now z(x + y)y € I. Since I is a 2-absorbing ideal, we
have x(z+y) =2*+ay €T or (x+y)y=zy+y?> €l orzy € . Tt is easily proved that
each case implies that zy € I, and thus P2 C I .

Now suppose that Rad(/) = P, N P,, where P; P, are the only distinct prime ideals
of R that are minimal over I. Let z,y € Rad([). Then xy € I by the same argument
given above, and hence Rad(I)?> C I. Now we show that PP, C I. First observe that
w? € I for each w € Rad(I) by Theorem 2.1. Let z; € P, \ P, and zo € P> \ Py.
Then zy29 € I by the proof of Theorem 2.3. Let z; € Rad(/) and 2z € P> \ P;. Pick
y1 € Py \ P,. Then y;29 € I by the proof of Theorem 2.3 and z; +y; € Py \ P». Thus
2129 + Y122 = (21 +y1)z2 € I, and hence z1z5 € I. A similar argument will show that if
z1 € Rad(I) and 2z, € P\ P, then 212, € I. Hence PP, C I. a

THEOREM 2.5. Let I be a 2-absorbing ideal of R such that Rad(I) = P is a
prime ideal of R and suppose that [ # P. For eachx € P\ I let B, = {y € R | yx € I}.
Then B, is a prime ideal of R containing P. Furthermore, either B, C B, or B, C B,
for every x,y € P\ I.

PROOF: Let z € P\ I. Since P?> C I (by Theorem 2.4), we conclude that P C B,.
Suppose that P # B, and yz € B, for some y,z € R. Since P C B,, we may assume
that y ¢ P and z ¢ P, and thus yz ¢ I. Since yz € B,, we have yzx € I. Since [ is a
2-absorbing ideal of R and yz ¢ I, we conclude that either yz € I or zz € I, and thus
either y € B, or z € B,. Hence B, is a prime ideal of R containing P.

Let z,y € P\ I and suppose that z € B, \ By. Since P C B,, z € B, \ P. We show
that B, C B,. Let w € B,. Since P C B,, we may assume that w € B, \ P. Since z ¢ P
and w ¢ P, we conclude that zw ¢ I. Since z(z + y)w € I and zw, zy & I, we conclude
that (z +y)w € I. Hence wx € I since (x +y)w € I and wy € I. Thus w € B, C B,. [

THEOREM 2.6. Let [ be a 2-absorbing ideal of R such that I # Rad(I) = PiNP,
where P, and P, are the only nonzero distinct prime ideals of R that are minimal over
I. Then for each v € Rad(I)\ I, B, = {y € R | xy € I} is a prime ideal of R containing
P, and P,. Furthermore, either B, C B, or B, C B, for every x,y € Rad([) \ I.

PRrOOF: Let x € Rad(I) \ I. Since PP, C I by Theorem 2.4, we conclude that
xP, C I and 2P, C I. Thus P, C B, and P, C B,. Suppose yz € B, for some y, z € R.
Since P, C B, and P, C B,, we may assume that y,z ¢ P, and y,z € P, and thus
yz ¢ I. Since yz € B,, we have yzx € I. Since [ is a 2-absorbing ideal of R and yz ¢ I,
we conclude that either yx € I or zx € I, and thus either y € B, or z € B,. Hence B,



[5] Commutative rings 421

is a prime ideal of R. By using an argument similar to that in the proof of Theorem 2.5,
one can easily complete the proof. I

Recall that a nonzero proper ideal I of a ring R is said to be Q-primal if Z(R/I)
= @/I for some prime ideal @) of R containing I.

COROLLARY 2.7. Suppose that I is a 2-absorbing ideal of R such that I #
Rad([). Then I is a Q-primal ideal of R where Q) = Ugzecraa(r)\1B= (recall that B, = {y €
R|yx € 1}).

PRrROOF: Let a,b € R\ I such that ab € I. We show that a,b € By for some
f € Rad(I) \ I. By Theorem 2.3, we conclude that either Rad(/) = P is a prime ideal
of R or Rad(I) = P, N P,, where P;, P, are the only distinct prime ideals of R that
are minimal over I. Suppose that Rad(/) = P is a prime ideal of R. Hence either
a € P\Iorbe P\ I, and thus either a,b € B, or a,b € By,. Since I # Rad(I),
D ={B, |z € Rad(I) \ I} is a set of linearly ordered (prime) ideals of R by Theorem
2.5. Thus Z(R/I) = Up,ep(B:/I) is an ideal of R/I.

Now suppose that Rad(I) = P, N P, where Py, P, are the only distinct prime ideals
of R that are minimal over I. Since ab € Rad([), without loss of generality we may
conclude that either a € Rad(/)\ [ ora € P\ P, and b € P, \ P. If a € Rad(]) \ I,
then a,b € B,. Suppose that a € P, \ P, and b € P, \ P;. Since I # Rad(I), there is a
d € Rad([) \ I. Since P, C By and P, C B; by Theorem 2.6, we have a,b € By. Again,
since I # Rad(I), D = {B, | z € Rad(I) \ I} is a set of linearly ordered (prime) ideals
of R by Theorem 2.6. Thus Z(R/I) = Up,ep(B,/I) is an ideal of R/1. 1

In Section 3, we give an example (see Example 3.12) of a @)-primal ideal I of R such
that Rad(I) = P is a prime ideal of R and P? C I, but I is not a 2-absorbing ideal of R.

THEOREM 2.8. Suppose that I is an ideal of R such that I # Rad(l) and Rad([)
is a prime ideal of R. Then the following statements are equivalent:

(1) I is a 2-absorbing ideal of R;
(2) B,={y € R|yx € I} is a prime ideal of R for each x € Rad([) \ 1.

PROOF: (1) = (2). This is clear by Theorem 2.5.

(2) = (1). Suppose that zyz € I for some z,y, z € R. Since Rad([) is a prime ideal
of R, we may assume that x € Rad(I). If x € I, then xy € I and we are done. Hence

assume that = € Rad([) \ /. Thus yz € B,. Since B, is a prime ideal of R by Theorem
2.5, we conclude that either yx € I or zz € I. Thus [ is a 2-absorbing ideal of R. I

THEOREM 2.9. Let I be an ideal of R such that I # Rad(l) = PN P, where P,
and P, are nonzero distinct prime ideals of R that are minimal over I. Then the following
statement are equivalent:

(1) [ is a 2-absorbing ideal of R;
(2) PP, C I and B, = {y € R | yr € I} is a prime ideal of R for each
xz € Rad(]) \ I.
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(3) B,={y € R|yx € I} is a prime ideal of R for each x € (P, U P,) \ I.

PROOF: (1) = (2). This is clear by Theorems 2.4 and 2.6.

(2) = (3). Let x € P\ P». It is clear that yz € I if and only if y € P,. Since
PP, C I, we conclude that B, = P; is a prime ideal of R. Let z € P, \ P;. By a similar
argument as before we conclude that B, = P, is a prime of R. Since By is a prime ideal
of R for each d € Rad([) \ I, we are done.

(3) = (1). Let zyz € I. We may assume that z € (P, U P,) \ I. Thus yz € B,.
Since B, is a prime ideal of R by Theorem 2.6, we conclude that either yx € I or zx € I,
and hence [ is a 2-absorbing ideal of R. I

THEOREM 2.10. Let I be a 2-absorbing ideal of a ring R such that I # Rad([I).
For each x € Rad(I)\ I, let B, ={y € R | yx € I}. Then :

(1) Ifr €Rad(/)\ I and y € R such that yx ¢ I, then B,, = B,.

(2) Ifzx,y € Rad(I)\ I and B, is properly contained in B,,, then B, 4, = B,
for every f,d € R such that fd ¢ B,. In particular, if x,y € Rad(I) \ I
and B, is properly contained in By, then By, = B,.

PrOOF: (1) Let z,y € Rad(I) \ I. Since B, C B,, it is clear that B, C By,. Let
¢ € By,. Since cyx € I, we conclude that cy € B,. Since B, is a prime ideal of R by
Theorems 2.5, 2.6 and y ¢ B, because yx ¢ I, we have cx € I. Hence ¢ € B,, and thus
B, = By,.

(2) Let z,y € Rad({) \ I. Since B, C B,, it is clear that B, C By, iqy. Suppose
that By # Bjfgtay. Since By, Byyyay, By are linearly ordered by Theorems 2.5, 2.6 and
B, is properly contained in B,, there is a z € B, N By;4, such that z ¢ B,. Since zy € I
and z(fz + dy) € I, we conclude that zfz € I. Hence zf € B,, a contradiction since
neither z € B, nor f € B,. Thus B, = Bjztay- I

EXAMPLE 2.11. Suppose that R = Z[z,y] where Z is the ring of integers and z, y are
indeterminates, P, = (z,2)R, P, = (y,2)R are prime ideals of R, and let I = PP, =
(4,2z,2y,zy)R. Then Rad(I) = PLN P, = (2,zy)R. Since By = {z# € R | 2z €
It = (2,z,y)R is a (maximal) prime ideal of R, it is easy to see that B; = Bs for each
d € Rad(I) \ I. Hence I is a 2-absorbing ideal of R by Theorem 2.9.

EXAMPLE 2.12. Suppose that R = Z[x,y,z] where x,y,z are indeterminates,
P = (2,z2)R is a prime ideal of R, and I = (4,2z,2y, 2y, vz, 2?)R. Then P? C I and
Rad(I) = P. Now By = (2,z,y)R is a prime ideal of R, B, = (2,z,y, 2)R is a (prime)
maximal ideal of R, and By, = Bs. It is easy to see that if d € P\ I, then either
By = By or By = B,. Thus [ is a 2-absorbing ideal of R by Theorem 2.8. Observe that
I is not a primary ideal.

Part of this paper was presented at a commutative ring conference in Cortona, Italy
(June, 2004). During the conference, Bruce Olberding asked the author the following
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question: Let I be a 2-absorbing ideal of a ring R and suppose that ;15135 C I for some
ideals I, Is, I3 of R, does it follow that I1Is C I or I3I3 C I or 1113 C I? The answer to
the question is yes as in the following result.

THEOREM 2.13. Suppose that I is a nonzero proper ideal of a ring R. The
following statements are equivalent:

(1) [ is a 2-absorbing ideal of R;
(2) If I11x13 C I for some ideals Iy, 15,13 of R, then I11s C I or IsI3 C I or
LI; C1I.

PROOF: Since (2) = (1) is trivial, we only need to show that (1) = (2). Suppose
that I11513 C I for some ideals I, I5, I3 of R. By Theorem 2.4, we conclude that Rad([)
is a prime ideal of R or Rad(/) = P, N P, where P; and P, are nonzero distinct prime
ideals of R that are minimal over I. If I = Rad([]), then it is easily proved that [;I, C I
or IoI3 C I or I1I3 C I. Hence assume that I # Rad(I). We consider two cases.

Case 1. Suppose that Rad(/) is a prime ideal of R. Then we may assume that
I CRad(l) and Iy € I. Let « € I \ I. Since xlyI3 C I, we conclude that Iy/3 C B,.
Since B, is a prime ideal of R by Theorem 2.8, we conclude that either I, C B, or
I3 C B,. If I C By and I3 C By for each d € I \ I, then I11s C I (and 113 C I) and
we are done. Hence assume that that Iy C B, and I3 € B, for some y € I; \ I. Since
{By | w € I; \ I} is a set of prime ideals of R that are linearly ordered by Theorem
2.5 and I, C B, and I3 € B,, we conclude that I, C B, for each z € I; \ I, and thus
LI, C 1.

Case II.  Suppose that Rad(/) = PN P, where P; and P, are nonzero distinct prime
ideals of R that are minimal over I. We may assume that I; C P;. If either I, C P,
or I3 C Py, then either I11, C I or 1113 C I because PP, C [ by Theorem 2.4. Hence
assume that Iy C Rad(/) and I; € I. By an argument similar to that one given in case
I and Theorem 2.5, we are done. I

3. ON 2-ABSORBING IDEALS IN PARTICULAR CLASSES OF RINGS

THEOREM 3.1. Suppose that I is a P-primary ideal of a ring R. Then I is a

2-absorbing ideal of R if and only if P?> C I. In particular, M? is a 2-absorbing ideal of
R for each maximal ideal M of R.

PROOF: Suppose that [ is a 2-absorbing ideal of a ring R. Then P? C I by Theorem
2.4(1). Conversely, suppose that P> C I and zyz € I. If either x € I or yz € I, then
there is nothing to prove. Hence assume that neither x € I nor yz € I. Since [ is a
P-primary ideal of R, we conclude that z € P and yz € P. Thus z,y € P or x,z € P.
Since P? C I, we conclude that zy € I or 2z € I. a

COROLLARY 3.2. Suppose that P is a nonzero prime ideal of R. Then
P® = P2Rp N R is a 2-absorbing ideal of R.
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PRrOOF: It is well-known that P is a P-Primary ideal of R. Since P? C P2 P
is a 2-absorbing ideal of R by Theorem 3.1. 1

The following lemma is useful in the proof of our next result.

LEMMA 3.3. Suppose that R is a zero-dimensional ring with exactly two distinct
maximal ideals such that Nil(R) # {0}, Nil(R)? = {0} and Nil(R) = wR for each nonzero
w € Nil(R). Then R is ring-isomorphic to R/M}? & R/M, where M, is a maximal ideal
of R such that M? # M, and M, is a maximal of R such that M2 = M,. Furthermore,
each nonzero proper ideal of R is a 2-absorbing ideal of R.

PROOF: Let My, M, be the two distinct maximal ideals of R. Since Nil(R) = M; M,
and Nil(R)? = {0}, we conclude that MZMZ = {0}. Since M?, M3 are co-maximal, R is
ring-isomorphic to D = R/M & R/M3. Since Nil(R) # {0}, we conclude that at least
one of the maximal ideals of R is a non-idempotent ideal. Hence we may assume that
M? # M, and thus there is an element m; € M; such that m; € M? . Now suppose
that M2 # M,. Then there is an element my € M, such that my & MZ. Since (0,mq
+ M3), (my + M3, 0) are nonzero nilpotent elements of D, (0, my+ MZ) € (my + M2,0)D
by hypothesis, which is impossible. Thus M7 = M,. Hence Nil(D) = {0} & (M;/M?).
Since wD = Nil(D) for each nonzero w € Nil(D), we conclude that Nil(D) is the only
proper non-maximal ideal of D. Thus every nonzero proper ideal of D is a 2-absorbing

ideal of D, and hence every nonzero proper ideal of R is a 2-absorbing ideal of R. I

Recall that an element z € R is said to be a m-regular element of R if there is a
positive integer n and an element y € R such that 2"y = z". If every element of R is
a m-regular element, then R is called a m-regular ring. It is well-known [4, Theorem 3.1]
that a ring R is a w-regular ring if and only if R is a zero-dimensional ring.

THEOREM 3.4. Every nonzero proper ideal of a ring R is a 2-absorbing ideal of
R if and only if R is zero-dimensional (that is, R is a m-regular ring) and one of the
following statements hold:

(1) R is quasi-local with maximal ideal M = Nil(R) # {0} such that M? C xR
for each nonzero x € M.

(2) R has exactly two distinct maximal ideals such that either R is ring-
isomorphic to Fy & Fy where Fy and Fy are fields or Nil(R)? = {0} and
Nil(R) = wR for each nonzero w € Nil(R).

(3) R is ring-isomorphic to Fy ® F, @ F3 where Fy, Fy, F3 are fields.

PROOF: Suppose that R is quasi-local with maximal ideal M = Nil(R) # {0} such
that M? C zR for each nonzero x € M. Since every nonzero proper ideal I of R is an
M-primary ideal of R and M? C I, we conclude that every nonzero proper ideal of R
is a 2-absorbing ideal of R by Theorem 3.1. Suppose that R is zero-dimensional and
the second condition holds. If Nil(R) = {0}, then it is easily proved that every nonzero
proper ideal of R is a 2-absorbing ideal of R. If Nil(R) # {0}, then every nonzero proper
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ideal of R is a 2-absorbing ideal of R by Lemma 3.3. Suppose that R is ring-isomorphic
to D = 1 @& Fy, @ F3 where Fy, Fy, F3 are fields. Since every nonzero proper ideal of D
is either a maximal ideal of D or a product(intersection) of two distinct maximal ideals
of D, we conclude that every nonzero proper ideal of D is a 2-absorbing ideal of D, and
hence every nonzero proper ideal of R is a 2-absorbing ideal of R.

Conversely, suppose that every nonzero proper ideal of R is a 2-absorbing ideal of
R. We show that R is a zero-dimensional ring. Let w € R. If w is a unit of R or a
nilpotent of R, then w is a m-regular element of R. Hence assume that w is a nonunit
non-nilpotent element of R. Then w*R is a nonzero proper ideal of R, and hence it is a
2-absorbing ideal of R. Since w* € wR, we conclude that w? € w*R, and thus w is a
m-regular element of R. Hence R is a m-regular ring, and thus R is a zero-dimensional
ring.

Next we show that R has at most three distinct maximal ideals. Suppose that
My, My, M3 are distinct maximal ideals of R. Then I = My MyMs = MiNnMyNMs = {0},
for if I # {0}, then I = Rad(I) is a 2-absorbing ideal of R which is impossible by Theorem
2.4. Since M;M;M;z = {0}, R has at most three distinct maximal ideals.

Now suppose that R has exactly three distinct maximal ideal M, My, M3. Since
MiMyM; = {0}, we conclude that R is ring-isomorphic to R/M; & R/Ms & R/Mj, and
thus the third condition holds.

Suppose that R has exactly two distinct maximal ideals M;, M,. If Nil(R)
= MM, = {0}, then R is ring-isomorphic to R/M; & R/M,. Hence assume that
Nil(R) = M;M, # {0}. Suppose that Nil(R)?> # {0}. Then there are nonzero ele-
ments wy, we € Nil(R) such that wywy # 0. Since wyjwy R is a 2-absorbing ideal of R, we
conclude that w; € M1M; = Nil(R) C wywsR by Theorem 2.4. Hence w; = wywsyk for
some nonzero k € R, and thus w;(1 — wyk) = 0. Hence w; = 0 since 1 — wok is a unit of
R, a contradiction. Thus Nil(R)? = {0}. Suppose that w is a nonzero nilpotent element
of R. Since wR is a 2-absorbing ideal of R, we conclude that Nil(R) = MM, C wR by
Theorem 2.4, and hence the second condition holds.

Finally suppose that R is a quasi-local ring with maximal ideal Nil(R) # {0}. Sup-
pose that w is a nonzero element of Nil(R). Since wR is a 2-absorbing ideal of R, we
conclude that Nil(R)? C wR by Theorem 2.4. Thus the first condition holds. I

EXAMPLE 3.5.

(a) Let Z be the ring of integers, R = Z5, and D = Z,2 @ F where p is a
prime number of Z and F' is a field. Then every nonzero proper ideal of R
is a 2-absorbing ideal and every nonzero proper ideal of D is a 2-absorbing
ideal.

(b) Let R be the ring of all real numbers and X,Y be indeterminates. Set
R =TR[[X,Y]]/(XY,X? - Y? X3 Y?). Then every nonzero proper ideal
of R is a 2-absorbing ideal.
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Recall that a prime ideal of R is called a divided prime if P C (x) for every x € R\ P.

THEOREM 3.6. Suppose that P is a nonzero divided prime ideal of R and I is
an ideal of R such that Rad(I) = P. Then the following statements are equivalent:
(1) [ is a 2-absorbing ideal of R;
(2) I is a P-primary ideal of R such that P?> C I.

PROOF: (1) = (2). Suppose that [ is a 2-absorbing ideal of R. Since Rad(l) = P is
a nonzero prime ideal of R, P? C I by Theorem 2.4(1). Now let zy € I for some z,y € R
and suppose that y ¢ P. Since x € P and P is a divided ideal of R, we conclude that
x = yk for some k € R. Hence xy = y*k € I. Since y* € I and [ is a 2-absorbing ideal
of R, we conclude that yk = x € I. Thus [ is a P-primary ideal of R.

(2) =(1). This is clear by Theorem 3.1. I

THEOREM 3.7. Suppose that Nil(R) and P are divided prime ideals of a ring R
such that P # Nil(R). Then P? is a 2-absorbing ideal of R.

PROOF: First we observe that Nil(R) C P? since P # Nil(R) and Nil(R) is divided.
By Theorem 3.6 it suffices to show that P? is a P-primary ideal of R. Suppose that
Y = p1q1 + -+ pnqn € P? where the p;’s and the ¢;’s are in P, and suppose that y & P.
Since P is a divided ideal of R, we conclude that xy = yciq1 + - - - +ycnq, € P? where the

¢;’sarein P. Hence y(z—ciq1— - -—cngn) = 0 € Nil(R). Sincey ¢ Nil(R) (becausey ¢ P)
and Nil(R) is a prime ideal of R, we conclude that x — ¢1¢; — - -+ — ¢,q, = w € Nil(R).
Since Nil(R) C P?, we conclude that © = c;q; + -+ c,qn + w € P2, and thus P? is a
P-primary ideal of R. I

If R is an integral domain, then Nil(R) = {0} is a divided prime ideal of R. Hence

we have the following corollary.

COROLLARY 3.8. Suppose that P is a a nonzero divided prime ideal of an in-
tegral domain R. Then P? is a 2-absorbing ideal of R.

The following is an example of a prime ideal P of an integral domain R such that
P? is not a 2-absorbing ideal of R.

EXAMPLE 3.9. Suppose that R = Z + 62 Z[z| and P = 6xZ[x] (where Z is the ring of
integers and z is an indeterminate). Then P is a prime ideal of R. Since 622 € P\ P?
and B,z = {y € R | 62y € P?} = 6Z + 6xZ[x] is not a prime ideal of R, P? is not a
2-absorbing ideal of R by Theorem 2.8.
PrROPOSITION 3.10. Suppose that R is a valuation domain and I is a nonzero

proper ideal of R. Then the following statements are equivalent:

(1) [ is a 2-absorbing ideal of R;

(2) I is aa P-primary ideal of R such that P? C I;

(3) I =P orI= P?where P=Rad(I) is a prime ideal of R.
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PROOF: (1) = (2). Suppose that [ is a 2-absorbing ideal of R. Then Rad(l) = P
is a prime ideal of R. Since R is a divided domain, [ is a P-primary ideal of R such that
P? C I by Theorem 3.6.

(2) = (3). Suppose that I is a P-primary ideal of R such that P? C I. Since R is a
valuation domain, we conclude that either I = P or [ = P? by [5, Theorem 5.11, p. 106].

(3) = (1). Suppose that either I = P or I = P? where P = Rad () is a prime ideal
of R. If I = P, then I is a 2-absorbing ideal of R. If I = P?, then I is a 2-absorbing
ideal of R by Corollary 3.8. I

The following is an example of a prime ideal P of an integral domain R such that
P? is a 2-absorbing ideal of R, but P? is not a P-primary ideal of R.

EXAMPLE 3.11. Suppose that R = Z + 3z Z[z]| (where Z is the ring of integers and «
is an indeterminate) and let P = 3zZ[z| be a prime ideal of R. Since 3(3z%) € P?, we
conclude that P? is not a P-primary ideal of R. It is easy to verify that if d € P\ P?,
then either By = {y € R | yd € I} = P or By = 3Z + 3zZ[x] is a prime ideal of R.
Hence P? is a 2-absorbing ideal by Theorem 2.8.

Next we show that for each n > 2, there is a valuation domain R with maximal
ideal M and Krull dimension n that admits an M-primal ideal I such that Rad(/) = P
is a prime ideal of R , P? C I, and the Krull dimension of R/I is n — 1, but I is not a
2-absorbing ideal of R.

EXAMPLE 3.12. Suppose that n > 2 and D be a valuation domain with quotient field
K and Krull dimension n — 1. Let X be an indeterminate and set R = D + XK [[X]].
Then R is a valuation domain with Krull dimension n. Let P = XK [[X H be a prime
ideal of R and let () be a nonzero prime ideal of R such that @) # P. Then it is clear that
P C Q. Set I = XRg. Then I is an ideal of R such that Rad(/) = P and Z(R/I) = Q/I
by [1, Proposition 2.1]. Hence [ is not a primary ideal of R. Since R is a valuation
domain and X € P\ P? we have P> C I and I is not a 2-absorbing ideal of R by
Proposition 3.10. By construction it is clear that the Krull dimension of R/I is n — 1.

Before we state our next theorem, the following lemma is needed.

LEMMA 3.13. Suppose that I is a 2-absorbing ideal of a ring R and let S be a
multiplicatively closed subset of R. If IR # {0}, then I Rg is a 2-absorbing ideal of Rg.

PrROOF: Suppose that zyz € I Rg for some x,y,z € Rg. Then there are elements
s € S, and x1, 79, z3 € R such that zyz = (v1/5)(x2/5)(23/5) = x12903/5> € [Rg. Thus,
x1wex3 € I. Since [ is a 2-absorbing ideal of R, we have xyxy € I or x1x3 € I or xow3 € I,
and thus xy € IRg or xz € I[Rg or yz € I Rg. a

THEOREM 3.14. Suppose that R is a Priifer domain and I is a nonzero ideal of
R. Then the following statements are equivalent:

(1) [ is a 2-absorbing ideal of R;
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(2) [ is a prime ideal of R or I = P? is a P-primary ideal of R or [ = P, N P,
where P, and P, are nonzero prime ideals of R.

PROOF: Suppose that [ is a nonzero 2-absorbing ideal of R. Then either Rad(l) = P
is a prime ideal of R or Rad(I) = P, N P, where Py, P, are the only minimal prime ideals
of R over I by Theorem 2.4. Suppose that Rad(/) = P is a prime ideal of R and
I # P. Then [ is a Q-primal ideal of R by Corollary 2.7, and P C @Q because P? C [
by Theorem 2.4. Since IR is a 2-absorbing ideal of Rg by Lemma 3.13 and Ry is a
valuation domain, we conclude that I Rq is a PRg-primary ideal of Ry by Proposition
3.10. Hence IRg N R is a P-primary ideal of R by [5, Corollary 3.10, p. 68]. It is easy
to verify that IRg N R = I (for a proof see [2, Lemma 1.3]). Hence I = IRg N R is a
P-primary ideal of R. Since P? C I by Theorem 2.4 and I # P, we conclude that [ = P?
by [5, Proposition 6.9(4), p. 132].

Next suppose that Rad(I) = P, N P, where P;, P, are the only minimal prime ideals
of R over I. Assume that I # Rad(l). Then [ is a Q-primal ideal of R by Corollary
2.7. Since P, C @ and P, C Q and Rg is a valuation domain, either PRy C P»Rg or
PRy C PyRg, which is impossible. Thus I = Rad(l) = P, N Ps.

For the converse, just observe that if I = P? is a P-primary ideal of R, then I is a
2-absorbing ideal of R by Theorem 3.1. I

Recall that an integral domain R is said to be a Dedekind domain if every nonzero
ideal of R is invertible.

THEOREM 3.15. Let R be a Noetherian domain that is not a field. The following

statements are equivalent:
(1) R is a Dedekind domain;
(2) IfI is a 2-absorbing ideal of R, then I is a maximal ideal of R or I = M?*
for some maximal ideal M of R or I = M;My where M, M, are some
maximal ideals of R;
(3) IfI is a 2-absorbing ideal of R, then I is a prime ideal of R or I = P? for

some prime ideal P of R or I = P, N P, where P;, P, are some prime ideals
of R.

PROOF: (1) = (2). Since R is a one-dimensional ring, every nonzero prime ideal of
R is maximal. Suppose that [ is a 2-absorbing ideal of R. Then either Rad(/) = M is
a a maximal ideal of R or Rad(I) = M; N My = M; M, for some distinct maximal ideals
My, My of R by Theorem 2.4.

(2) = (3). This is obvious.

(3) = (1). Let M be a maximal ideal of R. Since every ideal between M? and M is
an M-Primary ideal and hence a 2-absorbing ideal of R by Theorem 3.1, the hypothesis in
(3) implies that there are no ideals properly between M? and M. Hence R is a Dedekind
domain by [3, Theorem 39.2, p. 470]. I
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Recall that an integral domain R is said to be an almost Dedekind domain if R,
is a Dedekind domain for each maximal ideal M of R (that is, Ry is a Noetherian
valuation domain for each maximal ideal M of R and hence R is a one-dimensional ring.)
The following result is a characterisation of an almost Dedekind domain in terms of 2-
absorbing ideals. The proof of the following result is similar to the proof of Theorem
3.15, and hence it is left to the reader.

PROPOSITION 3.16. Let R be an integral domain that is not a field and sup-
pose that Ry, is Noetherian for each maximal ideal M of R. The following statements

are equivalent:
(1) R is an almost Dedekind domain;

(2) IfI is a 2-absorbing ideal of R, then I is a maximal ideal of R or I = M?*
for some maximal ideal M of R or I = M; My where M, M, are some
maximal ideals of R;

(3) IfI is a 2-absorbing ideal of R, then I is a prime ideal of R or I = P? for
some prime ideal P of R or [ = P, N P, where P;, P, are some prime ideals
of R.
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